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Abstract

In this paper a simplified temperature model for raceway reactors is developed, allowing

to determine the temperature of the microalgae culture as a function of reactor design and

environmental conditions. The model considers the major phenomena taking place in raceway

reactors, especially heat absorption by radiation and heat losses by evaporation among others.

The characteristic parameters of the model have been calibrated using genetic algorithms, next

being validated with a long set of more than 50 days covering different weather conditions. It

is worth to highlight the use of the developed model as a tool to analyze the influence of the

temperature on the performance of microalgae cultures at large scale. As example, the annual

variation of the performance of up to five different microalgae strains has been determined

by computing the temperature index, thus the normalized value of performance of whatever

microalgae at the real temperature with respect to that achievable at optimal temperature can

be established. Results confirm that only strains tolerant to wide ranges of temperature can

be efficiently produced all the year around in large scale outdoor raceway reactors without

additional temperature control systems.

Keywords: Biotechnology, Microalgae, Temperature model, Raceway reactor, Energy Bal-

ance.
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Introduction

Nowadays, the implementation of microalgae reactors for biomass production is expanding due

to the advantages and products that can be obtained from their exploitation. From microalgae

biomass, high-value products can be obtained to be used in the chemical industry1 or for ani-

mal food production, such as fish-food.2 Another interesting type of application for microalgae

biomass, which is currently under investigation, is the biofuel production.3–6 On the other hand,

the use of wastewater as a culture medium is allowing the development of new combined applica-

tions such as the simultaneous treatment and purification of water plus the production of biomass

in a single process.7 This solution is becoming popular because it allows reducing operating costs

and enhancing the use of microalgae for low value applications, such as biofertilizers or bioenergy.

The development of this type of applications is carried out in raceway reactors, which are the most

extended type of reactors because they are less expensive and easy to operate than tubular-closed

photobioreactors.

In addition to nutrient supply, the most relevant variables influencing the microalgae production

processes are temperature, solar radiation, pH, and dissolved oxygen.8,9 Temperature and solar

radiation are mainly a function of the location where the reactor is installed and the season of

the year. The variables to be controlled are pH and dissolved oxygen, in order to maintain them

at specific operating levels despite changes in disturbances, such as solar radiation.10 For that

reason, detailed models for the pH and dissolved oxygen evolution in raceway photobioreactors

can be found in literature.11,12 Notice that the culture temperature could also be controlled by

using solutions based on heat exchangers or external boilers, but this option is omitted because

it increases on the operation costs. However, it is important to have dynamical models for the

culture temperature evolution in photobiorectors that can be used as reactor design tools or for

strain selection based on the reactor location.

Biological microalgae models can help to estimate and maximize crop productivity,13 as well

as characteristic parameters that can be used in control systems to maximize biomass produc-

tion.8,10,14 However, although there exist some studies combining the microalgae productivity and
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culture temperature,15,16 most existing biological models do not take the culture temperature into

account, what is a limiting factor in the analysis of the microalgae productivity results.17–20 Béchet

et al. presented a universal temperature model for open reactors,21 which makes use of dimension-

less parameters for heat transfer and evaporation phenomena. The evaporation phenomenon is a

complex process and difficult to estimate. In22 a comparison of different evaporation models is

presented. On the other hand, in,23 a dynamic model for the cultivation of microalgae is devel-

oped where an empirical temperature model based on thermal energy balances suggested in24 is

included. These studies demonstrated the importance of temperature on microalgae growth and

the complexity of accurately estimating its value. The combination of a temperature model with

the current microalgae growth models would allow a greater accuracy in the representation of the

microalgae behaviour. Thanks to this combination, better control architectures for biomass pro-

duction and associated applications could be developed.

In this article, a new simple temperature model is presented, based on a review of the empirical

relationships defined by Béchet et al. and Slegers et al. in,21,24 and adapted to a raceway reactor.

The culture temperature is calculated from a thermal balance in the reactor, taking into account

all available environmental variables. This model allows the estimation of the temperature of the

culture in the reactor for certain environmental conditions. In this way, the model could estimate

parameters of interest, such as the time of harvest or anticipate risk temperatures that can nega-

tively affect the crop. In addition, the model may be used to analyse the temperature impact on

biomass production for different locations. In this way, design tools could be developed to study

the viability of the microalgae production zones to determine the most suitable cultivation strains.

