Show simple item record

dc.contributor.authorMadsen, Anders L.
dc.contributor.authorJensen, Frank
dc.contributor.authorSalmerón Cerdán, Antonio 
dc.contributor.authorKarlsen, Martin
dc.contributor.authorLangseth, Helge 
dc.contributor.authorNielsen, Thomas D.
dc.date.accessioned2017-06-14T09:55:57Z
dc.date.available2017-06-14T09:55:57Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/10835/4857
dc.description.abstractThe framework of Bayesian networks is a widely popular formalism for performing belief update under uncertainty. Structure re- stricted Bayesian network models such as the Naive Bayes Model and Tree-Augmented Naive Bayes (TAN) Model have shown impressive per- formance for solving classi cation tasks. However, if the number of vari- ables or the amount of data is large, then learning a TAN model from data can be a time consuming task. In this paper, we introduce a new method for parallel learning of a TAN model from large data sets. The method is based on computing the mutual information scores between pairs of variables given the class variable in parallel. The computations are organised in parallel using balanced incomplete block designs. The results of a preliminary empirical evaluation of the proposed method on large data sets show that a signi cant performance improvement is pos- sible through parallelisation using the method presented in this paper.es_ES
dc.language.isoenes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleA New Method for Vertical Parallelisation of TAN Learning Based on Balanced Incomplete Block Designses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional