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Abstract 

In this paper, we present a method for determining the different prevailing metabolisms 

of microalgae bacteria consortia taking place in microalgae-based wastewater treatment 

processes. The three main microorganism types have been considered: heterotrophic and 

nitrifying bacteria, and microalgae. The method has been optimized in terms of the 

operation strategy, including the starvation period required, and the biomass 

concentration and irradiance during the measurements. The results show that a starvation 

period of one to three days can be necessary depending on the type of wastewater being 

processed - the lower the nutrient concentration, the shorter the starvation time required. 

The measurements were taken close to 100 %Sat. to avoid limitation or inhibition 

phenomena. By providing light, the microalgae’s oxygen production rate was determined 

whereas the oxygen consumption rate of the heterotrophic bacteria was quantified by 

adding sodium acetate; lastly, the oxygen consumption rate of the nitrifying bacteria was 

measured by adding ammonium chloride. The optimal experimental conditions 

determined were a biomass concentration of 0.5 g/L and an irradiance of 200 E/m2·s. 

The methodology’s accuracy was verified, thus confirming it as a valuable tool for rapidly 

characterizing the consortia in microalgae-based wastewater treatment. The analysis of 

samples from a range of different reactors/substrates confirmed that the prevailing 

metabolisms in these consortia are modified mainly as a function of the wastewater 

characteristics. Whatever the wastewater type, the oxygen production rate is the main 

metabolism, with heterotrophic activity increasing along with increasing chemical 

oxygen demand (COD) content in the wastewater. Nitrifying activity was only observed 

when high ammonium concentrations were provided and microalgae growth was unable 

to consume it in a short time. The developed method is a powerful tool to adequately 

manage and operate wastewater treatment processes using microalgae/bacteria consortia; 

it also provides valuable information for modelling purposes.  
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1. Introduction 

Over recent decades, microalgae have been used to produce high-value compounds such 

as vitamins, pigments and biologically active compounds for the cosmetic, 

pharmaceutical, nutraceutical and food industries (Spolaore et al., 2006). Microalgae 

biomass is also a valuable product for direct human consumption and animal/aquaculture-

related applications, mainly for its high nutritional value and the health-improvement 

compounds it contains such as antioxidants, amongst others (Catarina & Xavier, 2012; 

Gouveia, Batista, Sousa, Raymundo, & Bandarra, 2008). Furthermore, microalgae have 

been proposed for different services such as soil remediation, flue-gas cleaning, biogas 

upgrade and wastewater treatment (Acién, Gómez-Serrano, Morales-Amaral, Fernández-

Sevilla, & Molina-Grima, 2016; Acien, González-López, Fernández-Sevilla, & Molina-

Grima, 2012). The utilization of microalgae in wastewater treatment processes is a highly 

relevant application due to the microalgae’s capacity to recover nutrients such as 

nitrate/ammonium, phosphorus and others from the wastewater and to transform it into 

valuable biomass (Olguín, 2012b). Due to the origin of the produced biomass, it cannot 

be used for human-related applications but it has great potential for agriculture and 

aquaculture-related applications (Acién et al., 2016). Consequently, microalgae 

production using wastewater as the nutrient source is a promising alternative, which 

allows not only a low biomass production cost but also has less environmental impact 

compared to cultivation systems that use freshwater and fertilizers (Gómez et al., 2013; 

Park et al., 2011). 

Wastewater treatment is the largest bioprocess carried out worldwide, and microalgae can 

contribute to improving it. Microalgae-related wastewater treatment is performed by 

microalgae-bacteria consortia. The schematic functioning of this consortia has been 

previously described. When illuminated, the microalgae consume inorganic carbon, 

nitrogen and phosphorus, as well as other compounds, to produce biomass while, at the 

same time, releasing oxygen from photosynthesis. This activity is beneficial in 

wastewater treatment processes because the oxygen produced by microalgae can be used 

by aerobic bacteria to biodegrade pollutants so they are capable of oxidizing organic 

matter into inorganic compounds mainly containing nitrogen and phosphorus (Muñoz et 

al., 2009). Moreover, the carbon dioxide produced by bacterial respiration is consumed 

by the microalgae, completing a photosynthesis-respiration cycle (Zambrano et al., 2016).  
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However, the reality concerning this consortia is more complex, with different microalgae 

and bacterial metabolisms active at the same time; the overall proportion of these 

metabolisms determining the capacity of the biological process to treat the wastewater 

and produce valuable biomass. Therefore, depending on the microalgae species, the 

growth rate and the capacity to remove nutrients can vary significantly; it always being 

determined by the light availability inside the reactor. Regarding the bacteria, the two 

main types of bacterial populations are: (i) the heterotrophic bacteria capable of degrading 

the organic matter present in the wastewater, and (ii) the nitrifying bacteria responsible 

for converting ammonia into its most oxidized form as nitrites and nitrates. The existence 

of denitrifying bacteria is usually disregarded in these systems. 

In microalgae-based wastewater treatment, it is considered that an equilibrium exists 

between microalgae and bacteria-related processes. However, this is not always true 

because, depending on the operational conditions, the prevalence of microalgae or 

bacteria varies greatly (Cabanelas et al., 2013). Accordingly, recent studies have shown 

that the bacterial contribution to a consortium’s performance is lower than that from the 

microalgae; this is due to the fact that the bacteria’s metabolism is faster than the 

microalgae’s so only a low bacterial mass is necessary to degrade organic compounds 

into inorganic compounds. Moreover, the amount of oxygen produced in this process by 

the microalgae population is far higher than that required by the low bacterial mass. 