Moreover, the temperature model can be used to improve existing microalgae estimation models

or biomass growth models, such as those presented in11 and.25 Also, the temperature model can be

used when there is a lack of temperature measurements in the reactor, being used as a temperature

estimator.

The article is divided in the following way. Section 2 presents the reactor that was used to

collect the real data and to validate the models. In Section 3, the components of the thermal
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(a) Real raceway reactor. (b) Reactor scheme.

Figure 1: Raceway reactor and structure scheme.

balance and the temperature model are detailed. Section 4 presents the results obtained using the

temperature model, along with an analysis of how temperature influences five microalgae strains by

using the temperature model and the growth rate model. Finally, Section 5 states the conclusions.

Material and methods

This section presents detailed information about the reactor, as well as the microalgae cultivated

strain and the measurements.

Raceway reactor

The microalgae raceway reactor used for the test (Figure 1a) is located at the IFAPA centre, next

to the University of Almería (Almería, Spain). The reactor has a total surface of 80 m2, composed

of two 80 m length channels connected by a 1 m wide U-shaped bends. Mixing is performed by

a paddlewheel of aluminum blades with a diameter of 1.5 m, driven by an electric motor (W12

35 kW, 1500 rpm, Ebarba, Barcelona, Spain), with gear reduction (WEB Ibérica S.A., Barcelona,

Spain). The paddlewheel speed is controlled with a frequency inverter (CFW 08 WEB Ibérica,

S.A., Barcelona, Spain) at a constant velocity of 0.2 m/s. Carbonation is performed in a sump

located 1.8 m downstream of the paddlewheel, which dimensions are 1.0 m depth, 0.65 m length

and 1.0 m width. In this sump, CO2 gas or air can be injected through three plate membrane
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diffusers at the bottom of the sump (AFD 270, EcoTec, Spain). The raceway channels are made of

low density polyethylene of 3 mm thickness while the curves and sump are made of high density

polyethylene of 3 mm thickness.

In the reactor, there are five pH probes, five dissolved oxygen probes, and 5 temperature probes.

Figure 1b shows a scheme of the system, where each red point consists of a sensor set that includes

pH, dissolved oxygen, and temperature probes. Points one, two and three contain probes from

Crison, while points four and five contain probes from Hamilton.

The measurements of the climatic conditions are obtained from a meteorological station, while

the temperature of the soil and the depth of the culture are measured with sensors incorporated in

the raceway reactor itself. Table 1 shows the model of the sensors for the measurable variables,

which represent the inputs to the temperature model. The sampling period for the measurements

is one second.

Table 1: Measuring sensors

Measure Model
Wind speed Anemometer Thies Clima 4.3400.30.000

Global solar irradiance Pyranometer Kipp & Zonen CM 6B
Ambient temperature and humidity Sensor Delta Ohm HD 9008TRR

Culture and soil temperature Transducer PT100 with signal conditioner
Culture depth Ultrasound sensor Wenglor UMD402U035

Microalgae strain

The microalgae strain used in the reactor belongs to Scenedesmus almeriensis (CCAP 276/24)

species. A detailed study about its characteristic parameters and conditions related to pH, dissolved

oxygen and temperature can be found in.26 The pH value ranges from 3 up to 10, but the net

photosynthesis rate is close to the maximal value from 5.7 to 8. Regarding the temperature, the

value ranges from 12 to 46 ◦C, but the optimum range is around 30 ◦C. The culture medium used

in the growth of the microalgae has been freshwater and Mann & Myers medium prepared using

fertilizers (0.14 g ·L−1 K(PO4)2, 0.18 g ·L−1 Mg(SO4)2, 0.9 g ·L−1 NaNO3, 0.02 mL ·L−1 Welgro,
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and 0.02 g ·L−1 Kalentol).27

Thermal balance and temperature model

The thermal balance described in this paper is based on first principles and empirical equations

defined for the transfer of energy due to solar irradiance, long wave radiation, evaporation, con-

vection, and conduction.

