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Abstract: The Mediterranean region is experiencing a stronger warming effect than other regions,
which has generated a cascade of negative impacts on productivity, biodiversity, and stability of the
ecosystem. To monitor ecosystem status and dynamics, aboveground biomass (AGB) is a good indica-
tor, being a surrogate of many ecosystem functions and services and one of the main terrestrial carbon
pools. Thus, accurate methodologies for AGB estimation are needed. This has been traditionally done
by performing direct field measurements. However, field-based methods, such as biomass harvesting,
are destructive, expensive, and time consuming and only provide punctual information, not being
appropriate for large scale applications. Here, we propose a new non-destructive methodology
for monitoring the spatiotemporal dynamics of AGB and green biomass (GB) of M. tenacissima L.
plants by combining structural information obtained from terrestrial laser scanner (TLS) point clouds
and spectral information. Our results demonstrate that the three volume measurement methods
derived from the TLS point clouds tested (3D convex hull, voxel, and raster surface models) im-
proved the results obtained by traditional field-based measurements. (Adjust-R2 = 0.86–0.84 and
RMSE = 927.3–960.2 g for AGB in OLS regressions and Adjust-R2 = 0.93 and RMSE = 376.6–385.1 g
for AGB in gradient boosting regression). Among the approaches, the voxel model at 5 cm of spatial
resolution provided the best results; however, differences with the 3D convex hull and raster surface-
based models were very small. We also found that by combining TLS AGB estimations with spectral
information, green and dry biomass fraction can be accurately measured (Adjust-R2 = 0.65–0.56
and RMSE = 149.96–166.87 g in OLS regressions and Adjust-R2 = 0.96–0.97 and RMSE = 46.1–49.8 g
in gradient boosting regression), which is critical in heterogeneous Mediterranean ecosystems in
which AGB largely varies in response to climatic fluctuations. Thus, our results represent important
progress for the measurement of M. tenacissima L. biomass and dynamics, providing a promising tool
for calibration and validation of further studies aimed at developing new methodologies for AGB
estimation at ecosystem regional scales.

Keywords: TLS; remote sensing; above ground biomass; dryland; grass; tussock; spectral indices;
raster; voxel; convex hull

1. Introduction

Aboveground biomass (AGB) constitutes one of the main terrestrial carbon pools [1–3]
and is considered a good indicator of many ecosystem functions and services, such as water
regulation, erosion control, or C fixation [4–6]. In addition, it is closely related to vegetation
productivity [7–9] and functional diversity [10,11]. Thus, continuous monitoring of AGB
over space and time may provide crucial information about ecosystem status and dynamics
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and provide information about potential shifts in ecosystem functioning due to climate or
human interactions [6].

Traditional methods for AGB estimation are not very efficient as they involve the
clipping, the oven-drying, and the weighting of the plant material [12]. This is an expen-
sive, time-consuming, and destructive methodology, which hinders its applicability as a
monitoring tool. For this reason, non-destructive methodologies, such as the point intercept
method [13,14] or the application of allometric equations, which relate field measurements
of plant structure with plant volume and biomass [15], arose to overcome these difficul-
ties. However, they only provide punctual information that is not representative of the
landscape heterogeneity and are still not easily scaled up [16].

New generations of remote sensing instruments offer the possibility of acquiring high
resolution information of vegetation features over large areas in a relatively short period of
time [17,18]. Optical remote sensing information, especially multispectral imagery, has been
widely employed to survey vegetation over large extents [19–22], as it provides information
about plant physicochemical properties and functional traits that reflect the vegetation
status [23]. However, remote sensing data can be strongly affected by factors like canopy
architecture, viewing geometry, and the mixing of reflectance signals from different surface
components. As a result, spectral signatures often have a limited correlation with real
measurements of AGB [24–28]. This is especially relevant in drylands where vascular plants
usually appear forming patches surrounded by open areas colonized by photosynthetically
active biocrusts, rocks, and bare soil that may induce errors in the analysis of the vegetation
spectral response due to the mixing of surface signals [29,30].

Alternatively, LIDAR technology is used to acquire three-dimensional (3D) point clouds
over large areas of the territory that allow for the characterization of the structure of vege-
tation canopy [31] and biomass [32,33]. Laser scanner sensors can be placed on terrestrial
(terrestrial laser scanner, TLS) and aerial (airborne laser scanner, ALS) platforms. TLSs
produce dense 3D point clouds that accurately describe the AGB of individual plants in a
wide range of vegetation types and ecosystems [34–45] being very useful for non-destructive
field measurements and monitoring and for calibration and validation of ecosystem scale
measurements and models [46]. Most available LIDAR information at the ecosystem scale is
provided by ALS sensors, which present low return point density and large footprints. This
limits their application in heterogeneous ecosystems due to the low structure of vegetation
and their patchy distribution [45,47]. To solve these limitations, several studies explored
the possibility of combining structural and spectral information from different sensors to
study forest structure and physiology at different spatial scales [48–53]. Nevertheless, their
applicability in drylands is still very limited, mainly because of the important challenges
that these heterogenous landscapes present for remote sensing studies such as the low
vegetation signal-to-noise ratios, the high soil background reflectance, the presence of
photosynthetic organisms in the soil, the high spatial heterogeneity at different spatial
scales, the irregular growing and phenological seasons, and the low plant sizes [30].

