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Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1 Preliminaries 27
1.1 Finitely generated, finitely presented and

pure-projective objects . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2 Category of complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3 Gorenstein projective objects . . . . . . . . . . . . . . . . . . . . . . . 36

2 Measuring projectivity in abelian categories 39
2.1 Subprojectivity domains . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Examples of homologically interesting classes . . . . . . . . . 50
2.2 Closure properties of subprojectivity domains . . . . . . . . . . . . . . 54
2.3 Ext-orthogonal classes, precovers and preenvelopes . . . . . . . . . . . 62

3 Measuring projectivity of complexes 77
3.1 Subprojectivity and null-homotopy . . . . . . . . . . . . . . . . . . . . 77
3.2 Characterizing complexes through their cycles . . . . . . . . . . . . . . 88
3.3 Application to some well-behaved classes of complexes . . . . . . . . . 94
3.4 Characterization of rings by subprojectivity of complexes . . . . . . . . 102

Bibliography 107

11



CONTENTS

12



Resumen

En los últimos años, López-Permouth y varios colaboradores han introducido un
nuevo enfoque en el estudio de la proyectividad, inyectividad y planitud clásicas de los
módulos (mira por ejemplo [28, 6, 14]). De esta manera, introdujeron los dominios
de subproyectividad de módulos como una herramienta para medir, de alguna manera,
el nivel de proyectividad de dichos módulos (y no solo para determinar si el módulo es
proyectivo o no). En esta memoria desarrollamos un nuevo tratamiento de la subproyec-
tividad en cualquier categorı́a abeliana que arroja más luz sobre algunos de sus diversos
aspectos importantes. Es decir, en términos de subproyectividad, se unifican algunos
resultados clásicos y se caracterizan algunos anillos clásicos. También se muestra que,
en algunas categorı́as, la subproyectividad mide nociones distintas a la proyectividad.
Además, este nuevo enfoque permite, además de establecer generalizaciones de resul-
tados conocidos, construir nuevos ejemplos como el dominio de subproyectividad de la
clase de objetos Gorenstein proyectivos, la clase de complejos DG-proyectivos y tipos
particulares de representaciones lineales de quivers finitos.

Asimismo, en esta memoria ampliamos nuestro estudio a la categorı́a de complejos
sobre una categorı́a abeliana. Probamos que la noción de subproyectividad proporciona
una nueva visión de los morfismos homotópicamente nulos en la categorı́a de complejos
y damos varios resultados que enfatizan la importancia de la subproyectividad en la cate-
gorı́a de complejos; damos algunas aplicaciones caracterizando algunos anillos clásicos
y establecemos varios ejemplos que nos permiten reflejar el alcance y los lı́mites de
nuestros resultados.
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Résumé

Au cours des dernières années, López-Permouth et plusieurs collaborateurs ont in-
troduit une nouvelle approche dans l’étude de la projectivité, de l’injectivité et de la
planéité classiques des modules (voir par exemple [28, 6, 14]). De cette façon, ils ont
introduit les domaines de sous-projectivité des modules comme un outil pour mesurer,
en quelque sorte, le niveau de projectivité d’un tel module (donc pas seulement pour
déterminer si le module est projectif ou non). Dans ce mémoire, nous développons un
nouveau traitement de la sous-projectivité dans toute catégorie abélienne qui éclaire
davantage certains de ses divers aspects importants. A savoir, en termes de sous-
projectivité, certains résultats classiques sont unifiés et certains anneaux classiques sont
caractérisés. On montre aussi que, dans certaines catégories, la sous-projectivité mesure
des notions autres que la projectivité. De plus, cette nouvelle approche permet, en plus
d’établir des généralisations de résultats connus, de construire de nouveaux exemples
tels que le domaine de sous-projectivité de la classe des objets projectifs de Gorenstein,
la classe des complexes DG-projectifs et des types particuliers de représentations d’un
carquois linéaire fini.

Aussi, dans cette thèse, nous étudions profondément la sous-projectivité dans la
catégorie des complexes sur une categorie abélienne. Nous prouvons que la notion de
sous-projectivité fournit une nouvelle vision des morphismes nuls-homotopiques dans
la catégorie des complexes et nous montrons à travers plusieurs resultats l’importance
de la sous-projectivité dans la categorie des complexes. Notamment, la sous-projectivité
offre une nouvelle vision aux quelques notions classiques des anneaux. En plus, divers
exemples sont donnés afin de supporter la nouvelle vision et aussi de discuter les limites
de quelques résultats.
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Abstract

In the last few years, López-Permouth and several collaborators have introduced a
new approach in the study of the classical projectivity, injectivity and flatness of mod-
ules (see for instance, [28, 6, 14]). This way, they introduced subprojectivity domains of
modules as a tool to measure, somehow, the projectivity level of such a module (so not
just to determine whether or not the module is projective). In this memory, we develop
a new treatment of the subprojectivity in any abelian category which shed more light
on some of its various important aspects. Namely, in terms of subprojectivity, some
classical results are unified and some classical rings are characterized. It is also shown
that, in some categories, the subprojectivity measures notions other than the projectivity.
Furthermore, this new approach allows, in addition to establishing nice generalizations
of known results, to construct various new examples such as the subprojectivity domain
of the class of Gorenstein projective objects, the class of DG-projective complexes and
particular types of representations of a finite linear quiver.

Also, in this memory we extend our study to the category of complexes over an
abelian category. We prove that the subprojectivity notion provides a new sight of null-
homotopic morphisms in the category of complexes and we give various results which
emphasize the importance of subprojectivity in the category of complexes; we give some
applications by characterizing some classical rings and establish various examples that
allow us to reflect the scope and limits of our results.

0Key Words. subprojectivity; subprojectivity domain; abelian category; complex; homotopy; projec-
tive; flat
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Introduction
In this memory we will work mainly on an abelian category with enough projectives,
although we will find the biggest applications and examples on the category of mod-
ules over an associative ring with unit. It is worth mentioning the existing connection
between abelian and module categories through the well-known Gabriel’s theorem: an
abelian category is equivalent to a module category if and only if it is cocomplete and
has a finitely generated projective generator (see for instance [35, page 211]).

Throughout the thesis, A will denote an abelian category with enough projectives,
C (A ) the category of complexes over A , K (A ) the homotopy category of C (A ) and
R will denote an associative (non necessarily commutative) ring with a unit element.
The category of left R-modules will be denoted by R-Mod, the category of complexes
of left R-modules will be denoted by C (R) and the homotopy category of C (R) will be
denoted by K (R). Modules are, unless otherwise explicitly stated, left R-modules.

To any given class of objects C of A we associate its right Ext-orthogonal class,

C⊥ = {X ∈A | Ext1(C,X) = 0,C ∈ C },

and its left Ext-orthogonal class,

⊥C = {X ∈A | Ext1(X ,C) = 0,C ∈ C }.

In particular, if C = {M} then we simply write ⊥C = ⊥M and C⊥ = M⊥.

Many studies are done every year on projective, injective and flat modules. Many of
them involve concepts derived from relative projectivity, injectivity and flatness. Rather
than saying whether a module has a certain property or not, each module is assigned a
relative domain that, somehow, measures to which extent it has this particular property.
For instance, the study of flatness was accessed in [14, 18] from two slightly similar
alternative perspectives as both use the tensor product. Then, another perspective on the
flatness of modules was introduced in [4] where the authors use flat precovers to define
and study flat-precover completing domains.

On the other hand, relative injectivity, injectivity domains and the notion of a poor
module (modules with the smallest possible injectivity domain) have been studied in
[2, 24, 31]. Dually, relative projectivity, projectivity domains and the notion of a p-poor
modules have been studied in [29, 31]. In contrast to the notion of relative injectiv-
ity, Aydǧdu and López-Permouth introduced in [6] the notion of subinjectivity. Then,
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Introduction

Holston et al. introduced in [28] the projective analog of subinjectivity and called it
subprojectivity. The purpose of [28] was to introduce a new approach on the analysis
of the projectivity of a module. However, the study of the subprojectivity goes beyond
that aim and, indeed provides, among other things, an interesting new side on some
other known notions. This opens a new important area of research which attracts many
authors.

In this thesis, we extend the notion of subprojectivity to an abelian category A with
enough projectives and we show that subprojectivity domains may not be restricted to a
single object. On the contrary, the subprojectivity domains of a whole class of objects
can be computed, giving rise to the characterization of the subprojectivity domain of
several homologically interesting classes of objects. We also show that subprojectivity
can be used to measure characteristics different from the projectivity in some particular
categories such as the category of complexes and the one or representations of quivers
(see Example 2.1.3). Then, we go deeper in the investigation of subprojectivity in the
category of complexes of A (which has enough projectives since A is supposed to have
enough projectives) and we show that subprojectivity of complexes is relatively linked
to that of null-homotopy of morphisms.

Recall from [28] that for two objects M and N of A , M is said to be N-subprojective
if for every epimorphism g : B→ N and every morphism f : M→ N, there exists a mor-
phism h : M→B such that gh= f . The subprojectivity domain of any object M, denoted
Pr−1

A
(M), is defined as the class of all objects N such that M is N-subprojective, and

the subprojectivity domain of a whole class C of A , Pr−1
A
(C), is defined as the class of

objects N such that every C of C is N-subprojective.

Now, we summarize the contents of this memory.

Chapter I: Preliminaries

This chapter is the preliminaries parts of the memory. We recall some basic termi-
nologies and results which will be used in the rest of the thesis.

Chapter II: Measuring projectivity in abelian categories

In this chapter, we develop a new treatment of the subprojectivity in the categori-
cal context. This study provides new interesting tools to develop this area of research.
Indeed, we obtain, for instance, generalizations of several results using new methods
which give a different light to the way they are seen now, which in addition, gives new
perspectives. The current study provides also new powerful tools in constructing various
interesting examples. For instance, we know and it is easy to show that the subprojectiv-
ity domain of a projective object P is the whole category A , which is exactly the right
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Ext-orthogonal class of P. So we can write Pr−1
A
(P) = P⊥. So it is natural to ask how

far we can go by extending this equality. We will show that, at least, it is possible to
extend it to objects which are embedded in projective ones (see Proposition 2.1.6). As
a consequence, we deduce that, if M is a Gorenstein projective object, then there is an
object N such that Pr−1

A
(M) = N⊥.

We also introduce subprojectivity domains of classes as a natural extension of the
subprojectivity domains of objects and we show, among several other things, that the
fact that a subprojectivity domain of a class coincides with its first right Ext-orthogonal
class can be characterized in terms of preenvelopes and precovers.

The chapter is organized as follows:
In section 2.1, we investigate subprojectivity domains of objects. We start by giving

examples in the category of complexes and the category of representations of a quiver
which show that the role of subprojectivity could go beyond the measure of the projec-
tivity, and that indeed it can be effectively used to measure other properties such as the
exactness of complexes or determine when a morphism is monic (see Example 2.1.3).
The main contribution of this section is the elaboration of two new ways to treat the
subprojectivity of objects. The first one is a functorial characterization of the subpro-
jectivity of objects (see 2. and 3. of Proposition 2.1.4 and Proposition 2.1.23) and the
second one characterizes the subprojectivity of objects in terms of factorizations of mor-
phisms (see 4. and 5. of Proposition 2.1.4). This contribution allows to easily establish
new and interesting results and examples throughout the paper. For instance, Corollary
2.1.7 shows that if M is a strongly Gorenstein projective object then Pr−1

A
(M) = M⊥.

And Corollaries 2.1.9 and 2.1.10 give, in terms of subprojectivity, a new way to see how
an object can be embedded in a projective object.

We also introduce and investigate subprojectivity domains of classes as a natural
extension of subprojectivity domains of objects. This notion leads, among other things,
to a unification of several well-known results (see Corollaries 2.1.27, 2.1.28, 2.1.29
and 2.1.30). We determine subprojectivity domains of various classes such as the one
of DG-projective complexes (Proposition 2.1.15), the one of strongly Gorenstein pro-
jective objects (Proposition 2.1.16), the one of finitely presented objects (Proposition
2.1.19), the one of finitely generated modules (Proposition 2.1.24), and the one of sim-
ple modules (Proposition 2.1.25). We show in Proposition 2.1.14 that the subprojectivity
domain of a class L does not change even if we modify this class to Add(L ) (i.e. the
class of all objects which are isomorphic to direct summands of direct sums of copies
of objects of the class L ). As consequences, the subprojectivity domains of the classes
of all Gorenstein projective objects, of all pure-projective objects and of all semisimple
modules are determined (see Corollaries 2.1.17, 2.1.20 and 2.1.26).

Section 2.2 is devoted to the study of some closure properties of subprojectivity
domains. We extend the study done in [28] and we give new results. In Proposition
2.2.1 we show that the subprojectivity domain of any class is closed under extensions,
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finite direct sums and direct summands. In Proposition 2.2.4 we show that the subpro-
jectivity domain of any finitely generated object is closed under pure-subobjects (if the
category is locally finitely presented Grothendieck). Then, we characterize when are
the subprojectivity domains closed under kernels of epimorphisms (Proposition 2.2.5
and Example 2.2.6). In Proposition 2.2.7 we show that the subprojectivity domain of
a class L is closed under subobjects if and only if the subprojectivity domain of any
object of L is closed under subobjects. This leads to new characterizations of known
notions. For instance, in Corollary 2.2.8, we show that, for any ring R, the weak global
dimension of R is at most 1 if and only if the subprojectivity domain of each finitely
presented module is closed under submodules. In Corollary 2.2.9 we prove that a left
coherent ring R is left semihereditary if and only if the subprojectivity domain of each
of its finitely generated modules is closed under submodules. Similarly, in Proposition
2.2.10, we generalize [28, Proposition 2.14] by showing that the subprojectivity domain
of a class L is closed under arbitrary direct products if and only if the subprojectivity
domain of any of its objects is closed under arbitrary direct products. This result allows
us to give a much direct proof (see Corollary 2.2.11) of a characterization of coherent
rings established by Durğun in [20, Proposition 2.3]. Then, we discuss the closeness
under direct sums of the subprojectivity domains of classes. In [28, Proposition 2.13],
it was shown that the subprojectivity domain of any finitely generated module is closed
under arbitrary direct sums. Here, using the functorial characterization of the subprojec-
tivity domains, we show that this also holds for small objects (see Proposition 2.2.12).
We end Section 2.2 with a discussion on whether or not the subprojectivity domains are
closed under direct limits and we show that this holds for finitely presented objects (see
Proposition 2.2.14).

Finally, in Section 2.3 we relate subprojectivity domains with right Ext-orthogonal
of classes and the existence of precovers and preenvelopes. The main results (Theorems
2.3.1 and 2.3.10) state that, under some conditions on the category A and on the class
L , the following conditions are equivalent.

1. L ⊥ =Pr−1
A
(L ).

2. L ⊥ is closed under kernels of epimorphism and cokernls of monomorphisms and
contains Pro jA .

3. L
⋂

L ⊥ = Pro jA and every object in L ⊥ has a special L -precover.

4. Pro jA ⊆L ⊥, Pr−1
A
(L ) is closed under cokernels of monomorphisms and every

M ∈L has an L ⊥-preenvelope which is projective.

Inspired by the work of Parra and Rada ([37]), we show that, if we assume further
conditions on A , then the closure under direct products of the subprojectivity domains
of classes can be characterized in terms of preenvelopes (see Proposition 2.3.9). Also, in
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this section we give two consequences of Theorem 2.3.1; we characterize quasi-Fröbe-
nius rings in the meaning of subprojectivity (see Corollary 2.3.2); and we show that
every object in G P⊥

A has a special G PA -precover (see Corollary 2.3.3).

Chapter III: Measuring projectivity of complexes

In this chapter we go deeper in the investigation of subprojectivity in C (A ), the
category of complexes of A , which has enough projectives since A is supposed to
have enough projectives. In this sense, when studying subprojectivity of complexes,
it is observed that the concept of subprojectivity is relatively closely linked to that of
null-homotopy of morphisms.

The chapter is organized as follows:

In Section 3.1, we investigate the relationship between the subprojectivity of com-
plexes and the null-homotopy of morphisms. Namely, in Theorem 3.1.4, we prove that
if Nn ∈ Pr−1

A
(Mn) for every n ∈ Z, then we get that N ∈ Pr−1

C (A )
(M) if and only if

HomK (A )(M[−1],K) = 0 (where M[−1] denotes the -1-shift of M) for every short ex-
act sequence of complexes 0→ K→ P→ N → 0 with P projective. The proof of this
theorem is based on a new characterization of the subprojectivity of an object in any
abelian category with enough projectives in terms of the splitting of some particular
type of short exact sequences (Proposition 3.1.1).

The second main result of the section (Theorem 3.1.12) assures that if M and N
are two complexes with Nn+1 ∈ Pr−1

A
(Mn) for every n ∈ Z, then the conditions N ∈

Pr−1
C (A )

(M) and HomK (A )(M,N) = 0 are equivalent. This time, the idea is based on
a new characterization of subprojectivity in terms of factorizations through contractible
complexes (Proposition 3.1.10).

Theorem 3.1.12 allows us to determine exactly when a complex N is in the subpro-
jectivity domain of all the shifts M[n] of a given complex M (Proposition 3.1.15), which,
at the same time, helps in characterizing subprojectivity domains of complexes of the
form⊕n∈ZM[n] (Proposition 3.1.16) and of the form⊕n∈ZM[n] (Proposition 3.1.17) for
a given object M in A . A particular case of Proposition 3.1.17 typifies exact complexes
in terms of subprojectivity in the following sense: if A has a projective generator P,
then N is exact if and only if N ∈Pr−1

C (A )
(P[n]) for every n ∈ Z (see Corollary 3.1.18).

Motivated by this result, we asked whether subprojectivity can measure the exactness
of a complex N at each Ni. In fact, we prove that, for any complex N and any n ∈ Z,
N ∈Pr−1

C (A )
(P[n]) if and only if Hn(N) = 0 (see Proposition 3.1.19). This result allows

us to answer two interesting questions. Namely, we provide an example showing that
the subprojectivity domains are not closed under kernel of epimorphisms (see Exam-
ple 3.1.20), and we give an example showing that the equivalence of Theorem 3.1.4
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mentioned above does not hold in general if we replace the condition “P is projective”
by “P ∈ Pr−1

C (A )
(M)” (see Remark 3.1.5 and Example 3.1.21). It is worth mention-

ing that the necessity and the importance of the conditions given in the main Theorems
3.1.4 and 3.1.12 are deeply discussed in Propositions 3.1.6 and Example 3.1.13, and that
semisimple categories (in the sense that every object is projective) are also characterized
in terms of subprojectivity. In fact, this was a consequence of the study of the condition
“Nn+1 ∈Pr−1

A
(Mn) for every n∈Z” assumed in Theorem 3.1.12; we prove that the cate-

gory A must be semisimple when this condition implies the condition N ∈Pr−1
C (A )

(M)

for every two complexes M and N (Proposition 3.1.14).

In Section 3.2, we study the relationship between the subprojectivity of a complex
and the subprojectivity of its cycles. As a natural question, inspired by some classical
facts, we ask whether for two complexes M and N, N ∈ Pr−1

C (A )
(M) under the con-

dition “Zn(N) ∈ Pr−1
A
(Mn) for every n ∈ Z” (Theorem 3.2.2) and under the condition

“Nn ∈Pr−1
A
(Zn−1(M)) for every n ∈ Z” (Theorem 3.2.7). We show that this holds for

every exact complex N and every bounded below complex M (see Theorem 3.2.2). In
Theorem 3.2.7, we show that this holds for every exact complex M and every bounded
above complex N only if every projective object is injective.

The relations between the conditions given in the main Theorems 3.2.2 and 3.2.7 are
also deeply discussed. Indeed, we show that the condition “M is bounded below” in The-
orem 3.2.2 cannot be dropped (see Example 3.2.4). Also, we give an example showing
that the reverse implication of Theorem 3.2.2 does not hold true in general (see Example
3.2.5) and another example showing that the reverse implication of the first assertion of
Theorem 3.2.7 does not hold true in general, that is, given two complexes M and N, the
condition “ N ∈Pr−1

C (A )
(M)”, is not sufficient to assure that Nn ∈Pr−1

A
(Zn−1(M)) for

every n ∈ Z.
To finish this section, we study the case of contractible complexes which satisfies

that N ∈Pr−1
C (A )

(M) if and only if Nn ∈Pr−1
A
(Zn−1(M)) for every n ∈ Z (Proposition

3.2.8). This can be seen as a new extension of the known fact that the projective com-
plexes are exactly the contractible ones with projective cycles.

Section 3.3 is devoted to the study of subprojectivity domains of classes of com-
plexes. Inspired by some classical facts, we focus our study on the classes of complexes
constructed from a class of objects L . We will use the following terminology:

• The class of complexes X such that every Xn ∈L will be denoted by #L .

• The class of bounded complexes (resp., bounded below complexes) X such that
every non zero Xn ∈L will be denoted by C b(L ) (resp., C−(L )).
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• The class of exact complexes X such that every Z(X)n ∈L will be denoted by
L̃ .

For some particular cases of classes L of objects in A , the classes of complexes
#L , C b(L ) and L̃ are usual. For instance, we have C (A ) = #A , PC (A ) = P̃A (i.e.,
the class of projective complexes (Proposition 1.2.2)) and FPC (R) = C b(FPR-Mod)
(i.e., the class of finitely presented complexes of modules (see [26, Lemma 4.1.1])).
Thus, the following questions arise naturally: let L and G be two classes such that
Pr−1

A
(L ) = G .

1. When do we have Pr−1
C (A )

(L̃ ) = #G ?

2. When do we have Pr−1
C (A )

(#L ) = G̃ ?

3. When do we have Pr−1
C (A )

(C b(L )) = G̃ ?

We will show in Theorem 3.3.1, that if L and G contain the zero object and L

is closed under extensions, then Pr−1
C (A )

(L̃ ) = #G if and only if Pr−1
A
(L ) = G and

HomK (A )(M,N) = 0 for any M ∈ L̃ and N ∈ #G .

To answer the second question, we will show in Theorem 3.3.2, that if A has a pro-
jective generator P with 0,P ∈L . Then, Pr−1

C (A )
(#L ) = G̃ if and only if Pr−1

A
(L ) =

G and HomK (A )(M,N) = 0 for any M ∈ #L and N ∈ G̃ .

Finally in Theorem 3.3.6, we answer Question 3 as follows: ifA has a projective
generator P with 0,P∈L , then we get that Pr−1

A
(L )=G if and only if Pr−1

C (A )
(C b(L ))=

G̃ .

We end this section by giving some consequences of the main results already es-
tablished (see Propositions 3.3.3 and 3.3.7 and Corollaries 3.3.8, 3.3.9, 3.3.10, 3.3.11,
3.3.12 and 3.3.13).

Finally, Section 3.4 is devoted to some applications to the category of complexes of
modules. As consequences of the results of the above sections, we give some new char-
acterizations of some classical rings. We give, in Proposition 3.4.1, a characterization
of quasi-Fröbenius rings. In Proposition 3.4.2 we characterize left hereditary rings in
terms of subprojectivity as those rings for which every subcomplex of a DG-projective
complex is DG-projective. Furthermore, we do it without the condition “Every exact
complex of projective modules is projective” needed in [46, Proposition 2.3].
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Following the same context, subprojectivity also makes it possible to characterize
rings of weak global dimension at most 1, and using subprojectivity domains we prove
that these rings are the ones over which subcomplexes of DG-flat complexes are always
also DG-flat (Proposition 3.4.3). As a consequence, left semi-hereditary rings are also
characterized in terms of subprojectivity (Corollary 3.4.4).

26



CHAPTER 1

PRELIMINARIES

This chapter is the introductory part of the memory. We recall some basic termi-
nology and results (without proofs) which will be used in the next two chapters. Also,
in this chapter we extend and prove some well known results from the category of mod-
ules to any abelian category. The reader is supposed to be familiar with the language of
categories.

1.1 Finitely generated, finitely presented and
pure-projective objects

The categorical setting for this section is that of Grothendieck categories for which
our main reference is [43].

Recall that a Grothendieck category is a cocomplete abelian category with a gen-
erating set, and with exact direct limits. Throughout this section, G will denote a
Grothendieck category.

To orient the reader, we summarize some standard facts about Grothendieck cate-
gories. First, a Grothendieck category is always complete and every object B ∈ G has
an injective envelope. In particular, G has enough injectives. A useful fact is that any
Grothendieck category is locally small, meaning the lattice of subobjects of any given
object A (that is, the class of subobjects of A), denoted by L (A), is in fact a set (see [43,
Proposition IV.6.6]). Another useful fact in Grothendieck categories is the following: if
{Ai; i ∈ I} is a family of subobjects of an object A (which can be seen as a direct family
with the order given by the inclusions Ai → A j for every i < j), then the direct limit
lim−→Ai coicides with the sum ∑Ai. In this case, we call it the direct union of the family,
and it is usually represented by either ∪Ai or ∑Ai.