Based on the models described in,21,24 the energy balances that affect the culture have been

analysed and established, and a new thermal balance has been developed to estimate the culture

temperature in the reactor from measurable variables. The solar irradiance input comes from data

measured by the global (direct + diffuse) radiation sensor mentioned above. Long-wave radiation

losses are calculated by the Stefan-Boltzmann Law (28). There are different methodologies in the

literature to obtain the evaporation flow21.In this case, the energy balance by evaporation is calcu-

lated from the evaporation rate obtained from an experimental evaporation exchange coefficient.

Convection is expressed by Newton’s Law of cooling, and finally, conduction is expressed as the

heat transfer between the mass of the culture in the reactor and the polyethylene layer that insulates

the reactor from the ground. As a result of the introduced energy balances, the thermal balance is

expressed by the following equation (Qi in W ):

Qaccumulated = Qirradiance +Qradiation +Qevaporation +Qconvection +Qconduction (1)

where Qaccumulated is the heat accumulated in the reactor, Qirradiance represents the flow of heat

from sunlight, Qradiation is the long-wave radiation heat flow, Qevaporation accounts for the heat

flow produced by the evaporation process, Qconvection is the heat flow caused by convection and

Qconduction represents the heat flow between the reactor and the polyethylene layer under it through

a conduction process.
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Accumulated heat flow

The heat accumulated in the reactor represents the sum of all energy terms that affect the reactor,

and it is expressed by the following equation:

Qaccumulated = h ·A ·Cp ·ρ ·
dTw

dt
(2)

with h (m) the culture depth, A (m2) the surface of the reactor, Cp (J kg−1 ◦C−1) the specific heat

capacity of the culture, ρ (kg m−3) the density of the culture and Tw (◦C) the temperature of the

culture in the reactor.

Heat flow due to the effect of solar irradiance

The heat flow due to incident solar irradiance on the reactor surface represents the main heat input

into the reactor. It is expressed by the following equation:

Qirradiance = Ig ·a ·A (3)

where Ig (W m−2) is the global (direct + diffuse) solar irradiance, a (−) is the absorptivity, and

A (m2) represents the total area of the reactor.

Radiation heat losses

The reactor emits thermal energy as long-wave radiation. The flow of radiated energy between the

reactor and the sky is calculated using the following equation:

Qradiation = σ ·A · e ·
(

Tsky
4− (Tw +273.15)4

)
(4)

with σ (W m−2 K−4) the Stefan-Boltzmann constant, e (−) the water emissivity and Tsky (K) the

equivalent temperature of the sky, expressed in (28) with the following expression:
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Tsky = (273.15+Tamb)(0.711+0.0056 ·Tdew ·0.000073 ·T 2
dew +0.13 · cos(15 · tsolar))

0.25 (5)

where Tamb (◦C) is the ambient temperature, Tdew (◦C) the dew point temperature, and tsolar (−)

represents the number of hours after midnight.

Evaporation heat flow

The evaporation process represents the main source of heat loss in the reactor and depends on the

shape of the reactor, the evaporation rate and the latent heat of vaporization, as presented in (29).

The evaporation heat flow is determined as follows:

Qevaporation = A ·Ep ·ρ ·h f g (6)

where Ep (m s−1) is the evaporation rate, ρ (kg m−3) is the density of the culture and h f g (J kg−1)

is the latent heat of vaporization, expressed as follow:

h f g = (2494−2.2 ·Tw) ·1000 (7)

The evaporation rate can be calculated as an empirical equation which depends on the differ-

ence in vapour pressures between the ambient air and the reactor culture mass (29,30), in addition

to an evaporation exchange coefficient which depends on wind speed Ws:

Ep =

(
RH · p′A

100
− p′A

)
·hevap (8)

where RH (%) is the relative humidity, p′A (Pa) is the vapor pressure of the air at ambient tempera-

ture and hevap (m s−1 Pa−1) is an evaporation exchange coefficient, obtained experimentally from

the following equation:
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hevap = Aevap +Bevap ·Ws (9)

where Ws (m s−1) is the wind speed and Aevap and Bevap are evaporation experimental coefficients

that must be calibrated (with adequate units).

For the calculation of the vapour pressure of the environment at ambient temperature p′A (kPa),

the Tetens equation31,32 has been used:

p′A = 0.61078 · exp
(

12.27 ·Tamb

Tamb +237.3

)
(10)

Convection heat flow

The phenomenon of convection occurs between the mass of water in the reactor and the air in the

environment, resulting in a positive or negative balance depending on the moment of the day and

the ambient temperature. The convection balance is represented by the following equation:

Qconvection = hconv ·A · (Tamb−Tw) (11)

where Tamb (◦C) is the ambient temperature and Tw (◦C) is the temperature of the culture in the

reactor and hconv (W m−2 ◦C−1) is the convection transfer coefficient, obtained experimentally as

previously done for the evaporation:

hconv = Aconv +Bconv ·Ws (12)

with Aconv and Bconv experimental coefficients that must be calibrated.

Heat flow by conduction

The thermal conduction balance represents the thermal exchange between the reactor and the sur-

face under it. Notice that polyethylene was the material used for the construction of the bottom of

the reactor. So, the following equation represents the conduction balance:
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Qconduction = hsoil ·Asoil · (Tsoil−Tw) (13)

where hsoil (W m−2 ◦C−1) is the heat transfer coefficient for the layer, Asoil (m2) is the surface of the

reactor in contact with the ground and Tsoil (
◦C) represents the temperature under the polyethylene

layer of the reactor. The transfer coefficient hsoil can be expressed as follows:

hsoil =
Ksoil

xsoil
(14)

where Ksoil (W m−1 ◦C−1) is the conduction transfer coefficient for the polyethylene layer (cali-

bration parameter) and xsoil (m) represents the distance between the bottom of the reactor and the

buried temperature probe.

Temperature model

The model depends on a series of environmental input variables that are solar irradiance, ambient

temperature, relative humidity and wind speed. Other input variables are culture depth and soil

temperature, which can be easily estimated or approximated, instead of measured. Specifically,

the depth of the culture can be set to its common value and the temperature of the soil under the

reactor can be estimated based on the ambient temperature or set to a constant value. In this way,

only the measurements of the environmental variables would be needed to run the model and use

it as a temperature estimator.

The dynamic evolution of culture temperature is obtained from equation (1), based on the

thermal balances described and reformulated as the following equation:

dTw

dt
=

Qirradiance +Qradiation +Qevaporation +Qconvection +Qconduction

h ·A ·Cp ·ρ
(15)

Table 2 contains the description and the values of all the parameters used in the thermal balance

of the temperature model, separated by constant and variable parameters.
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Table 2: Parameters description

Parameter Description Value Unit
Constants
A Surface of the reactor 80 [m2]

Cp Specific heat capacity of the culture 4184 [J kg−1 ◦C−1]

ρ Density of the culture 1000 [kg m−3]
a Absorptivity 0.7 [−]
σ Stefan–Boltzmann constant 5.6697 ·10−8 [W m−2 K−4]
e Water emissivity 0.9 [−]
Aevap Evaporation experimental coefficient A 1.20 ·10−11 [−]
Bevap Evaporation experimental coefficient B 4.67 ·10−12 [−]
Aconv Convection experimental coefficient A 4.78 [−]
Bconv Convection experimental coefficient B 6.83 [−]
Ksoil Conduction transfer coefficient for the polyethylene layer 0.43 [W m−1 ◦C−1]
xsoil Thickness of the polyethylene layer of the reactor 0.02 [m]

Asoil Surface of the reactor in contact with the ground 80 [m2]
Variables
h Medium depth – [m]
Tw Temperature of the culture – [◦C]

Ig Global solar irradiance – [W m−2]
Tsky Temperature of the sky – [◦C]
Tamb Ambient temperature – [◦C]
Tdew Dew point temperature – [◦C]
tsolar Number of hours after midnight – [−]
h f g Latent heat of vaporization – [J kg−1]

Ep Evaporation rate – [m s−1]
RH Relative humidity – [%]
p′A Vapor pressure of the air at ambient temperature – [Pa]
hevap Evaporation exchange coefficient – [m s−1 Pa−1]

Ws Wind speed – [m s−1]

hconv Convection transfer coefficient – [W m−2 ◦C−1]
Tsoil Soil temperature – [◦C]
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Results and discussion

This section presents the results obtained from the temperature model in three parts: a first part

where the calibration process is shown; a second part presenting the results for the validation

stage; and a third part where an analysis of how temperature influences five strains of microalgae

is presented, using the temperature model.

Calibration

The equations developed in Section 3 make use of a series of parameters whose exact values

are unknown, or the values are known in a defined range. The uncertainty in the value of these

parameters shows the need for a calibration process, which has been carried out through genetic

algorithms. Calibration using genetic algorithms results in an useful and reliable method in the

estimation of uncertain parameters, since it allows optimizing a certain cost function that measures

the deviation of the output of the model from that of the real system by modifying the parameter

values between the established limits. The range of the estimated parameters has been obtained

from the cited literature, as well as from the experience in the design of the installation.

The calibration process using genetic algorithms has been implemented in Matlab using the

Genetic Algorithm Optimization Toolbox (GAOT), based on (33), with an initial population of 50

phenotypes (solutions) and a termination condition of 50 generations. This method starts with an

initial set of calibration parameters and runs the model to obtain the error. The cost function is

computed as the Root Mean Square Error (RMSE) between the simulated temperature and the real

reactor temperature, expressed as the following equation:

J =

√
N

∑
i=1

(Tsim(i)−Treal(i))2

N
(16)

where Tsim (◦C) is the estimated temperature, Treal (
◦C) is the real culture temperature in the reactor

and N (s) represents the size of the data vector.

The method modifies the calibration parameters in each iteration of the genetic algorithm in the

13



simulation as new population generations, within established limits, until the error cost function is

minimized.

Three consecutive days from every month between August to December (15 days in total) have

been used by the genetic algorithm to estimate the values of the calibration parameters trying to

capture the different season dynamics. The data used for calibration purposes, which represent the

input variables for the model (solar irradiance, ambient temperature, soil temperature, wind speed,

the relative humidity and the culture depth), are shown in Figure 2 and separated by colours for

each different month. As can be seen, there exist a large variability in the climatic data.

Table 3 presents the values of the calibration parameters obtained using the calibration data

set. The evaporation (Aevap and Bevap) and convection (Aconv and Bconv) coefficients depend on the

wind speed and the conduction coefficient (Ksoil [W m−1 ◦C−1]) ranges from 0.33 to 0.50 due to

the polyethylene thermal conduction coefficient.

Table 3: Calibration parameters

Symbol Parameter Value Unit
Aevap Evaporation coefficient parameter A 1.20 ·10−11 [–]
Bevap Evaporation coefficient parameter B 4.67 ·10−12 [–]
Aconv Convection coefficient parameter A 4.78 [–]
Bconv Convection coefficient parameter B 6.83 [–]
Ksoil Conduction coefficient 0.43 [W m−1 ◦C−1]

The calibration results are shown in Figure 3, where the results of each month are individually

plotted in different colors for better visualization. The differences between the temperature from

one month to another is clearly visible, and the model is able to capture the temperature dynamics

during the whole day, in addition to adjusting to the ranges of each month. The RMSE value

obtained is 0.97 [◦C], while the mean temperature error is 0.85 [◦C], which is a satisfactory result,

in addition to a maximum temperature error of 2.36 [◦C], occurring during the November nights.

If the results of each month are analyzed, it can be seen how the dynamics of the model re-
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Figure 2: Environmental input variables for calibration. Every color represents three consecutive
days of the month from August to December. For the correct visualization of the colors in the
graphs, refer to the web version of the paper.

sembles the real temperature in the raceway reactor during all months. Although the dynamics and

the maximum and minimum temperatures of each month vary, the model fits the real evolution

in all cases, estimating the temperature satisfactorily. For the months of August, September and

October, the model correctly estimates the culture temperature in the reactor, with an average error

of 0.6 [◦C]. However, for the cold months of November and December, the model presents a little

bit more errors, especially at night, with a mean error of 1.1 [◦C] for those months. Anyway, the

relevant dynamics of the temperature variable is captured.