This is the case of the steppes of Macrochloa tenacissima (L.) Kunth (=Stipa tenacissima L.,
alpha grass, hereafter “espartales”) in which plants are often interspersed within a heteroge-
nous matrix of biocrusts, stones, and bare soil that interferes in the overall spectral response.
This feature combined with the complex morphology and phenology of M. tenacissima L.,
which forms dense tussocks about 0.5–1 m in height with a high and variable proportion of
dead leaves and inflorescences (necromass) [54], hinders the success of the already existing
methodologies for AGB monitoring based on remote sensing [27]. Indeed, to our knowledge,
there are no specific methodologies combining spectral and structural information for AGB
estimation and monitoring of M. tenacissima L. (or any other alpha grass species with similar
morphology) at any spatial scale.

The development of simple and non-destructive strategies able to provide low-cost
biomass information over M. tenacissima L. steppes is necessary due to these landscapes
being among the most representative ecosystems of the Mediterranean region, covering a
large fraction of the territory from Libya to the southeastern portion of the Iberian Penin-
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sula [55,56]. However, their extent has been dramatically reduced to less than 35,000 km2

during the last decades, mainly due to an intensification of land use over the region (in-
crease in grazing pressure within these ecosystems [56]) and more adverse climatic periods.
Moreover, recent studies revealed that this trend may continue in the future due to ongoing
global change [57]. Consequently, the ability to rapidly assess the conservation state of
this important habitat, which is recognised as a priority habitat by the EU (6220-Pseudo-
steppe with grasses and annuals “Thero-Brachypodietea”) and where M. tenacissima L.
can contribute more than 90% of AGB [58], is a major challenge for land managers and
conservation authorities.

This study proposes a new non-destructive methodology for monitoring spatiotempo-
ral dynamics of AGB and green biomass of M. tenacissima L. plants by combining structural
and physiological (spectral) information, measured in the field. This can be used to sup-
port ground monitoring programs and also for the rapid calibration and validation of
ALS-multispectral-based AGB estimation at coarser spatial scales. To do this, we com-
bine structural information obtained from TLS 3D point clouds with spectral information.
More precisely, we aim to: (1) determine whether TLS sampling could rapidly create a
high-density, three-dimensional (3D) model of M. tenacissima L. able to provide AGB more
accurately than traditional field methods based on plant measurements; and (2) develop
a new methodology to estimate not only biomass but also plant physiological condition
(green biomass) by combining both TLS and spectral measurements. These aims are a
critical issue for dryland ecosystems over the Mediterranean region, where the spatial
distribution of vegetation results from interactions between climate, soil, topography, facili-
tation, competition, and human activities [59], configuring a wide heterogeneous landscape
that makes AGB monitoring difficult.

2. Methods
2.1. Study Sites and Field Sampling

For this study, we used M. tenacissima L. plants from 3 representative Mediterranean
steppes ecosystems from the SE of the Iberian Peninsula (Figure 1): El Cautivo experi-
mental area (37◦00′37′ ′N, 2◦26′30′ ′W) [59], Balsa Blanca experimental area (36◦56′30′ ′N,
2◦1′58′ ′W) [60], and Las Amoladeras experimental area (36◦49′55′ ′N, 2◦15′7′ ′W) [60].

All sites are within the province of Almeria (SE Spain) and have a semiarid Mediter-
ranean climate characterized by hot, dry summers and mild temperatures the rest of the
year, with rain falling mostly in winter. The three sites show subtle differences in precipita-
tion and temperature but contrasted soil properties and topography that induce differences
in the spatial distribution and size of M. tenacissima L. plants.

El Cautivo study site is a dry badlands area (mean temperature ~17.8 ◦C, annual
precipitation ~235 mm/year) in which M. tenacissima L. covers approximately 25% of
the area [59,61]. Soils are characterized by low to moderate development, high salinity,
and low organic carbon content (from 5 to 10 g/kg), the most frequent soil types being
Endoleptic Leptosols, and Calcaric Regosols [61]. Soil properties together with steep
slopes and high levels of solar radiation make the terrain very susceptible to erosion,
limiting M. tenacissima L. distribution to north and northeast hillslopes [62]. At this site,
M. tenacissima L. plants usually reach big sizes and form wide tussock groups in dense
vegetation patches, among which lichen-dominated biocrusts often appear [63].
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Figure 1. Location and detailed images of the three Macrochloa tenacissima L. dominated ecosystems selected for this study:
El Cautivo, Las Amoladeras, and Balsa Blanca.