In this section we recall finiteness conditions on Grothendieck categories: we state
the definition of finitely generated, finitely presented and pure-projective objects and we
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give some known properties. In particular, the definitions of finitely generated objects
given in [42] and [35] are not the one we adopt here, but have not found any proof of
this equivalence.

Finitely generated objects appear quite often in the study of the categorical homol-
ogy theory. There are many different equivalent definitions of this type of objects, each
one useful in different contexts. In our case, we say that an object A of G is finitely
generated if for any family of objects {Xi; i ∈ I} and any epimorphism ϕ : ⊕IXi → A,
there exists a finite subset J ⊆ I such that the restriction of ϕ to⊕JXi is an epimorphism.
We denote the class of all finitely generated objects of G by FG G .

We start with a result, useful to prove the equivalence mentioned above between our
definition of finitely generated objects and the ones given in [42] and [35].

Proposition 1.1.1. The following conditions are equivalent for any object A of G .

1. A is finitely generated.

2. If {Ai; i ∈ I} is a directed family of subobjects of A with ∑I Ai = A, then there is
j ∈ I such that A j = A.

3. If {Ai; i ∈ I} is an ascending chain of subobjects of A with ∑I Ai = A, then there
is j ∈ I such that A j = A.

4. If {Ai; i ∈ I} is any family of subobjects of A with ∑I Ai = A, then there is a finite
subset F ⊆ I such that ∑F Ai = A.

Proof. 1.⇒ 2. Let λi : Ai→ A, ki : Ai→⊕IAi and µ : ∑I Ai→ A denote the inclusion
monomorphisms. The family {λi; i ∈ I} induce a unique λ :⊕IAi→ A such that λki =
λi, and we know the ker-coker factorization of λ is

⊕IAi
λ //

λ ##

A

∑I Ai

µ

==

Now, if ∑I Ai = A then µ is the identity and then λ is an epimorphism.
Being A finitely generated ensures we can find a finite subset F ⊆ I such that the

restriction of λ , λ ′ : ⊕FAi→ A, is an epimorphism. But the ker-coker factorization of
λ ′ is

⊕FAi
λ ′ //

λ ′ $$

A

∑F Ai

µ ′

==

so the inclusion µ ′ is an isomorphism and then it is the identity.
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In other words, A = ∑F Ai, but F is finite and {Ai; i∈ I} is a directed family, so there
is some j ∈ I such that Ai ⊆ A j for every i ∈ F . Then, A = ∑F Ai ⊆ A j and then A = A j.
2.⇒ 3. Clear since any ascending chain of subobjects is a directed family.
3.⇔ 4. This is due to [35, Theorem 1, page 204].
4.⇒ 1. Suppose we have an epimorphism ϕ :⊕ICi→ A. Then, for any i∈ I let ki : Ci→
⊕ICi be the canonical injection and call Ai = Im (ϕki). The ker-coker factorization of
each ϕki is then

Ci
ki //

ϕki !!

⊕ICi
ϕ

// A

Ai

λi

==

where λi is the inclusion monomorphism.
If we call now k′i : Ai → ⊕IAi the canonical injections, the family of inclusions

{λi; i ∈ I} induce a unique ξ :⊕IAi→ A such that ξ k′i = λi ∀i ∈ I.
On the other hand, if we let ψ =⊕Iϕki then we know that the diagram

Ci
ki //

ϕki
��

⊕ICi

ψ

��

Ai k′i
// ⊕IAi

is commutative for every i ∈ I. Thus, the diagram

⊕ICi
ϕ

//

ψ

��

A

⊕IAi
ξ

// A

is commutative because ξ ψki = ξ k′iϕki = λiϕki = ϕki ∀i ∈ I, so indeed ξ ψ = ϕ . Since
ϕ is an epimorphism we get that ξ is an epimorphism too. Now, from the ker-coker
factorization of ξ :

⊕IAi

ξ ##

ξ
// A

∑I Ai

λ

==

(λ is the inclusion monomorphism) we see that λ is an isomorphism since ξ is an
epimorphism, so λ is actually the identity, that is, ∑I Ai = A. Then, by the hypotheses
there is a finite subset F ⊆ I such that A = ∑F Ai. But then, if ξ ′ : ⊕FAi → A is the
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restriction of ξ to ⊕FAi, the ker-coker factorization of ξ ′ is

⊕FAi

ξ ′ $$

ξ ′
// A

∑F Ai

which means that ξ ′ is an epimorphism.
Now, if we let ϕ ′ be the restriction of ϕ to⊕FCi and ψ ′=⊕Fϕki (the corresponding

restriction of ψ), we have a commutative diagram

⊕FCi
ϕ ′

//

ψ ′

��

A

⊕FAi
ξ ′

// A

All the morphisms ϕki are epimorphisms so ψ ′ is an epimorphism, and we have
already seen that ξ ′ is an epimorphism, so we get that ϕ ′ is an epimorphism.

Recall that the class of all finitely generated objects is closed under quotients and
extensions (see for instance [43, page 121, Lemma 3.1]). In particular, it is closed under
direct summands and finite direct sums.

The existence of finitely generated objects in Grothendieck categories is not guar-
anteed at all, but there is a type of (Grothendieck) categories in which every object
is a quotient of a direct sum of finitely generated objects. All module categories are
Grothendieck categories of this type.

Definition 1.1.2. The category G is said to be locally finitely generated provided that it
has a generating set of finitely generated objects.

Let us now define finitely presented objects.

Definition 1.1.3. An object A of G is said to be finitely presented if for every exact
sequence 0→ K → L→ A→ 0 with L finitely generated, K is finitely generated. We
denote the class of all finitely presented objects of G by FPG .

The category G is said to be locally finitely presented provided that it has a gener-
ating set of finitely presented objects.

We recall the following characterizations of finitely presented objects.

Proposition 1.1.4. If G is a locally finitely generated category, then for an object A the
following conditions are equivalent.
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1. A is finitely presented.

2. There exists a short exact sequence 0→K→ L→ A→ 0 with L finitely presented
and K finitely generated.

3. HomG (A,−) preserves direct limits.

Proof. 1.⇔ 3. is due to [43, page 122, Proposition 3.4]
1.⇒ 2. If A is finitely presented, then the short exact sequence 0→ 0→ A→ A→ 0
verifies 2.
2.⇒ 1. Let 0→C→ B→ A→ 0 be any short exact sequence with B finitely generated
and let us prove that C is finitely generated. Consider the following pullback diagram

0

��

0

��

K

��

K

��

0 // C // D //

��

L //

��

0

0 // C // B //

��

A //

��

0

0 0

with L finitely presented and K finitely generated. Then, D is finitely generated since K
and B are, but, L is finitely presented, thus C is finitely generated.

Now, we turn our attention to pure-projective objects. Recall that a short exact
sequence

0 // A k // B
p

// C // 0

in G is said pure if HomG (F, p) is epic for every F finitely presented. In this case,
p : B→C is called pure epimorphism, k : A→ B pure monomorphism and A pure sub-
object of B. An object of G is said to be pure-projective if it is projective with respect to
every pure short exact sequence in G . The class of all pure projective objects of G will
be denoted by PPG .

Using the definition, we immediately get that every finitely presented object is pure-
projective, but the reverse is not true in general. In fact, it is well known that a module is
pure projective if and only if it is a direct summand of a direct sum of finitely presented
modules. In Proposition 1.1.6, we will prove the categorical version of this fact. But
first, we will prove the following result which is well known in the category of modules.
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Proposition 1.1.5. We suppose that the category G is locally finitely presented. Then,
for every object M there exists a pure epimorphism⊕Fi→M such that each Fi is finitely
presented.

Proof. Let SG be a representative set of finitely presented objects in G . For F ∈SG ,
put ∆F = HomG (F,M) and consider the morphism φF : F(∆F ) → M such that for ev-
ery f ∈ ∆F , φFk f = f where k f : F → F(∆F ) is the canonical injection. These can
be extended to φ : ⊕F∈SG

F(∆F ) → M. Then, for every F ∈ SG and every f ∈ ∆F ,
φ µFk f = f (µF : F(∆F ) → ⊕F∈SG

F(∆F ) is the canonical injection). Thus, for every
F ∈SG , HomG (F,φ) is epic.

Now, it remains to prove that φ : ⊕F∈SG
F(∆F ) → M is epic. For let g : M → X

be a morphim such that gφ = 0. Now, since the category is locally finitely presented
there exists an epimorphism ψ :⊕F∈X F →M for some set X ⊆SG . Then, for every
P ∈X , φ µPkψηP = ψηP where ηP : P→ ⊕F∈X F is the canonical injection. Thus,
gψηP = 0 for every P ∈ X and then gψ = 0. But ψ is epic, so g = 0. Thus φ :
⊕F∈SG

F(∆F )→M is a pure-epimorphism.

Proposition 1.1.6. We suppose that the category is locally finitely presented. An object
is pure-projective if and only if it is a direct summand of a direct sum of finitely presented
objects.

Proof. Let P be a pure-projective object and g : ⊕F → P be a pure epimorphism such
that each F is finitely presented which exists by Proposition 1.1.5. Thus, g : ⊕F → P
splits. That is, P is a direct summand of ⊕F .
The converse holds true since every finitely presented object is pure-projective, a di-
rect sum of pure projective objects is pure-projective and a direct summand of a pure
projective object is again pure projective.

1.2 Category of complexes

In this section we fix some notations from [15] and recall some definitions and basic
results on the category of complexes that will be used throughout this memory.

By a complex X of objects of A we mean a sequence of objects and morphisms in
A

· · · // X2
d2 // X1

d1 // X0
d0 // X−1

d−1
// X−2 // · · ·

such that dndn+1 = 0 for all n ∈ Z. If Im dn+1 = Ker dn for all n ∈ Z then we say
that X is exact. We denote by εX

n : Xn → Im dn the canonical epimorphism and by
µX

n : Ker(dn−1)→ Xn−1 the canonical monomorphism.
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The nth boundary (respectively, cycle, homology) of a complex X is defined as
Im dX

n+1 (respectively, KerdX
n , KerdX

n /Im dX
n+1) and it is denoted by Bn(X) (respec-

tively, Zn(X), Hn(X)). The elements in Bn(X) are called boundaries and the elements in
Zn(X) are called cycles.

Given a class L of objects in A , a complex

X : · · · // Xi+1
di+1

// Xi
di // Xi−1 // · · ·

is said to be HomA (L ,−)-exact (resp., HomA (−,L )-exact) if it becomes exact after
applying HomA (L,−) (resp., HomA (−,L)) for every L ∈L .

Throughout the thesis, we use the following particular kind of complexes:
Disc complex. Given an object M, we denote by M the complex

· · · // 0 // M
idM// M // 0 // · · ·

with all terms 0 except M in the degrees 1 and 0.
Sphere complex. Also, for an object M, we denote by M the complex

· · · // 0 // M // 0 // · · ·

with all terms 0 except M in the degree 0.
Shift complex. Let X be a complex with differential dX and fix an integer n. We

denote by X [n] the complex consisting of Xi−n in degree i with differential (−1)ndX
i−n.

Now, by a morphism of complexes f : X → Y we mean a family of morphisms fi :
Xi→ Yi such that dY

i fi = fi−1dX
i for all i ∈ Z. That is, the following diagram commutes

· · · // Xi+1
dX

i+1
//

fi+1
��

Xi
dX

i //

fi
��

Xi−1 //

fi−1
��

· · ·

· · · // Yi+1
dY

i+1

// Yi
dY

i

// Yi−1 // · · ·

The category of complexes of A will be denoted by C (A ). The category of com-
plexes of modules over the ring R will be denoted by C (R).

It follows straight from the definition of a morphism of complexes f : X → Y that
it maps boundaries to boundaries and cycles to cycles. Thus, it induces a family of
morphisms Hn( f ) in homology

0 // Bn(X) //

��

Zn(X) //

��

Hn(X) //

Hn( f )
��

0

0 // Bn(Y ) // Zn(Y ) // Hn(Y ) // 0

. (1.1)
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A morphism f : X →Y of complexes is called a quasi-isomorphism if the induced mor-
phisms Hn( f ) : Hn(X)→ Hn(N) are all isomorphisms. A quasi-isomorphism is marked
by a w next to the arrow.

Remark 1.2.1. It is immediate from the definition of a morphism of complexes that
an epic morphism is epic on boundaries. An application of the Snake Lemma to the
diagram 1.1 shows that an epic quasi-isomorphism is epic on cycles as well. On the
other hand, a quasi-isomorphism that is epic on cycles is also epic on boundaries (apply
Snake lemma to the diagram 1.1) and hence epic as morphism of complexes as we can
deduce from the diagrams

0 // Zn(X) //

��

Xn //

��

Bn−1(X) //

��

0

0 // Zn(Y ) // Yn // Bn−1(Y ) // 0

.

A morphism of complexes f : X → Y is said to be null-homotopic if, for all n ∈ Z,
there exist morphisms sn : Xn→Yn+1 such that for any n we have fn = dY

n+1sn+sn−1dX
n ,

and then we say that f is null-homotopic by s. For a complex X , idX is null-homotopic
if and only if X is of the form ⊕n∈ZMn[n] for some family of objects Mn. A complex of
this special type is called contractible.

Two morphisms of complexes f and g are homotopic, f ∼ g in symbols, if f −g is
null-homotopic. The relation f ∼ g is an equivalence relation. The homotopy category
K (A ) is defined as the one having the same objects as C (A ), and which morphisms
are homotopy equivalence classes of morphisms in C (A ).

For complexes X and Y , we let Hom•(X ,Y ) denote the complex of abelian groups
with

Hom•(X ,Y )n = ∏
i∈Z

HomA (Xi,Yi+n)

and
dHom•(X ,Y )

n (ψ) = (dY
i+nψi− (−1)n

ψi−1dX
i )i∈Z.

Note that for every n ∈ Z,

Zn(Hom•(X ,Y )) = HomC (A )(X [n],Y ) = HomC (A )(X ,Y [−n])

and
Hn(Hom•(X ,Y )) = HomK (A )(X [n],Y ) = HomK (A )(X ,Y [−n]).

For every complex X , Hom•(X ,−) is a left exact functor from the category of com-
plexes of A to the category of complexes of abelian groups.
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The following characterization of projective complexes is well known in the case
of complexes of modules. We recall its extension to complexes in an abelian category
from [34, Proposition 2.3.6].

Proposition 1.2.2. For a complex P of C (A ), the following conditions are equivalent.

1. P is projective as an object of C (A ).

2. P is contractible and the components Pi are all projective in A .

3. P is exact and the cycles Zi(P) are all projective in A .

Recall that a complex P in C (A ) is said to be DG-projective if its components
are projective and Hom•(P,E) is exact for every exact complex E. The class of DG-
projective complexes will be denoted by DG PC (A ).

We end this setion by proving the categorical version of some properties of DG-
projective complexes in order to use them later.

Recentely, a study of DG-projective complexes over some general categories was
done in [39]. From this study we can deduce the following result which is well known
for DG-projective complexes of modules.

Proposition 1.2.3. If A is locally finitely presented, then for every complex N there
exists a DG-projective complex X and an epic quasi-isomorphism f : X → N.

Proof. From [39, Theorem 6.6] there exists a special DG-projective precover f : X→N,
that is, f is epic and Ker f holds in DG P⊥

C (A ), which is the class of exact complexes.
Thus, f : X → N is a quasi-isomorphism.

The following characterization of DG-projective complexes is well known in the
case of complexes of modules (see for instance [17, (3.2.5) Theorem]).

Proposition 1.2.4. A complex P is DG-projective if and only if Hom•(P,−) preserves
epic quasi-isomorphisms.

Proof. Suppose that P is DG-projective and let g : A→ B be an epic quasi-isomorphism.

If we consider the long exact sequence of homology of 0 // K // A
g
// B // 0 , we

get that K is exact. Then, if we consider the long exact sequence of homology of

0 // Hom•(P,K) // Hom•(P,A)
Hom•(P,g)

// Hom•(P,B) // 0 we get that Hom•(P,g)
is a quasi-isomorphism since Hom•(P,K) is exact (K is exact and P is supposed to be
DG-projective). On the other hand, HomA (Pm,gn) is epic for every m,n ∈ Z since each
Pm is projective. Thus, Hom•(P,g) is epic.
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Conversely, let g : Q→ P be an epic quasi-isomorphism with Q is DG-projective
(see Proposition 1.2.3). Then, Hom•(P,g) is an epic quasi-ismorphism, hence, we get
HomC (A )(P,g) = Z0(Hom•(P,g)) is epic by Remarak 1.2.1. Thus, P is a direct sum-
mand of Q which is DG-projective. Therefore, P is DG-projective.

Proposition 1.2.5. A complex is DG-projective and exact if and only if it is projective.

Proof. Let P be an exact DG-projective complex and g : Q→ P an epimorphism with
Q projective. The epimorphism g : Q→ P is a quasi-isomorphism since Q is also ex-
act. Then, Hom•(P,g) is an epic quasi-isomorphism since P is DG-projective. Thus,
we get by Remarak 1.2.1 that Hom•(P,g) is epic on cycles. In particular, we get that
HomC (A )(P,g) = Z0(Hom•(P,g)) is epic. Thus, P is a direct summand of Q, hence it is
projective.

Conversely, let P be a projective complex. Then, P is contractible with projective
components. Thus, for every exact complex E and every n ∈ Z, Hn(Hom•(P,E)) =
HomK (A )(P,E[n]) = 0 since P is contractible (that is, idP is null-homotopic). Thus,
Hom•(P,E) is exact whenever E is exact.

1.3 Gorenstein projective objects
A complete projective resolution of an object M is an exact sequence of projective

objects
P : · · · → P1→ P0→ P−1→ ···

which is HomA (−,Pro jA )-exact with, M = Z0(P).
An object G is called Gorenstein projective, if it has a complete projective resolution.

We use G PA to denote the class of all Gorenstein projective objects.
If P is a complete projective resolution of an object, then by symmetry, all the ker-

nels of P are Gorenstein projective objects. It is clear that every projective objects is
Gorenstein projective.

Using the definition, we immediately get the following characterization of Goren-
stein projective objects which is well known in the case of category of modules and the
one of complexes of modules.

Proposition 1.3.1. An object G is Gorenstein projective if and only if there exists an
exact complex of projectives Pi:

0→ G→ P0→ P−1→ ···

which is HomA (−,Pro jA )-exact, and ExtiA (G,Q) = 0 for all i > 1 and all projective
objects Q.
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In [10], a particular case of Gorenstein projective modules was introduced and these
modules were called strongly Gorenstein projectives. The reason behind the introduc-
tion of this class of modules was giving a nice characterization for Gorenstein projective
modules. Namely, the authors proved that a module is Gorenstein projective if and only
if it is a direct summand of a strongly Gorenstein projective module. Here, we extend
this fact to abelian categories.

Definition 1.3.2. An object M of A is said to be strongly Gorenstein projective if it has
a complete projective resolution of the form

· · · // P
f

// P
f

// P
f

// · · ·

We use S G PA to denote the class of all strongly Gorenstein projective objects of A .

We prove the following characterization of strongly Gorenstein projective objects,
which was given in [10, Proposition 2.9] for modules.

Proposition 1.3.3. The following conditions are equivalent for an object M.

1. M is strongly Gorenstein projective.

2. There is a short exact sequence 0→M→P→M→ 0 which is HomA (−,Pro jA )-
exact and with P projective.

3. There is a short exact sequence 0→ M → P→ M → 0 with P projective and
Ext1A (M,Q) = 0 for every Q ∈ Pro jA

Proof. 1.⇔ 2. is clear.
For 2.⇔ 3. we consider the exact sequence · · · →HomA (P,Q)→HomA (M,Q)→

Ext1A (M,Q)→ Ext1A (P,Q) = 0→ ·· · for every Q ∈ Pro jA . Then, 0→ M → P→
M→ 0 is HomA (−,Q)-exact if and only if Ext1A (M,Q) = 0 for every projective object
Q.

Proposition 1.3.4. If A has direct sums and they are exact, then an object is Gorenstein
projective if and only if it is a direct summand of a strongly Gorenstein projective one.

Proof. Let G be a Gorenstein projective object. Then, G has a complete projective
resolution

P : · · · → P1→ P0→ P−1→ ···
Consider the exact sequences

0→ Zn(P)→ Pn→ Zn−1(P)→ 0

and let
0→⊕nZn(P)→⊕nPn→⊕nZn−1(P)→ 0
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be their direct sum which is exact since direct sums are exact. Now, let Q be a projective
object in A and consider the following commutative diagram

HomA (⊕nPn,Q) //

∼=
��

HomA (⊕nZn(P),Q)

∼=
��

∏n HomA (Pn,Q) // ∏n HomA (Zn(P),Q)

The second row is epic since 0→ Zn(P)→Pn→ Zn−1(P)→ 0 is HomA (−,Q)-exact for
every n. Then, the first one is also epic, thus 0→⊕nZn(P)→⊕nPn→⊕nZn−1(P)→ 0
is also HomA (−,Q)-exact. Therefore, ⊕nZn(P) is strongly Gorenstein projective.

The converse holds since the class of Gorenstein projective objects is closed under
direct summands (see the proof of [30, Theorem 2.5]) and every strongly Gorenstein
projective object is Gorenstein projective.

In [47, Theorem 2.2], it was proven that a complex of modules is Gorenstein projec-
tive if and only if its components are Gorenstein projective. Using the same arguments
one can extend this fact to complexes on A .

Proposition 1.3.5. A complex is Gorenstein projective in C (A ) if and only if its com-
ponents are Gorenstein projective in A .
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CHAPTER 2

MEASURING PROJECTIVITY IN ABELIAN
CATEGORIES

In this chapter we develop a new treatment of the subprojectivity in any abelian
category A with enough projectives. Namely, in terms of subprojectivity, some classi-
cal results are unified and some classical rings are characterized. It is also shown that, in
some categories, the subprojectivity measures notions other than the projectivity. Fur-
thermore, this new approach allows, in addition to establishing nice generalizations of
known results, to construct various new examples such as the subprojectivity domain
of the class of Gorenstein projective objects, the class of DG-projective complexes and
particular types of representations of a finite linear quiver.

The chapter ends with a study showing that the fact that the subprojectivity domain
of a class coincides with its first right Ext-orthogonal class can be characterized in terms
of the existence of precovers and preenvelopes.

2.1 Subprojectivity domains

Subprojectivity of objects is a notion studied up to a certain level of deepness in
categories of modules. However, it is a categorical type concept which has not even
been considered in this general setting. The aim of this section is thus to explore the
meaning of subprojectivity domains of objects and classes in nice categories from the
homological point of view: abelian categories.

We start by recalling what subprojectivity means.

Definition 2.1.1 ([28]). Given two objects M and N in A , M is said to be N-subprojective
if for every morphism f : M→ N and every epimorphism g : K→ N, there exists a mor-
phism h : M→ K such that gh = f .
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The subprojectivity domain, or domain of subprojectivity, of M is defined as the class

Pr−1
A
(M) := {N ∈A : M is N-subpro jective}.

As mentioned in the introduction, subprojectivity domains were introduced in [28]
to, somehow, measure the projectivity of modules. So for instance it is clear that a
module is projective precisely when its subprojectivity domain is the whole category
R-Mod. Of course, one immediately sees that this is not a situation which holds just
in module categories. On the opposite, it does in every abelian category with enough
projectives. We state it as a proposition.

Proposition 2.1.2. Let M be an object of A . Then the following statements are equiv-
alent.

1. Pr−1
A
(M) is the whole abelian category A .

2. M is projective.

3. M ∈Pr−1
A
(M).

Proof. (1)⇒ (3) is clear.
For (3)⇒ (2) let g : P→M be an epimorphism with P projective. Then, HomA (M,g)

is epic since M ∈Pr−1
A
(M) and then M is a direct summand of P, that is, M is projective.

To prove (2)⇒ (1) let A be an object of A and g : B→ A be an epimorphism. Then,
HomA (M,g) is epic since M is projective. Thus, A ∈Pr−1

A
(M).

But in some cases subprojectivity can measure notions other than that of projectivity.
We give two examples showing this fact.

Example 2.1.3. • Sometimes, the exactness of a complex can be guaranteed when-
ever it is known its membership to the subprojectivity domain of a DG-projective
complex. Namely, if A is locally finitely presented, N is any complex in C (A )
and f : X → N is an epic quasi-isomorphism where X is DG-projective, then
N ∈ Pr−1

A
(X) if and only if N is exact. Indeed, suppose that N ∈ Pr−1

C (A )
(X)

and consider an epimorphism g : P→ N with P projective. Then, there exists a
morphism h : X → P such that f = gh, so Hn( f ) = Hn(g)Hn(h) for every n ∈ Z,
and since f is a quasi-isomorphism, all the morphisms Hn(g) : Hn(P)→ Hn(N)
are epimorphisms. But P is exact, so N is also exact.