Consequently, the relationship between microalgae and bacteria in a consortium is 

determined by the wastewater composition and its feed rate. An increase in either the 

wastewater’s organic matter concentration or the feed rate produces a higher proportion 

of bacteria within the consortium. For this reason, it is essential to understand and model 

these phenomena so as to adequately design and operate microalgae-based systems for 

wastewater treatment (Acién et al., 2016).  

Respirometry techniques have been used to distinguish between different biological 

processes such as heterotrophic substrate removal and nitrification in activated sludge. 

Traditionally, the use of carbonaceous substrates has allowed heterotrophic biomass 

quantification (including not only bacteria and their storage materials but also protozoa 

and other higher organisms) by measuring the oxygen consumption. Likewise, the oxygen 

consumed by autotrophic bacteria such as nitrifying bacteria has been measured using 

inorganic compounds (Vanrolleghem, 2002). Furthermore, respirometry techniques 

based on dissolved oxygen measurements have been developed to study the 

photosynthesis rates and the respiration rates in different microalgae cultures under the 
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influence of different environmental factors (Costache et al., 2013; Ippoliti et al., 2016). 

However, respirometry methods are generally applied to pure microalgal cultures without 

considering the existence of microalgae-bacteria consortia in wastewater treatment 

processes. On this issue, some authors have started to develop respirometry methods for 

studying microalgae-bacteria consortia by evaluating both microalgal and nitrifying 

activity during the test (Rossi et al., 2018). 

This work aims to develop a complete photo-respirometry method to quantify the 

microalgae-bacteria consortia found in wastewater treatment processes, distinguishing 

between microalgal, heterotrophic and nitrifying activity using the oxygen 

production/consumption rates. The method’s operational conditions have been optimized 

to define a standardized protocol for characterizing this type of consortia. Furthermore, 

the developed method has been used to compare the composition of microalgae-bacteria 

consortia prevailing in different wastewater treatment processes and in pure microalgae 

cultures, thus showing the large variability of these types of consortia. The methodology 

described here is a valuable tool for optimizing any microalgae-based process although 

especially those related to wastewater treatment, which are expected to expand greatly in 

the near future.  

2. Materials and methods 

2.1. Photosynthesis and respiration rate measurements 

A hand-made photo-respirometer device was designed and built. The equipment allows 

us to determine any variation in dissolved oxygen concentration in microalgae culture 

samples under controlled conditions. It comprises an 80 mL jacketed transparent 

cylindrical glass flask (connected to a temperature-controlled water reservoir for the 

device’s temperature control), which is magnetically stirred and artificially illuminated 

using two power-controlled LED lamps placed to the right and left of the glass chamber 

(Figure 1). The light provided by the lamps can be automatically regulated to obtain the 

desired irradiance inside the centre of the chamber once the sample is added. The device 

is also equipped with a diffuser through which gases (air, O2, N2 and CO2) can be supplied 

at a low flow rate to modify the culture’s dissolved oxygen or pH. To achieve this, the 

device is also equipped with sensors for irradiance (QSL-1000, Walz, Germany), 

temperature (PT-100), pH (Crison 5343, Barcelona, Spain) and dissolved oxygen (Crison 

5002, Barcelona, Spain) located inside the flask. 
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An adequate protocol was developed to determine the microalgae cultures’ 

photosynthesis and respiration rates. The developed methodology allows us to distinguish 

between the metabolisms of the three main populations: the microalgae, the heterotrophic 

bacteria, and the nitrifying bacteria. Firstly, samples of the microalgae cultures were taken 

and subjected to nutrient starvation (continuous light of 200 μEm-2 s-1 and an aeration rate 

of 0.2 v·v-1·min-1) to remove the organic matter and the ammonium present in the 

medium. It was previously demonstrated that one day of starvation was enough to remove 

the organic matter and ammonium from the samples used. Subsequently, the samples 

were placed inside the jacketed flask and the variation in dissolved oxygen over time was 

measured under different conditions. To determine the microalgae’s net photosynthesis 

rate and the respiration rates of the heterotrophic and nitrifying bacteria, each sample was 

subjected to four light–dark periods of four minutes, during which the variation in 

dissolved oxygen over time was measured and registered. These values allow us to 

calculate the respective metabolic rates. The first minute of exposure was disregarded as 

it was considered to be adaptation time.  

The variation in dissolved oxygen was measured in the 90-130 %Sat range, in which the 

oxygen mass transfer was confirmed as being negligible whilst the performance of the 

different microorganisms was optimal. The entire system was computer controlled using 

DaqFactory software. In the following section, each part of the process is described, 

including the expected biological reactions affecting the dissolved oxygen concentration: 

 

 Microalgae net photosynthesis rate (MNPR). A culture sample was placed inside the 

photo-respirometer and then exposed to four light–dark cycles of four minutes each to 

measure and register the variation in dissolved oxygen under whichever condition. 