Balsa Blanca and Las Amoladeras are located within the Cabo de Gata Natural
Park, and both show similar climate (mean temperature ~18 ◦C, annual precipitation
~220 mm/year) and topography, being developed over a flat alluvial fan [60]. Dominant
soils in theses ecosystems are Calcaric Leptosols (Balsa Blanca) and Haplic Calcisols (Las
Amoladeras) [64] with sandy loam texture, high carbonate content, and rock fragments [65].
Soils are deeper and they have higher soil organic carbon (SOC) content at Balsa Blanca
(maximum soil depth 20 cm, ~15 g/kg SOC) than at Las Amoladeras (maximum soil depth
10 cm, ~10 g/kg SOC) [66], mainly due to the historical land use and grazing intensity
differences that lead to changes in M. tenacissima L. coverage and biomass between them.
Overall Las Amoladeras presents the lowest vegetation coverage (~25%), consisting of
smaller M. tenacissima L. plants, with open spaces between vegetation patches usually
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covered by biocrusts or bare soil. Conversely, vegetation cover in Balsa Blanca is higher
(~65%), reaching larger sizes of M. tenacissima L. plants, and therefore forming dense
tussocks that constitute bigger vegetation patches with smaller open areas between plants.
More details about Las Amoladeras and Balsa Blanca are provided in [67] and in [60].

We selected 10 M. tenacissima L. plants on each site (total n = 30). During the plant
selection and identification process, we tried to include the maximum range of variation
in M. tenacissima L. volume and the largest variation in the ratio between photosynthetic
(hereafter “green biomass (GB)”) and no photosynthetic biomass (hereafter “dry biomass”)
within each site. On each plant, mean height and diameter were measured in three different
positions and averaged. Then, we acquired a 3D point cloud of each plant using a Leica
ScanStation 2 terrestrial laser scanner (TLS). This system operates in the green region of
the spectrum (532 nm) and has a maximum range of 300 m (at 90% albedo), laser spot size
of 6 mm, beam divergence of 0.15 µrad, and accuracy and precision of 4 and 2 mm [68].
To reduce shadowing effect due to the geometry of point cloud acquisition, two different
scans at 1 mm of spatial resolution were done on each plant, from two different positions
(azimuth 90◦, azimuth 260◦). Finally, we measured plant canopy reflectance using an ASD
FieldSpec HH field radiometer (325–1075 nm, 512 channels) with 3 nm of spectral resolution
and 25◦ IFOV. A total of three replicate measurements, each consisting of the average of the
five individual spectra, were collected for each plant. All measurements were conducted at
solar noon, and a Spectralon (ASD Inc., Boulder, CO, USA) white reference sample was
measured between sampling of different plants.

Once field TLS and spectral measurements were done, individual M. tenacissima L.
plants were cut at the ground level, stored in plastic bags, and transported to laboratory
where green leaves (photosynthetically active biomass) were separated from dry biomass.
Since M. tenacissima L. is a tussock-grass plant, plant biomass was composed of green
leaves, inflorescences, and necromass. Green and dry materials were oven-dried at 70 ◦C
for 72 h or constant weight following the procedure recommended by FAO [69].

2.2. TLS Data Processing and Volume Estimation

The different point clouds of each M. tenacissima L. plant were merged and georefer-
enced using five reflective targets common to both scans using Cyclone 7.1 software (Leica
Geosystems). We built final 3D point clouds for each plant that were used to test three
different approaches for deriving AGB: (i) a volumetric approach based on the 3D convex
hull algorithm, (ii) a voxel-based model, and (iii) a raster-based model (Figure 2). All these
methods have been applied with accurate results over a wide range of vegetation types,
such as shrublands [35,38,45] or forests [44], but they rely on different approaches and
assumptions, the final accuracy of each one being dependent on plant density and structure.
The 3D convex hull approach fits a 3D surface to the point cloud [45] by assuming that all
space within the 3D surface model is occupied by plant biomass. The same assumption is
presumed in the raster-based model. However, volume estimation in the raster model is
based on a completely different approach, as it involves the creation of a digital surface
model in which each cell represents the maximum value of all points within it. Then, plant
volume is determined as the product of the cell area and the average height.

The main advantage of the voxel approach is the complete structural representation
of the plant by attributing points to a voxel based on coincident 3D location. By doing this,
it provides better results in vegetation with irregularly distributed canopy gaps, but it may
not be appropriate in very dense vegetation where the TLS laser cannot penetrate within
the canopy [44]. To solve this limitation, voxel approach was implemented according to
the method developed by Vonderach [70] for filling interplant spaces where laser pulse
cannot penetrate. We used the rLiDAR package [71] to fit 3D convex hull and the VoxR
package [72] to build the voxel models. Raster models were built in QGIS 3.14 using the
maximum height of each point in the point cloud.
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Figure 2. Plant examples of terrestrial laser scanner point clouds obtained by the Laser Leica
ScanStation 2 (TLS point cloud) and the three different volumetric models tested in this study: 3D
convex hull, the voxel model, and the raster model.