Conversely, if N is exact then X is also exact since they are quasi-isomorphic, so
X is projective by Proposition 1.2.5. Therefore, N ∈ Pr−1

C (A )
(X) by Proposition

2.1.2.
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• In some cases, subprojectivity in the category of representations by modules of
the linear quiver with two vertices and one arrow, denoted by A2, characterizes
monomorphisms in R-Mod. Namely, if g : N1→N2 is a morphism of modules then
g : N1→ N2 is monic if and only if N1

g→ N2 ∈Pr−1
Rep(A2)

(R→ 0) where Rep(A2)

denote the category of reperesentations of A2. To prove this we first state and
prove the following equivalence for any module M

N1
g→ N2 ∈Pr−1

Rep(A2)
(M→ 0)⇔ HomR(M,Kerg) = 0.

For the first implication, we suppose that N1
g→ N2 ∈ Pr−1

Rep(A2)
(M → 0), let

f : M → Kerg be a morphism of modules and i : Kerg→ N1 be the canonical
injection. We get the following commutative diagram

M
h

tt

i f

��

// 0

uu

��

P1

β   

π // P2
α

  

N1 g
// N2

where P1
π→ P2 is a projective representation and (β ,α) is an epimorphism in the

category Rep(A2) which exist by [23, Theorem 5.1.3]. Therefore, πh = 0 so h = 0
since π is monic (see [21, Theorem 4.1]). Then, i f = βh = 0 so f = 0.

Conversely, for every ( f ,0) ∈ HomRep(A2)(M → 0,N1 → N2), g f = 0 so there
exists a morphism t : M→Kerg such that f = it. Then HomRep(A2)(M→ 0,N1→
N2) = 0 since HomR(M,Kerg) = 0. So clearly N1

g→ N2 ∈Pr−1
Rep(A2)

(M→ 0).

Now, if we apply the above equivalence to R we get that N1
g→N2 ∈Pr−1

Rep(A2)
(R→

0) if and only if HomR(R,Kerg) = 0 which is equivalent to Kerg = 0.

The following result provides new ways to treat and use subprojectivity.

Proposition 2.1.4. Let M and N be two objects of A . Then the following conditions are
equivalent.

1. M is N-subprojective.

2. There exists a morphism g : P→ N with P projective and HomA (M,g) an epi-
morphism.

3. There exists a morphism g : P→ N with P ∈Pr−1
A
(M) and HomA (M,g) an epi-

morphism.
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4. Every morphism M→ N factors through a projective object.

5. Every morphism M→ N factors through an object in Pr−1
A
(M).

Proof. (1) ⇒ (2) Suppose that M is N-subprojective and let g : P → N be an epi-
morphism with P projective. Thus, HomA (M,g) is an epimorphism since M is N-
subprojective.
(2)⇒ (4) is clear
(2)⇒ (3) and (4)⇒ (5) are clear since every projective object holds in Pr−1

A
(M).

(3)⇒ (1) Assume that there exists such a morphism g : P→ N and let K → N be an
epimorphism. Then apply HomA (M,−) to the pullback diagram

D //

��

P
g
��

// 0

K // N // 0

to get
HomA (M,D) //

��

HomA (M,P)

HomA (M,g)
��

HomA (M,K) // HomA (M,N).

Thus, HomA (M,K)→ HomA (M,N) is epic since HomA (M,D)→ HomA (M,P) and
HomA (M,g) are epimorphisms by assumption.
(5)⇒ (1) Consider any morphism f : M→ N and any epimorphism g : K→ N. Then,
by the assumption, there exists an object L ∈Pr−1

A
(M) and a commutative diagram

M
α

~~
f

��

L

β   

K g
// N // 0.

Now let k : P→ L be an epimorphism with P projective. Then, by the projectivity of P
and the fact that L ∈Pr−1

A
(M), the diagram

M
γ

ww

α

~~
f

��

P k //

h ��

L

β   

K g
// N // 0
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can be completed commutatively. Thus, N ∈Pr−1
A
(M)

We now give an example, in the context of representations of quivers by modules,
of the usefulness of the above fact. But first we recall that the linear quiver

vn→ vn−1→ ··· → v2→ v1

is denoted by An and the category of representations of An is denoted by Rep(An). As
in [21], we use M[i], for a module M, to denote the representation

0→ 0→ ·· · → 0→M id−→ ·· · id−→M id−→M

where the last M is in the i’th place.
Following [36, Section 2], we know that a representation

Mn
fn−1−→Mn−1 −→ ·· · −→M2

f1−→M1

of An is projective if and only if it is a direct sum of the following projective represen-
tations:

P1[1] : 0→ 0→ ··· → 0→ 0→ P1,

P2[2] : 0→ 0→ ··· → 0→ P2
id−→ P2,

...

Pn[n] : Pn
id−→ Pn

id−→ ·· · id−→ Pn
id−→ Pn

id−→ Pn,

where the Pi’s are all projective modules. Thus, for a module M, the representation
M[i] is projective if and only if M is projective. We generalize this fact to the case of
subprojectivity.

Proposition 2.1.5. If M is a module and (N,δ ) = Nn
δn→ Nn−1

δn−1→ ··· δ3→ N2
δ2→ N1

is a representation of An (n ≥ 2) in R-Mod. Then, for an integer 1 ≤ i ≤ n, N ∈
Pr−1

Rep(An)
(M[i]) if and only if Ni ∈Pr−1

R-Mod(M).

Proof. For simplicity in notation we only prove the case of A2 (An follows by the same
arguments). Thus, we just need to discuss two cases: 0→M and M id−→M.

1. Choose any representation N : N2 → N1, and any epimorphism (α,β ) : P→ N
from a projective representation P : P2→P1 ∈Rep(A2). Suppose that N∈Pr−1

Rep(A2)
(0→
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M) and let f : M→ N1 be any morphism of modules. Then, (0, f ) : (0→M)→ N is a
morphism of representations and the diagram

0

tt

��

// M
h

uu

f

��

P2

α
  

// P1

β   

N2 // N1

can be completed commutatively. Therefore, f = βh and, by Proposition 2.1.4, N1 ∈
Pr−1

R-Mod(M).
Conversely, suppose that N1 ∈Pr−1

R-Mod(M) and let (0, f ) : (0→M)→ N be a mor-
phism of representations. Then, there exists a morphism h : M→ P1 such that f = βh.
Therefore, (0, f ) = (α,β )(0,h) and, by Proposition 2.1.4, N ∈Pr−1

Rep(A2)
(0→M).

2. To prove the necessary condition we choose any representation N2 → N1 ∈
Pr−1

Rep(A2)
(M id−→ M) and any morphism of modules f : M → N2. Then, there exists

a morphism of representations (k,h) completing commutatively the diagram

M
k

tt

f

��

M
h

tt

g f

��

P2

α
  

// P1

β   

N2
g

// N1

where P2→ P1 is a projective representation and (α,β ) an epimorphism in the category
Rep(A2). Therefore f = αk and then, again by Proposition 2.1.4, N2 ∈Pr−1

R-Mod(M).
Conversely, let N2 → N1 be a representation in Rep(A2). Suppose that N2 is in

Pr−1
R-Mod(M) and consider a projective representation P2→ P1, an epimorphism (α,β )

from P2→ P1 onto N2→ N1, and a morphism of representations ( f2, f1) from M id−→M
to N2 → N1. Then, there exists h : M → P2 such that f2 = αh. Therefore, we get the
following commutative diagram

M
h

tt

f2

��

M
πh

tt

f1

��

P2

α
  

π // P1

β   

N2
g

// N1
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so f1 = g f2 = gαh = βπh and hence ( f2, f1) = (α,β )(h,πh). This means by Proposi-

tion 2.1.4 that N2→ N1 ∈Pr−1
Rep(A2)

(M id−→M).

Last result leads to some interesting consequences. We start by the following.

Proposition 2.1.6. Let 0→M→ Q→M′→ 0 be a short exact sequence with Q pro-
jective. Then M′⊥ ⊆Pr−1

A
(M). If moreover Pro jA ⊆M′⊥ then Pr−1

A
(M) = M′⊥.

Proof. Let N be any object in A and consider the long exact sequence

// HomA (Q,N) // HomA (M,N) // Ext1A (M′,N) // Ext1A (Q,N) //

If N ∈M′⊥ then Ext1A (M′,N) = 0 so HomA (Q,N)→HomA (M,N) is epic, that is, any
morphism M→ N factors through the projective object Q. Then, by Proposition 2.1.4
we deduce that N ∈Pr−1

A
(M).

Suppose in addition that Pro j(A ) ⊆M′⊥. Let N ∈Pr−1
A
(M) and let P→ N be an

epimorphism. We apply the functors HomA (−,P) and HomA (−,N) to M→ Q to get
the following commutative diagram

HomA (Q,P) //

��

HomA (M,P)

��

// Ext1A (M′,P) // Ext1A (Q,P)

HomA (Q,N) // HomA (M,N) // Ext1A (M′,N) // Ext1A (Q,N)

Since Q is projective, Ext1A (Q,N) = 0. Then, to prove that Ext1A (M′,N) = 0 it is
sufficient to prove that HomA (Q,N)→ HomA (M,N) is epic. But N ∈ Pr−1

A
(M) so

HomA (M,P)→HomA (M,N) is an epimorphism, and of course HomA (Q,P)→HomA (M,P)
is epic (Ext1(M′,P) = 0 by assumption), so we get that HomA (Q,N)→ HomA (M,N)
is epic.

An example of an object satisfying the condition of Proposition 2.1.6 can be found
among strongly Gorenstein projective objects.

Corollary 2.1.7. If M is a strongly Gorenstein projective object then Pr−1
A
(M) = M⊥.

Proof. Let 0→ M→ Q→ M→ 0 be a short exact sequence with Q projective. Then
by Proposition 2.1.6 Pr−1

A
(M) = M⊥ since Pro j(A )⊆M⊥.

The converse of Corollary 2.1.7 does not hold in general. A counterexample can be
found in commutative local artinian principal ideal rings: in [9] it is proved that over one
such a ring every module is 2-strongly Gorenstein projective, that is, there exists an exact
sequence 0→M→ P2→ P1→M→ 0 with P1 and P2 projective and M ∈ ⊥Pro j(A ).
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Thus, using [12, Theorem 3.7] one can prove that if the ring admits more than two proper
ideals then the maximal ideal cannot be strongly Gorenstein projective. So for instance,
the ideal (2+8Z) of the ring Z/8Z is not strongly Gorenstein projective. However, we
do have Pr−1

(Z/8Z)−Mod(2+8Z) = (2+8Z)⊥ by the following result.

Proposition 2.1.8. If R is a commutative local artinian principal ideal ring, then for
every module M, Pr−1

R-Mod(M) = M⊥.

Proof. We can assume that M is a non-projective module.
By [28, Proposition 4.5] we know that Pr−1

R-Mod(M) = Pro jR-Mod so if we prove that
M⊥ = Pro jR-Mod we will be done.

Now, since R is a commutative local artinian principal ideal ring, every module is a
direct sum of cyclic modules, and the only composition series of the ring is

0 = xmR⊆ xm−1R⊆ ·· · ⊆ xR = Rad(R)⊆ R,

where x is a generator of Rad(R) (the Jacobson radical of R). Therefore, the result will
follow if we show that Pro jR-Mod = (R/xiR)⊥ for every 0 < i < m (Pr−1

R-Mod(⊕Mi) =⋂
Pr−1

R-Mod(Mi) by [28, Proposition 2.10]).
Of course we have Pro jR-Mod ⊆ (R/xiR)⊥ since Pro jR-Mod = In jR-Mod (R is a QF-

ring). And on the other hand, if N is a non projective module then there is an i such that
R/xiR is a direct summand of N. This means ExtR(R/xiR,R/x jR) is a direct summand
of ExtR(N,R/x jR) for every j. But ExtR(R/xiR,R/x jR) 6= 0 for all 0 < i, j < m by [44,
Example 4.5] so we are done.

Proposition 2.1.6 says that if an object M can be embedded in a projective object then
there exists an object M′ such that (M′)⊥ ⊆ Pr−1

A
(M). Therefore, Pr−1

A
(M) contains

the class of injective objects. This fact was proved using different arguments in [19,
Lemma 2.2] by giving a list of equivalences. The following result extends such a list of
equivalent conditions.

Corollary 2.1.9. Assume that A has enough injectives and let M be an object of A .
The following conditions are equivalent.

1. M can be embedded in a projective object P.

2. There exists an object M′ such that (M′)⊥ ⊆Pr−1
A
(M).

3. In jA ⊆Pr−1
A
(M).

Proof. (1)⇒ (2) If j : M → P is a monomorphism, then (Coker j)⊥ ⊆ Pr−1
A
(M) by

Proposition 2.1.6.
(2)⇒ (3) Clear since In jA ⊆M′⊥.
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(3)⇒ (1) Let f : M→ E be a monomorphism with E injective ( f exists since A
is assumed to have enough injectives). Then by (3) there exists two morphisms β :
M → P and α : P→ E such that P is projective and f = αβ . Thus, β : M → P is a
monomorphism since f : M→ E is.

Now, we prove that when the object is finitely generated (and can be embedded in
a projective object) then its subprojectivity domain contains a larger class than that of
the injectives. Recall that an object A is said FP-injective if Ext1A (F,A) = 0 for every
finitely presented object F , that is, A ∈FP⊥

A . Recall that every object embeds in an
FP-injective object (see [13, Corollary 3.7]).

Corollary 2.1.10. Suppose that A is Grothendieck with a system of finitely generated
projective generators and let M be a finitely generated object. The following conditions
are equivalent.

1. M can be embedded in a projective object.

2. There exists a finitely presented object M′ such that (M′)⊥ ⊆Pr−1
A
(M).

3. FP⊥
A ⊆Pr−1

A
(M).

4. For an FP-injective preenvelope i : M ↪→ E of M, E ∈Pr−1
A
(M).

Proof. (1) ⇒ (2). Let P be a projective object such that M is embedded in P and
g : ⊕i∈IFi → P be an epimorphism (which splits since P is projective) such that each
Fi is finitely generated projective. Thus, there is a monomorphism h : P→⊕i∈IFi such
that gh = idP. By [35, Page 206] there is a finite subset J of I such that h : P→⊕i∈IFi
factors through ⊕i∈JFi. Then, P and so M can be embedded in the finitely generated
projective object ⊕i∈JFi. Thus, ⊕i∈JFi/M is finitely presented (see Proposition 1.1.4).
Then, we apply Proposition 2.1.6 to 0→M→⊕i∈JFi→⊕i∈JFi/M→ 0.

(2)⇒ (3) Holds since FP⊥
A ⊆ (M′)⊥.

(3)⇒ (4) Clear.
(4)⇒ (1). Let g : P→ E be an epimorphism with P projective. Since E ∈Pr−1

A
(M),

the diagram
M

i
��

h

��

P g
// E // 0

can be completed commutatively by h. Thus, h must be injective.

We now fix our attention on classes of objects: we introduce and investigate subpro-
jectivity domains of classes instead of just single objects. The subprojectivity domain
of a class X is defined as the class of all objects holding in the subprojectivity domain
of each object of X .
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Definition 2.1.11. The subprojectivity domain, or domain of subprojectivity, of a class
of objects M of A is defined as

Pr−1
A
(M ) := {N ∈A : M is N-subprojective for every M ∈M }.

Therefore, if M := {M} then Pr−1
A
(M ) =Pr−1

A
(M).

Proposition 2.1.2 characterizes when the subprojectivity domain of an object is the
whole abelian category A . The following extension to classes of such a proposition
can be used to unify various classical results.

Proposition 2.1.12. Let L be a class of objects of A . The following conditions are
equivalent.

1. Pr−1
A
(L ) is the whole abelian category A .

2. Every object of L is projective.

3. L ⊆Pr−1
A
(L ).

Proof. To prove (1)⇒ (2), let L be in L and P→ L be an epimorphism with P projec-
tive. Since L ∈Pr−1

A
(L), P→ L splits. Hence L is projective.

The implication (2)⇒ (3) is clear since Pr−1
A
(L ) contains the class of projectives.

To prove (3)⇒ (1), consider an object L in L . By assumption L ∈Pr−1
A
(L), hence

L is projective (Proposition 2.1.2). So Pr−1
A
(L) coincide with A for any L in L . There-

fore, Pr−1
A
(L ) is A .

Recall that if A is Grothendieck, then an object F in A is said to be flat if every short
exact sequence 0→ A→ B→ F → 0 is pure (see [42]). Thus, if SA is the representa-
tive set of finitely presented objects, then F is flat if and only if HomA (⊕M∈SA

M,−)
makes exact every short exact sequence of the form 0→ A→ B→ F → 0. This means
that Pr−1

A
(⊕M∈SA

M) is the class of flat objects (as proved in [19, Proposition 2.1] for
modules). On the other hand, Pr−1

A
(SA ) is the class of flat objects (see Proposition

2.1.19). Thus, Pr−1
A
(SA ) = Pr−1

A
(⊕M∈SA

M). The following result, which was al-
ready proven for the category of modules in [28, Proposition 2.10], is a generalization
of this fact.

Proposition 2.1.13. Suppose that A has direct sums and let {Mi}i∈I be a set of objects
of A . Then, Pr−1

A
(⊕i∈IMi) =Pr−1

A
({Mi}i∈I).
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Proof. Let g : K→ N be an epimorphism. The following diagram is commutative

HomA (⊕i∈IMi,K)

ψK

��

HomA (⊕i∈IMi,g)
// HomA (⊕i∈IMi,N)

ψN

��

∏i∈I HomA (Mi,K)
∏i∈I HomA (Mi,g)

// ∏i∈I HomA (Mi,N)

where ψK and ψN are isomorphisms. Hence, the morphism HomA (⊕i∈IMi,g) is epic
if and only if ∏i∈I HomA (Mi,g) is epic. Then the morphism HomA (⊕i∈IMi,g) is epic
if and only if HomA (Mi,g) is epic for every i ∈ I. Therefore, N ∈Pr−1

A
(⊕i∈IMi) if and

only if N ∈Pr−1
A
(Mi) for every i ∈ I.

Proposition 2.1.13 shows that reducing sets to a singleton while preserving the same
subprojectivity domain is possible. The following result shows how far we can modify
classes while preserving the same subprojectivity domain. For we will use the following
known terminology: if L is a class of objects of A , we denote by Sum(L ) the class
of all objects which are isomorphic to direct sums of objects of L , by Summ(L ) the
class of all objects which are isomorphic to direct summands of objects of L , and by
Add(L ) the class Summ(Sum(L )).

Proposition 2.1.14. Let L be a class of objects of A . Then

Pr−1
A
(Add(L )) =Pr−1

A
(Sum(L )) =Pr−1

A
(Summ(L )) =Pr−1

A
(L ).

If L is a set, then all these classes coincide with the class Pr−1
A
(⊕L∈L L).

Proof. It is clear that Pr−1
A
(Add(L )) holds inside Pr−1

A
(L ) since L holds inside

Add(L ).
Conversely, let N be in Pr−1

A
(L ) and M in Add(L ). Then, there exist M′ in

Add(L ) and a family {Li} in L such that M⊕M′ = ⊕iLi. By Proposition 2.1.13,
N ∈Pr−1

A
(M) so N ∈Pr−1

A
(Add(L )). Therefore, Pr−1

A
(Add(L )) =Pr−1

A
(L ).

Now, it is clear that L ⊆ Summ(L )⊆ Add(L ) and that L ⊆ Sum(L )⊆ Add(L ),
so we get Pr−1

A
(Add(L )) ⊆ Pr−1

A
(Summ(L )) ⊆ Pr−1

A
(L ) and Pr−1

A
(Add(L )) ⊆

Pr−1
A
(Sum(L ))⊆Pr−1

A
(L ). Therefore,

Pr−1
A
(Add(L )) =Pr−1

A
(Sum(L )) =Pr−1

A
(Summ(L )) =Pr−1

A
(L ).

If L is a set then, by Proposition 2.1.13, Pr−1
A
(L ) =Pr−1

A
(⊕L∈L L).
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2.1.1 Examples of homologically interesting classes
In this subsection, we investigate subprojectivity domains of homologically impor-

tant classes in a general abelian category (with some conditions), the category of com-
plexes and the category of modules. And then, we apply Proposition 2.1.12 to unify
various known results.

We start by noticing that Example 2.1.3 helps us deduce that the subprojectivity
domain of the class of all DG-projective complexes is a subclass of the class of exact
complexes. The next proposition shows that we have an equality.

Proposition 2.1.15. If A is locally finitely presented, then the subprojectivity domain
of the class of DG-projective complexes is the class of all exact complexes.

Proof. Let E be a complex. By Proposition 1.2.3, there exists an epic quasi-isomor-
phism g : P→ E where P is DG-projective.
If we suppose that E holds in the subprojectivity domain of the class of DG-projectives,
then E ∈Pr−1

C (A )
(P). Thus, we get by Example 2.1.3 that E is exact.

Conversely, suppose that E is exact and let M be a DG-projective complex. Then,
Hom•(M,g) is an epic quasi-isomorphism, in particular, epic on the cycles (see Remark
1.2.1), thus HomC (A )(M,g) is epic. Then, every morphism M→ E factors through P
which is exact (since E is) and then, projective by Proposition 1.2.5. Therefore, E holds
in the subprojectivity domain of the class of DG-projectives by Proposition 2.1.4.

The case of the class of strongly Gorenstein projective objects can be deduced di-
rectly from Corollary 2.1.7.

Proposition 2.1.16. The subprojectivity domain of the class of strongly Gorenstein pro-
jective objects is the class S G P⊥

A .

Proof. Let N be an object of A . N ∈ Pr−1
A
(S G PA ) means that N ∈ Pr−1

A
(M) for

every M ∈S G PA . By Corollary 2.1.7 we have that Pr−1
A
(M) = M⊥ for every M ∈

S G PA . Thus, N ∈Pr−1
A
(S G PA ) is equivalent to N ∈M⊥ for every M ∈S G PA ,

which is equivalent to N ∈S G P⊥
A .

Using Proposition 2.1.14 we determine the subprojectivity domain of the class of
Gorenstein projective objects. If direct sums exist and they are exact then an object
is Gorenstein projective if and only if it is a direct summand of a strongly Gorenstein
projective one (see Proposition 1.3.4), so clearly S G P⊥

A = G P⊥
A . Thus, we have the

following result.

Corollary 2.1.17. If direct sums exist and they are exact then, the subprojectivity do-
main of the class of Gorenstein projective objects is the class G P⊥

A .
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Example 2.1.18. In the category of modules R-Mod, if R is a ring with finite Gorenstein
global dimension (see [11]), then the subprojectivity domain of the class of Gorenstein
projective modules is the class of all modules with finite projective dimension. Indeed,
over a ring R with finite Gorenstein global dimension, the class G P⊥

R-Mod coincides
with the class of all modules with finite projective dimension. We do not have a precise
reference but one can see that it is a simple consequence of [16, Lemma 2.17].

The case of the class of finitely presented objects can be deduced directly from the
categorical definition of flat objects.

Proposition 2.1.19. The subprojectivity domain of the class of finitely presented objects
in a Grothendieck category is the class of flat objects.

Recall now that an object is pure-projective if and only if it is a direct summand of a
direct sum of finitely presented objects (see Proposition 1.1.6). As a direct consequence
of Proposition 2.1.14 and Proposition 2.1.19, we get the following result.

Corollary 2.1.20. If A is a locally finitely presented Grothendieck category then the
subprojectivity domain of the class of all pure-projective objects is precisely the class of
all flat objects.

Now, we turn our attention to some important classes of modules defined in terms
of factorization of morphisms. Recall for a class of finitely generated modules S , the
class of S -proj modules was defined in [37] as the class of modules N such that every
morphism f : S→ N, where S ∈S , factors through a free module. Proposition 2.1.22
shows that S -proj is a subprojectivity domain.

First we give the following lemma which will be useful in the proof of Proposition
2.1.22.

Lemma 2.1.21. If f : M→ P is a morphism of modules such that M is finitely generated
and P is projective, then f : M→ P factors through a finitely generated free module.

Proof. Let g : R(I)→ P be an epimorphism and h : M→ R(I) be a morphism such that
gh = f . Now consider the ker-coker factorization of h

Im h

µ
��

M

f
��

h
}}

εoo

R(I)
g

// P

Since Im h is finitely generated, there is a finite subset J of I such that µ : Im h→ R(I)

factors through R(J). Thus, f : M→ P factors through R(J).
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Proposition 2.1.22. The subprojectivity domain of a class of finitely generated modules
S is precisely the class of S -proj modules.

Proof. Let N ∈Pr−1
R-Mod(S ) and f : M→ N be a morphism with M ∈S . Then, there

exist two morphisms β : M→ P and α : P→ N with P projective and f = αβ . We get
by Lemma 2.1.21 that β : M → P factors through a finitely generated free module F
which implies that f : M→ N factors through F . Thus, N is S -projective. The other
inclusion holds true by Proposition 2.1.4.

In the light of Proposition 2.1.4, now it is natural to ask whether or not the mem-
bership in the subprojectivity domain of a class of finitely generated objects can be
characterized by the factorization through finitely generated projective objects. The fol-
lowing proposition shows that this is possible in a Grothendieck category with a family
of finitely generated projective objects.

Proposition 2.1.23. Suppose that A is Grothendieck with a system of finitely generated
projective generators G and let S be a class of finitely generated objects. Then, the
following conditions are equivalent.

1. N ∈Pr−1
A
(S ).

2. Every morphism M→N with M ∈S factors through a finite direct sum of objects
of G .

3. Every monomorphism M→ N with M ∈S factors through a finite direct sum of
objects of G .

4. Every morphism M→ N with M ∈S factors through a finitely generated projec-
tive object.

5. Every monomorphism M→ N with M ∈S factors through a finitely generated
projective object.

Proof. (2) ⇔ (3) and (4) ⇔ (5) are clear since every morphism f : X → Y factors
through Im f which is finitely generated whenever X is finitely generated. To prove
(1)⇒ (2) let f : M → N be a morphism with M ∈ S . Then, we get by Proposition
2.1.4 two morphisms β : M → P and α : P→ N with P projective and f = αβ . Let
g :⊕i∈IQi→ P be an epimorphism such that each Qi holds in G . Since P is projective,
there exists a morphism h : P→⊕i∈IQi such that gh = idP. We get by [35, Page 206]
two morphisms γ : ⊕i∈JQi→⊕i∈IQi and δ : M→⊕i∈JQi such that J is a finite subset
of I and hβ = γδ . Then, f = αβ = αghβ = αgγδ , that is, f : M→ N factors through
⊕i∈JQi.
(2)⇒ (4) is clear since the finite direct sum of finitely generated projective objects is
again a finitely generated projective object.
For (4)⇒ (1) we apply Proposition 2.1.4.
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Now, we apply Proposition 2.1.23 to charaterize some known classes of modules
defined by means of factorizations.

Recall that a module M is said to be f-projective if for every finitely generated sub-
module C of M, the inclusion map C → M factors through a finitely generated free
module. Then, we have the following result.

Proposition 2.1.24. The subprojectivity domain of the class of all finitely generated
modules is the class of f-projective modules.

Proof. Apply 1.⇔ 3. of Proposition 2.1.23.

In a similar way to Proposition 2.1.24, we can determine the subprojectivity domain
of the class of simple modules. Recall that a module N is called simple-projective if, for
any simple module M, every morphism f : M→ N factors through a finitely generated
free module (see [32, Definition 2.1]).

Proposition 2.1.25. The subprojectivity domain of the class of simple modules is the
class of simple-projective modules.

Proof. Apply 1.⇔ 2. of Proposition 2.1.23.

Another interesting example can be found in the class of semisimple modules, whose
subprojectivity domain can also be found by simply applying Proposition 2.1.14 and
Proposition 2.1.25.

Corollary 2.1.26. The subprojectivity domain of the class of semisimple modules is the
class of simple-projective modules.

As mentioned before, Proposition 2.1.12 can be used to unify various known results:
applying it to the class of Gorenstein projective objects and to the class of strongly
Gorenstein projective objects we get Corollary 2.1.27 (see [25]); Applying it to the
class of finitely presented objects and to the class of pure-projective objects we get
Corollary 2.1.28 (see [25]); Applying it to the class of finitely generated modules we
get Corollary 2.1.29; and finally, applying it to the class of simple modules and to the
one of semisimple modules we get Corollary 2.1.30.

Corollary 2.1.27. The following conditions are equivalent.

1. Every object of A holds in G P⊥
A .

2. Every Gorenstein projective object is projective.

3. Every Gorenstein projective object holds in G P⊥
A .

4. Every strongly Gorenstein projective is projective.
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5. Every strongly Gorenstein projective holds in G P⊥
A .

Corollary 2.1.28. Suppose that A is Grothendieck. Then the following conditions are
equivalent.

1. Every object of A is flat.

2. Every finitely presented object is projective.

3. Every finitely presented object is flat.

4. Every pure-projective object is projective.

5. Every pure-projective object is flat.

Corollary 2.1.29. The following conditions are equivalent.

1. Every module is f-projective.

2. Every finitely generated module is projective, that is R is a semisimple artinian
ring.

3. Every finitely generated module is f-projective.

Corollary 2.1.30. The following conditions are equivalent.

1. Every module is simple-projective.

2. Every simple module is projective.

3. Every simple module is simple-projective.

4. Every semisimple module is projective.

5. Every semisimple module is simple-projective.

2.2 Closure properties of subprojectivity domains
The aim of this section is to investigate the closure properties of subprojectivity do-

mains. This study leads to some new characterizations of known notions.
We start with Proposition 2.2.1 which is a generalization of [1, Proposition 3], [28,

Proposition 2.11] and [28, Proposition 2.12]. Though it can be proved by using similar
arguments to those of the results it generalizes, we give an alternative proof since we
think it provides new and useful ideas.
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Proposition 2.2.1. The subprojectivity domain of any class in A is closed under exten-
sions, finite direct sums and direct summands.

Proof. Clearly it suffices to prove the result for subprojectivity domain of objects so let
us consider a single object M of A and study its subprojectivity domain.

For let 0→ A→ B→C→ 0 be a short exact sequence of objects and suppose that
A and C are in Pr−1

A
(M). Consider then two epimorphisms PA→ A and PC→C with PA

and PC projective. By Horseshoe Lemma we get the following commutative diagram

0 // PA //

��

PB //

��

PC //

��

0

0 // A // B // C // 0

with PB projective. Apply then HomA (M,−) to get the commutative diagram

0 // HomA (M,PA) //

��

HomA (M,PB) //

��

HomA (M,PC) //

��

0

0 // HomA (M,A) // HomA (M,B) // HomA (M,C) // 0

with exact rows (PC is projective and C holds in Pr−1
A
(M)).

Since A and C hold in Pr−1
A
(M), the two morphisms HomA (M,PA)→HomA (M,A)

and HomA (M,PC)→ HomA (M,C) are epic. Then, HomA (M,PB)→ HomA (M,B) is
also epic and then we get B ∈Pr−1

A
(M) (by Proposition 2.1.4).

Now, the closure under extensions of Pr−1
A
(M) proves its closure under finite direct

sums.
And finally, let N ∈Pr−1

A
(M) and A be a direct summand of N. If p : N→ A is the

canonical projection then HomA (M, p) is epic and then, by Proposition 2.1.4, we get
that A ∈Pr−1

A
(M).

Now, we prove that the subprojectivity domains of finitely generated objects in a
locally finitely presented Grothendieck category are closed under pure monomorphisms.
First we prove the following two results which will be useful to prove Proposition 2.2.4.

Lemma 2.2.2. Let (D,g′, f ′) be a pullback of two morphisms g : E→ B and f : A→ B.
If g is a pure epimorphism and f is a pure monomorphism, then f ′ is a pure monomor-
phism.

Proof. We have the commutative diagram

0 // D
f ′

//

g′
��

E h′ //

g
��

C // 0

0 // A
f

// B
h

// C // 0
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We get that h′ is a pure epimorphism since g and h are. Thus, f ′ is a pure monomor-
phism.

Lemma 2.2.3. Suppose that A is a locally finitely presented Grothendieck category
and let k : K→⊕i∈IFi be a pure monomorphism such that each Fi is finitely presented.
Then, for every morphism f : M→ K with M finitely generated there exists a morphism
j :⊕Fi→ K such that jk f = f .

Proof. Since M is finitely generated, there exists a finite subset J of I, together with a
morphism h : M→⊕i∈JFi, such that k f = gh where g :⊕i∈JFi→⊕i∈IFi is the canonical
injection (see [35, page 206, Lemma 3]). Then, we have a commutative diagram with
exact rows

M h //

f
��

⊕i∈JFi
γ

//

g
��

C //

l
��

0

0 // K
k
// ⊕i∈IFi

γ ′
// C′ // 0

Since C is finitely presented and k : K→⊕i∈IFi is a pure monomorphism, there exists
a morphism t : C→⊕i∈IFi such that γ ′t = l. Then, γ ′tγ = lγ = γ ′g, hence there exists
a morphism s : ⊕i∈JFi → K such that ks = g− tγ and then ksh = gh = k f . But k is a
monomorphism, then sh = f .

Now, the morphism g : ⊕i∈JFi → ⊕i∈IFi is a split monomorphism, so there exists
a morphism g′ : ⊕i∈IFi → ⊕i∈JFi such that g′g = id. Now, put j = sg′, then k jk f =
ksg′k f = ksg′gh = ksh = k f . Since k is a monomorphism, we get jk f = f .

Proposition 2.2.4. If A is a locally finitey presented Grothendieck category, then the
subprojectivity domain of any finitely generated object is closed under pure subobjects.

Proof. Let M be a finitely generated object, N ∈ Pr−1
A
(M), and i : K → N be a pure

monomorphism. Let us prove that K ∈ Pr−1
A
(M). For let f : M→ K be a morphism,

α : P→ N and β : M → P be two morphisms such that P is projective and i f = αβ

(N ∈ Pr−1
A
(M)). Now, let g : ⊕Fi → N be a pure epimorphism with each Fi finitely

presented (g exists by Proposition 1.1.5). Then, there exists a morphism γ : P→⊕Fi
such that α = gγ . We get the commutative diagram

M

f

��

γβ

$$

λ

��

D

h
��

k // ⊕Fi

g
��

K
i

// N
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in which D is a pullback.

By Lemma 2.2.2, k : D→⊕Fi is a pure-monomorphism. Then, there exists a mor-
phism j : ⊕Fi → D such that jkλ = λ (see Lemma 2.2.3). Then, i f = αβ = gγβ =
gkλ = ihλ = ih jkλ = ih jγβ , then f = h jγβ since i is monic. Thus, f : M→ K factors
through P. Therefore, k ∈Pr−1

A
(M) by Proposition 2.1.4.

One can easily deduce from Proposition 2.2.4 that in a locally finitely presented
Grothendieck category, the subprojectivity domain of the class of finitely generated
objects is closed under kernels of epimorphisms. Indeed, consider a short exact se-
quence 0→ A→ B→ C → 0 such that B and C hold in the subprojectivity domain
of the class of finitely generated objects. Then, for every finitely presented object M,
0→ HomA (M,A)→ HomA (M,B)→ HomA (M,C)→ 0 is exact since C ∈Pr−1

A
(M).

That is, A is a pure subobject of B. We conclude by Proposition 2.2.4 that A holds in the
subprojectivity domain of the class of finitely generated objects. Therefore, it is natural
to ask whether or not subprojectivity domains are closed under kernels of epimorphisms.
In fact, we will see in Example 3.1.20 that this is not true in general. Here, we charac-
terize when subprojectivity domains are closed under kernels of epimorphisms.

Proposition 2.2.5. Let L be a class of objects of A . Then, the following conditions
are equivalent.

1. Pr−1
A
(L ) is closed under kernels of epimorphisms.

2. For every short exact sequence 0→ C → P→ A→ 0 where P is projective, if
A ∈Pr−1

A
(L ) then C ∈Pr−1

A
(L ).

3. For every epimorphism P→ A with P projective and A ∈Pr−1
A
(L ), the pullback

object of P over A holds in Pr−1
A
(L ).

Proof. (1)⇒ (2) is clear since every projective holds in Pr−1
A
(L ). To prove (2)⇒ (1)

consider an exact sequence

0→C→ B→ A→ 0
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with B, A ∈Pr−1
A
(L ) and the pullback diagram

0

��

0

��

K

��

K

��

0 // C // D //

��

P //

��

0

0 // C // B //

��

A //

��

0

0 0

where P is a projective object. A ∈Pr−1
A
(L ), so by assumption K ∈Pr−1

A
(L ). Then,

by Proposition 2.2.1, D ∈Pr−1
A
(L ), and since C is a direct summand of D, we deduce

using again Proposition 2.2.1 that C ∈Pr−1
A
(L ).

To prove (2)⇔ (3), let P→ A be an epimorphism with P projective and consider
the following diagram where D is the pullback of P over A

0 // C // D //

��

P //

��

0

0 // C // P // A // 0

.

Suppose that A ∈Pr−1
A
(L ). By Proposition 2.2.1, we have D ∈Pr−1

A
(L ) if and only

if C ∈Pr−1
A
(L ).

As examples of classes satisfying the conditions of Proposition 2.2.5, we give the
following.

Example 2.2.6. 1. Let M be a strongly Gorenstein projective object. Then Pr−1
A
(M)

is closed under kernels of epimorphisms.

Indeed, let 0→C→ P→ A→ 0 be a short exact sequence with P projective and
A ∈Pr−1

A
(M). If we consider the long exact sequence

· · · → HomA (M,P)→ HomA (M,A)→ Ext1A (M,C)→ Ext1A (M,P)→ ··· ,

then Ext1A (M,C)= 0 so C∈Pr−1
A
(M) (see Corollary 2.1.7). Therefore, by Propo-

sition 2.2.5, Pr−1
A
(M) is closed under kernels of epimorphisms.
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2. Suppose that A is a locally finitely presented Grothendieck category and let L
be any class of finitely generated objects containing all finitely presented objects.
Then, the subprojectivity domain of L is closed under kernels of epimorphisms.
In particular, the class of f-projective modules (that is, the subprojectivity domain
of the class of all finitely gnerated modules) is closed under kernels of epimor-
phisms.

To show this, let 0→ A→ B→ C→ 0 be a short exact sequence with B, C ∈
Pr−1

A
(L ). Since L contains all finitely presented objects the sequence 0→ A→

B→C→ 0 is pure, so by Proposition 2.2.4 we get that A ∈Pr−1
A
(L ).

In [28, Proposition 2.15] it is proved that a ring R is right hereditary if and only if
the subprojectivity domain of any right R-module is closed under submodules. Since
Pr−1

Mod-R
(Mod-R) is the class of projective right R-modules where Mod-R denotes the

category of right R-modules, one could replace the statement “R is right hereditary” by
“Pr−1

Mod-R
(Mod-R) is closed under submodules”, getting then that Pr−1

Mod-R
(Mod-R)

is closed under submodules if and only if Pr−1
Mod−R(M) is closed under submodules for

every right R-module M. Thus, the next proposition gives an extension of this result to
an arbitrary class L of objects of A .

Proposition 2.2.7. Let L be a class of objects of A . Then, the following two conditions
are equivalent.

1. The subprojectivity domain of L is closed under subobjects.

2. The subprojectivity domain of any object of L is closed under subobjects.

Proof. (2)⇒ (1) is immediate.
To prove (1)⇒ (2) let M ∈ L and suppose that B ∈ Pr−1

A
(M). Now let A be a

subobject of B. We get the following pullback diagram

0 // D //

g
��

P //

��

C // 0

0 // A // B // C // 0

where P→ B is an epimorphism and P is projective. Now, apply HomA (M,−) to the
previous diagram getting the following commutative diagram with exact rows

0 // HomA (M,D) //

HomA (M,g)
��

HomA (M,P) //

��

HomA (M,C)

0 // HomA (M,A) // HomA (M,B) // HomA (M,C)
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Since B ∈Pr−1
A
(M), we conclude that HomA (M,g) is epic. Now, since P is projective,

we have that P ∈Pr−1
A
(L ), then, by (1), D ∈Pr−1

A
(L ). Therefore, using Proposition

2.1.4, we get that A ∈Pr−1
A
(M).

As a consequence, we get the following result, established first in [20, Proposition
2.4].

Corollary 2.2.8. The weak global dimension of R is at most 1 if and only if the subpro-
jectivity domain of each finitely presented module is closed under submodules.

Proof. We know that the weak global dimension of R is at most 1 if and only if the class
of all flat modules is closed under submodules. But the subprojectivity domain of the
class of finitely presented modules is precisely the class of flat modules. Then, we just
have to apply Proposition 2.2.7.

Recall that R is left coherent if and only if the category R-mod of finitely generated
(left) R-modules is abelian. Recall also that R is left semihereditary if the class of
all finitely generated projective (left) R-modules is closed under submodules. Then,
applying Proposition 2.2.7 to the class of finitely generated modules in the category
R-mod we get the following.

Corollary 2.2.9. Let R be a left coherent ring. Then, R is left semihereditary if and only
if Pr−1

R-mod(M) is closed under submodules for each finitely generated module M.

In [28, Proposition 2.14] it is studied when the subprojectivity domain of any module
is closed under arbitrary direct products. This can be extended to the categorical setting
provided (of course) that A has direct products.

Proposition 2.2.10. Suppose that A has direct products and let L be a class of objects
of A . Then the following conditions are equivalent.

1. The subprojectivity domain of L is closed under arbitrary direct products.

2. The subprojectivity domain of any object of L is closed under arbitrary direct
products.

Proof. (2)⇒ (1) is immediate.
For (1)⇒ (2) let M be an object of L , {Ni}i∈I be a family of objects in Pr−1

A
(M)

and {gi : Pi→ Ni}i∈I be a family of epimorphisms where each Pi is projective. Consider
the following commutative diagram

HomA (M,∏i∈I Pi)

ψP

��

HomA (M,∏i∈I gi)
// HomA (M,∏i∈I Ni)

ψN

��

∏i∈I HomA (M,Pi)
∏i∈I HomA (M,gi)

// ∏i∈I HomA (M,Ni)
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where ψN and ψP are the natural isomorphisms. The commutativity of the above di-
agram gives that HomA (M,∏i∈I gi) is epic. Since each Pi is in Pr−1

A
(L ), ∏i∈I Pi

is, by assumption, in Pr−1
A
(L ). Then ∏i∈I Pi is in Pr−1

A
(M). By Proposition 2.1.4,

∏i∈I Ni ∈Pr−1
A
(M) as desired.

The result [28, Proposition 2.14] shows that a ring R is a right perfect and left co-
herent ring if and only if the subprojectivity domain of any right module is closed under
arbitrary direct products. This holds since Pr−1

R-Mod(R-Mod) is the class of projective
modules. Here we can give a much direct proof of a characterization of coherent rings
given by Durğun in [20, Proposition 2.3] using also the same property applied to a
different class.

Corollary 2.2.11. Let R be a ring. Then R is right coherent if and only if the subprojec-
tivity domain of any finitely presented left module is closed under direct products.

It is a natural question at this point to ask about the closure of subprojectivity do-
mains under arbitrary direct sums. There is not a clear answer to this. In [28, Proposi-
tion 2.13] it is shown that the subprojectivity domain of any finitely generated module
is closed under arbitrary direct sums. Now, we will see that the class for which subpro-
jectivity domains are closed under direct sums is larger than that of finitely generated
modules, since it contains that of small modules. Whether or not this is the largest class
with this property we don’t know, but it would be of a great interest to know to what
point this class can be enlarged.

So suppose that A is an abelian category with direct sums and let M be an object in
A , {Ni}i∈I be a family of objects in Pr−1

A
(M) and consider a family of epimorphisms

Pi→ Ni, where each Pi is projective. We have the following commutative diagram

0 //⊕i∈IHomA (M,Pi)
φP

//

α

��

HomA (M,⊕i∈IPi) //

β

��

CokerφP //

γ

��

0

0 // ⊕i∈IHomA (M,Ni)
φN

// HomA (M,⊕i∈INi) // CokerφN // 0

Clearly, β is epic if and only if γ is epic since α is an epimorphism. Consequently,
if M is a small object, that is, HomA (M,−) preserves direct sums, then CokerφP =
CokerφN = 0. Thus, the subprojectivity domain of M is closed under direct sums. We
state this as a proposition.

Proposition 2.2.12. The subprojectivity domain of any small object is closed under
direct sums.

Recall that in a locally finitely generated Grothendieck category an object M is
finitely presented if and only HomA (M,−) preserves direct limits. In particular, finitely
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presented objects are small. Thus, we get by Proposition 2.2.12 that the subprojectivity
dmain of any finitely presented object is closed under direct sums. But, is the subprojec-
tivity domain of any finitely presented object closed under direct limits? In Proposition
2.2.14 we will give a positive anwzer to this question.

First we prove the following result.

Lemma 2.2.13. For any direct system (Ni)i∈I , the natural morphism λ : ⊕i∈INi →
lim−→i∈I

Ni is a pure-epimorphism.

Proof. First note that there exists λ :⊕i∈INi→ lim−→i∈I
Ni such that for every j ∈ I, λk j =

λ j where k j : N j → ⊕i∈INi and λ j : N j → lim−→i∈I
Ni are the canonical morphisms. To

prove that λ : ⊕i∈INi→ lim−→i∈I
Ni is epic let f : lim−→i∈I

Ni→ X be a morphism such that
f λ = 0. Then, for every j ∈ I, f λ j = f λk j = 0. Thus f = 0. Now, to prove that
λ : ⊕i∈INi → lim−→i∈I

Ni is a pure-epimorphism let M be a finitely presented object and
consider the following commutative diagram

⊕i∈IHomA (M,Ni) //

∼=
��

lim−→i∈I
HomA (M,Ni)

∼=
��

HomA (M,⊕i∈INi) // HomA (M, lim−→i∈I
Ni)

The upper morphism is epic (using the same arguments we used to prove that λ is epic).
Then the lower morphism is so.

Proposition 2.2.14. The subprojectivity domain of any finitely presented object in a
locally finitely generated Grothendieck category is closed under direct limits.

Proof. Let M be a finitely presented object and (Ni)i∈I be a direct system in A such
that Ni ∈Pr−1

A
(M), and consider the natural morphism⊕i∈INi→ lim−→i∈I

which is a pure
epimorphism by Lemma 2.2.13. Thus, every morphism M→ lim−→i∈I

Ni factors through
⊕i∈INi which is an object of Pr−1

A
(M) by Proposition 2.2.12. Therefore, lim−→i∈I

Ni ∈
Pr−1

A
(M), by Proposition 2.1.4.

Notice that subprojectivity domains are not closed under direct limits in general.
Indeed, if the subprojectivity domain of any object of A is closed under direct limits
then Pr−1

A
(A ) , which is the class of projective objects, is closed under direct limits,

which is not the case.

2.3 Ext-orthogonal classes, precovers and preenvelopes
The aim of this section is to establish the relation between the subprojectivity do-

mains and the Ext-orthogonal classes. The idea behind this is inspired by the following
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discussion: fix a class L and consider a short exact sequence 0→ K → P→ N → 0
with P projective. For every M ∈L we have the exact sequence

· · · → HomA (M,P)→ HomA (M,N)→ Ext1A (M,K)→ Ext1A (M,P)→ ··· .

So if we assume that L ⊥ contains all projective objects, we get the following equiva-
lence: N ∈Pr−1

A
(L ) if and only if K ∈L ⊥. However, it does not seem clear how to get

new results if we relate the subprojectivity domains with a property on kernels of epi-
morphisms. But, if we suppose moreover that L contains all projective objects and that
it is closed under kernels of epimorphisms, then L ⊥ will be closed under cokernels of
monomorphisms (see the proof of [26, Lemma 1.2.8]). So by the above equivalence we
get the following implication: if N ∈Pr−1

A
(L ) then N ∈L ⊥, that is, Pr−1

A
(L )⊆L ⊥.

In Theorem 2.3.1 and Theorem 2.3.10 we provide a necessary and sufficient condition
to have the equality Pr−1

A
(L ) = L ⊥.

Recall that, given a class of objects F in A , an F -precover of an object M is a
morphism F →M with F ∈F , such that HomA (F ′,F)→ HomA (F ′,M)→ 0 is exact
for any F ′ ∈F . An F -precover is said to be special provided that it is an epimorphism
with kernel in the class F⊥. F -preenvelopes and special F -preenvelopes are defined
dually.

Theorem 2.3.1. Suppose that A has enough injectives and let L be a class of objects of
A which is closed under kernels of epimorphisms and which contains the class Pro jA .
Then, the following conditions are equivalent.

1. L ⊥ =Pr−1
A
(L ).

2. L ⊥ is closed under kernels of epimorphism, cokernels of monomorphisms and
contains Pro jA .

3. L
⋂

L ⊥ = Pro jA and every object in L ⊥ has a special L -precover.

Proof. 1.⇒ 2. Clearly Pro jA ⊆Pr−1
A
(L ) =L ⊥. Now, let us prove that L ⊥ is closed

under kernels of epimorphisms.
Let 0→ K→ L→ N→ 0 be a short exact sequence such that N,L ∈L ⊥ and let us

prove that K ∈L ⊥. To do so, consider the following long exact sequence for some M
in L

· · · // HomA (M,L) // HomA (M,N) // Ext1A (M,K) // Ext1A (M,L) = 0

Since N is taken in L ⊥ and L ⊥ coincide with Pr−1
A
(L ) by assumption, HomA (M,L)→

HomA (M,N) is epic, hence K ∈L ⊥.
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Now, let us prove that L ⊥ is closed under cokernels of monomorphisms. Let 0→
K → L→ N → 0 be a short exact sequence such that K,L ∈ L ⊥, and consider the
following pullback diagram

0

��

0

��

H

��

H

��

0 // K // D //

��

P //

��

0

0 // K // L //

��

N //

��

0

0 0

where P is a projective object. We proved that Pro jA ⊆L ⊥ and L ⊥ is always closed
under extensions and kernels of monomorphisms, then P,D and H are in L ⊥. So
HomA (M,P)→ HomA (M,N) is epic, for every object M of L , hence N ∈Pr−1

A
(L )

(see Proposition 2.1.4). By assumption we get that N ∈L ⊥, as desired.
2.⇒ 1. Let N be an object of A , 0→ K→ P→ N → 0 be a short exact sequence

with P projective, and consider the following long exact sequence for some M in L

· · · // HomA (M,P) // HomA (M,N) // Ext1A (M,K) // Ext1A (M,P)

Since L ⊥ is assumed to contain all projective objects, HomA (M,P)→ HomA (M,N)
is epic if and only if K ∈M⊥, hence, by Proposition 2.1.4, N ∈Pr−1

A
(L ) if and only if

K ∈L ⊥. But K ∈L ⊥ if and only if N ∈L ⊥ by assumption. Therefore N ∈Pr−1
A
(L )

if and only if N ∈L ⊥.
1.⇒ 3. If M ∈L

⋂
L ⊥ then M ∈Pr−1

A
(L ) by condition 1., and then M ∈Pr−1

A
(M).

Hence, M is projective by Proposition 2.1.2.
Conversely, any projective P holds in L by the hypotheses, and of course P ∈

Pr−1
A
(L ). But Pr−1

A
(L ) = L ⊥, so indeed P ∈L

⋂
L ⊥.

To prove the second assertion let N ∈ L ⊥ and let us show that any epimorphism
g : P→ N with P projective is indeed a special L -precover.

That g is an L -precover is clear since, by assumption, P ∈L and N ∈Pr−1
A
(L ).

Now, for an object L ∈L , being HomA (L,P)→HomA (L,N)→ 0 exact and being
Ext1A (L,P) = 0 implies that Ext1A (L,Kerg) = 0, that is, Kerg ∈L ⊥.

3.⇒ 1. Let N ∈L ⊥, M ∈L and consider a special L -precover

0→ K→ L→ N→ 0
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of N.
Since N and K are in L ⊥, L does too and then we get L∈L

⋂
L ⊥. But L

⋂
L ⊥=

Pro jA so by Proposition 2.1.4, N ∈Pr−1
A
(M).

Conversely, let N ∈Pr−1
A
(L ) and let

0→ K→ P→ N→ 0

be a short exact sequence with P projective. For any L ∈L the associated long exact
sequence looks like

· · · → Ext1A (L,P)→ Ext1A (L,N)→ Ext2A (L,K)→ ·· · .

But Ext1A (L,P) = 0 since P is projective (so P ∈ L ⊥ by the hypothesis), so proving
that Ext2A (L,K) = 0 for every L ∈L will give N ∈L ⊥.

Let 0→C→ Q→ L→ 0 be a short exact sequence with Q projective and L ∈L .
Since L is closed under kernels of epimorphisms, Q, L ∈L implies C ∈L . Now, in
the long exact sequence

· · · → Ext1A (C,K)→ Ext2A (L,K)→ Ext2A (Q,K)→ ···

we have Ext1A (C,K) = 0: indeed, in the long exact sequence

HomA (C,P)→ HomA (C,N)→ Ext1A (C,K)→ Ext1A (C,P)→ ···

Ext1A (C,P) = 0 (since P ∈L ⊥ by the hypothesis) and the first morphism is epic since
N ∈Pr−1

A
(L ) and C ∈L .

On the other hand, Ext2A (Q,K) = 0, so indeed Ext2A (L,K) = 0.

In the category of complexes of modules C (R), Theorem 2.3.1 can be used to char-
acterize the subprojectivity domain of the class E of exact complexes. We recall that
every projective complex is exact, that the class E is closed under kernels of epimor-
phisms and that it is special precovering in the whole category of complexes (see [26,
Theorem 2.3.17]). It is also known that E

⋂
E ⊥ is the class of injective complexes (see

[26, Proposition 2.3.7]). So, by Theorem 2.3.1, we get the following result.

Corollary 2.3.2. R is quasi-Fröbenius if and only if the subprojectivity domain of the
class of exact complexes of modules is E ⊥ .

The question of whether or not any object has a special G PA -precover has been
a subject of many papers. Here, as a consequence of Corollary 2.1.17 and Theorem
2.3.1 (since it is known that the class G PA is closed under kernels of epimorphisms)
we immediately get a partial answer which has been recently known following different
methods (see [48, Proposition 4.1]).
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Corollary 2.3.3. If A has enough injectives and direct sums which are exact then, every
object in G P⊥

A has a special G PA -precover.

We have seen in Theorem 2.3.1 that the fact that the subprojectivity domain of a
class L (under some conditions on L ) coincides with its first right orthogonal class is
equivalent to the existence of special precovers plus another condition. We will see in
Theorem 2.3.10 that this is also equivalent to existence of preenveloppes (under some
conditions on the category A and the class L ). But first we give some conditions for
the class of projectives to be locally initially small and then we show when any object
of L has a Pr−1

A
(L )-preenvelope.

Recall that a class F of objects is locally initially small if for every object M of
A there exists a set FM ⊆F such that every morphism M→ F with F ∈F factors
through a direct product of objects in FM (see [40, Definition 2.1]). In [40, Proposi-
tion 2.9] it is established that the class of projective modules is always locally initially
small. The argument consists in proving that for any set X , the class Summ(X) is locally
initially small, and following the arguments given in [40] one can see that this holds
in any Grothendieck category with enough projectives. However the arguments in the
categorical sething are rather cumbersome, so, for the reader’s convenience, we think it
is necessary to set them out here, even though they are nothing more than a translation
into categorical language of what is done in [40, Proposition 2.9]. We split the proof
into several results, and we start with the following purely categorical fact.

Given two families of objects of A {Ai; i∈ I} and {Bi; i∈ I}, and a set of morphisms
{ fi : Ai → Bi; i ∈ I}, we always have two induced morphisms f : ⊕Ai →⊕Bi and f ′ :
∏Ai→∏Bi such that

1. f is the unique morphism satisfying k′i fi = f ki for every i, where ki : Ai →⊕Ai
and k′i : Bi→⊕Bi are the canonical injections.

2. f ′ is the unique morphism satisfying π ′i f ′ = fiπi for every i, where πi : ∏Ai→ Ai
and π ′i : ∏Bi→ Bi are the canonical projections.

Now, we know there is a unique morphism (acually monic since A is Grothendieck,
see for instance [35, Corollary 2, page 188]) λ : ⊕Ai→∏Ai satisfying πiλk j = δ i

j for
every i, j ∈ I, and similarly a unique λ ′ : ⊕Bi → ∏Bi such that π ′i λ

′k′j = δ i
j for every

i, j ∈ I (where δ i
j is the Kroneker delta).

We have the following.

Lemma 2.3.4. The diagram

⊕Ai
λ //

f
��

∏Ai

f ′
��

⊕B′i
λ // ∏Bi
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is commutative.

Proof. The morphism f ′λ−λ ′ f :⊕Ai→∏Bi is such that π ′i ( f ′λ−λ ′ f )k j = π ′i f ′λk j−
π ′i λ

′ f k j = fiπiλk j−π ′i λ
′k′j f j = fiδ

i
j−δ i

j f j for every i, j ∈ I.
If i 6= j then δ i

j = 0 and then π ′i ( f ′λ −λ ′ f )k j = 0.
If i = j then π ′i ( f ′λ −λ ′ f )k j = fi− fi = 0.
Thus, π ′i ( f ′λ −λ ′ f )k j = 0 ∀i∈ I, ∀ j ∈ I, so, by the properties of the product ( f ′λ −

λ ′ f )k j = 0 ∀ j ∈ I, and then, by the properties of the coproduct f ′λ −λ ′ f = 0.
Therefore, f ′λ = λ ′ f and then the diagram is commutative.

Proposition 2.3.5. Let X be a finitely generated object of A and {Ai}i∈I be a family of
objects of A . Then, for every morphism g : X→⊕i∈IAi, the set {i∈ I/πig 6= 0} is finite,
where π j :⊕i∈IAi→ A j is the canonical projection for every j ∈ I.

Proof. Let M = Im g and consider the ker-coker decomposition of g,

X
g

//

ḡ ��

⊕i∈IAi

M
f

;;

If we let F be the set of all finite subsets of I and define, for every F ∈F , AF to be
the image of the canonical morphism ⊕i∈FAi→⊕i∈IAi, condition (5) of [38, Chapter
4, Theorem 4.6] says that M = ∑F∈F (M∩AF).

Now, for every F ∈F , we define (M ∩AF ,γF ,ηF) as the pullback of αF : AF →
⊕i∈IAi and f : M→⊕i∈IAi. Now, for every two sets F , F ′ in F such that F ⊂ F ′, we
have taht AF ⊆ AF ′ , so there is a morphism αF ′

F : AF → AF ′ such that the diagram

AF
αF ′

F

{{

αF
��

AF ′ αF ′
// ⊕i∈IAi

commutes. Then, the universal property of the pullback guarantees the existence of a
family of morphisms β F ′

F such that the diagrams

M∩AF
γF

//

β F ′
F

%%

ηF

��

AF

αF

��

αF ′
F

##

M∩AF ′
γF ′ //

ηF ′
��

AF ′

αF ′
��

M
f

// ⊕i∈IAi
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commute. Therefore, the family {(M ∩ AF)F∈F ,(β F ′
F )F⊂F ′} is a directed family of

subobjects of M.
But M is finitely generated so there exists F0 ∈ F such that M = M ∩ AF0 (see

Proposition 1.1.1) and then, ηF0 is an isomorphism. Let j ∈ I \F0. We have π j f ηF0 =
π jαF0γF0 = 0. Hence π j f = 0, for every j ∈ I\F0. Then {i∈ I/πi f 6= 0}⊂F0. Therefore
the set {i ∈ I/πi f 6= 0} is finite. Since g = f ḡ and ḡ epic, the set {i ∈ I/πig 6= 0} is also
finite.

Corollary 2.3.6. Let A be a locally finitely generated Grothendieck category, A be an
object of A and I be any index set. For any morphism f : M→ A(I) and any element
i ∈ I, the set [i] = { j ∈ I/πi f = π j f} is finite, where π j is the canonical projection to
the j-th component.

Proof. We assume, without loss of generality, that πi f 6= 0 for every i ∈ I.
Since A is locally finitely generated, there exists an epimorphism g :⊕α∈FXα →M

with all Xα finitely generated objects.
Call kα : Xα →⊕i∈FXi the canonical monomorphism for any α ∈ F . We claim that

for any j ∈ I there exists some α j ∈ F such that π j f gkα j 6= 0. Indeed, if π j f gkα = 0
for every α ∈ F then π j f g = 0, and since g is epic, π j f = 0, a contradiction. Therefore,
[ j]⊆ {i ∈ I/πi f gkα j 6= 0}, and Proposition 2.3.5 says that this set is finite.

Proposition 2.3.7. Let F be a set of objects of A . Then, Sum(F ) is locally initially
small.

Proof. Let M be any object of A and f : M→⊕F∈F F(XF ) be any morphism.
Let pF : ⊕F∈F F(XF ) → F(XF ) and px : F(XF ) → F denote the canonical epimor-

phisms for any F ∈F and any x ∈ XF . Then, call fx = px pF f .
Now, the equivalence relation in each XF given by

x∼ y⇔ fx = fy

provides a number of equivalence classes [x], each of which having finite cardinality by
Corollary 2.3.6. Let us denote XF the quotient set XF/∼.

Now, for every equivalence class [x] ∈ XF let us denote by ∆F,[x] : F → F [x] the
unique morphism induced by the identities idF : F → F . That is, ∆F,[x] is the unique
morphism making commutative the diagrams

F [x] π ′y
// F

F
∆F,[x]

``
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for every y ∈ [x], where π ′y are the canonical projections. The family {∆F,[x]; [x] ∈ XF}
induces a unique morphism ∆′F : FXF →∏[x]∈XF

F [x] such that the diagram

FXF
∆′F //

π [x]

��

∏[x]∈XF
F [x] ∼= FXF

π[x]
��

F
∆F,[x]

// F [x]

(where π [x] and π[x] are the canonical projections) commutes for every [x] ∈ XF . But
then the diagram

FXF
∆′F //

π [x]
��

FXF

π[x]
��

F
∆F,[x]

// F [x]

π ′y}}

F

commutes, and indeed, ∆′F is the unique morphism making commutative the outer dia-
gram, for if φ : FXF →∏[x]∈XF

F [x] is such that π ′yπ[x]φ = π [x], then π ′y∆F,[x]π [x] = π [x] =

π ′yπ[x]φ ∀y ∈ [x] and then π[x]∆
′
F = ∆F,[x]π [x] = π[x]φ . But the unicity of ∆′F implies that

φ = ∆′F .
Notice that π ′yπ[x] = πy ∀y ∈ [x] and ∀[x], so we actually have that ∆′F is the unique

morphism such that πx∆′F = π [x] ∀x ∈ XF , ∀F ∈F .
We can repeat the same argument with the family ∆′F ;F ∈F getting a unique mor-

phism ∆′ = ∏F∈F FXF →∏F∈F FXF that makes the diagram commutes

∏F∈F FXF ∆′ //

πF
��

∏F∈F FXF

πF
��

FXF
∆′F

// FXF

for every F ∈F (where πF always denote the canonical projection).
Again, we see that ∆′ is the unique morphism verifiying that πxπF∆′ = π [x]πF ∀x ∈

XF , ∀F ∈F .
But the family {∆F,[x]; [x]∈XF} induces a unique morphism ∆F : F(XF )→⊕[x]∈XF

F [x]

such that the diagram
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F
∆F,[x]

//

k[x]
��

F [x]

k[x]
��

F(XF )
∆F

// ⊕[x]∈XF
F [x]

commutes ∀[x] ∈ XF .
And the family {∆F ;F ∈F} induces a unique morphism

∆ :⊕F∈F F(XF )→⊕F∈F ⊕[x]∈XF
F [x]

such that the diagram

F(XF )
∆F //

kF
��

⊕[x]∈XF
F [x]

kF
��

⊕F∈F F(XF )
∆

// ⊕F∈F ⊕[x]∈XF
F [x]

commutes for all F ∈F .
But |[x]| < ∞ ∀x so ⊕F∈F ⊕[x]∈XF

F [x] ∼= ⊕F∈F F(XF ). If we let λ : ⊕F∈F F(XF )→
∏F∈F FXF and λ :⊕F∈F F(XF )→∏F∈F FXF be the canonical morphisms, we see that
the diagram

⊕F∈F F(XF ) λ //

∆
��

∏F∈F FXF

∆′
��

⊕F∈F F(XF )
λ

// ∏F∈F FXF

is commutative by Lemma 2.3.4.
If for any F ∈ F we consider the family of morphisms { fx; [x] ∈ XF}, we get a

unique morphism hF : M→ FXF (for each F) such that

FXF
π [x]

// F

M
hF

aa

fx

??

commutes for every [x] ∈ XF , and this new family {hF ;F ∈F} induces a unique mor-
phism h : M→∏F∈F FXF such that

∏F∈F FXF
πF // FXF

M
h

dd

hF

>>
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commutes ∀F ∈F .
Thus, h is the unique morphism satisfying π [x]πFh = fx for every [x]∈ XF and every

F ∈F .
Of course, we also have the morphism

M
f

// ⊕F∈F F(XF ) λ // ∏F∈F FXF

and πxπFλ f = px pF f ∀x ∈ XF , ∀ f ∈F , so indeed λ f : M→∏F∈F FXF is the unique
morphism such that πxπFλ f = fx ∀x ∈ XF , ∀F ∈F .

Recall (see for instance [35, Corollary 2, page 188]) that λ is a monomorphism, so
Im (λ f )∼= Im ( f ) and then we see that the morphism λ f has a factorization

M
f

||

f

$$

λ f
// ∏F∈F FXF

Im (λ f )
k

// ⊕F∈F F(XF )
λ

77

and the morphism h has a factorization

M h //

h ""

∏F∈F F(XF )

Im (h)
β

88

We claim that Im (h)⊆⊕F∈F F(XF ).
Let us prove that indeed Im (β )⊆⊕F∈F F(XF ). We have the diagram

M h //

h ""

∏F∈F FXF

∆′

��

Im (h)

β

33

⊕F∈F FXF

λ

@@

∆

��

Im (λ f ) k // ⊕F∈F FXF

λ ''

M
λ f

//

f
;;

f

44

∏F∈F FXF
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in which all possible subdiagrams are commutative (including the outer square since we
have already seen that πxπF∆′h = π [x]πFh = fx ∀x ∈ XF , ∀F ∈ F and πxπFλ f = fx

∀x ∈ XF ). Moreover, λk is a monomorphism so λk f is the epic-monic factorization of
λ f and so λk = ker(coker(λ f )). Let us call c = coker(λ f ). We have c∆′h = cλ f = 0,
but c∆′h = c∆′βh so c∆′β = 0 and then there is a unique α : Im (h)→ Im (λ f ) such
that ∆′β = λkα .

Each of the ∆[x],F is a splitting monomorphism, so the induces ∆F is a splitting
monomorphism and then ∆ is a splitting monomorphism too. This means we have a
morphism Φ :⊕F∈F F(XF )→⊕F∈F F(XF ) such that Φ∆ = id.

The same argument, reasoning with the product, gives Ψ : ∏F∈F F(XF )→∏F∈F F(XF )

such that Ψ∆′ = id.
Moreover Lemma 2.3.4 says that Ψλ = λΦ. We then consider the morphism

φ : Im (h)→⊕F∈F F(XF )

given by φ = Φkα.
We have

λφ = λΦkα = ψλkα = ψ∆
′
β = β .

Therefore, we see that indeed Im (β ) ⊆ ⊕F∈F F(XF ) (β is a monomorphism so φ is a
monomorphism too) and so that the morphism h factors through ⊕F∈F F(XF ) (Im (h)⊆
⊕F∈F F(XF )).

This means we can assume that the original morphisms f is such that fx 6= fy, ∀x;y∈
F with x 6= y. In this case, the map

XF → HomA (M,F)

x 7→ fx

is an injection, so we assume XF ⊆ HomA (M,F) and then ⊕F∈F F(XF ) is a direct sum-
mand of FM =⊕F∈F F(Hom(M,F)) for every f ∈F .

Since FM is totally independent of the morphism f , we see that the set {FM} makes
Sum(F ) to be locally initially small.

Corollary 2.3.8. If A is a locally finitely generated Grothendieck category with enough
projectives, then Pro jA is locally initially small.

Proof. If G is a system of projective generators of A , then Pro jA = Add(G ). But
Sum(G ) is locally initially small Proposition 2.3.7, and then trivially Summ(Sum(G )) =
Add(G ) is locally initially small.

As mentioned before, with Corollary 2.3.6, the proof of [40, Proposition 2.9] follows
in any locally finitely generated Grothendieck category with enough projectives A , and
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as a consequence, if A has a system of projective generators G , then we see that the
class Pro jA is locally initially small. Indeed, it is easy to check that Pro jA = Add(G ).
But Sum(G ) is a locally initially small class, so Add(G ) is locally initially small too.

With the use of this fact, we can prove the following.

Proposition 2.3.9. Let L be a class of objects of A . Then, the following conditions
are equivalent.

1. Every object M of L has a projective preenvelope.

2. Every object M of L has a Pr−1
A
(L )-preenvelope.

If, in addition, A is a locally finitely generated Grothendieck category with a system
of projective generators then 1. and 2. above are equivalent to

3. Pr−1
A
(L ) is closed under direct products.

Proof. (1)⇒ (2). Let M→Q be a projective preenvelope of M. Let us prove that M→
Q is a Pr−1

A
(L )-preenvelope. For let N ∈Pr−1

A
(L ) and let P→ N be an epimorphism

with P projective. Apply the functors HomA (M,−) and HomA (Q,−) to P→ N to get
the following commutative diagram with exact rows

HomA (Q,P) //

��

HomA (Q,N)

��

// 0

HomA (M,P) // HomA (M,N) // 0

with HomA (Q,P)→ HomA (M,P) an epimorphism (M → Q is a projective preenve-
lope). Therefore, HomA (Q,N)→ HomA (M,N) is also an epimorphism.

(2)⇒ (1). Let f : M→ N be a Pr−1
A
(L )-preenvelope of M and g : P→ N be an

epimorphism with P projective. Since N ∈Pr−1
A
(L ) there exists a morphism h : M→ P

such that f = gh. Let us prove that h : M→ P is a projective preenvelope.
For let h′ : M → P′ be a morphism with P′ projective. Since f : M → N is a

Pr−1
A
(L )-preenvelope there exists a morphism g′ : N → P′ such that h′ = g′ f . Hence

h′ = g′gh and g′g : P→ P′ is the morphism we were looking for.
(2)⇒ (3). Let {Ni}i∈I be a family of objects such that each Ni ∈Pr−1

A
(L ), f : M→

∏i∈I Ni be any morphism such that M ∈L and g : M→N be a Pr−1
A
(L )-preenvelope of

M. Then, for every j ∈ I, there exists a morphism γ j : N→N j such that γ jg = π j f where
π j : ∏i∈I Ni→ N j is the canonical projection. Now, let α : P→ N be an epimorphism
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with P projective. Then, we get the following diagram

M

g

��

f

$$

β

��

P

α

��

γ
// ∏Ni

π j
��

N
γ j

// N j

in which β exists such that g = αβ since N ∈Pr−1
A
(M) and γ exists such that for every

j ∈ I, π jγ = γ jα by the universal property of direct products. Then, we get that for every
j∈ I, π j f = γ jg= γ jαβ = π jγβ . Thus, f = γβ . Then, we conclude by Proposition 2.1.4
that ∏i∈I Ni ∈Pr−1

A
(L )

(3)⇒ (2). Let M ∈L . Given N ∈Pr−1
A
(L ) we fix an epimorphism P→ N from

a projective P. Since the class of projective objects is locally initially small, there exists
a set X of projective objects such that any morphism M→ P factors through a product
of objects in the set X . But every morphism M → N factors through P, and such
factorization M → P factors through a product of objects in the set X , so we have
just seen that every morphism M→ N with N ∈Pr−1

A
(L ) factors through a product of

elements of X .
Call now K = ∏P∈X PHomA (M,P). Since Pr−1

A
(L ) is supposed to be closed under

direct products, we see that K ∈Pr−1
A
(L ).

Now, for each P ∈X there exists a canonical morphism λP : M→ PHomA (M,P), so
there is a unique λ : M → K such that πPλ = λP for every P ∈X , where πP are the
canonical projections. We claim that λ : M→ K is a Pr−1

A
(L )-preenvelope of M.

To show this, take any morphism f : M → N with N ∈ Pr−1
A
(L ), so there exist

h : M → ∏X∈X X and g : ∏X∈X X → N such that f = gh. Consider the projections
πX : K→XHomA (M,X) and πpX h : XHomA (M,X)→X (the projection to the component pX h
where pX : ∏X∈X X → X is the canonical projection). By the universal property of the
direct product there exists a unique morphism γ : K→∏X∈X X such that pX γ = πpX hπX .
Therefore, pX γλ = πpX hπX λ = πpX hλX = pX h for all X ∈X , so γλ = h and hence
gγλ = gh = f . We then get that λ : M→ K is a Pr−1

A
(L )-preenvelope of M.

Now, we are in position to prove Theorem 2.3.10.

Theorem 2.3.10. Suppose that A is a locally finitely generated Grothendieck category
with a system of projective generators and let L be a class of objects which contains
the class Pro jA . Then, the following conditions are equivalent.

1. L ⊥ =Pr−1
A
(L ).
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2. Pro jA ⊆L ⊥, Pr−1
A
(L ) is closed under cokernels of monomorphisms and every

M ∈L has an L ⊥-preenvelope which is projective.

Proof. 1.⇒ 2. Clearly Pro jA ⊆Pr−1
A
(L ) = L ⊥.

