Show simple item record

dc.contributor.authorHosseini, Maliheh
dc.contributor.authorJiménez Vargas, Antonio 
dc.contributor.authorRamírez Alvarez, María Isabel 
dc.date.accessioned2024-05-22T08:19:46Z
dc.date.available2024-05-22T08:19:46Z
dc.date.issued2022-05-18
dc.identifier.citationRev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. (2022) 116:108es_ES
dc.identifier.issn1578-7303
dc.identifier.urihttp://hdl.handle.net/10835/16496
dc.description.abstractLet K be either the real unit interval [0,1] or the complex unit circle T and let C(Y ) be the space of all complex-valued continuous functions on a compact Hausdorff space Y. We prove that the isometry group of the algebra C^1(K,C(Y )) of all C(Y)-valued continuously differentiable maps on K, equipped with the sum-norm, is topologically reflexive and 2-topologically reflexive whenever the isometry group of C(Y) is topologically reflexive.es_ES
dc.language.isoenes_ES
dc.publisherSpringeres_ES
dc.rightsAttribution-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectAlgebraic reflexivityes_ES
dc.subjectTopological reflexivityes_ES
dc.subjectLocal isometryes_ES
dc.subject2-local isometryes_ES
dc.subjectDifferentiable mapes_ES
dc.titleOn local isometries between algebras of C(Y)-valued differentiable mapses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s13398-022-01251-3es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/UAL2020-FQM-B1858es_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NoDerivatives 4.0 Internacional