Spatial resolution of raster-based and voxel models may influence the final plant
volume estimation [44], the best resolution being determined by point density and any
occluded (non-scanned) space within the plant canopy. To determine the effect of spatial
resolution on AGB estimation accuracy, 4 different resolutions (1 cm, 2 cm, 5 cm, and 10 cm
spatial resolutions) were tested in both raster-based and voxel approaches.

2.3. Field Spectra Data Pre-Processing

Before the spectral analyses, all data were subjected to a pre-treatment that consisted of
removing the noisy bands (350–400 nm and above 950 nm) and applying a cubic polynomial
smoothing filter with a 17 nm window size (Savitzky-Golay filter) [73]. Individual spectra
of each plant were then averaged to produce the plant canopy spectrum (average of
9 individual spectra). Finally, we estimated four well known vegetation indices such
as the Normalized Difference Vegetation Index (NDVI; [74]), the Modified Normalized
Difference Vegetation Index (mNDVI; [75]), the Total Ratio Vegetation Index (TRVI; [76]),
and the Green Normalized Difference Vegetation Index (GNDVI; [75]) from ASD field
spectra according to Equations (1)–(4), respectively. We chose these indices as they have
been demonstrated to correctly characterize the fraction of photosynthetic active radiation
absorbed by vegetation (fPAR) [77,78], being good indicators of the green vegetation
fraction, green LAI fraction, or biomass [20,47,77–79], and they can be easily obtained from
high and medium resolution satellite images and multispectral cameras.

NDVI= (R850 − R670)/(R850 + R670) (1)

mNDVI= (R750 − R705)/(R750 − R705) (2)

TRVI= 4*(R850 − R645)/(R850 + R645 + R550 + R470) (3)

GNDVI= (R800 − R550)/(R800 + R550) (4)

where R850, R800, R750, R705, R670, R645, R550, and R470 are the reflectance at 850, 800, 750,
705, 670, 645, 550, and 470 nanometres, respectively.

2.4. Plant Biomass Estimation

The total AGB of each plant was modelled by fitting linear ordinary least squares (OLS)
regressions between the different volume estimation methods derived from TLS point
cloud (3D convex hull, voxel, raster) (see Section 2.2) and the corresponding harvested
plant biomass. In order to develop an equation with biological signification, all intercepts
in regression analyses were set to zero assuming that no plant volume corresponds to no
plant biomass and therefore avoiding negative values for biomass estimations in low size
plants. As classical statistical regression may not effectively describe the complex nonlinear
relationship between AGB and plant volume, we also tested a gradient boosting model,
which is a powerful ensemble machine learning algorithm that has been proved to supply
excellent performance in biomass estimation modelling [80]. More precisely, it fits boosted
decision trees by minimizing an error gradient between observed and predicted values.
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The model was applied by using XGBoost [81] which provides a flexible and highly scalable
tree structure enhancement model that performs a second-order Taylor expansion for the
objective function and uses the second derivative to accelerate the convergence speed of the
model while the training is running. Optimum maximum number of boosting iterations
(nrounds) and learning_rate values were set by testing the complete set of combinations
between nround values from 1 to 1000 and learning rate values of 0.01, 0.02, 0.05, 0.1, 0.2,
0.3, and 0.5 in a 3-fold cross validation approach (see Supplementary Figure S1), whereas
default values provided in XGBoost R package were set for all other parameters. Optimum
model configuration for each TLS volumetric model (3D convex hull, voxel, and raster)
was applied to the entire dataset for comparison with linear estimations.

Obtained results by both ordinary least-squares and XGBoost were compared with
biomass estimation based on traditional allometric equations consisting of fitting a specific
geometric form that represents plant canopy. Concretely, we use a hemisphere model
based on plant diameter measured in field. Additionally, we explored the use of field
measurements of plant height and diameter as direct predictors of AGB (see field sampling
in Section 2.1).

2.5. Green Biomass Estimation

Green biomass fraction (onwards GBF) of each plant [%] was calculated as the ratio
between GB and total harvested AGB previously separated in the laboratory. Then, we
explored the relationships between GBF and the spectral indices described in Section 2.3 by
fitting linear regression models. Finally, the total amount of GB of each plant was predicted
by combining AGB estimation obtained by best TLS methods described in Section 2.4
and the GBF estimated based on the value of the different spectral indices, according to
Equation (5):

GB (g) = AGB TLS methods × GBFVI (5)

where AGB TLS methods is the predicted total biomass in grams using TLS approaches (voxel
at 5 cm of resolution; 3D convex hull and raster at 2 cm of resolution) derived for point
cloud, and GBFVI is the [%] of green biomass predicted using the spectral index with the
best predictive capacity (see Section 2.3). In a manner similar to AGB estimation, XGBoost
was used to fit a gradient boosting regression model between GB, the best VI, and plant
volume obtained by the three different TLS volumetric models using the optimum values
of nrounds and learning_rate obtained during the calibration of the model (Supplementary
Figure S1).

