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Abstract: In greenhouses, sensors are needed to measure the variables of interest. They help farmers
and allow automatic controllers to determine control actions to regulate the environmental conditions
that favor crop growth. This paper focuses on the problem of the lack of monitoring and control
systems in traditional Mediterranean greenhouses. In such greenhouses, most farmers manually
operate the opening of the vents to regulate the temperature during the daytime. Therefore, the
state of vent opening is not recorded because control systems are not usually installed due to
economic reasons. The solution presented in this paper consists of developing a Long Short-Term
Memory Recurrent Neural Network (LSTM-RNN) as a soft sensor to estimate vent opening using the
measurements of different inside and outside greenhouse climate variables as input data. A dataset
from a traditional greenhouse located in Almería (Spain) was used. The data were processed and
analyzed to study the relationships between the measured climate variables and the state of vent
opening, both statistically (using correlation coefficients) and graphically (with regression analysis).
The dataset (with 81 recorded days) was then used to train, validate, and test a set of candidate
LSTM-based networks for the soft sensor. The results show that the developed soft sensor can
estimate the actual opening of the vents with a mean absolute error of 4.45%, which encourages
integrating the soft sensor as part of decision support systems for farmers and using it to calculate
other essential variables, such as greenhouse ventilation rate.

Keywords: protected agriculture; greenhouse ventilation; machine learning; long short-term memory;
virtual sensor; climate modeling

1. Introduction

Nowadays, agriculture faces numerous challenges, mainly, the growth of the world
population, the effects of climate change, strict market regulations, and energy ineffi-
ciency [1]. Overcoming these challenges requires the application of robust and adaptive
management strategies that involve the implementation of technology at all stages of the
hierarchical agricultural production system. Greenhouses are prominent facilities that can
help to address such challenges [2]. Greenhouses are designed to protect crops and provide
suitable environmental conditions to favor their growth. The climate inside a greenhouse
can be regulated using different systems such as ventilation, heating, humidification, and
CO2 injection, among others. These actuators are necessary to regulate essential variables
like air temperature, humidity, or CO2 concentration to improve the growth of plants and
fruits [3]. This requires sensors that measure the evolution of the variables of interest to
provide farmers and automatic controllers with the information needed to determine when
to activate greenhouse actuators to improve crop conditions or protect them.

Traditionally, sensors and automatic controllers are not installed in greenhouses due to
the associated costs. Farmers are used to manually activating the actuators based on their
own experience and continuous supervision of the crop and the weather. In recent years,
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with the availability of low-cost devices, monitoring and control systems are more common
in commercial greenhouses, mainly due to the proliferation of emerging technologies such
as wireless sensor networks (WSN) [4] and the Internet of Things (IoT) [5,6], which allow
farmers to remotely monitor the state of the crop in real time through mobile apps or
computing platforms [7,8]. Despite the proven advantages that monitoring and control
systems can offer in terms of increased crop productivity and energy efficiency [9], it is still
unusual to find a high level of technology in most traditional greenhouses [10].

In this context, this paper focuses on the problem of the lack of monitoring and control
systems in traditional Mediterranean greenhouses. These greenhouses operate in warmer
climatic conditions and with higher values of solar radiation. Therefore, not many actuators
are typically used, as the control actions are mainly focused on air temperature regulation,
which directly affects crop growth [3]. In greenhouses located in warm climate zones,
natural ventilation is the most widely used system to regulate air temperature during the
daytime [11] due to its low cost [12]. It consists of opening and closing the greenhouse vents
up to a certain point depending on the desired air temperature for the crop, allowing an
exchange of the hot air leaving the greenhouse with the cooler air entering it. Most farmers
manually operate the opening of the vents in these greenhouses, which means that it is not
regulated by a controller. For that reason, the state of vent opening is not usually recorded,
although potentiometers could be used for this purpose [13]. In this regard, it is important
to note that some farmers use monitoring devices, such as commercial meteorological
stations. However, these stations are equipped and designed with a limited number of
sensors that only measure the evolution of the main climate variables [14]. Therefore, even
with such monitoring systems, the state of vent opening is often not recorded unless a
control system is used for ventilation or specific sensors are installed in the vents.