Validation

For the validation of the model, a set of 50 days has been used, belonging to the months from

August to December. This data set, presented in Figure 4, shows the entire range of temperatures

that can occur in the year, from the high values of August to the low ones in December. The input

data is grouped in 5 months with 10 consecutive days each, presented in different colors for a better

visualization. The temperature differences are perfect to check the adaptability of the temperature
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Figure 3: Temperature calibration results. Each individual color plot represents three consecu-
tive days for the selected months from August to December. Dashed lines represent real reactor
temperature while solid lines represent estimated temperature. For the correct visualization of the
colors in the graphs, refer to the web version of the paper.

model and verify that it faithfully represents the dynamics of the system, regardless of the month.

Figure 5 shows the validation results for the temperature model, where each month is represented

individually following the same than for the calibration results. The model follows the dynamics

of the culture temperature in the reactor, with a maximum error of 3.9 [◦C] and a mean error of

0.86 [◦C]. For the entire data set an RMSE value of 1.03 [◦C] has been obtained.

As in the calibration results shown in Figure 3, the estimated temperature for the months of

August and September adequately resembles the real temperature of the reactor, with a mean error

of 0.5 [◦C]. The results for the month of October during the daytime period are very satisfactory,

however, during the nighttime there are certain discrepancies, increasing the mean error to 0.95

[◦C]. These errors, like in the last represented day of October, may be due to errors in the mea-

surements of the input variables or isolated punctual phenomena that affect the temperature of the

reactor. On the other hand, the months of November and December have a greater error (mean

error of 1.15 [◦C]) in the estimation, although the dynamics resembles the real temperature and the

results are satisfactory.
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Figure 4: Environmental input variables for validation. Each month (from August to December)
is represented by different colors and it is made up of 10 consecutive days each. For the correct
visualization of the colors in the graphs, refer to the web version of the paper.

Figure 5: Temperature validation results. Every individual color plot represents ten consecutive
days for the selected months from August to December. Solid line represents estimated temper-
ature while dashed line represents real reactor temperature. For the correct visualization of the
colors in the graphs, refer to the web version of the paper.
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Temperature influence on microalgae activity for different strains

Using the developed temperature model, an analysis on how temperature influences on microalgae

growth was carried out for five microalgae strains. For this issue, the temperature-effect on growth

model presented by Bernard et al. in16 was used together with the temperature model described in

this paper.

The microalgae specific growth rate model has been used extensively in literature16,26 and was

formulated by Camacho-Rubio et al. in.34 This model states that the microalgae growth rate, µ ,

is made up of four factors that depend on photosynthetically active radiation and light availability

inside the culture (Iav), culture temperature (Tw), the pH, and the dissolved oxygen (DO) in the

reactor. The growth model is described by the following equation:

µ = µ(Iav) ·µ(Tw) ·µ(pH) ·µ(DO) (17)

The specific growth rate (µ) is mainly a function of light availability inside the reactor summa-

rized by the average irradiance inside the culture (Iav) (35). This function is expressed as follows:

µ(Iav) = µmax ·
(

Iav
n

Ik
n + Iav

n

)
(18)

where µmax [day−1] is the maximum growth rate, Iav [µE m−2 s−1] is the light availability inside the

reactor summarized by the average irradiance inside the culture, Ik [µE m−2 s−1] is the minimum

light needed by the microalgae to achieve maximum photosynthesis and n [−] is a form parameter.

For a specific geometry, the average irradiance (Iav) is a function of the light path inside the

culture, the biomass concentration and the extinction coefficient of the biomass. The specific

growth rate hyperbolically increases with the average irradiance up to achieve the maximum spe-

cific growth rate µmax for the selected strain. Whatever the microalgae strains, for any operational

conditions a fix specific growth rate is achieved, being higher or lower according to the optimal

value of other cultures parameters such as temperature, pH and dissolved oxygen among others.

The factors of temperature, pH and dissolved oxygen are normalized values and the overline
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indicates that the term varies between 0 and 1, which multiply the solar radiation parameter. There-

fore, when these three (Tw, pH and DO) parameters are optimal and have a value of 1, the specific

growth rate only depends on solar radiation and would have the maximum possible value. How-

ever, if any of these parameters is not optimal, it would have a direct negative impact on the growth

rate.