Performance of the different methods and equations for AGB and GB estimation
was evaluated based on Adjust-R2, the root-mean-square error (RMSE), the relative root-
mean-square error (rRMSE), and the mean bias error (MBE) values between harvested and
predicted biomass.

3. Results

AGB of the 30 individual plants analysed in this study ranged from 184 g to 6655 g,
with GBF values between ~5% and ~43%. As observed in Table 1, the set of plants from
each site comprised a wide range of size and biomass, the mean and maximum values
being higher at El Cautivo than at Balsa Blanca and Las Amoladeras, respectively. There
were also differences in GBF values of the different plants within each site and between
sites. M tenacissima L. plants from El Cautivo and Las Amoladeras had a mean GBF value
of ~14%, while Balsa Blanca had a higher GBF, with an average value of ~28%.
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Table 1. Maximum, mean, and minimum values of total AGB (g) and GBF (%) for all plants in each
of the three analysed ecosystems.

Above Ground Biomass (g) Green Biomass Fraction (%)
Ecosystem Maximum Mean Minimum Maximum Mean Minimum

El Cautivo 6655 2355 505 30.2 11.8 5.0
Balsa Blanca 4644 2158 184 43.3 27.8 17.8

Las Amoladeras 2653 1497 407 19.0 14.3 4.7

The estimated plant volume also varied between ecosystems, with the highest values
obtained at El Cautivo, followed by Balsa Blanca and Las Amoladeras, respectively. Among
approaches, the plant volume estimated by a hemisphere model presented lower values
than the models based on TLS datasets for all plants. 3D convex hull offered the best
performance while the raster and voxel models had intermediate values. There was also
an effect of spatial resolution in the raster and voxel models. The bigger the pixel size, the
higher the plant volume value (Table 2).

Table 2. Maximum, mean, and minimum plant volume values (m3) obtained by the hemisphere model based on field measure-
ments and the different TLS based approaches: 3D convex hull, raster, and voxel methods (with varying spatial resolution).

Total Plant Volume Estimation (m3)
El Cautivo Balsa Blanca Las Amoladeras

Method Maximum Mean Minimum Maximum Mean Minimum Maximum Mean Minimum

3D Convex Hull 2.75 1.47 0.38 2.19 1.19 0.16 0.45 0.74 0.15
Raster 1 cm 1.98 1.02 0.25 1.22 0.72 0.11 0.43 0.29 0.11
Raster 2 cm 2.22 1.14 0.29 1.40 0.82 0.13 0.49 0.33 0.12
Raster 5 cm 2.37 1.29 0.35 1.66 0.97 0.16 0.38 0.55 0.15

Raster 10 cm 2.71 1.42 0.43 1.83 1.09 0.19 0.69 0.44 0.16
Voxel 1 cm 0.47 0.24 0.14 0.63 0.35 0.05 0.30 0.17 0.09
Voxel 2 cm 1.19 0.71 0.20 1.07 0.69 0.10 0.45 0.29 0.13
Voxel 5 cm 2.12 1.13 0.33 1.44 0.93 0.13 0.61 0.39 0.17
Voxel 10 cm 2.30 1.38 0.39 1.78 1.18 0.21 0.82 0.50 0.22
Hemisphere 0.79 0.39 0.07 0.63 0.32 0.03 0.20 0.10 0.02

3.1. Total Biomass Estimation

Relationships between volume estimation methods and AGB using OLS regression
analyses are summarized in Table 3. Overall, volumetric methods derived from the TLS
point cloud improved AGB estimation over 250 gr (~12% of total biomass) in comparison
with statistical models that included field measurements and the allometric equation based
on the hemisphere model. From the different TLS methods, the voxel approach at 5 cm
of resolution yielded the best fit (Adjust-R2 = 0.86, RMSE= 927.3 g, rRMSE = 46.28%,
MBE = −25.4 g), but the variations in RMSE between the most and the least accurate TLS
approach, considering the best resolution for voxel and raster models, were very low
(~30 g; Figure 3). The regression fits obtained from voxel methods at different resolutions
ranged from 0.66 to 0.86, with RMSE varying between 927.3 g (46.28%) and 1433 g (71.52%).
Raster-based volume estimation showed the worst results of all TLS derived techniques,
with the best estimate obtained at 2 cm resolution, but it was the least sensitive approach
to spatial resolution (Table 3).
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Figure 3. Relationships between observed and predicted AGB (g) according to the best spatial resolution for voxel (5 cm)
and raster (2 cm). XGBoost represents the results according to the best set of tunning parameters described in Supplementary
Figure S1. Black line represents 1:1 line.
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Table 3. Linear regression equations derived by OLS between AGB (y, g) and field measurements, plant volume (m3)
obtained by the hemisphere volume, and plant volume obtained by TLS methods (3D convex hull, voxel, and raster-based
models). Values in bold reflect the best fit for each approach. *** indicates a significant relationship at p-values < 0.001.