Between the dark and light periods, air was provided to recover the 100 %Sat of the 

dissolved oxygen. During the light periods, oxygen production is expected as the result 

of active microalgae photosynthesis whereas during the dark periods, the oxygen is 

consumed by the endogenous respiration rate. Endogenous respiration is defined as the 

culture’s oxygen consumption rate when subjected to starvation and when substrate from 

an external source is absent, which is indicative of the active biomass concentration 

(Vanrolleghem, 2002). The net photosynthesis rate was calculated as the sum of the slope 

of dissolved oxygen accumulation during light and dark periods.  

 Heterotrophic bacteria respiration rate (HBRR). Another culture sample was used for this 

measurement, to which 0,8 mL of sodium acetate (30 g/L) was added as an organic matter 
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source. Acetate has been described as a substrate for use in wastewater respirometry tests 

(Vanrolleghem, 2002). The sample was exposed to four light–dark cycles of four minutes 

each. Between each light and dark period, air was provided to recover the 100 %Sat of 

the dissolved oxygen. The oxygen consumption in the dark phase allows us to determine 

the oxygen consumed by the heterotrophic biomass. The respiration rate of the 

heterotrophic bacteria was calculated as the slope of dissolved oxygen accumulation 

minus the dissolved oxygen accumulation during the dark period in the endogenous 

culture.  

 Nitrifying bacteria respiration rate (NBRR). Another sample of culture was used for this 

measurement by providing 0,8 mL of ammonium chloride (3g/L) as the ammonium 

source. Different ammonium sources have been used to evaluate nitrifying activity in 

activated sludge processes and microalgae-bacteria consortia, of which ammonium 

chloride has been the most extensively utilized (Rossi et al., 2018; Vanrolleghem, 2002). 

The sample was exposed to four light–dark cycles of four minutes each. In the middle of 

each light and dark period, air was provided to recover the 100 %Sat of dissolved oxygen. 

The oxygen consumption in the dark phase allows us to determine the oxygen consumed 

by nitrifying biomass. The nitrifying bacteria’s respiration rate was calculated as the slope 

of dissolved oxygen accumulation minus the dissolved oxygen accumulation during the 

dark period in the endogenous culture.  

A simplified scheme of the proposed methodology is shown in Figure 2. One can see that 

during the dark phase (D1-D4), the dissolved oxygen is consumed by microalgal-bacterial 

endogenous respiration. During the light phase (L1-L4), the microalgae perform 

photosynthesis and dissolved oxygen production increases while, simultaneously, it is 

consumed by the respiration processes. The microalgae net photosynthesis rate (MNPR) 

is calculated as the difference between the oxygen production rate (OPR) during the light 

period and the oxygen consumption rate (OCR) during the dark period, divided by the 

dry weight of total biomass (Cb) (Equation 1). 

MNPR =  
OPR − OCR

𝐶𝑏
 

Equation 1 

After adding sodium acetate or ammonium chloride, the same measurements are 

performed to determine both the heterotrophic and nitrifying metabolisms, always 

starting with new samples. Thus, the heterotrophic bacteria respiration rate (HBRR) was 

calculated as the difference between the heterotrophic oxygen consumption (HOCR) rate, 

after providing acetate, and the oxygen consumption rate (OCR) without adding sodium 
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acetate, divided by the dry weight of the total biomass (Equation 2). Similarly, the 

nitrifying bacteria respiration rate (NBRR) was calculated as the difference between the 

nitrifying oxygen consumption (NOCR) rate after providing ammonium chloride and the 

oxygen consumption rate (OCR) without adding ammonium chloride, divided by the dry 

weight of the total biomass (Equation 3).  

HBRR =  
HOCR − OCR

𝐶𝑏
 

Equation 2 

 

NBRR =
NOCR − OCR

𝐶𝑏
 

Equation 3 

2.2. Microorganisms and culture conditions 

2.2.1. Samples from laboratory culture 

The Scenedesmus almeriensis strain was used as the control microorganism. Stock 

cultures were maintained photo-autotrophically in spherical flasks (1.0 L capacity) using 

Arnon medium (Allen and Arnon, 1955). The culture was continuously bubbled with an 

air–1 % CO2 mixture to control the pH at 8.0. The culture temperature was set at 22°C, 

controlled by regulating the air temperature in the chamber. The culture was artificially 

illuminated in a 12:12 h L/D cycle using four Philips PL-32W/840/4p white-light lamps, 

providing an irradiance of 750 μE/m2 s on the spherical 1.0 L flask surface.  

For the experiments, this inoculum was transferred to laboratory-scale photobioreactors 

and industrial-scale outdoor photobioreactors. Details of the reactors and culture medium 

used in each one are given below. The average composition of the wastewaters used is 

reported in Table 1. 

2.2.2. Samples from bubble columns fed with crop residue leachate  

Experiments were performed in 12 bubble column-type reactors with spherical bases (3 

cm in diameter, 45 cm in height and with a 300 mL capacity) filled up to 250 mL with 

leachate from crop residues diluted in water (10% crop residues, 90% water) and 20% of 

Scenedesmus almeriensis inoculum. Each reactor was aerated at a rate of 0.2 v/v/min, 

with CO2 injected on demand (pH=8). The reactors were artificially illuminated using 

eight 28 W fluorescent tubes (Philips Daylight T5), on a simulated daylight cycle. The 

maximum irradiance (PAR) inside the columns in the absence of cells was 1,850 μEm-2 

s-1, measured using an SQS-100 spherical quantum sensor (Walz GmbH, Effeltrich, 

Germany). The cultures’ temperature was kept at 25 °C by controlling the temperature of 
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the culture chamber in which the reactors were located. The reactors were operated in 

batch mode for 6 days, after which they were operated in a semi-continuous mode. For 

this, 20 % of culture volume was harvested every day and replaced with fresh culture 

medium. 