The importance of knowing the state of vent opening (generally, the state of the
actuators) lies in the possibility of performing a more detailed analysis of the climatic
information measured in a greenhouse, such as for modeling tasks or climate prediction. It
is essential for IoT platforms as decision support systems that provide recommendations
to farmers after analyzing the data measured by the stations installed in greenhouses [8].
Such recommendations are based on predictive models of greenhouse climate and crop
growth [3,15], which require as input the state of vent opening to quantify the relevant
effect of the ventilation flux (airflow rate) on the inside climate and crop [16,17]. In addition,
continuous recording of the state of vent opening could also be important for legal aspects.
For example, greenhouse structures can be damaged on stormy days by heavy wind and
rain, and the recorded information on vent opening may be necessary for insurance claims.

The solution proposed in this paper consists of developing a soft sensor to estimate
the state of vent opening when it is not measured in a greenhouse. Soft sensors, also
known as virtual sensors, are useful tools for estimating a variable from the measurements
provided by other physical sensors installed in a given system [18]. There are numerous
examples of soft sensors applied to different fields, and in particular, some studies were
applied to greenhouses, such as to design irrigation controllers or estimate the leaf area
index of the crop [19–21]. Soft sensors can be classified into two categories: model-based
and data-based. Model-based soft sensors use mathematical expressions that represent the
relationship between the variable to be estimated and the other variables that are measured
with physical sensors. For data-based soft sensors, the relationships between the estimated
and measured variables can be determined using identification techniques and statistical
or machine learning (ML) methods [22].

To the best of our knowledge, no previous work has been published on the estimation
of the vent opening of greenhouses because it is assumed to be a measurable variable. This
work is the first attempt to implement a tool for this purpose. In this sense, there are no
mathematical models that directly relate the greenhouse climate to the opening of the vents.
Instead, this relationship has been studied in the literature for calculating the ventilation
flux, which is the airflow that circulates through the vents when they are open [16,23]. There
are some well-known models for the calculation of the ventilation flux [24–26] that use
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mathematical expressions fed with the state of vent opening measured by physical sensors
installed in the vents (e.g., potentiometers). These models consist of nonlinear equations
with parameters that must be calibrated for different types of greenhouses. Therefore,
using these models to develop a soft sensor for vent opening would be complicated. If
the equations of the cited models are inverted, the vent opening could be estimated, but
then actual measurements of the ventilation flux would be obligatory, which would require
installing expensive sensors, such as sonic anemometers [27].

For the reasons explained above, this work aims to develop a data-driven soft sensor
to estimate vent opening. To design the soft sensor, Deep Learning (DL) methods [28] are
known to be a suitable option due to the satisfactory results presented in other applications
for greenhouses [29]. In particular, neural networks based on Long Short-Term Memory
(LSTM) are of particular interest for the described problem, considering the complexity and
nonlinearity of the dynamics involved in greenhouses [30]. Consequently, an LSTM-based
network has been selected for the implementation of the soft sensor due to its powerful
advantages and ability to deal with the vanishing gradient problem. This capability is
expected to be advantageous for successfully modeling some delayed and correlated
dynamics of the greenhouse inside climate [31].

In summary, the main contribution of this work is the development of a soft sensor
using an LSTM-based network to estimate the opening of greenhouse vents from climate
variables commonly measured in medium-technology greenhouses. Figure 1 presents the
concept of the developed soft sensor, which receives as inputs the measurements of the
following climate variables recorded inside and outside a greenhouse: air temperature,
air relative humidity, global solar radiation, CO2 concentration in the air, and outside
wind velocity. The estimation of vent opening with a data-based soft sensor is possible
because the evolution of the inside climate variables is affected by the ventilation flux.
Every time that the vents of a greenhouse are opened or closed, variations in all or some
of the aforementioned variables are measured. A historical dataset from a traditional
Mediterranean greenhouse was used to train and test a series of LSTM-based network
architectures to reproduce the actual opening of the vents which caused the measured
variations in the inside climate variables. The training and testing processes were performed
using a progressive elimination procedure (PEP) before selecting the final soft sensor
based on an LSTM-RNN neural network. The results show a satisfactory performance,
demonstrating that the developed soft sensor can estimate the actual opening of the vents
with a reduced error.
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The soft sensor’s contribution lies in providing an estimated signal of the opening
of vents for its possible use by the existing models to calculate the ventilation flux and
predict greenhouse climate variables [23,24]. In this sense, the soft sensor would allow the
calculation of the ventilation flux when no physical sensors are available in a greenhouse
to measure the opening of the vents. Calculating the ventilation flux is important for the
predictive modeling of other greenhouse climate variables that are strongly affected by it,
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such as relative humidity, CO2 concentration, or air temperature. Other potential applica-
tions of the soft sensor may include its integration into IoT platforms, as discussed above,
which would be useful for continuous estimation of vent opening from data measured with
commercial weather stations installed in greenhouses.