Linear Regression

Equation Adjust-R2 RMSE (g) rRMSE (%) MBE (g)

Field Data
Height y = 26.525x 0.764 *** 1193.8 59.58 105.5

Diameter y = 26.223x 0.771 *** 1175.8 58.69 99.8
Hemisphere volume y = 9214x 0.707 *** 1331.5 66.45 −351.6

Height (x), Diameter (x′) y = 9.646x + 16.876x′ 0.766 *** 1167.4 58.27 117.1
Height (x), Diameter (x′),

Hemisphere Vol (x”) y = 12.597x + 4.634x′ + 3682.057x” 0.778 *** 1117.4 55.77 29.9

TLS Point Cloud
3D Convex Hull y = 1865.5x 0.855 *** 937.5 46.79 −74.1

Raster (1 cm) y = 2785.6x 0.844 *** 970.7 48.45 −123.9
Raster (2 cm) y = 2472.1x 0.848 *** 960.2 47.92 −112.8
Raster (5 cm) y = 2160.6x 0.839 *** 988.2 49.32 −101.5
Raster (10 cm) y = 1946.6x 0.843 *** 973.7 48.60 −85.6
Voxel (1 cm) y = 7029.9x 0.660 *** 1433.0 71.52 −222.2
Voxel (2 cm) y = 3497.0x 0.824 *** 1031.3 51.47 −35.0
Voxel (5 cm) y = 2416.8x 0.858 *** 927.3 46.28 −25.4

Voxel (10 cm) y = 1944.8x 0.841 *** 981.8 49.00 −23.9

The gradient boosting improved AGB predictions in all cases with a reduction of RMSE
~600 g in comparison to OLS linear regressions using the plant volume derived for TLS
approaches as the AGB predictor (Adjust-R2 = 0.93, RMSE ~ 376.6 gr, rRMSE ~ 19%). However,
we found a slight overestimation of plant AGB at larger volumes with this technique, with an
MBE value of ~−60 g (see Figure 3).

3.2. Photosynthetic Biomass Estimation

Total photosynthetically active biomass showed weak relationships with all different
spectral indices tested in this study (see Table 4 for details), but they were significantly
related with GBF. From the different indices, NDVI was the best predictor of GBF (Adjust-
R2 = 0.58, RMSE = 6.33%, rRMSE = 35.2%). By combining the best estimate of AGB obtained
from TLS models with the GBF prediction from NDVI, we obtained the final equations of
GB of M. tenacissima L. plants (Table 5). OLS regression fits ranged from 0.56 to 0.65 for
Adjust-R2 with RMSE values between ~150 and 167 g (rRMSE ~ 50%), depending on the TLS
approach. Nevertheless, there was a slight overestimation of GB at high values in all cases,
being very similar between models (see Figure 4). In a manner similar to that observed
for AGB, the gradient boosting analysis (XGBoost) using TLS plant volume and NDVI
as predictors improved GB estimation in all cases (RMSE = 46.1–49.8 g, rRMSE ~ 16% and
Adjust-R2 = 0.96–0.97) with a reduction of RMSE ~120 g over OLS regressions. However,
contrary to OLS regressions, XGBoost tended to underestimate GB as plant size increased
(see Figure 4).
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Figure 4. Relationships between observed and estimated GB (g) using equations in Table 5 for OLS regression analysis (up)
and XGBoost analysis using plant volume derived for TLS and NDVI as GB predictors (down). Black line represents 1:1 line.
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Table 4. Linear regression equations derived by OLS between total GB (y, g) (g) and spectral indices derived from field
spectra and (up) and between GBF (y, %) and spectral indices (down). Values in bold shown the best fit index for both
estimations. x represents the predictor variable (spectral indices). All regressions were significant (*** p-values < 0.001).

Spectral Indices Equation Adjust-R2 RMSE
(g or %)

rRMSE
(%)

MBE
(g or %)

Total Green
Biomass

(g)

NDVI 1107.6x − 108.9 0.35 *** 204.02 68.1 −0.1
mNDVI 1666.469x − 3.506 0.40 *** 195.06 65.1 0

TRVI 364.18x − 79.66 0.36 *** 202.60 67.6 0
GRNDVI 1607.7x − 337.8 0.36 *** 201.62 67.3 0

Green Biomass
Fraction

(%)

NDVI 53.969x − 1.940 0.58 *** 6.33 35.2 0
mNDVI 73.900x + 4.521 0.55 *** 6.55 36.4 0

TRVI 17.3429x − 0.0996 0.56 *** 6.43 35.7 0
GRNDVI 71.308x − 10.308 0.49 *** 6.93 38.5 0

Table 5. Linear regression equations derived by OLS between GB (g) and plant volume (m3) obtained by the three different
TLS methods (3D convex hull, voxel, and raster-based models) and the NDVI. Values in bold reflect the best fit for each
approach. *** indicates significant relationship at p-values < 0.001.