2.2.3. Samples from stirred-tank reactors fed with sewage 

Experiments were performed in four 1 L stirred-tank reactors (9 cm in diameter, 30 cm 

in height and with a 1.5 L capacity) operated in the laboratory but simulating outdoor 

conditions. These reactors were filled with 1 L of sewage taken directly after primary 

treatment from the wastewater treatment plant in Roquetas de Mar (Almería) and 20% of 

Scenedesmus almeriensis inoculum. To prevent the adverse effect of excessive dissolved 

oxygen accumulation, the dissolved oxygen was controlled below 200%Sat by supplying 

air on demand; CO2 was also injected on demand to control the pH at 8. The reactors were 

artificially illuminated using eight 28 W fluorescent tubes (Philips Daylight T5) on a 

simulated daylight cycle. The maximum irradiance (PAR) inside the reactors in the 

absence of cells was 1,850 μEm-2 s-1, measured using an SQS-100 spherical quantum 

sensor (Walz GmbH, Effeltrich, Germany). The cultures’ temperature was kept at 25 °C 

by controlling the temperature of the culture chamber in which the reactors were located. 

The reactors were operated in batch mode for 6 days, after which they were operated in 

semi-continuous mode. For this, 20 % of culture volume was harvested every day and 

replaced with fresh culture medium. 

2.2.4. Samples from an outdoor raceway reactor fed with sewage 

A 32 m2 (4.4 m3) open raceway reactor operated at a 0.12 m water depth was used. The 

reactor is equipped with a 1 m3 sump where pH is controlled at 8 by the on-demand 

injection of pure CO2 at 5 l min-1, or air supplied at 50 l min-1 to remove oxygen. In the 

raceway reactor, the culture is circulated at 0.2 m s-1 using a rotating paddlewheel (1 m 

in width and 0.40 m in height) actuated by an electric motor (Morales-Amaral et al., 

2015). A SCADA system monitors and controls the reactor’s overall operation, including 

environmental parameters such as solar radiation and ambient temperature, and culture 

parameters such as pH (Crison 5333T + MM44), temperature (PT1000) and dissolved 

oxygen (Crison 9336 + MM44). The experiments were performed in semi-continuous 

mode, by initially filling the reactor with wastewater inoculated with 10% total volume 

of Scenedesmus almeriensis culture from a 3.0 m3 tubular photobioreactor, which was 
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operated in batch mode for one week, after which it was operated in semi-continuous 

mode at a daily dilution rate of 20%. 

2.2.5. Samples from an outdoor thin-layer cascade reactor fed with diluted manure 

An open 32 m2 (1.2 m3) thin-layer cascade reactor operated at a 0.02 m water depth was 

used. The reactor is equipped with a 1 m3 sump where pH is controlled at 8 by the on-

demand injection of pure CO2 at 5 l min-1, or air supplied at 50 l min-1 to remove oxygen. 

In the thin-layer reactor, the culture is circulated at 0.2 m s-1 using a pump that pushes up 

the culture to the first layer, lifting it 0.5 m from the culture level in the sump (Morales-

Amaral et al., 2015). A SCADA system monitors and controls the reactor’s overall 

operation, including environmental parameters such as solar radiation and ambient 

temperature, and culture parameters such as pH (Crison 5333T + MM44), temperature 

(PT1000) and dissolved oxygen (Crison 9336 + MM44). The experiments were 

performed in semi-continuous mode by initially filling the reactor with pig manure diluted 

in water (10% pig manure, 90% water) and inoculated with a 10% total volume of 

Scenedesmus almeriensis culture from a 3.0 m3 tubular photobioreactor, which was 

operated in batch mode for one week, after which it was operated in semi-continuous 

mode at a daily dilution rate of 30%. 

2.2.6. Samples from an outdoor tubular photobioreactor fed with fertilizers 

A 3.0 m3 capacity industrial tubular photobioreactor (T-PBR) was used for the S. 

almeriensis culture. The facility consists of ten tubular fence-type photobioreactors built 

as previously described (Fernández et al., 2014). Each photobioreactor is made of a 400 

m-long PMMA tube, 0.09 m in diameter, with a bubble column (3.5 m in height and 0.4 

m in diameter) for degassing and heat exchange. The pH, temperature and dissolved 

oxygen are measured at the end of the loop using Crison probes (Crison Instruments, 

Spain), connected to an MM44 control-transmitter unit (Crison Instruments, Spain), 

which in turn is connected to a PC control unit, allowing the facility’s complete 

monitoring and control. Each reactor is bubbled at a constant airflow rate of 200 l·min-1 

while the pH is controlled by the on-demand injection of pure CO2 at 3 l min-1. The culture 

temperature is controlled by passing cooling water at 1500 L h-1 (when needed, as 

determined by the computer control) through an internal heat exchanger located in each 

photobioreactor’s bubble column. The reactor was operated in continuous mode by 

harvesting 20% of the culture volume daily, which was then replaced by fresh medium. 
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2.3. Biomass concentration and analytical methods 

The microalgae biomass concentration was measured by dry weight. We used 100 mL 

aliquots of the culture filtered through Macherey-Nagel glass fiber MN 85/90. Then, the 

filters were dried in an oven at 80ºC for 24 h. Standard official methods approved by the 

Spanish Ministry of Agriculture were used to analyze the composition of the wastewater 

samples and the water from the reactors (Ministerio de Agricultura 1982). The 

phosphorus was measured by visible spectrophotometry through the phospho-vanado-

molybdate complex. Nitrates were quantified at between 220 and 275 nm using a 

spectrophotometer. Ammonium was measured using the Nessler reactive method. The 

Chemical Oxygen Demand (COD) was determined by spectrophotometric measurement 

using Hach-Lange kits (LCl-400). 