The temperature index (µ(Tw)) is a parameter that represents the influence of temperature on

microalgae growth, directly related to biomass growth, where 1 means the maximum yield due to

an optimal temperature of the culture. The biomass growth performance can be diminished by the

effect of the temperature, therefore a temperature above or below the characteristic limits of the

microalgae would result in null growth. For example, a strain that does not exceed a temperature

index of 0.5 in a location means that at most, it is not capable of reaching half its maximum growth

rate, so it would be limited to a great extent due to temperature conditions. Thus, the temperature

index can be used independently to analyze the influence of temperature on microalgae strains, as

it has a direct effect on the specific growth rate.

As commented above, the rest of factors in equation (17) are normalized factors that affects

µ(IPAR). Specifically, the temperature index can be obtained from the following equation, based

on the maximum (Tmax), minimum (Tmin) and optimum (Topt) temperature values of the microalgae

strain, shown in Table 4:

µ(Tw) =
(Tw−Tmax) · (Tw−Tmin)

2

(Topt−Tmin) · ((Topt−Tmin) · (Tw−Topt)− (Topt−Tmax) · (Topt +Tmin−2 ·Tw))
(19)

where Tw [◦C] is the temperature of the culture, calculated with the temperature model described

in equation (15).

The analysis has been done with representative data of 8 days of each seasonal period over a

year at Almería, in Spain, characterized by moderate temperatures in summer and temperate in

winter. The climate in Almería is considered a local steppe climate, with little rainfall. During the
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course of the year, the temperature generally varies from 8 [◦C] to 30 [◦C] and rarely drops below

6 [◦C] or rises above 35 [◦C]. The objective has been to verify the influence of temperature on

microalgae cultivation for five different species of microalgae throughout an annual period in this

location. These microalgae species correspond to Dunaliella tertiolecta, Nannochloropsis ocean-

ica, Chlorella pyrenoidosa and Spirulina platensis, being commonly used for biomass production

at industrial scale, in addition to Scenedesmus almeriensis, the strain used in the raceway reactor

studied. Table 4 represents the characteristic temperature parameters for each microalgae strain,

applied to the temperature index model and obtained from the literature (16,26) and experimental

tests in our research group. Despite the fact that the microalgae used in the reactor is Scenedesmus

almeriensis, the temperature model is independent of the type of strain used, because it is a model

to estimate the culture temperature. The characteristic temperature parameters for each strain are

necessary in the cardinal model (equation 19), which in combination with the temperature model,

allows to analyze its influence for any microalgae strain.

Table 4: Microalgae characteristic temperatures

Microalgae strain Tmin [°C] Topt [°C] Tmax [°C]
Scenedesmus almeriensis 12 30 46

Dunaliella tertiolecta 5 32.6 38.9
Nannochloropsis oceanica -0.2 26.7 33

Chlorella pyrenoidosa 5.2 38.7 45.8
Spirulina platensis 7.7 37 50.6

Figure 6 represents the analysis carried out for the five types of microalgae during 8 days for

each season of the year. The first five graphs represent the temperature factor (16) that affects

the microalgae growth. The last graph at the bottom represents the estimated temperature in the

raceway reactor for the entire data set using the temperature model. The ideal seasons to cultivate

the microalgae Scenedesmus almeriensis, used in the reactor described in Section 2, are the last

half of spring, the summer and the first half of autumn. However, during winter, the temperature

index is practically 0, which denotes zero growth. The Dunaliella tertiolecta strain is resistant to

medium/high temperatures and with a good temperature index late spring, summer and early au-

tumn, while its performance can be diminished by the low temperatures of winter. The microalgae
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Figure 6: Temperature index analysis during seasonal periods. The results for the data set of eight
days are represented individually and divided in four colours representing the different seasons.
First graph corresponds to Scenedesmus almeriensis. Second graph corresponds to Dunaliella
tertiolecta. Third graph corresponds to Nannochloropsis oceanica. Fourth graph corresponds to
Chlorella pyrenoidosa, while fifth graph corresponds to Spirulina platensis. Sixth graph represents
the estimated temperature in the raceway reactor (dashed line). For the correct visualization of the
colors in the graphs, refer to the web version of the paper.