Now, let
0→ A→ B→C→ 0

be exact with A, B ∈ Pr−1
A
(L ). To prove that C ∈ Pr−1

A
(L ) choose any L ∈L and

apply HomA (L,−) to the exact sequence. We get a long exact sequence

0→ HomA (L,A)→ HomA (L,B)→ HomA (L,C)→ Ext1A (L,A)→ ···

with Ext1A (L,A) = 0 since L ∈ L and A ∈ Pr−1
A
(L ) = L ⊥. Then, HomA (L,B)→

HomA (L,C) is epic. Thus, Proposition 2.1.4 immediately gives that C ∈Pr−1
A
(L ).

Finally, if M ∈L let f : M→N be a Pr−1
A
(L )-preenvelope, which exists by Propo-

sition 2.3.9 since L ⊥ is always closed under direct products.
Now find an epimorphism g : P→ N from a projective P. Since N ∈ Pr−1

A
(L )

there exists a morphism h : M → P such that f = gh. We claim that h : M → P is a
Pr−1

A
(L )-preenvelope. Indeed, let k : M → N′ be a morphism with N′ ∈ Pr−1

A
(L ).

Since f : M→ N is a Pr−1
A
(L )-preenvelope, there exists l : N → N′ such that k = l f ,

hence k = lgh. Therefore, h : M→ P is a Pr−1
A
(L )-preenvelope.

2.⇒ 1. Let N ∈ L ⊥, choose any M ∈ L , any morphism f : M → N and a L ⊥-
preenvelope g : M→ Q of M with Q projective. Then, there exists h : Q→ N such that
f = hg, so N ∈Pr−1

A
(L ) by Proposition 2.1.4.

Conversely, let N ∈ Pr−1
A
(L ), choose any M ∈ L and take an L ⊥-preenvelope

g : M→ Q, where Q is projective. Of course every L ⊥-preenvelope is injective since
L ⊥ contains the class of injectives, so if C is the cokernel of g we get a long exact
sequence

· · · // Ext1A (Q,N) // Ext1A (M,N) // Ext2A (C,N) // · · ·

Since Q is projective, showing that Ext2A (C,N) = 0 would give that Ext1A (M,N) = 0,
so let’s prove that ExtiA (C,N) = 0, i = 1,2.

Choose then any morphism f : M→ N and find an epimorphism h : P→ N from a
projective P. Then, by the N-subprojectivity of M, the diagram

M

f
��

k

��

g
// Q

P
h

// N // 0
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can be completed commutatively by k. But P is projective (so it holds in L ⊥ by the
hypotheses), and g is a L ⊥-preenvelope, so there is a morphism l : Q→ P such that
lg = k. Therefore, f = hk = hlg and then HomA (g,N) is an epimorphism, so from the
long exact sequence

· · · // HomA (Q,N) // HomA (M,N) // Ext1A (C,N) // Ext1A (Q,N) = 0

we see that Ext1A (C,N) = 0.
Now, if 0→ N→ E→ D→ 0 is exact and E is injective, we get an associated long

exact sequence

· · · // Ext1A (C,D) // Ext2A (C,N) // Ext2A (C,E) = 0 // · · ·

But we have already proved that L ⊥ ⊆ Pr−1
A
(L ), so E ∈ Pr−1

A
(L ), and N does

too, so since Pr−1
A
(L ) is closed under cokernels of monomorphisms we get that D

is also in Pr−1
A
(L ). Hence, by the same arguments as before, Ext1A (C,D) = 0 and then

Ext2A (C,N) = 0.
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CHAPTER 3

MEASURING PROJECTIVITY OF COMPLEXES

In this chapter, we extend the study of the subprojectivity domains from an
abelian category A with enough projectives to the category of complexes C (A ) (which
has enough projectives since A has). Namely, we study the relationship between the
subprojectivity domains of complexes in C (A ) and the subprojectivity domains of their
components and cycles in A . This study shows that the subprojectivity notion provides
a new sight of null-homotopic morphisms in the category of complexes and gives vari-
ous results which emphasize the importance of subprojectivity in the category of com-
plexes. Namely, we give some applications by characterizing some classical rings and
establish various examples that allow us to reflect the scope and limits of our results.

3.1 Subprojectivity and null-homotopy
In this section, a first treatment of the subprojectivity in the category of complexes

will be done. We will prove among several things that the concept of subprojectivity in
the category of complexes is closely linked to that of null-homotopy of morphisms.

We start with a new characterization of subprojectivity in terms of splitting short
exact sequences which will be considered somehow as the subprojectivity analogue of
the classical characterization of projectivity.

Proposition 3.1.1. Let M and N be two objects of A . Then the following conditions are
equivalent.

1. N ∈Pr−1
A
(M).

2. For every epimorphism g : K → N and every morphism f : M→ N, the epimor-
phism g′ : D→M given by the pullback (D,g′, f ′) of g and f , splits.
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3. There exists an epimorphism g : P→ N with P projective such that for every mor-
phism f : M→ N, the epimorphism g′ : D→M given by the pullback (D,g′, f ′)
of g and f , splits.

4. There exists an epimorphism g : P→N with P∈Pr−1
A
(M) such that for every mor-

phism f : M→ N, the epimorphism g′ : D→M given by the pullback (D,g′, f ′)
of g and f , splits.

Proof. 1. ⇒ 2. Let g : K → N be an epimorphism, f : M → N be a morphism and
(D,g′, f ′) be their pullback. Since N ∈ Pr−1

A
(M), there exists a morphism h : M→ K

such that the following diagram commutes

M

h

��

idM

''D
g′

//

f ′
��

M

f
��

K g
// N

Then, by the universal property of pullbacks, there exists a morphism k : M→ D such
that g′k = idM. Hence g′ splits, as desired.

2.⇒ 3. This is clear since the category A is supposed to have enough projectives.
3.⇒ 4. This is clear since every projective object belongs to Pr−1

A
(M).

4.⇒ 1. Let g : P→N be the epimorphism of statement 4., f : M→N be a morphism
and (D,g′, f ′) their pullback

D
g′

//

f ′
��

M

f
��

P
g

// N

Then, by assumption, there exists a morphism h : M → D such that g′h = idM, hence
f = f g′h = g f ′h. Therefore, N ∈Pr−1

A
(M) (see Proposition Lemma-subproj).

The following two lemmas will be useful in the proof of Theorem 3.1.4.

Lemma 3.1.2. For two complexes M and N with N ∈Pr−1
C (A )

(M), HomK (A )(M,N) =

0.

Proof. Let f ∈ HomC (A )(M,N), then there exist two morphisms α : P→ N and β :
M → P such that P is projective and f = αβ (see Proposition 2.1.4). Now, idP is
null-homotopic since P is contractible, thus, the composition αidPβ is null-homotopic.
Therefore, HomK (A )(M,N) = 0.
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Lemma 3.1.3. If (D,g′, f ′) is the pullback of two morphisms of complexes g : C→ B
and f : A→ B, then (Dn,g′n, f ′n) is the pullback of gn : Cn → Bn and fn : An → Bn for
every n ∈ Z.

Proof. Let α : X → An and β : X →Cn be two morphisms of A such that fnα = gnβ

and consider the two morphisms of complexes α : X [n− 1]→ A and β : X [n− 1]→C
induced by α and β , respectively. It is straightforward to verify that f α = gβ , so there
exists a unique morphism of complexes h : X [n−1]→D such that g′h = α and f ′h = β .
Then, g′nhn = α and f ′nhn = β .

The unicity of hn : X → Dn comes from the unicity of h.

Now, we give the first main result of this section.

Theorem 3.1.4. Let M and N be two complexes such that Nn ∈ Pr−1
A
(Mn) for every

n ∈ Z. Then, the following statements are equivalent.

1. N ∈Pr−1
C (A )

(M).

2. For every short exact sequence 0→ K→ P→ N→ 0 with P projective, the equa-
tion HomK (A )(M[−1],K) = 0 holds.

3. There exists a short exact sequence 0→ K→ P→ N→ 0 with P projective such
that HomK (A )(M[−1],K) = 0.

4. There exists a short exact sequence 0→ K→ P→ N→ 0 with P ∈Pr−1
C (A )

(M)

such that HomK (A )(M[−1],K) = 0.

Proof. 1.⇒ 2. Let 0→ K → P→ N → 0 be a short exact sequence with P projective
and consider the following commutative diagram with exact rows

0

��

0

��

0

��

0 // Z0(Hom•(M,K)) //

��

Hom•(M,K)0 //

��

B−1(Hom•(M,K)) //

��

0

0 // Z0(Hom•(M,P)) //

��

Hom•(M,P)0 //

��

B−1(Hom•(M,P)) //

��

0

0 // Z0(Hom•(M,N)) //

��

Hom•(M,N)0 //

��

B−1(Hom•(M,N)) //

��

0

0 0 0
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The first and second columns are exact since N ∈Pr−1
C (A )

(M) and Nn ∈Pr−1
A
(Mn) for

every n ∈ Z, respectively. Hence, the third column is also exact.
Now, applying the Snake Lemma to the following commutative diagram with exact

rows and columns

0

��

0

��

0

��

0 // B−1(Hom•(M,K)) //

��

B−1(Hom•(M,P)) //

��

B−1(Hom•(M,N)) //

��

0

0 // Z−1(Hom•(M,K)) // Z−1(Hom•(M,P)) // Z−1(Hom•(M,N))

we get the exact sequence

0 // H−1(Hom•(M,K)) // H−1(Hom•(M,P)) // H−1(Hom•(M,N))

but H−1(Hom•(M,P)) = HomK (A )(M[−1],P) = 0 by Lemma 3.1.2. Thus,

HomK (A )(M[−1],K) = H−1(Hom•(M,K)) = 0.

2.⇒ 3. Clear since the category of complexes C (A ) has enough projectives.
3.⇒ 4. This is clear since every projective complex belongs to Pr−1

C (A )
(M).

4.⇒ 1. Let 0→ K → P→ N → 0 be the short exact sequence of statement 4.,
f : M→N be any morphism of complexes and consider the following pullback diagram

0 // K // D //

��

M //

f
��

0

0 // K // P // N // 0

For every n ∈ Z, Dn is a pullback by Lemma 3.1.3, so by assumption and Proposition
3.1.1 the short exact sequence 0→K→D→M→ 0 is degreewise splits. Then, this se-
quence is equivalent to a short exact sequence 0→K→M(g)→M→ 0 being M(g) the
mapping cone of a morphism g : M[−1]→ K, but g : M[−1]→ K is null-homotopic by
assumption so 0→ K→M(g)→M→ 0 splits (see [22, Proposition 3.3.2]). Therefore,
the sequence 0→ K→D→M→ 0 splits too and then N ∈Pr−1

C (A )
(M) by Proposition

3.1.1.

Remark 3.1.5. It is natural to ask whether, as in the case of exact sequences 0→ K→
P→ N → 0 with P projective, the statements of Theorem 3.1.4 are equivalent to the
following: “for every short exact sequence 0→K→ P→N→ 0 with P∈Pr−1

C (A )
(M),

the equation HomK (A )(M[−1],K) = 0 holds”. We will see in Example 3.1.21 that they
are not equivalent.
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Given two complexes M and N, it is natural to ask if N ∈Pr−1
C (A )

(M) is sufficient

to get that, for every n ∈ Z, Nn ∈ Pr−1
A
(Mn). This is not true in general. Indeed, we

can always consider, over a non semisimple ring R, two modules X and Y with Y /∈
Pr−1

R-Mod(X), while it is clear that we always have Y ∈Pr−1
C (R)(X) since every morphism

X→Y is zero. Nevertheless, the answer to the question would be positive if we assume,
furthermore, that N belongs to Pr−1

C (A )
(M[−1]).

Proposition 3.1.6. Let M and N be two complexes such that

N ∈Pr−1
C (A )

(M[−1])
⋂

Pr−1
C (A )

(M).

Then, Nn ∈Pr−1
A
(Mn) for every n ∈ Z.

Proof. Let P be a projective complex and P→ N be an epimorphism of complexes.
Since N,P ∈ Pr−1

C (A )
(M[−1]), HomK (A )(M[−1],P) = HomK (A )(M[−1],N) = 0 by

Lemma 3.1.2. So, the horizontal maps of the following commutative diagram are iso-
morphisms

B−1(Hom•(M,P)) //

��

Z−1(Hom•(M,P))

��

B−1(Hom•(M,N)) // Z−1(Hom•(M,N))

The morphism
Z−1(Hom•(M,P))→ Z−1(Hom•(M,N))

coincides with HomC (A )(M[−1],P)→ HomC (A )(M[−1],N), and it is epic since N ∈
Pr−1

C (A )
(M[−1]), so the map B−1(Hom•(M,P)) → B−1(Hom•(M,N)) must also be

epic.
Now, consider the following commutative diagram with exact rows:

0 // Z0(Hom•(M,P)) //

��

Hom•(M,P)0 //

��

B−1(Hom•(M,P)) //

��

0

0 // Z0(Hom•(M,N)) // Hom•(M,N)0 // B−1(Hom•(M,N)) // 0

The map Z0(Hom•(M,P))→ Z0(Hom•(M,N)) is epic since N ∈Pr−1
C (A )

(M), so again
Hom•(M,P)0→ Hom•(M,N)0 is epic so we see that every morphism Mn→ Nn factors
through Pn for every n ∈ Z.

Though the fact that a complex N belongs to the subprojectivity domain of another
complex M does not imply that the components of N necessarily belong to the subpro-
jectivity domains of the components of M, the answer is completely different if we ask
about cycles of N instead of components of N. We can see this in the following result.
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Lemma 3.1.7. Let N be a complex and M be an object in A . If N ∈Pr−1
C (A )

(M[n]) for

some n ∈ Z, then Zn(N) ∈Pr−1
A
(M).

Proof. Let f : M → Zn(N) be any morphism of A and f : M[n]→ N be the induced
morphism of complexes. By assumption f factors as

M[n]
α

//

f

%%
P

β

// N

for some projective complex P. Then, dP
n αn = 0, so there exists a morphism h : M→

Zn(P) such that µP
n h = αn.

On the other side, the morphism β induces a morphism g : Zn(P)→ Zn(N) such that
µN

n g = βnµP
n . Then, we have

µ
N
n gh = βnµ

P
n h = βnαn = f n = µ

N
n f ,

that is, f = gh, so f factors through the projective object Zn(P).

Another natural question at this point is whether the inverse implication of Propo-
sition 3.1.6 is true or not. Namely, given two complexes M and N, is the condition
“Nn ∈ Pr−1

A
(Mn) for every n ∈ Z”, sufficient to assure that N ∈ Pr−1

C (A )
(M)? Again,

this is not true in general since, for instance, for exact complexes of modules it only
holds over left hereditary rings (see Proposition 3.4.2).

We have studied so far the relation between subprojectivity and null-homotopic mor-
phisms involving kernels of epimorphisms. We will now see that this relation can also
be described without considering such kernels (Theorem 3.1.12).

We start by characterizing when a contractible complex holds in the subprojectivity
domain of another complex. We need the following lemma.

Lemma 3.1.8. Let M be a complex, N be an object of A and n ∈ Z. Then, N[n] ∈
Pr−1

C (A )
(M) if and only if N ∈Pr−1

A
(Mn).

Proof. Suppose that N[n] ∈Pr−1
C (A )

(M) and let f : Mn→ N be a morphism in A . The

induced morphism f : M→ N[n] (that is, f n = f ) factors through a projective complex
P by the hypothesis, so f factors through the projective object Pn.

Conversely, let f : M→ N[n] be a morphism of complexes. Since N ∈Pr−1
A
(Mn),

the morphism fn factors as

Mn α
//

fn
%%

P
β

// N
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for some projective object P of A . Then, if we let g : M→ P[n] be the morphism of
complexes with gn = α and gn+1 = αdM

n+1, and h : P[n]→ N[n] be the morphism of
complexes with hn = hn+1 = β , we clearly get that f = hg, hence N[n] ∈Pr−1

C (A )
(M).

Proposition 3.1.9. Let M be a complex and (Nn)n∈Z be a family of objects of A . Then,
⊕n∈ZNn[n] ∈Pr−1

C (A )
(M) if and only if Nn ∈Pr−1

A
(Mn) for every n ∈ Z.

Proof. If ⊕n∈ZNn[n] ∈ Pr−1
C (A )

(M) then Nn[n] ∈ Pr−1
C (A )

(M) for every n ∈ Z since

Pr−1
C (A )

(M) is closed under direct summands (see Proposition 2.2.1). Then, by Lemma

3.1.8 we get that for every n ∈ Z, Nn ∈Pr−1
A
(Mn).

Conversely, if Nn ∈ Pr−1
A
(Mn) for every n ∈ Z then Nn[n] ∈ Pr−1

C (A )
(M) for every

n ∈ Z again by Lemma 3.1.8.
Now, let f : M→⊕n∈ZNn[n] be a morphism of complexes and, for every m, choose

an epimorphism gm : Pm[m]→ Nm[m] with Pm a projective object of A .
If we let

π
m :⊕n∈ZNn[n]→ Nm[m]

be the projection morphism, for any m there exists a morphism hm : M→ Pm[m] such
that πm f = gmhm.

But ⊕n∈ZPn[n] coincides with ∏n∈ZPn[n], so if we call

π
′m :⊕n∈ZPn[n]→ Pm[m]

the projection morphism, we get a morphism h : M→⊕n∈ZPn[n] such that π ′mh = hm

for every m.
Therefore, for every m ∈ Z we have

π
m f = gmhm = gm

π
′mh = π

m(⊕gn)h

so we see that f = (⊕gn)h. This means that f factors through the projective complex
⊕n∈ZPn[n] and so that ⊕n∈ZNn[n] ∈Pr−1

C (A )
(M).

The following result characterizes subprojectivity in terms of factorization of mor-
phisms through contractible complexes.

Proposition 3.1.10. Let M and N be two complexes. The following conditions are equiv-
alent.

1. N ∈Pr−1
C (A )

(M).
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2. Every morphism M→ N factors through a contractible complex ⊕n∈ZXn[n] such
that Xn ∈Pr−1

A
(Mn) for every n ∈ Z.

Proof. 1.⇒ 2. Clear since every morphism M→N factors through a projective complex
by Proposition 2.1.4 and every projective complex is a contractible complex of projec-
tive objects of A . 2.⇒ 1. Apply Proposition 3.1.9 to get that ⊕n∈ZXn[n] ∈Pr−1

C (A )
(M)

and conclude by Proposition 2.1.4.

Lemma 3.1.11. Let f : X → Y be a null-homotopic morphism of complexes by a mor-
phism s. If every morphism sn : Xn → Yn+1 of A factors through an object Ln+1,
then f : X → Y factors through the contractible complex ⊕n∈ZLn+1[n]. In particular,
f : X → Y factors through the contractible complex ⊕n∈ZYn+1[n].

Proof. Suppose that for any n there exist two morphisms αn : Xn → Ln+1 and βn :
Ln+1→ Yn+1 such that sn = βnαn. Then, we have the situation

Xn+1
dX

n+1
//

fn+1

��

Xn
dX

n //

fn

��

sn

��

αn

ww

Xn−1

fn−1

��

sn−1

��

αn−1

ww
Ln+1

βn
��

Ln

βn−1
��

Yn+1
dY

n+1
// Yn

dY
n // Yn−1

For every n ∈ Z, let p1
n+1 : Ln+1⊕Ln→ Ln+1 and p2

n : Ln+1⊕Ln→ Ln be the canonical
projections, and k1

n+1 : Ln+1 → Ln+1⊕ Ln and k2
n : Ln → Ln+1⊕ Ln be the canonical

injections. Now, call Z the complex ⊕n∈ZLn+1[n] and consider, for every n ∈ Z, the
two morphisms of A hn : Ln+1⊕ Ln → Yn given by hn = dY

n+1βn p1
n+1 + βn−1 p2

n, and
gn : Xn → Ln+1⊕ Ln given by gn = (αn,αn−1dX

n ). We claim that both h : Z → Y and
g : X → Z are morphisms of complexes.

For any n∈Z, we have dY
n hn = dY

n (d
Y
n+1βn p1

n+1+βn−1 p2
n)= dY

n βn−1 p2
n, and hn−1dZ

n =

(dY
n βn−1 p1

n+βn−2 p2
n−1)k

1
n p2

n = dY
n βn−1P1

n k1
n p2

n = dY
n βn−1 p2

n, so h is a morphism of com-
plexes, and for any n ∈ Z we have

gn−1dX
n = (αn−1,αn−2dX

n−1)d
X
n = (αn−1dX

n ,0) = dZ
n (αn,αn−1dX

n ) = dZ
n gn,

so g is also a morphism of complexes.
Now we see that f = hg since for any n ∈ Z we have

hngn = dY
n+1βnαn +βn−1αn−1dX

n = dY
n+1sn + sn−1dX

n = fn.

Therefore, f : X → Y factors through the contractible complex Z =⊕n∈ZLn+1[n].
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Theorem 3.1.12. Let M and N be two complexes such that Nn+1 ∈Pr−1
A
(Mn) for every

n ∈ Z. Then, N ∈Pr−1
C (A )

(M) if and only if HomK (A )(M,N) = 0.

Proof. If N ∈Pr−1
C (A )

(M) then it is clear by Lemma 3.1.2 that HomK (A )(M,N) = 0.
Conversely, if HomK (A )(M,N) = 0 then, by Lemma 3.1.11, every morphism M→

N factors through the contractible complex⊕n∈ZNn+1[n], so N ∈Pr−1
C (A )

(M) by Propo-
sition 3.1.10.

The following example shows that the condition Nn+1 ∈Pr−1
A
(Mn) for every n ∈ Z

in Theorem 3.1.12 cannot be removed in general.

Example 3.1.13. Let X be any non-projective module and choose any other module
Y out of the subprojectivity domain of X (such modules exist over any non semisimple
ring). It is clear that HomK (R)(X ,Y ) = 0 and, by Lemma 3.1.8, that Y /∈Pr−1

C (R)(X).

Given two complexes M and N, it is clear that the condition “Nn+1 ∈Pr−1
A
(Mn) for

every n ∈ Z” is not enough in general to get N ∈ Pr−1
C (A )

(M). For instance, if A is
semisimple (in the sense that every object is projective) and M is not exact (so M is not
a projective complex), then for sure we can find complexes not in Pr−1

C (A )
(M).

In the following result we prove that this condition suffices for exact complexes if
and only if A is semisimple.

Proposition 3.1.14. The following conditions are equivalent.

1. A is semisimple.

2. For every complex M and every exact complex N, if Nn+1 ∈Pr−1
A
(Mn) for every

n ∈ Z, then N ∈Pr−1
C (A )

(M).

3. For every object M of A and every exact complex N, if there exists n ∈ Z such
that Nn+1 ∈Pr−1

A
(M), then N ∈Pr−1

C (A )
(M[n]).

Proof. 1.⇒ 2. Every exact complex N is projective so N ∈Pr−1
C (A )

(M) for every com-
plex M.

2.⇒ 3. Clear.
3.⇒ 1. Let M be an object of A and P be a projective resolution of M. Then,

P1 ∈Pr−1
A
(M) and so P ∈Pr−1

C (A )
(M) by assumption. Then, by Lemma 3.1.7, M =

Z0(P)∈Pr−1
A
(M). This means that M is projective and therefore that A is semisimple.
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Given two complexes M and N, it is natural to ask whether N ∈ Pr−1
C (A )

(M) im-

plies that Nn+1 ∈ Pr−1
A
(Mn) for every n ∈ Z. This is not true in general. For intance,

In the category of R-modules, if we take any non-projective module X and choose
any other module Y out of the the subprojectivity domain of X (such modules exist
over any non semisimple ring). Then, the complex Y [2] belongs to Pr−1

C (R)(X) since

HomC (R)(X ,Y [2]) = 0, but Y [2]2 = Y /∈Pr−1
R-Mod(X).

However, if we add the condition “N ∈Pr−1
C (A )

(M[1])”, then Proposition 3.1.6 says

that Nn+1 ∈Pr−1
A
(Mn) for every n ∈ Z.

Inspired by Proposition 3.1.6, we give the following result.

Proposition 3.1.15. Let M and N be two complexes. The following statements are
equivalent.

1. N ∈Pr−1
C (A )

(M[n]) for every n ∈ Z.

2. For every i, j ∈ Z, Ni ∈Pr−1
A
(M j), and HomK (A )(M[n],N) = 0 for every n ∈ Z.

Proof. Apply Proposition 3.1.6 and Theorem 3.1.12.

Now, we give some applications of Proposition 3.1.15. Namely, given any object
M of A , Proposition 3.1.15 can be used to study the subprojectivity domain of the
complexes ⊕n∈ZM[n] (Proposition 3.1.16) and ⊕n∈ZM[n] (Proposition 3.1.17).

Proposition 3.1.16. Let N be a complex and M be an object of A . The following
statements are equivalent.

1. N ∈Pr−1
C (A )

(⊕n∈ZM[n]).

2. N ∈Pr−1
C (A )

(M[n]) for every n ∈ Z.