TLS Method Equation Adjust-R2 RMSE
(g)

rRMSE
(%)

MBE
(g)

3D Convex Hull 1865.5 × TLS volume × (53.969 × NDVI − 1.940)/100 0.65 *** 149.96 50.0 56.3
Raster (2 cm) 2472.1 × TLS volume × (53.969 × NDVI − 1.940)/100 0.56 *** 166.87 55.7 45.7
Voxel (5 cm) 2416.8 × TLS volume × (53.969 × NDVI − 1.940)/100 0.61 *** 157.61 52.6 67.3

4. Discussion

The allometric equations derived from field measurements and the volumetric models
derived from TLS point clouds have been proven to be good methodologies for biomass
estimation in a wide range of vegetation types and ecosystems [34,37,42,45,82–86]. How-
ever, none of them have been widely employed in dryland ecosystems yet, and most
existing examples are focused on woody shrubs [10,35,38,41] or small grasses [87]. In this
study we demonstrate that, as already described for other vegetation types [50,51,88,89],
the combination of structural information obtained from TLS point clouds and spectral
information provides an accurate and non-destructive methodology for the measurement
and monitoring of AGB and GB in M. tenacissima L. plants, which is one of the dominant
species in the Mediterranean region.

Overall AGB estimation accuracies from the TLS-data-based models vary depending
on the plant type. For example, in woody shrubs, the TLS methods correctly reproduce
plant structure and leaves biomass, thus providing very accurate results (see for exam-
ple [35,45]). AGB estimations in grasses are less accurate, even if TLS datasets are combined
with spectral information [89]. This is because plants are smaller, are thinner, and present
many spaces between them, making the application of other TLS data analysis approaches
not based on the development of a 3D plant model necessary [90–92]. Macrochloa tenacissima
L. represents an intermediate situation, as it is a grass that forms dense tussocks of similar
size to woody shrubs and mainly composed of a mixture of green and dry (usually more
than 60% of the total AGB) leaves and inflorescences [54,93,94]. This specific morphology
allows M. tenacissima L. to survive under the harsh conditions that characterize the arid
and semi-arid ecosystems where it inhabits [56,94–97] but also poses a challenge for the
development of an accurate plant-volume based model to estimate AGB or GB. This is
the main reason explaining the differences in accuracy between our results obtained by
OLS regressions and other studies focused on woody shrubs. For example, whereas our
best equation has an accuracy of ~ 0.87, [35] found that TLS methodologies can be used to
estimate AGB over sagebrush shrubs with accuracies between 0.92 and 0.86 depending on
the volume estimation method. Our results are closer to those obtained in studies using
allometric equations to estimate AGB over heterogenic mixtures of annual grasses of low
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size (i.e., [87]) and tussock grass species in altitude grasslands [98]. This limitation in AGB
estimation accuracy due to the structural complexity of M. tenacissima L. plants that may
lead to complex relationships between plant volume and biomass can be partially solved
by the application of novel and complex machine learning methods (see Figure 4).

Overall, there is an improvement in accuracy when TLS approaches are compared
with traditional allometric equations based on field sampling (see Table 3 for further
details). This, as well as the weak differences in accuracy between the different volumetric
approaches (Figure 4), implies a breakthrough in the study of grassland ecosystems, such
as the one presented in this study. In addition, our models were developed by considering
a wide range of plant sizes over three different ecosystems, representing the expected
range of variability for this species in the Mediterranean region. This guarantees the
transferability of the method to different areas and seasons and may explain the low values
of MBE in AGB (values very close to 0 in all cases; Figure 3). Model transferability is
especially important in M. tenacissima L. plants since their AGB and physiological status
varies in space and time due to climate and local conditions. Concretely, M. tenacissima
L. tussocks show a high variability in necromass density among plants due to two main
reasons: on the one hand, the dead material is unequally removed by wind, runoff, or
animals over the landscape [99]; on the other hand, necromass saturation might occur,
leading to the dieback of the tuft centre, involving changes in plant density with not
much variation in plant volume [54,100]. These processes imply that the necromass of M.
tenacissima L. plants is very sensitive to landscape position and time, leading to variations
between plant volume and AGB relationships.

The photosynthetic behaviour of this species, measured as the green fraction of AGB
within the canopy, also changes during the year and with landscape position in response
to water availability. In fact, in the southeast of Spain, M. tenacissima L. has a growing or
active period during late autumn and winter, while it remains in a latent state during spring
and summer [101], leading to seasonal changes in GB that control ecosystem processes
such as overall CO2 dynamics [102]. Different studies describe good relationships between
vegetation indices that represent the amount of photosynthetically active radiation such as
NDVI and the GB amount [20,27,102–104] and dynamics [17,18,28]. However, our results
demonstrate that M. tenacissima L. GB shows weak relationships with all the vegetation
indices tested at the plant scale (Table 4). This is probably due to morphological adaptations
of M. tenacissima L. plants. As previously explained, the M. tenacissima L. tussock is composed
of a heterogeneous mixing of green leaves and necromass [93,94] with complex structure that
includes different inclination levels and the overlay of different biomass layers that promote
shadows on the photosynthetic parts in order to reduce water losses (see [56] for further
information about M. tenacissima L. ecology). As spectral measurements only reflect the
spectral signal from the upper part of the plant canopy, they cannot correctly represent the
heterogeneous organization between dry and green leaves that characterize M. tenacissima L.
plants, being strongly affected by occlusion due to the leaves’ geometry in the tufts.