2.4. Software 

The DaqFactory programme (Azeotech, USA) was used to gather the photosynthesis and 

respiration rate data. Data analysis was carried out using the Statgraphics Centurion XVI 

software package, in which non-linear regression was used to fit experimental data to the 

proposed models, and to determine the characteristic parameter values. These models 

were used to obtain simulations in Microsoft Excel. 

3. Results  

3.1. Development of the proposed methodology 

To order the photo-respirometry methodology, different tests were performed using 

microalgae-bacteria cultures obtained from sewage. An example of one of these tests is 

shown in Figure 3. One can observe that during the light phase, the dissolved oxygen 

level increased rapidly from 100 %Sat to 110 %Sat.; the OPR being 15.89 mgO2/L·h. 

During the dark phase, the dissolved oxygen level dropped to 98 %Sat.; the OCR being 

1.79 mgO2/L·h. From these values, we calculated that the microalgae net photosynthesis 

rate (MNPR) was 37.3 mgO2/g·h, a normalized value to the biomass dry weight. Another 

sample of culture was used to determine the heterotrophic bacteria respiration rate 

(HBRR), which was calculated by adding sodium acetate to the sample after starvation. 

In this case, the dissolved oxygen level dropped to 93.83 %Sat.; the HBRR being 11.49 

mgO2/g·h. Lastly, the nitrifying activity was determined by adding ammonium chloride 

as the nitrogen source. In these experiments the dissolved oxygen concentration during 

the dark phase dropped to 96.87 %Sat., corresponding to an NBRR of 7.2 mgO2/g·h. 



12 

Table 2 summarizes the overall values determined and the measurements’ standard 

deviation, confirming the reliability of the process. The results confirm the accuracy of 

the measurements, with the standard deviation being less than 10% of the values obtained. 

To achieve this, it was critical to perform the experiments in triplicate and to disregard 

the initial value – the cells’ metabolisms are still adapting so these first measurements are 

always affected by the conditions the cells were previously kept under. 

3.2. Determination of optimum light availability and biomass concentration 

One of the main factors influencing microalgae behaviour is light availability, and thus 

the irradiance to which the cells are exposed in the culture. This is determined by the 

external irradiance and the biomass concentration as well as the culture system’s 

diameter. To determine the optimal irradiance at which the measurements should be 

taken, experiments were performed using samples from laboratory stirred-tank reactors 

fed with sewage. These samples were selected because they are the most relevant in terms 

of the further application of the methodology proposed. Experiments were carried out at 

a fixed biomass concentration of 0.5 g/L, the external irradiance was modified to achieve 

the target irradiance inside the sample, measured with the interior sensor. The results 

show that, at low irradiance values (50 μE/m2⸱s), the microalgae photosynthesis rate is 

also low, increasing with light availability up to values of 500 μE/m2⸱s, and then 

remaining constant up to values of 2000 μE/m2⸱s (Figure 54). Regarding the heterotrophic 

and nitrifying bacteria, they did not show any relevantly different behaviour whatever the 

irradiance values imposed. Microalgae activity, on the other hand, was maximal at values 

of 500 μE/m2⸱s but to avoid saturation during photosynthesis, an irradiance of 200 

μE/m2⸱s was selected for the measurements.  

Regarding the biomass concentration, there is a direct relationship between the 

production/uptake of oxygen and the relative biomass concentration in the cultures. For 

this reason, determining the optimal biomass concentration at which the measurements 

should be performed is essential. This variable greatly impacts the method’s accuracy and 

sensitivity. Consequently, experiments were also performed using microalgae cultures 

from laboratory stirred-tank reactors fed with sewage as the most representative sample 

type, with distilled water as the control. Measurements were carried out at different 

biomass concentrations up to 0.8 g/L, determining the three main metabolisms: (i) 

photosynthesis by microalgae, (ii) respiration by heterotrophic bacteria and (iii) 

respiration by nitrifying bacteria (Figure 5). The results show that if low biomass 
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concentration values were used, even as low as 0.1 g/L, the photosynthesis rate was high 

enough to provide a significant response, far greater than the measurements’ standard 

deviation. The oxygen production rate’s standard deviation, based on the photosynthesis 

rate, was similar whatever the biomass concentration, so values from 0.1 to 0.8 can be 

used for the standard method. However, the oxygen consumption rate from the respiration 

measured was much lower than from photosynthesis; it being negligible at biomass 

concentrations of 0.1 g/L. Only at biomass concentrations of 0.2 g/L was there a 

measurable oxygen consumption rate from photosynthesis, but the standard deviation was 

lower than for measurements with biomass concentrations above 0.5 g/L. This is because 

the homogeneity of light distribution inside the flask reduces with increasing biomass 

concentration; thus an optimal standard biomass concentration value of 0.5 g/L was 

obtained for the method.  