3. Nn ∈Pr−1
A
(M) for every n ∈ Z.

Proof. 1.⇔ 2. Clear by Proposition 2.1.14.
2.⇔ 3. Clear by Proposition 3.1.15 since HomK (A )(M[n],N) = 0 for every n ∈ Z.

Proposition 3.1.17. Let N be a complex and M be an object of A . The following
statements are equivalent.

1. N ∈Pr−1
C (A )

(⊕n∈ZM[n]).
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2. N ∈Pr−1
C (A )

(M[n]) for every n ∈ Z.

3. N is HomA (M,−)-exact and Nn ∈Pr−1
A
(M) for every n ∈ Z.

Proof. 1.⇔ 2. Clear by Proposition 2.1.14.
2.⇒ 3. By Proposition 3.1.15 we know that Nn ∈ Pr−1

A
(M) for every n ∈ Z and

that Hn(Hom•(M,N)) = HomK (A )(M[n],N) = 0. But Hom•(M,N) is nothing but the
complex

· · · → HomA (M,Nn+1)→ HomA (M,Nn)→ HomA (M,Nn−1)→ ···

Thus, N is HomA (M,−)-exact
3.⇒ 2. Let n∈Z and f : M[n]→N be a morphism of complexes. Since dN

n fn = 0 we
get that fn ∈ Ker(HomA (M,dN

n )) = Im (HomA (M,dN
n+1)), so there exists a morphism

g : M→Nn+1 such that dN
n+1g= fn. Thus, f is null-homotopic and HomK (A )(M[n],N)=

0 for every n ∈ Z. Proposition 3.1.15 says then that N ∈Pr−1
C (A )

(M[n]) for every n ∈ Z.

From now on we will assume in this section that A has a projective generator P.

If we let M = P in Proposition 3.1.17, then the condition “N is HomA (P,−)-exact”
means that N is exact (since P preserves and reflects exactness by it’s definition). This
leads to the following characterization of exact complexes in terms of subprojectivity.

Corollary 3.1.18. Let P be a projective generator of A and N be a complex. The
following assertions are equivalent.

1. N is exact.

2. N ∈Pr−1
C (A )

(⊕n∈ZP[n]).

3. N ∈Pr−1
C (A )

(P[n]) for every n ∈ Z.

There is now a natural question which comes to mind after Corollary 3.1.18: we
have described, for the projective generator P, how the subprojectivity domain of the set
of complexes {P[n],n ∈ Z} is, so, what about the subprojectivity domain of each of the
complexes P[n]? Can we describe them as well?

Given a complex N, we know, by Theorem 3.1.12, that N ∈ Pr−1
C (A )

(P[n]) if and
only if HomK (A )(P[n],N) = 0. But,

HomK (A )(P[n],N) = Hn(Hom•(P,N)).

So, the condition HomK (A )(P[n],N) = 0 is equivalent to Hn(N) = 0 since P is a pro-
jective generator of A . We state this fact in the following proposition.
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Proposition 3.1.19. Let P be a projective generator of A , N be a complex, and n ∈ Z.
The following assertions are equivalent.

1. N ∈Pr−1
C (A )

(P[n]).

2. HomK (A )(P[n],N) = 0.

3. Hn(N) = 0.

Now, with Proposition 3.1.19 in hand, it is easy to see that subprojectivity domains
are not closed under kernels of epimorphisms in general.

Example 3.1.20. Consider the short exact sequence of complexes

0→ P→ P→ P[1]→ 0,

where P is the projective generator of A . It is clear by Proposition 3.1.19 that P[1] and
P both hold in Pr−1

C (A )
(P), but P does not. Therefore, the subprojectivity domain of P

is not closed under kernels of epimorphisms.

Moreover, Proposition 3.1.19 helps us to answer a question raised in Remark 3.1.5.
Precisely, it is understood by the equivalence (1⇔ 4) in Theorem 3.1.4 that the second
assertion remains equivalent to the first assertion even if we replace the condition “Q is
projective” with Q ∈ Pr−1

C (A )
(M). However, this fact does not hold true. Namely, the

following example shows that if we replace “Q is projective” with Q ∈Pr−1
C (A )

(M) in
assertion 2, the equivalent does not hold.

Example 3.1.21. Let 0→ N3 → N2 → N1 → 0 be a short exact sequence in A such
that N3 6= 0 and let Xi := Ni⊕Ni[−1] for i ∈ {1,2,3}. Then, we have an induced exact
sequence of complexes 0→ X3→ X2→ X1→ 0.

Moreover, we see that for i ∈ {1,2,3} it holds that H0(Xi) = H0(Ni)⊕H0(Ni[−1]) =
0 and that H−1(Xi) =H−1(Ni)⊕H−1(Ni[−1]) =H−1(Ni[−1]) =Ni. Thus, we can assert
that N1,N2 ∈Pr−1

C (A )
(P) and that HomK (A )(P[−1],X3) 6= 0 where P is the projective

generator of A (see Proposition 3.1.19).

3.2 Characterizing complexes through their cycles
The purpose of this section is to study the relationship between the subprojectivity of

complexes and the subprojectivity of their cycles. Namely, for two complexes M and N,
we investigate whether N ∈Pr−1

C (A )
(M) under the condition “Zn(N)∈Pr−1

A
(Mn) for ev-

ery n∈Z” (in the case of Theorem 3.2.2) and under the condition “Nn ∈Pr−1
A
(Zn−1(M))

for every n ∈ Z”( in the case of Theorem 3.2.7).

We start with the following result which will be useful later.
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Lemma 3.2.1. Let L be a class of objects in A , M a bounded below complex and N
an exact complex which is HomA (L ,−)-exact. If every morphism Mn→ Zn(N) factors
through an object in L then every morphism of complexes M→N is null-homotopic by
a morphism s such that every sn : Mn→ Nn+1 factors through an object in L .

Proof. Let f : M→ N be a morphism of complexes. We are going to construct a family
of morphisms sn : Mn→Nn+1, such that fn = dN

n+1sn+sn−1dM
n . We suppose that Mn = 0

for every n < 0, then dN
0 f0 = 0, so there exists a morphism t0 : M0→ Z0(N) such that

µN
1 t0 = f0. By assumption, there exist two morphisms β0 : M0→ L0 and α0 : L0→ Z0(N)

with L0 ∈L and t0 = α0β0. Since N is HomA (L ,−)-exact, there exists a morphism
γ0 : L0→ N1 such that εN

1 γ0 = α0.

· · ·
dM

2 // M1
dM

1 //

f1

��

M0 //

f0

��

β0

{{

t0

��

0

��

// · · ·

L0
γ0

{{

α0

��

· · ·
dN

1 // N1
dN

1 //

εN
1 ""

N0
dN

0 // N−1 // · · ·

Z0(N)

##

µN
1

<<

0

;;

0

Let s0 = γ0β0. One can check that dN
1 s0 = f0, hence dN

1 s0dM
1 = f0dM

1 = dN
1 f1. Thus,

there exists a morphism t1 : M1→ Z1(N) such that µN
2 t1 = f1− s0dM

1 . By assumption,
there exist two morphisms β1 : M1 → L1 and α1 : L1 → Z1(N) with L1 ∈L and t1 =
α1β1. Since N is HomA (L ,−)-exact, there exists a morphism γ1 : L1→ N2 such that
εN

2 γ1 =α1. Let s1 = γ1β1, then dN
2 s1 = µN

2 εN
2 γ1β1 = µN

2 α1β1 = µN
2 t1 = f1−s0dM

1 . Using
the same arguments we construct sn : Mn→ Nn+1, such that fn = dN

n+1sn + sn−1dM
n , for

any n > 0. For n < 0, we take sn = 0.

Now, we are in position to prove the first main result of this section.

Theorem 3.2.2. Let N be an exact complex and M a bounded below complex. Then, if
every Zn(N) ∈Pr−1

A
(Mn), then N ∈Pr−1

C (A )
(M).

Proof. Suppose that Zn(N) ∈Pr−1
A
(Mn) for every n ∈ Z. Then, every morphism Mn→

Zn(N) factors through a projective object. Thus, by Lemma 3.2.1, every morphism f :
M→N is null-homotopic by a morphism s such that each sn factors through a projective
object. Then, every f : M→ N factors through a projective complex, by Lemma 3.1.11.
Thus, N ∈Pr−1

C (A )
(M).
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Example 3.2.3. The subprojectivity domain of a finitely presented objects in A contains
the class of all flat objects (see Proposition 2.1.19). By Theorem 3.2.2, we get that
the subprojectivity domain of a bounded below complex of finitely presented objects
contains the class of all flat complexes (of course if A is Grothendieck).

The following example shows that Theorem 3.2.2 fails without assuming the condi-
tion “M is bounded below”.

The example will be given in a category which has enough injectives, has objects
which are not projectives, and every injective object is projective. An example of such a
category is the category of modules over a quasi-Fröbenius ring which is not semisimple
(for instance, Z/4Z is a quasi-Fröbenius ring which is not semisimple, see [33] for more
details and examples about quasi-Fröbenius rings).

Example 3.2.4. Suppose that A has enough injectives, has objects which are not pro-
jectives, and every injective object is projective. Then, there exist a non bounded
complex P and an exact complex E such that E does not hold in Pr−1

C (A )
(P) and

Zn(E) ∈Pr−1
A
(Pn) for every n ∈ Z.

Proof. Let M be a non projective object, N an object such that N does not hold in
Pr−1

A
(M), E an exact complex with E1 = N, En = 0 for every n > 1 and En is injective

for every n < 1 (we can construct such a complex since A has enough injectives) and P
an other exact complex with projective components and Z0(P) = M (we can construct
the componenets Pn for n > 0 since A has enough projectives, and the components Pn
for n 6 0 can be constructed since A has enough injectives and every injective object is
projective). Since the components of P are projectives, it is clear that for every n ∈ Z,
Zn(E)∈Pr−1

A
(Pn). Now, suppose that E ∈Pr−1

C (A )
(P) and let f : M→N be a morphism

in A . We construct a morphism of complexes g : P→ E as follows

· · · // P2
dP

2 //

g2=0

��

P1
dP

1 //

g1= f εP
1

��

εP
1 ��

P0
dP

0 //

g0

��

εP
0 ""

P−1 //

g−1

��

· · ·

M
µP

1

??

f
��

Z1(P)
µP

0

;;

z1

��

· · · // 0 // N
dE

1

// E0
dE

0

//

εE
0 ""

E−1 // · · ·

Z1(E)
µE

0

;;

where g0 : P0→ E0 exists such that g0µP
1 = dE

1 f since E0 is injective (one can verifies
that g0dP

1 = dE
1 g1), z1 : Z1(P)→ Z1(E) exists such that z1εP

0 = εE
0 g0 by the univer-

sal property of cokernels, g−1 : P−1 → E−1 exists such that g−1µP
0 = µE

0 z1 since E−1
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is injective. It is clear that g−1dP
0 = dE

0 g0. Using the same arguments we construct
gn : Pn → En such that gndP

n+1 = dE
n+1gn+1 for every n < 0. For every n > 1 we take

gn = 0. Now, the morphism of complexes g : P→ E factors through a projective com-
plex Q since we supposed that E ∈ Pr−1

C (A )
(P). Let β : P→ Q and α : Q→ E be

two morphisms of complexes such that f = αβ . Consider the following commutative
diagram

0 // M
µP

1 //

γ

��

P0
dP

0 //

β0
��

P−1 //

β−1
��

· · ·

0 // Z0(Q)
µ

Q
1 //

δ

��

Q0
dQ

0 //

α0
��

Q−1 //

α−1
��

· · ·

0 // N
dE

1 // E0
dE

0 // E−1 // · · ·

The morphisms γ : M→ Z0(Q) and δ : Z0(Q)→N exist and make the diagram commute,
by the universal property of kernels. We claim that f = δγ . Indeed, dE

1 f εP
1 = dE

1 g1 =

g0dP
1 =α0β0µP

1 εP
1 =α0µ

Q
1 γεP

1 = dE
1 δγεP

1 , then f = δγ . Thus, any morphism f : M→N
factors through a projective object in A . Then, N ∈ Pr−1

A
(M) which is not the case.

Therefore, E does not hold in Pr−1
C (A )

(P) even if Zn(E)∈Pr−1
A
(Pn) for every n∈Z.

The following example in the category of modules shows that the reverse implication
of Theorem 3.2.2 does not hold true in general.

Recall that a ring R is said to be a left IF-ring if every injective R-module is flat.
Obviously, every von Neumann regular ring is a left IF-ring but the converse does not
hold. In fact, an example of a quasi-Fröbenius ring which is not semisimple can be
seen as an example of a left IF-ring which is not a von Neauman regular ring since
quasi-Fröbenius rings are If and Noetherian, and von Neauman regular rings which are
Noetherian are semisimple (see for instance [?, ?, ?] for more details and examples
about IF-rings).

Example 3.2.5. Let R be an IF ring which is not von Neumann regular, then there
exists a finitely presented module which is not projective, so there exists a module K
which does not belong to the subprojectivity domain of M. Consider an exact complex
N : · · · → 0→ K→ E→C→ 0→ ··· such that K is in position 2 and E is an injective
module. Since M is finitely presented (then every flat module holds in its subprojectivity
domain) and R is an IF-ring, E ∈Pr−1

R-Mod(M). Then, N ∈Pr−1
C (R)(M) (as we will see

in Lemma 3.2.8). However, Z1(N) = K does not belong to Pr−1
R-Mod(M).

Now, we turn our attention to the second aim of this section which is to investigate,
for two complexes M and N, whether N ∈Pr−1

C (A )
(M) if Nn ∈Pr−1

A
(Zn−1(M)) for every

n ∈ Z. We will see in Theorem 3.2.7 that this holds true for M exact and N bounded
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above only if every projective object is injective. But first, we prove the following
lemma which will be useful in the proof of Theorem 3.2.7.

Lemma 3.2.6. Let L be a class of objects in A , M be an exact complex which is
HomA (−,L )-exact and N a bounded above complex. If every morphism Zn−1(M)→
Nn factors through an object in L , then every morphism of complexes M→ N is null-
homotopic by a morphism s such that every sn factors through an object in L .

Proof. Let f : M→ N be a morphism of complexes. We are going to construct a family
of morphisms sn : Mn−1→Nn, such that fn = dN

n+1sn+1+sndM
n . We suppose that Nn = 0

for every n > 0. Then f0dM
1 = 0, so there exists a morphism t0 : Z−1(M)→ N0 such

that t0εM
0 = f0. Then, there exist two morphisms β0 : Z−1(M)→ L0 and α0 : L0→ N0

with L0 ∈L and t0 = α0β0. Since M is HomA (−,L )-exact, there exists a morphism
γ0 : M−1→ L0 such that γ0µM

0 = β0.

· · · // M0
dM

0 //

εM
0

##

f0

��

M−1
dM
−1

//

γ0

��
f−1

��

· · ·

Z−1(M)

β0 ##

µM
0

55

t0

��

L0
α0

{{

0 // N0
dN

0

// N−1
dM
−1

// · · ·

Let s0 = α0γ0. One can check that s0dM
0 = f0, hence f−1dM

0 = dN
0 f0 = dN

0 s0dM
0 , so

there exists a morphism t−1 : Z−2(M)→ N−1 such that t−1εM
−1 = f−1− dN

0 s0. Then,
there exist two morphisms β−1 : Z−2(M)→ L−1 and α−1 : L−1→ N−1 with L−1 ∈L
and t−1 = α−1β−1. Since M is HomA (−,L )-exact there exists a morphism γ−1 :
M−2→ L−1 such that γ−1µM

−1 = β−1. Let s−1 = α−1γ−1. Then, f−1−dN
0 s0 = t−1εM

−1 =

α−1β−1εM
−1 = α−1γ−1µM

−1εM
−1 = α−1γ−1dM

−1 = s1dM
−1, hence f−1 = dN

0 s0 + s−1dM
−1. Us-

ing the same arguments we construct, and for any n 6 0, sn : Mn−1 → Nn, such that
fn = dN

n+1sn+1 + sndM
n , for n > 0, we take sn = 0. Therefore, f : M→ N is null homo-

topic by the morphism s such that every sn factors through an object Ln in L .

Theorem 3.2.7. Suppose that A has enough injectives. Then, the following conditions
are equivalent.

1. For every exact complex M and every bounded above complex N, if for every
n ∈ Z, Nn ∈Pr−1

A
(Zn−1(M)), then N ∈Pr−1

C (A )
(M).
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2. For every exact complex M and every module N, if there exists n ∈ Z such that
N ∈Pr−1

A
(Zn−1(M)), then N[n] ∈Pr−1

C (A )
(M).

3. Every projective object is injective.

Proof. 1.⇒ 2. is clear.
2. ⇒ 3. Let P be a projective object and i : P → E be a monomorphism with E is
injective. Let us prove that HomA (i,M) : HomA (E,M)→ HomA (P,M) is epic for
every object M. For let f : P→ M be a morphism and consider the exact complex
X : · · · → 0→ P→ E → C → 0→ ··· with P is in the 0-position. Then, M holds
in the subprojectivity domain of X by assumption. Thus, there exist two morphisms of
complexes β : X→Q and α : Q→M such that Q is projective and αβ = φ where φ0 = f
and φi = 0 otherwise. We have α0dQ

1 = 0, hence there exists a morphism h : Z−1(Q)→M
such that hε

Q
0 = α0. Since Q is projective, the morphism µ

Q
0 : Z−1(Q)→ Q−1 splits,

that is, there exists a morphism ν
Q
0 : Q−1→ Z−1(Q) such that ν

Q
0 µ

Q
0 = id. Then,

hν
Q
0 β−1i = hν

Q
0 dQ

0 β0 = hν
Q
0 µ

Q
0 ε

Q
0 β0 = hε

Q
0 β0 = α0β0 = φ0 = f .

Thus, HomA (i,M) : HomA (E,M)→ HomA (P,M) is epic for every object M. There-
fore, P is injective.
3.⇒ 1. Let M be an exact complex and N a bounded above complex such that, for every
n ∈ Z, Nn ∈Pr−1

A
(Zn−1(M)). Hence, every morphism Zn−1(M)→ Nn factors through a

projective object. Then, by Lemma 3.2.6, every morphism of complexes M→N is null-
homotopic by a morphism s such that every sn : Mn→ Nn+1 factors through a projective
object (M is HomA (−,PA )-exact since every projective object is injective). Then,
by Lemma 3.1.11, every morphism of complexes M→ N factors through a projective
complex. Therefore, N ∈Pr−1

C (A )
(M).

Another natural question at this point is whether the inverse implication of the first
assertion of Theorem 3.2.7 is true or not. Namely, given two complexes M and N, is the
condition “ N ∈ Pr−1

C (A )
(M)” sufficient to assure that Nn ∈ Pr−1

A
(Zn−1(M)) for every

n ∈ Z? Again, this is not true in general since, for instance, if X and Y are two objects
with Y /∈Pr−1

A
(X), we have Y ∈Pr−1

C (A )
(X [−1]) since every morphism X [−1]→ Y is

zero while Y 0 ∈Pr−1
A
(Z−1(X [−1])). Nevertheless, the answer to the question would be

positive if we assume that M is contractible. Namely, we will see in Proposition 3.2.9
that if M is contractible, then N ∈Pr−1

C (A )
(M) if and only if Nn ∈Pr−1

A
(Zn−1(M)) for

every n ∈ Z. The following result treats a particular case which will be useful.

Lemma 3.2.8. Let N be a complex and M an object of A . Then, for every n ∈ Z,
N ∈Pr−1

C (A )
(M[n]) if and only if Nn+1 ∈Pr−1

A
(M).
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Proof. Suppose that N ∈ Pr−1
C (A )

(M[n]) and let f : M → Nn+1 be a morphism in A .

Then, by assumption, there exists a morphism of complexes f : M[n]→ N such that
f n+1 = f . f : M[n]→ N factors through a projective complex P. Hence, f : M→ Nn+1
factors through the projective object Pn+1.
Conversely, Suppose that Nn+1 ∈ Pr−1

A
(M) and let f : M[n]→ N be a morphism of

complexes. Then, by assumption, there exists two morphisms α : P→ Nn+1 and β :
M → P such that fn+1 = αβ . We define two morphisms of complexes g : P[n]→ N
and h : M[n]→ P[n] such that gn+1 = α , gn = dN

n+1α , hn+1 = hn = β , and gm = hm = 0
otherwise. It is clear that f = gh. Therefore, N ∈Pr−1

C (A )
(M[n]).

Proposition 3.2.9. Let N be a complex and {Mn}n∈Z be a family of objects in A . Then,
we get that N ∈Pr−1

C (A )
(⊕n∈ZMn[n]) if and only if Nn+1 ∈Pr−1

A
(Mn) for every n ∈ Z.

Proof. We have Pr−1
C (A )

(⊕n∈ZMn[n])=Pr−1
C (A )

({Mn[n] n∈Z}), by Proposition 2.1.14,
and we conclude by Lemma 3.2.8.

3.3 Application to some well-behaved classes of com-
plexes

In this section, we go further in the study of subprojectivity in the category of com-
plexes and we will prove that the subprojectivity in the category of complexes provides
also a new interesting unified framework of the classical projectivity and flatness from
which arise the following natural questions that we stated in the introduction.

1. When do we have Pr−1
C (A )

(L̃ ) = #G ?

2. When do we have Pr−1
C (A )

(#L ) = G̃ ?

3. When do we have Pr−1
C (A )

(C b(L )) = G̃ ?

The first main result, which answers the first question, is given as follows.

Theorem 3.3.1. Let L and G be two classes of objects in A which contain the zero
object and such that L is closed under extensions. Then, the following conditions are
equivalent.

1. Pr−1
A
(L ) = G and HomK (A )(M,N) = 0 for any N ∈ #G and M ∈ L̃ .

2. Pr−1
C (A )

(L̃ ) = #G .
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Proof. 1.⇒ 2. Let N ∈Pr−1
C (A )

(L̃ ) and M ∈L . Then, ⊕n∈ZM[n] ∈ L̃ . Hence, N ∈
Pr−1

C (A )
(⊕n∈ZM[n]). Then, by Proposition 3.1.16, for every n ∈ Z, Nn ∈ Pr−1

A
(M).

Thus, for every n ∈ Z, Nn ∈Pr−1
A
(L ) = G . Then, Pr−1

C (A )
(L̃ )⊆ #G . Conversely, let

N ∈ #G and M ∈ L̃ . Then, for every n ∈ Z, Nn ∈ G and Mn ∈L since L is closed
under extensions. Then, for every n ∈ Z, Nn+1 ∈ Pr−1

A
(Mn). Then, N ∈ Pr−1

C (A )
(M),

by Theorem 3.1.12, since HomK (A )(M,N) = 0. Therefore, N ∈Pr−1
C (A )

(L̃ ).

2.⇒ 1. Let N ∈ #G and M ∈ L̃ , then N ∈ Pr−1
C (A )

(M). Thus, by Lemma 3.1.2,

HomK (A )(M,N) = 0. Now, let us prove that Pr−1
A
(L ) = G . For let N ∈Pr−1

A
(L ) and

M ∈ L̃ , then N ∈Pr−1
A
(M0) since M0 ∈L (L is closed under extensions). Then, N ∈

Pr−1
C (A )

(M) by Lemma 3.1.8. Then, N ∈Pr−1
C (A )

(L̃ ) = #G . Thus, N ∈ G . Therefore,

Pr−1
A
(L )⊆ G . Conversely, let N ∈ G and M ∈L , hence N ∈ #G and M ∈ L̃ . Then,

N ∈ Pr−1
C (A )

(M) by assumption. Then, by Lemma 3.1.8, N ∈ Pr−1
A
(M), then N ∈

Pr−1
A
(L ). Therefore, Pr−1

A
(L ) = G .

Now, the second main result of this section is as follows :

Theorem 3.3.2. Suppose that A has a projective generator P and let L and G be
two classes of objects in A such that 0,P ∈ L . Then, the following conditions are
equivalent.

1. Pr−1
A
(L ) = G and HomK (A )(M,N) = 0 for any M ∈ #L and N ∈ G̃ .

2. Pr−1
C (A )

(#L ) = G̃ .

Proof. 1.⇒ 2. Let N ∈ Pr−1
C (A )

(#L ), then N ∈ Pr−1
C (A )

(P[n]) for every n ∈ Z, so N

is exact by Corollary 3.1.18. Now, let L ∈L , then N ∈Pr−1
C (A )

(L[n]) for every n ∈ Z.

Then, by Lemma 3.1.7, Zn(N) ∈Pr−1
A
(L) for every L ∈L and n ∈ Z. Then, Zn(N) ∈

Pr−1
A
(L ) = G for every n ∈ Z. Thus, N ∈ G̃ . Conversely, let N ∈ G̃ and L ∈ #L . For

every n ∈ Z, Zn(N) ∈ G =Pr−1
A
(L ), hence Nn ∈Pr−1

A
(L ) since Pr−1

A
(L ) is closed

under extensions. Then, N ∈Pr−1
C (A )

(L) by Theorem 3.1.12 since HomK (A )(M,N)= 0

by assumption. Thus, N ∈Pr−1
C (A )

(#L ).