This limitation can be solved by combining structural information describing plant
volume obtained from TLS point clouds with the spectral response of the plant (Table 5).
For this purpose, NDVI has been found to be the most suitable index (Table 4), as also
shown in previous studies for other grasses at the plot level [89], M. tenacissima L. high
steppes in Algeria [27], or even dryland vegetation in general over coarse scales [20,105].
Overall, the RMSE of GB estimates by OLS regressions ranged from ~150 g to ~167 g
(50–55.7%) depending on the methodology used for plant volume estimation (Figure 4),
with a slight overestimation of GB as plant volume increased, demonstrating the difficulty
of characterizing the photosynthetic activity of water-limited ecosystems even at the plant
scale. As observed for AGB models, XGBoost analysis using plant volume and NDVI as
predictors increased the accuracy in GB predictions in all cases, with RMSE values about
~50 g (15.38–16.60%). However, the application of XGBoost analysis also leads to a bias
in GB estimations, tending to underestimate the GB of large plants (Figure 4). Despite
the observed small bias in GB prediction over large plants (a slight overestimation in
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OLS regressions and the opposite pattern in XGBoost models), our approach offers a fast,
accurate, and non-destructive methodology for the estimation of biomass dynamics in
M. tenacissima L. ecosystems. This improvement in comparison with classic spectral indices
represents key progress for monitoring issues, especially due to the high variability of green
biomass over space and time in these Mediterranean dryland ecosystems, being a key step
forward in their monitoring and the analysis of their response to ongoing climate change.

In addition, the use of volumetric approaches for biomass estimation supposes impor-
tant progress for the measurement of M. tenacissima L. biomass and dynamics, providing a
promising tool for calibration and validation of further studies aimed at developing new
methodologies for AGB estimation at ecosystem and regional scales. The good accuracy
of raster methods (both OLS and XGBoost) and their low sensitivity to spatial resolution
(see Table 3) especially make them appropriate to be adapted to other remote sensing data
sources obtained from aerial platforms and unmanned aerial vehicle (UAVs) with zenithal
geometry of data acquisition [106,107]. For example, structural information obtained by
LiDAR (ALS) or derived by photogrammetry in UAV images could be combined with
optical sensors such as SENTINEL-2 or multispectral cameras to obtain GB at the ecosystem
scale, as already done in other ecosystems. These techniques have been demonstrated
to be powerful tools for biomass estimation in many plant types [43,44,50,51,82,106–111]
and could be useful for the monitoring of M. tenacissima L. ecosystems, where its patchy
distribution leads to easy plant delimitation. In particular, UAV images offer very detailed
information that can be used for generating vegetation maps in a wide type of vegetation
species [112–116]. Furthermore, our results provide an easy way to determine M. tenacis-
sima L. plant biomass, a fact especially important over Mediterranean tussocks steppes
where this species could represent more than 90% of AGB [58]. Plant biomass monitoring
would also be particularly useful for evaluating changes in ecosystem services provided by
M. tenacissima ecosystems, such as carbon storage, water regulation, and the biodiversity
reservoir over the Mediterranean basin, which is one of the most threatened regions by
climate change [117–119].

5. Conclusions

Photosynthetic and non-photosynthetic M. tenacissima L. biomass can be accurately
estimated by combining terrestrial laser scanning and spectral information. 3D point clouds
are able to correctly characterize the complex morphology of M. tenacissima L., with higher
accuracy than traditional methods based on field measurements of plant structure. From
the different tested approaches for analysing 3D point clouds, the voxel approach at 5 cm
of resolution provided the best results for AGB estimation, but differences between it and
the 3D convex hull and raster models were minimal. AGB predictions based on TLS plant
volume increased their accuracy when biomass models were fitted by using state-of-the-art
machine learning methodologies, such as XGBoost. This is interesting, as raster models
can easily be developed from data acquired from aerial platforms, thus increasing the
opportunity to be easily upscaled in further studies.

Integrating TLS volumetric information with spectral measurements of plant canopy
allowed for accurately estimating the green biomass of individual plants. Thus, our
methodology can be used not only for AGB estimation but also for identifying both
senescent and green material, NDVI being the best multispectral index for that estimation
in M. tenacissima L. plants. As NDVI can easily be obtained from low resolution satellite
images or by using multispectral UAV cameras, our results represent a steep forward to
unlock the complex interrelationship between green fraction and biomass in Mediterranean
ecosystems. Further investigation is required to refine these techniques and to develop
coarse scale approaches based on information obtained from aerial platforms. The results
obtained in this study can be used as an initial step in calibration and validation processes
for this issue.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13152970/s1.
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