3.3. Evaluation of the metabolisms prevailing in different cultures 

Once the methodology was defined, it could be used to evaluate the metabolism in 

different samples from a range of different cultures. Therefore, photo-respirometry 

measurements were carried out to determine the prevailing microalgae-bacteria consortia 

metabolisms in samples from different culture media and reactors (both in the laboratory 

and outdoors) (Table 1). The samples were subjected to an inanition period of one to three 

days, depending on the content of organic or inorganic matter in the culture - one day for 

urban wastewater, two days for animal manure and three days for leachate from crop 

residues. A sample from pure microalgae culture was also measured as the “control” in 

order to determine the differences between pure cultures and wastewater cultures. 

The results show that the oxygen production rate from photosynthesis was higher than 

the heterotrophic and nitrifying activity in all cases, with maximal values being obtained 

from pure microalgae cultures (Figure 6); especially in S. almeriensis culture from 

spherical flasks (122.9 mgO2/gbiomass·h). The microalgae net photosynthetic activity 

from S. almeriensis in bubble columns was comparable to the activity in spherical flasks 

(114.2 mgO2/gbiomass·h). The photosynthetic activity of S. almeriensis in the tubular 

photobioreactor was likewise very similar to that in culture produced using animal 

manure in a thin-layer reactor (86.7 and 86.5 mgO2/gbiomass·h, respectively). Both 

values were higher than the oxygen production obtained using leachate from crop residues 

(53.7 mgO2/gbiomass·h) and urban wastewater in the raceway reactor (32.9 

mgO2/gbiomass·h). The microalgae activity in cultures obtained using sewage as the 
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nutrient source was similar to that using the laboratory-scale photobioreactor and the 

external raceway reactor (36.3 and 32.8 mgO2/gbiomass·h, respectively).  

The heterotrophic bacteria respiration rate was very similar in vegetal compost leachate 

culture (8.9 mg O2 /gbiomass.h) and animal manure culture (7.6 mg O2/gbiomass.h), 

corresponding to the highest heterotrophic activity values measured. The results from the 

two systems using primary domestic wastewater were comparable, showing that 

heterotrophic activity was present at a similar level, though slightly lower in the raceway 

reactor (2.6 mg O2/gbiomass.h) than in the laboratory reactors (4 mg O2/gbiomass.h). The 

respiration rate using S. almeriensis culture in the pilot column system (3.8 

mgO2/gbiomass.h) and in the tubular cultures (3.7 mgO2/gbiomass.h) was similar to that 

obtained from wastewater, indicating that organic matter removal from wastewater 

treatment using microalgae was quite efficient. The heterotrophic activity measured in 

the laboratory cultures (2.3 mgO2/gbiomass) was the expected response given the 

symbiotic interaction between the microorganisms in the microalgae cultures. 

With regard to performing the nitrifying activity measurements, after the starvation 

period, it was necessary to check that the nitrogen remaining in the cultures in the form 

of ammonium was below 2 mg·L-1. The results showed that maximal nitrifying activity 

was obtained using leachate from crop residues as the culture media (7.8 

mgO2/gbiomass·h). The nitrifying activity measured in S. almeriensis laboratory cultures 

was 5.63 mgO2/g·h, higher than the nitrifying activity measured when different types of 

wastewater were used. The nitrifying activity was also measured for S. almeriensis in 

tubular reactors (3.2 mgO2/gbiomass.h). A similar value was obtained when animal 

manure was used as the substrate (3 mgO2/gbiomass·h). The results for the two systems 

using primary domestic wastewater are comparable although they show that nitrifying 

activity was present at a slightly higher level in the laboratory reactors (2.9 mg O2 

/gbiomass.h) than in the external raceway (0.6 mg O2/gbiomass.h), with both primary 

domestic wastewaters containing a low ammonium concentration (70 mg/L) diluted by 

20-10%, respectively (Figure 6). 

4. Discussion 

Bacteria have often been considered a contaminant of microalgae cultures. However, the 

use of microalgae in multiple biotechnology processes, such as in wastewater treatment, 

have required an understanding of the mechanisms involved in microalgae-bacteria 

interaction (Fuentes et al., 2016). Knowledge of the microalgae-bacteria consortia which 
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appear in the treatment of fouled wastewaters (from urban, industrial, agricultural and 

animal-use sources) is essential to maximise the benefits of microalgae wastewater 

treatment, as previously reported (Gómez-Serrano et al., 2015; Muñoz and Guieysse, 

2006; Olguín, 2012a). Over recent years, studies have focused on how microalgae, 

through photosynthesis, can convert CO2 to biomass and produce O2 to support bacterial 

growth in wastewater. In turn, the bacteria decompose the organic matter which supplies 

the CO2 for photosynthetic activity. Nevertheless, the behaviour model for microalgae-

bacteria consortia faces challenges as well (Wang et al., 2016). To develop a method for 

studying microalgae-bacteria consortia, some authors have tried to adapt the conventional 

respirometry techniques used in wastewater. By evaluating both the microalgae and 

nitrifying activity, it has been possible to develop a photo-respirometry protocol to study 

microalgae-bacteria suspensions (Rossi et al., 2018; Vargas et al., 2016). However, a 

photo-respirometry method for studying the three relevant populations (microalgae, 

nitrifying bacteria and heterotrophic bacteria) which appear in wastewater treatment has 

not been developed.  