2.⇒ 1. It is clear that HomK (A )(M,N) = 0 for any M ∈ #L and N ∈ G̃ by Lemma
3.1.2. To prove that Pr−1

A
(L ) = G , let N ∈ Pr−1

A
(L ), then for every M ∈ #L , N ∈

Pr−1
A
(M0), hence N ∈Pr−1

C (A )
(M) (see Lemma 3.1.8). Therefore, N ∈Pr−1

C (A )
(#L ) =

G̃ , hence N ∈ G . Conversely, let N ∈ G and M ∈L then, N ∈ G̃ and M ∈ #L . Then,
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N ∈ Pr−1
C (A )

(M) by assumption. Thus, N ∈ Pr−1
A
(M) by Lemma 3.1.8. Therefore,

N ∈Pr−1
A
(L ).

It was proven in [45] that the class G P⊥
C (R) is inside ˜G P⊥

R-Mod, that is, the class of

exact complexes with cycles in G P⊥
R-Mod (see [45, Proposition 3.4 and Remark 3.3]).

Here, we show when these two classes coincide in C (A ).

Proposition 3.3.3. If direct sums exist and they are exact, then G P⊥
C (A ) = G̃ P⊥

A if
and only if HomK (A )(M,N) = 0 for any Gorenstein projective complex M and any

complex N ∈ G̃ P⊥
A .

Proof. We have Pr−1
A
(G PA ) = G P⊥

A by Corollary 2.1.17, then, by Theorem 3.3.2,

Pr−1
C (A )

(#G PA ) = G̃ P⊥
A if and only if HomK (R)(M,N) = 0 for any M ∈ #G PA

and N ∈ G̃ P⊥
A . But #G PA = G PC (A ), by Proposition 1.3.5. Then, we get that

Pr−1
C (A )

(#G PA )=Pr−1
C (A )

(G PC (A ))=G P⊥
C (A ) (see Corollary 2.1.17). Therefore,

G P⊥
C (A ) = G̃ P⊥

A if and only if HomK (A )(M,N) = 0 for any M Gorenstein projective

complex and any N ∈ G̃ P⊥
A .

Now, we turn our attention to the third question. In the study of this question, a new
type of classes appears naturally which are defined as follows.

Definition 3.3.4. Given L a class of objects of A , a complex X is said to be a dgL
complex, if Xn ∈L , for each n ∈ Z, and Hom•(X ,G) is exact whenever G is an exact
complex with cycles in Pr−1

A
(L ). We denote the class of dgL complexes by dgL̃ .

The terminology used in this definition is inspired from dgL complexes introduced
by Gillespie [27] based on the fact that, when (L ,G ) is the classical cotorsion pair
(Pro jA ,A ), dgL̃ is nothing but the classical DG-projective complexes.

Lemma 3.3.5. If L is a class which contains 0, then C−(L )⊆ dgL̃ .

Proof. Set G =Pr−1
A
(L ) and let X ∈ C−(L ) and f : X → N be a morphism of com-

plexes with N ∈ G̃ . N is exact and Zn(N) ∈ Pr−1
A
(L ), for each n ∈ Z, hence N is

HomA (Pro jA ,−)-exact and every morphism Xn→ Zn(N) factors through a projective
in A . Therefore f : X → N is null-homotopic, by Lemma 3.2.1. Thus, Hom•(X ,N) is
exact whenever N is a G̃ complex.

Now, our third main result of this section is given as follows.
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Theorem 3.3.6. Suppose that A has a projective generator P and let L and G be two
classes of modules such that 0,P ∈L . Then, the following conditions are equivalent.

1. Pr−1
A
(L ) = G .

2. Pr−1
C (A )

(C b(L )) = G̃ .

3. Pr−1
C (A )

(C−(L )) = G̃ .

4. Pr−1
C (A )

(dgL̃ ) = G̃ .

Proof. 1.⇒ 4. Let us prove that Pr−1
C (A )

(dgL̃ )⊆ G̃ . For let N ∈Pr−1
C (A )

(dgL̃ ), then

N ∈Pr−1
C (A )

(P[n]) for every n ∈ Z, by Lemma 3.3.5, so N is exact by Corollary 3.1.18.

Now, let n ∈ Z and L ∈L , then N ∈Pr−1
C (A )

(L[n]) for every n ∈ Z, by Lemma 3.3.5.

Then, by Lemma 3.1.7, Zn(N)∈Pr−1
A
(L) for every L∈L . Then, Zn(N)∈Pr−1

A
(L ) =

G for every n ∈Z. Thus, N ∈ G̃ . Now, let us prove that G̃ ⊆Pr−1
C (A )

(dgL̃ ). Let N ∈ G̃

and M ∈ dgL̃ , then HomK (A )(M,N) = 0 since Hom•(X ,N) is exact. For every n ∈ Z,
Zn(N) ∈ G =Pr−1

A
(L ), hence Nn ∈Pr−1

A
(L ) since Pr−1

A
(L ) is closed under exten-

sions. Then, N ∈Pr−1
C (A )

(dgL̃ ) by Theorem 3.1.12. Thus, N ∈Pr−1
C (A )

(dgL̃ ).

4. ⇒ 1. Let N ∈ Pr−1
A
(L ), then for every M ∈ dgL̃ , N ∈ Pr−1

A
(M0) since M0 ∈

L . Then, for every M ∈ dgL̃ , N ∈ Pr−1
C (A )

(M) (see Lemma 3.1.8). Therefore, N ∈

Pr−1
C (A )

(dgL̃ ) = G̃ , hence N ∈ G . Conversely, let N ∈ G and M ∈ L then, N ∈ L̃

and M ∈ dgL̃ (see Lemma 3.3.5). Then, N ∈ Pr−1
C (A )

(M) by assumption. Then,

N ∈Pr−1
A
(M) by Lemma 3.1.8. Then, N ∈Pr−1

A
(L ).

(4.⇔ 1.)⇒ 2. It is clear that G̃ ⊆Pr−1
C (A )

(C b(L )) since C−(L )⊆ dgL̃ by Lemma

3.3.5. Conversely, let N ∈Pr−1
C (A )

(C b(L )). Then, N ∈Pr−1
C (A )

(P[n]) for every n ∈ Z,

so N is exact by Corollary 3.1.18. Now, let n ∈ Z and L ∈L , then N ∈Pr−1
C (A )

(L[n])

for every n ∈ Z. Then, by Lemma 3.1.7, Zn(N) ∈ Pr−1
A
(L) for every L ∈ L . Then,

Zn(N) ∈Pr−1
A
(L ) = G for every n ∈ Z. Thus, N ∈ G̃ .

For 2.⇒ 1. and 3.⇒ 1. we use the same arguments of 4.⇒ 1.
(2.⇔ 4.)⇒ 3. is clear since C b(L )⊆ C−(L )⊆ dgL̃ (by Lemma 3.3.5).

The following result is a direct consequence of Theorem 3.3.6 and it will be useful
to unify various known results and characterize important classes of complexes.
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Proposition 3.3.7. Suppose that A has a projective generator P and let L and G be
two classes in A such that 0,P∈L and Pr−1

A
(L ) = G . Then, the following conditions

are equivalent for any complex F.

1. F ∈ G̃ .

2. Every morphism X → F, with X ∈ C b(L ), factors through a projective complex.

3. Every morphism X→ F, with X ∈ C−(L ), factors through a projective complex.

4. Every morphism X → F, with X ∈ dgL̃ , factors through a projective complex.

Proof. 1.⇔ 2. Applying Theorem 3.3.6 we get that Pr−1
C (A )

(C b(L )) = G̃ . Then, we
conclude by Proposition 2.1.4.
1.⇔ 3. and 1.⇔ 4. hold using the same arguments.

In Section 2.1, we characterized the subprojectivity domains of several homologi-
cally interesting classes in A . Now, we will apply Proposition 3.3.7 to get some inter-
esting characterizations of objects in C (A ).

We start with the following characterization of exact complexes.

Corollary 3.3.8. If A has a projective generator, then the following conditions are
equivalent for a complex F in C (A ).

1. F is exact.

2. Every morphism X → F, where X is a bounded complex of projectives, factors
through a projective complex.

3. Every morphism X → F, where X is a bounded below complex of projectives,
factors through a projective complex.

4. Every morphism X → F,where X is a DG-projective complex, factors through a
projective complex.

Proof. Following the notations of Proposition 3.3.7, let L be the class of projective
objects and G = A . Then, G̃ is the class of exact complexes, and dgL̃ is the class of
DG-projective complexes.

Then, we give a characterization of projective complexes.

Corollary 3.3.9. If A has a projective generator, then the following conditions are
equivalent for a complex F in C (A ).

1. F is exact and every cycle is projective.
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2. Every morphism X → F, where X is bounded, factors through a projective com-
plex.

3. Every morphism X → F, where X is bounded below, factors through a projective
complex.

4. Every morphism X → F, factors through a projective complex.

Proof. Using the notations of Proposition 3.3.7, let L = A and G be the class of pro-
jective objects, Pro jA . Then, G̃ = Pro jC (A ) (see Proposition 1.2.2) and dgL̃ =C (A )
since for every X ∈C (A ) and G∈Por jC (A ), Hn(Hom•(X ,G))=HomK (A )(X [n],G)=
0 for every n ∈ Z (idG is null homotopic since G is contractible).

In the case of the class of Gorenstein projective objects and the class of strongly
Gorenstein projective objects we have the following.

Corollary 3.3.10. If A has a projective generator, then the following conditions are
equivalent for a complex F in C (A ).

1. F is exact and every cycle holds in G̃ P⊥
A .

2. Every morphism X → F, where X is a bounded complex of Gorenstein projective
components, factors through a projective complex.

3. Every morphism X → F, where X is a bounded below complex of Gorenstein
projective components, factors through a projective complex.

4. Every morphism X → F, where X is a dgG̃ PA complex, factors through a pro-
jective complex.

5. Every morphism X → F, where X is a bounded complex of strongly Gorenstein
projective components, factors through a projective complex.

6. Every morphism X→ F, where X is a bounded below complex of strongly Goren-
stein projective components, factors through a projective complex.

7. Every morphism X → F, where X is a dgS̃ G PA complex, factors through a
projective complex.

Proof. For 1.⇔ 2.⇔ 3.⇔ 4., we apply Proposition 3.3.7 to L = G PA and G =

G̃ P⊥
A (see Corollary 2.1.17). And for 1.⇔ 5.⇔ 6.⇔ 7., we apply it to L =S G PA

and G = S̃ G P⊥
A = G̃ P⊥

A (see Proposition 2.1.16).

99



CHAPTER 3. MEASURING PROJECTIVITY OF COMPLEXES

In the case of a class of finitely generated objects, to apply Proposition 3.3.7, we
have to assume that A has a projective generator which is finitely generated and since
we are studying finitely generated objects in Grothendieck categories, then A should be
a Grothendieck category with a finitely generated projective generator. But in that case,
A will be equivalent to the category of modules. For this reason, we give Corollaries
3.3.11 3.3.12 and 3.3.13 in R-Mod. However, it is an interesting open question to prove
these results for a general locally finitely generated Grothendieck category with enough
projectives (which include the case of representations of infinite quivers and the one of
graded modules over a graded ring over an infinite group)

We start with the case of finitely presented modules which gives the following char-
acterization of flat complexes of modules. First, recall that a complex of modules is
finitely presented if and only if it is bounded of finitely presented components, that is
FG C (A ) = C b(FG R-Mod) (see [26, Lemma 4.1.1]).

Corollary 3.3.11. The following conditions are equivalent for a complex of modules F.

1. F is exact and every cycle is flat.

2. Every morphism X → F, where X is a finitely presented complex, factors through
a projective complex.

3. Every morphism X→F, where X is a bounded complex below of finitely presented
components, factors through a projective complex.

4. Every morphism X→ F, where X is a dgF̃P complex, factors through a projec-
tive complex.

5. Every morphism X → F, where X is a bounded below complex of pure projective
components, factors through a projective complex.

6. Every morphism X → F, where X is a bounded below complex of pure projective
components, factors through a projective complex.

7. Every morphism X → F, where X is a dgP̃PA complex, factors through a pro-
jective complex.

Proof. We know from Proposition 2.1.19 and Corollary 2.1.20 that the subprojectivity
domain of the class of finitely presented modules and the one of pure projective modules
coincide with the class of flat modules. Then, to show 1.⇔ 2.⇔ 3.⇔ 4., we take L
to be the class of finitely presented modules and G to be the class of flat modules and
we apply Proposition 3.3.7. For 1.⇔ 5.⇔ 6.⇔ 7., we take L to be the class of pure
porjective modules and G to be the class of flat modules and we apply Proposition
3.3.7.
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Now, we give the case of finitely generated modules.

Corollary 3.3.12. the following conditions are equivalent for a complex of modules F.

1. F is exact and every cycle is f-projective.

2. Every morphism X → F, where X is a finitely generated complex, factors through
a projective complex.

3. Every morphism X → F, where X is a bounded below complex of finitely gener-
ated components, factors through a projective complex.

4. Every morphism X → F, where X is a dg ˜FG R-Mod complex, factors through a
projective complex.

Proof. Following the notations of Proposition 3.3.7, let L be the class of finitely gen-
erated modules and G the one of f-projective modules (see Proposition 2.1.24). Then,
C b(L ) is the class of finitely generated complexes (see [26, Lemma 4.1.1]).

Finally, we apply Proposition 3.3.7 to class of simple modules and the one of semisim-
ple modules.

Corollary 3.3.13. The following conditions are equivalent for a complex of modules F.

1. F is exact and every cycle is simple projective.

2. Every morphism X → F, where X is a bounded complex of simple components,
factors through a projective complex.

3. Every morphism X → F, where X is a bounded below complex of simple compo-
nents, factors through a projective complex.

4. Every morphism X → F, where X is a dgS̃R-Mod complex, factors through a pro-
jective complex.

5. Every morphism X → F, where X is a bounded complex of semisimple compo-
nents, factors through a projective complex.

6. Every morphism X → F, where X is bounded below complex of semisimple com-
ponents, factors through a projective complex.

7. Every morphism X → F, where X is a dg ˜S S R-Mod complex, factors through a
projective complex.
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Proof. We know from Proposition 2.1.25 and Corollary 2.1.26 that the subprojectivity
domain of the class of simple modules and the one of semisimple modules coincide with
the class of simple projective modules. Then, to show 1.⇔ 2.⇔ 3.⇔ 4., we take L
to be the class of simple modules and G to be the class of simple projectives and we
apply Proposition 3.3.7. For 1.⇔ 5.⇔ 6.⇔ 7., we take L to be the class of semisimple
modules and G to be the class of simple projectives and we apply Proposition 3.3.7.

3.4 Characterization of rings by subprojectivity of com-
plexes

This section is devoted to some applications to complexes of modules. Namely, we
give new characterizations of some classical rings by the meaning of subprojectivity.

We start with the following characterization of quasi-Fröbenius rings.

Proposition 3.4.1. The following conditions are equivalent.

1. R is quasi-Fröbenius.

2. For every exact complex M and every bounded above complex N, if for every
n ∈ Z, Nn ∈Pr−1

R-Mod(Zn−1(M)), then N ∈Pr−1
C (R)(M).

3. For every exact complex M and every module N, if there exists n ∈ Z such that
N ∈Pr−1

R-Mod(Zn−1(M)), then N[n] ∈Pr−1
C (R)(M).

Proof. Recall that R is quasi-Fröbenius if and only if every projective module is injec-
tive and apply Theorem 3.2.7 to get the desired result.

Recall that the ring R is said to be left hereditary if any left R-submodule of a projec-
tive left R-module is projective. Recall also that a complex P is said to be DG-projective
if its components are projective and Hom•(P,E) is exact for every exact complex E. In
[46, Proposition 2.3] it is proved that, under certain conditions, a ring is left hereditary
if and only if every subcomplex of a DG-projective complex is DG-projective. Among
these conditions, the authors included: “Every exact complex of projective modules is
projective”. In this section, using the properties of subprojectivity domains, we will
show that the latter equivalence holds without the mentioned assumption.

Proposition 3.4.2. For any ring R, the following statements are equivalent.

1. R is left hereditary.

2. For every complex M and every exact complex N, if Nn ∈Pr−1
R-Mod(Mn) for every

n ∈ Z, then N ∈Pr−1
C (R)(M).
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3. For every module M and every exact complex N, if there exists n ∈ Z such that
Nn ∈Pr−1

R-Mod(M), then N ∈Pr−1
C (R)(M[n]).

4. Every subcomplex of a DG-projective complex is DG-projective.

Proof. 1.⇒ 2. If 0→ K → P→ N → 0 is a short exact sequence of complexes with
P projective then K is exact (P and N are exact) and all cycles Zn(K) are projective by
1. Therefore, K is projective and then, by Lemma 3.1.2, HomK (R)(M[−1],K) = 0, so
N ∈Pr−1

C (R)(M) by Theorem 3.1.4.
2.⇒ 3. Clear.
3.⇒ 1. Let Q be a projective module and Y be any submodule of Q. Let us prove

that Pr−1
R-Mod(Y ) = R-Mod. For let X be a module and consider the exact complex

C : · · · → 0→ X → E(X)→C→ 0→ ···

(E(X) in the 0-position). By [19, Lemma 2.2] E(X) ∈ Pr−1
R-Mod(Y ). So we get that

C ∈Pr−1
C (R)(Y ). Then, X ∈Pr−1

R-Mod(Y ) by Lemma 3.1.7.
1.⇒ 4. Let P be a DG-projective complex and Q a subcomplex of P. Then, every

module Qn is projective by condition 1.
Now, let E be an exact complex and let us prove that Hom•(Q,E) is exact.
Let 0→ E → I → C → 0 be a short exact sequence of complexes with I injec-

tive. Since every module Qn is projective we get that for every n ∈ Z, Hom•(Q, I)n→
Hom•(Q,C)n is epic, and for every i, j ∈ Z, Ci ∈ Pr−1

R-Mod(Q j). Then, by condition 2.
we get that C ∈ Pr−1

C (R)(Q[n]) for every n ∈ Z (C is exact since I and E are exact), so
for every n ∈ Z, Zn(Hom•(Q, I))→ Zn(Hom•(Q,C)) is epic. Therefore, for every n ∈ Z
the two first columns of the commutative diagram with exact rows

0

��

0

��

0

��

0 // Zn(Hom•(Q,E)) //

��

Hom•(Q,E)n //

��

Bn−1(Hom•(Q,E)) //

��

0

0 // Zn(Hom•(Q, I)) //

��

Hom•(Q, I)n //

��

Bn−1(Hom•(Q, I)) //

��

0

0 // Zn(Hom•(Q,C)) //

��

Hom•(Q,C)n //

��

Bn−1(Hom•(Q,C)) //

��

0

0 0 0

are exact, so the third is also exact.
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Now consider, for every n ∈ Z, the commutative diagram with exact rows

0

��

0

��

0

��

0 // Bn(Hom•(Q,E)) //

��

Zn(Hom•(Q,E)) //

��

Hn(Hom•(Q,E)) //

��

0

0 // Bn(Hom•(Q, I)) //

��

Zn(Hom•(Q, I)) //

��

Hn(Hom•(Q, I)) //

��

0

0 // Bn(Hom•(Q,C)) //

��

Zn(Hom•(Q,C)) //

��

Hn(Hom•(Q,C)) //

��

0

0 0 0

The first and second columns are exact, so the third one is also exact. But, for every
n ∈ Z, Hn(Hom•(Q, I)) = HomK (R)(Q[n], I) = 0 since I is contractible.

4.⇒ 1. Let Q be a projective module and Y a submodule of Q. Since Y is a subcom-
plex of the DG-projective complex Q, Y must be DG-projective by assumption, so Y is
projective.

It is a well-known fact that a ring is left semi-hereditary if and only if it is left coher-
ent and every submodule of a flat module is flat (i.e., the weak global dimension of the
ring is at most 1). Using subprojectivity we can prove a similar result in the categories
of complexes. Namely, a ring is left semi-hereditary if and only if it is left coherent and
every subcomplex of a DG-flat complex is DG-flat (Corollary 3.4.4). This is so because
rings for which subcomplexes of DG-flat complexes are DG-flat are precisely those of
weak global dimension at most 1 (Proposition 3.4.3).

Recall that the subprojectivity domain of the class of all finitely presented complexes
(respectively, modules) is the class of all flat complexes (respectively, modules) (see
Proposition 2.1.19). Recall also that a complex F is said to be DG-flat if Fn is flat for
every n∈Z and the complex E⊗•F is exact for any exact complex E of right R-modules
(see [5]).

Proposition 3.4.3. For any ring R, the following assertions are equivalent.

1. The weak global dimension of R is at most 1.

2. For every finitely presented complex M and every exact complex N such that Nn ∈
Pr−1

R-Mod(Mn) for every n ∈ Z, then N ∈Pr−1
C (R)(M).
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3. For every finitely presented module M and every exact complex N, if there exists
n ∈ Z such that Nn ∈Pr−1

R-Mod(M), then N ∈Pr−1
C (R)(M[n]).

4. Every subcomplex of a DG-flat complex is DG-flat.

Proof. 1.⇒ 2. Consider a short exact sequence of complexes 0→ K → P→ N → 0
with P projective. Since all cycles Zn(P) are projective, every cycle Zn(K) is flat by
assumption. Then, K is flat (K is exact since P and N are), so K ∈ Pr−1

C (R)(M[−1])

and hence HomK (R)(M[−1],K) = 0 by Lemma 3.1.2. Therefore, N ∈ Pr−1
C (R)(M) by

Theorem 3.1.4.
2.⇒ 3. Clear.
3.⇒ 1. Let X be a submodule of a flat module F . Let us prove that X ∈Pr−1

R-Mod(M)
for every finitely presented module M. For let M be a finitely presented module and
consider the exact complex

F : · · · → 0→ X → F →C→ 0→ ·· ·

with F in the 0-position.
Since F ∈Pr−1

R-Mod(M) we have that F ∈Pr−1
C (R)(M) by assumption, and then X ∈

Pr−1
R-Mod(M) by Lemma 3.1.7.
1.⇒ 4. Let F be a DG-flat complex, N be a subcomplex of F and P→ N be an epic

quasi-isomorphism with P DG-projective. To prove that N is DG-flat it is sufficient to
prove that for every finitely presented complex M, HomC (R)(M,P)→ HomC (R)(M,N)
is epic (see [17, Proposition 6.2]). For let f : M→ N be a morphism of complexes with
M finitely presented and consider the following pullback diagram

0 // E // D //

��

M //

f
��

0

0 // E // P // N // 0

Every module Nn is flat by 1, so Nn ∈ Pr−1
R-Mod(Mn) for every n ∈ Z, and hence the

short exact sequence 0→ E → D→ M→ 0 splits at the module level by Proposition
3.1.1 since for every n ∈ Z, Dn is a pullback (see Lemma 3.1.3). Then, the sequence
0→ E→D→M→ 0 is equivalent to a short exact sequence 0→ E→M(g)→M→ 0
where M(g) is the mapping cone of a morphism g : M[−1]→ E (see [22, Section 3.3]).

Now, every module En is flat by condition 1. So, En ∈ Pr−1
R-Mod(Mn+1) for every

n ∈ Z. Thus, E ∈Pr−1
C (R)(M[−1]) by condition 2 and then by Lemma 3.1.2 we get that

HomK (R)(M[−1],E) = 0.
In particular, g : M[−1]→ E is null-homotopic so the sequence 0→ E →M(g)→

M→ 0 splits (see [22, Proposition 3.3.2])and then the sequence 0→ E→ D→M→ 0
splits. Therefore, f clearly factors through P→ N.
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4.⇒ 1. Let F be a flat module and Y a submodule of F . Then Y is a subcomplex of
the DG-flat complex F , so Y is also DG-flat by assumption and therefore Y is flat.

Corollary 3.4.4. For any ring R the following statements are equivalent.

1. R is left semi-hereditary.

2. R is left coherent and for every finitely presented complex M and every exact
complex N, if Nn ∈Pr−1

R-Mod(Mn) for every n ∈ Z, then N ∈Pr−1
C (R)(M).

3. R is left coherent and for every finitely presented module M and every exact com-
plex N, if there exists n ∈ Z such that Nn ∈Pr−1

R-Mod(M), then N ∈Pr−1
C (R)(M[n]).

4. R is left coherent and every subcomplex of a DG-flat complex is DG-flat.

Proof. Since R is left semi-hereditary if and only if it is left coherent and has the weak
global dimension at most 1, we apply Proposition 3.4.3 the get the result.
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