Nannochloropsis oceanica would not resist the summer period but it shows good results during

the rest of the year, especially in winter, where its productivity exceeds the other strains analyzed.

Both Chlorella pyrenoidosa and Spirulina platensis strains show a good temperature index during

the summer period, together with late spring and the early autumn, as for Dunaliella tertiolecta,

in contrast to practically no growth in winter due to low temperatures. The results obtained show

a clear relationship with the characteristic values of each strain represented in Table 4 allowing an

estimation of the viability of each strain for the studied location.

Discussion

The error obtained in Figures 3 and 5 denotes a promising accuracy in the model obtained from

thermal balances. From the biological point of view, the error related to the estimated and the actual

temperature would not be a problem according to the global process dynamics. The model is able
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to accurately represent the temperature during the whole day. However, notice that in some days

the error is larger than in others. These mismatches may be due to the existence of non-measurable

terms or disturbances that have not been contemplated in the thermal balances, such as punctual

errors in the measurements, irregular operations in the reactor or temperature of culture medium

for replacement. On the other hand, the calibration by means of genetic algorithms allows to ob-

tain mean values of parameters used in the equations that are subjected to uncertainty, as they are

in lumped-parameters representations of balances that should require distributed parameter repre-

sentations and thus are in general difficult to obtain from tables. In general, the results obtained

have been positive and notable for the use of the model in the development of microalgae growth

models where its dynamics and other parameters such as productivity, performance, consumption

of CO2, and evolution of pH are estimated.

The results of the temperature analysis for the cultivation of microalgae in Almería using

the temperature model for raceway reactors have determined that Scenedesmus almeriensis and

Dunaliella tertiolecta microalgae are suitable for production during most part of the year, espe-

cially during summer, due to its high temperature index. Both Chlorella pyrenoidosa and Spirulina

platensis strains are also suitable for cultivation during the spring, summer and autumn periods,

due to a good temperature index behaviour but less suitable than those described above. On the

other hand, the microalgae Nannochloropsis oceanica is not capable of withstanding the temper-

atures reached during late spring and summer periods, being a microalgae difficult to cultivate in

these periods, but being the most suitable for cultivation in autumn and winter because it shows

the highest temperature index of all strains for this seasonal period.

The environmental conditions depend on the weather and can be very different from one season

to another. This fact has been taken into account in the calibration of the model so that it can adjust

to all the environmental conditions of each month, without changing the parameters or increasing

the model complexity. On the other hand, being a model designed for all months of the year, there

are certain errors due to a generalization of parameters, but a tradeoff between performance and

complexity has been found.
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The temperature estimation is really useful in the microalgae production process. The tem-

perature model can be combined with existing microalgae biomass production models to add the

effect of temperature on growth and thus make more accurate and complete microalgae production

models. On the other hand, temperature estimation can be used as a design tool when installing

a reactor in a determined location. From the growth productivity model and the environmental

conditions, it is possible to estimate the temperature of a reactor in that area and establish its max-

imum biomass production or the microalgae strain viability. In this way, it is possible to assess the

suitability to install a raceway reactor in any specific area or establish different microalgae cultures

depending on the season. Moreover, it can also be used to design control algorithms to optimize

the reactor temperature.

Conclusions

This work presents a temperature model for raceway reactors based on a thermal balance from

measurable conditions in the environment. The results of the dynamic temperature evolution ob-

tained from the model show satisfactory performance that closely resemble the actual temperature

values, measured in the reactor. The great impact of temperature on the productivity of microalgae

has been demonstrated in the literature and, therefore, this type of models has a fundamental role in

the development of new and more complete models of microalgae that allow us to fully understand

all the parameters that affect its growth. The use of industrial scale models that take into account

all the variables affecting the microalgae growth is scarce in practice, and thus, this temperature

model aims to complement the use of more complete models that allow the development of precise

evaluation applications in the field of microalgae, such as optimal reactor control, variable impact

studies, performance improvement or parameter estimation. In future work, the usefulness of the

model to estimate the productivity of microalgae from different conditions will be analyzed, in

addition to its use as a design tool.
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