The results reported here show that a respirometry method based on oxygen 

production/consumption is a useful and rapid technique. This led us to study the 

contribution of each population in the microalgae-bacteria consortium, by distinguishing 

the oxygen production rate (OPR) from microalgae photosynthetic activity, the oxygen 

consumption rate (OCR) from endogenous respiration, the microalgae net photosynthesis 

rate (MNPR) in the microalgae, the heterotrophic bacteria respiration rate (HBRR) in the 

heterotrophic bacteria, and the nitrifying bacteria respiration rate (NBRR) in the nitrifying 

bacteria. The results from these preview tests, and their variability, were comparable to 

preview studies focusing on the activity of microalgal-bacterial wastewater consortia 

using respirometric tests. The oxygen consumption rate (OCR) results from endogenous 

respiration (3.78 mgO2/gbiomass.h) were quite similar to the results described by Rossi 

et al. (2018) of 4.3 and 4.1 mg O2/gTSS.h, and were within the range indicated by Ruiz-

Martinez et al. (0.9-5.1 mg O2/gTSS); the MNPR and NBRR values being higher than 

those previously described (Rossi et al., 2018). 

To take the measurements properly, it was necessary to subject the culture samples to 

starvation in order to add different substrates, thus allowing us to distinguish between the 

respiration rates of the two types of bacteria studied. Heterotrophic biomass (including 

not only bacteria but also protozoa and other higher organisms) uses substrate consisting 

of carbonaceous material; therefore, we checked for the absence of organic matter in the 
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samples after starvation. Nitrifying bacteria, on the other hand, are autotrophic bacteria 

which use dissolved carbon dioxide to oxidise ammonia to nitrite and nitrite to nitrate. In 

turn, starvation is applied to consume the residual ammonium in the culture and use 

ammonium chloride to distinguish the nitrifying activity. We experimentally determined 

that one day of starvation is required for primary domestic wastewater, two days for 

animal manure wastewater and three days for lixiviated compost wastewater. Following 

starvation, photo-respirometry tests were performed at a fixed irradiance of 200 E/m2·s. 

As with the preview studies, our results have verified that under real conditions, the 

cultures are mainly photo-limited, the average irradiance being from 100 to 300 E/m2·s 

(Acién et al., 1998, 1999; Costache et al., 2013). Moreover, the samples were 

standardized to 0.5 g/L in order to impose comparable light penetration, avoid shaded 

areas and better distinguish the three populations. 

We found that the microalgae activity was significantly higher than the heterotrophic and 

nitrifying activity in whichever culture medium used, with the contribution of 

photosynthetic activity being essential in preserving the consortium. Pure microalgae 

from the spherical flask showed the maximum rate of photosynthesis activity (122.9 

mgO2/g·h), analogous to that obtained when using bubble-column reactors as the 

microalgae production system (114.2 mgO2/g·h). Microalgae activity was similar in 

samples from the tubular photobioreactor using pure fertilizers to that in the thin-layer 

reactor fed with pig manure (86.7 and 86.5 mgO2/gbiomas·h, respectively). These results 

suggest that using pig manure as the microalgae substrate is an excellent alternative 

method for treating animal manure and producing microalgae biomass. Although the most 

common way of reusing pig manure is to spread it on farmland, some authors have 

described using it to produce microalgae biomass (Bai et al., 2012; Wilson and Houghton, 

1974). Not only have we been able to demonstrate that pig manure serves as a good 

microalgae substrate, but the data also show the high microalgae activity achieved from 

using agricultural leachate wastes as the substrate, with microalgae activity of 53.7 

mgO2/gbiomass·h. In the outdoor raceway reactor using primary domestic wastewater, 

microalgae activity was lower (32.9 mgO2/gbiomass.h), similar to that achieved using the 

laboratory-scale photobioreactor. As the preview studies reported, this was possible 

because the thin-layer reactor was more photosynthetically efficient at producing 

Scenedesmus sp. than the raceway reactor and the closed tubular photobioreactor (Acién 

et al., 2012; Morales-Amaral et al., 2015).  
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Heterotrophic activity in the activated sludge treatment process has been studied and 

described for decades because it is responsible for oxidizing the organic material and is 

capable of forming flocs, which also facilitate effluent clearing (Gayford and Richards, 

1970). Accordingly, it is necessary to determine the heterotrophic population which 

appears in microalgae-bacteria consortia wastewater treatment. Our results show that 

maximal heterotrophic activity occurred when agricultural waste leachate and pig manure 

wastewater were used. These results were in agreement with the chemical oxygen demand 

(COD) values recorded in animal manure and compost leachate, corresponding to 20.200 

mg/L and 33.200 mg/L, respectively. However, heterotrophic activity in primary 

domestic wastewater was lower, similar to the activity in S. almeriensis cultures.  

Regarding the nitrifying activity, the presence of nitrifying microorganisms in the 

wastewaters used in this study (agricultural waste leachate, animal manure wastewater 

and primary domestic wastewater) was determined by their growth in a selective 

nitrifying media. Preview studies have detected nitrifying bacteria in different materials, 

such as horticultural waste and sewage sludge, using the same materials and method 

described (Vargas-García et al., 2010). Microalgae culture from agricultural waste 

leachate showed the highest nitrifying bacteria respiration rate (7.2 mgO2/gbiomass·h). 

Our results were supported by previous studies on agricultural waste composting, which 

described the presence of ammonia-oxidizing archaea and bacteria; these transform NH3 

to NO3 during nitrification. (Zeng et al., 2011). The nitrifying activity measured in S. 

almeriensis laboratory cultures was 5.6 mgO2/g.h, higher than the nitrifying activity 

measured when different types of wastewater were used. Preview studies have described 

that most microalgae culture collections exist in a non-axenic state because other 

organisms, such as bacteria and microfungi, are present in the culture due to co-insolation 

(Amaral et al., 2013). This activity was similar to samples from the tubular 

photobioreactor system, or from cultures grown using pig wastewater in thin-layer 

cascades, or samples from laboratory photobioreactors fed with primary domestic 

wastewater. Nitrification in samples obtained from microalgae cultures grown in animal 

manure have been reported by some authors; this is because nitrogen in the form of 

ammonia nitrogen is present at very high concentrations in animal manures such as pig 

waste (Blouin et al., 1990; Evans et al., 1986),  with ammonium comprising up to 70% of 

the nitrogen present in liquid manure (Baumgarten et al., 1999). The animal manure used 

in this study contained up to 2.97 g NH4/L and it was diluted to 10% for use in the 

microalgae cultures. These results suggest that the thin-layer reactor was so efficient 
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because the nitrifying activity was lower than expected. Regarding the laboratory 

photobioreactors (2.9 mgO2/g), nitrifying activity of 5.4 mg O2 /gTSS.h was previously 

reported in activated sludge with a similar photobioreactors system. 

5. Conclusions  

The photo-respirometry method developed allows us to quantify the contribution of each 

of the three main microorganism types that appear in wastewater treatment: microalgae, 

heterotrophic bacteria and nitrifying bacteria. The method has been applied to 

microalgae/bacteria consortia established in different wastewater treatment systems 

(different reactors, water types and operating conditions). The data confirm that 

microalgae are the main microorganism contributing to the system behaviour, 

heterotrophic bacteria maintain a relatively stable contribution whatever the operational 

conditions whereas the nitrifying bacteria contribution largely depends on the nitrogen 

load and the microalgae performance. This method is a powerful tool for improving the 

performance of microalgae-based wastewater treatment processes. However, the method 

needs to be further improved in certain aspects such as searching for specific algal 

photosynthetic inhibitors, which would help discriminate between microalgae activity 

and respiration from nitrifying bacteria.  
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Table 1. Composition of the waters used as influent in the cultivation systems 
 

Cultivation systems  

Parameters Arnon 

medium 

Primary domestic 

wastewater 

Pig manure 

wastewater 

Agricultural waste 

leachates 

pH 7.86 7.60 7.73 - 

Conductivity, 

mS/cm-1 

2.33 1.87 16.79 - 

Turbidity, FTU 0.00 16.95 7280 1861.00 

SST, g/L 0.61 - 11.70 8.24 

N-NH4, mg/L 0.00 59.64 2975.93 3990.00 

N-NO3, mg/L 139.97 2.96 739.74 186.78 

P-PO4, mg/L - - - 819.00 

COD, mg/L - 500 65800 33205 
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Table 2. Results obtained in preliminary tests showing the method precision. The net 

photosynthesis rate variability was lower than the obtained rates for bacteria populations 

because the photosynthetic capacity was greater than the nitrifying and heterotrophic 

activity on dissolved oxygen values. 
 

 

Parameters Rates 

OPR, mgO2/L·h 15.89 ± 1.10 

OCR, mg O2/L·h -1.89 ± 0.12 

MNPR, mgO2/gbiomass·h 37.28 ± 1.46 

HBRR, mg O2/gbiomass·h -11.49 ± 1.26 

NBRR, mg O2/gbiomass·h -7.22 ± 0.56 
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Figure 1. Layout of the respirometer (A: lights, B: 250 mL glass flask, C: magnetic mixer, 

D: air pump, E: multi-meter and data logger, F: DO probe). 
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Figure 2. Expected result of a respirometric test to estimate the microalgae net 

photosynthesis rate (MNPR), the heterotrophic bacteria respiration rate (HBRR) and 

nitrifying bacteria respiration rate (NBRR). Dark-light periods are reported, showing the 

variation in dissolved oxygen with time in each of the phases before and after the addition 

of substrates which activate bacterial populations. 

 



29 

 

Figure 3. An example of how the dissolved oxygen concentration in the culture modifies 

in a respirometric test because of the different microalgae and bacteria metabolisms. 
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Figure 4. Influence of irradiance on the different net metabolisms considered. Microalgal 

activity increased with light availability up to values of 500 μE/m2⸱s, then remained 

constant up to values of 2,000 μE/m2⸱s. 
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Figure 5. Influence of biomass concentration on the different net metabolisms considered. 

At low biomass concentration, the variability was higher than the 0.5-0.8 g/L 

concentration.  
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Figure 6.- Distribution of microalgae, nitrifying bacteria and heterotrophic bacteria in 

pure S. almeriensis cultures and in the different wastewaters used. The microalgae activity 

was greater than the nitrifying and heterotrophic activity in each of the culture mediums 

used. 