The remainder of the paper is organized as follows. In Section 2, materials and
methods are described. In Section 3, the results of training and testing the soft sensor using
an LSTM-based network are presented and discussed. Finally, the conclusions of the work
are summarized in Section 4.

2. Materials and Methods

In this section, an experimental greenhouse was used to obtain the dataset needed
for this work. The data obtained include a set of inside and outside greenhouse climate
variables to be analyzed and selectively used as inputs in the next section, as well as the
target, which is the actual vent-opening signal generated by an automatic controller. As a
result of changes in the opening of vents, the climate variables inside the greenhouse are
affected by the ventilation flux. Thus, the theory of this work is that a soft sensor based
on an LSTM neural network can estimate the vent opening that causes those changes in
the inside climate variables. The components and equations that constitute the LSTM-
based neural network are explained in this section. Furthermore, the potential network
architectures and their hyperparameters are preselected.

2.1. Greenhouse Description

The greenhouse used in this study is located at “Las Palmerillas” Experimental Station
of the Cajamar Foundation in Almería, Spain, at an altitude of 151 m. It is a traditional
Mediterranean greenhouse (see Figure 2a) with a surface of 877 m2 (37.80 m × 23.20 m).
Tomato (Lycopersicon esculentum “Ramy”) is the crop grown inside this experimental green-
house, with a plant density of 1.4 plants/m2. The greenhouse is equipped with auxiliary
systems, such as different actuators, to control the indoor climate. Particularly, the green-
house has five roof vents (8.36 m × 0.73 m) and two lateral vents (32.75 m × 1.90 m) for
natural ventilation, situated on the north and south sides. The roof vents have an angled
opening, as shown in Figure 2d, while the lateral vents are opened by rolling up a plastic
film, as presented in Figure 2c. All vents can be opened from 0 to 100% of their ventilation
area with a resolution of 10% by means of three electric motors (see Figure 2b), which can
be manually or automatically operated.

2.2. Experimental Dataset

A dataset with 81 recorded days (233,280 samples) was used to train, validate, and test
the developed soft sensor. This dataset was acquired using a commercial data acquisition
system called Compact FieldPoint (National Instruments, Austin, TX, USA). It contains
13 climate variables related to inside and outside air temperature, relative humidity, global
solar radiation, CO2 concentration in the air, wind velocity, vent opening, and time variables.
The data were recorded during the growth cycle of a tomato crop using sensors installed
inside and outside the experimental greenhouse (see Table 1). Their acronyms and units are
presented in Table 2. To capture the rapid climate changes inside the greenhouse due to the
effect caused by the opening of the vents, a sampling time of 30 s was selected for the data.
The opening signal of vents was generated by a supervisory and control data acquisition
(SCADA) system, in which a controller was executed to regulate the air temperature inside
the greenhouse by natural ventilation.

The period for the selected dataset was from 10 October to 29 December 2020. Due to
the large size of this dataset, Figure 3 shows an example of the data recorded between 24
November and 9 December 2020. Notice that the selected data represent the usual dynamics
in the greenhouse, with a mix of sunny, cloudy, and windy days. The opening signal of the
vents presents different amplitudes and changes due to the action of the automatic control
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system, and also some days with a less variant behavior, similar to the manual operation
performed by farmers, as can be observed from 3 to 9 December 2020.
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Table 1. Sensors installed outside and inside the experimental greenhouse.

Sensor Brand Model Precision Range
Air temperature Campbell Scientific HC2S3 ±0.1 ◦C −40 to 60 ◦C
Air relative
humidity Campbell Scientific HC2S3 ±0.1% 0 to 100%

Global solar
radiation Hukseflux LP02 <±1% 0 to 2000 W/m2

CO2 concentration
in air E+E Elektronik EE820-C2 <±50 ppm 0 to 2000 ppm

Wind velocity Vector Instruments A100L2/PC3 <2% 0 to 75 m/s

Table 2. Dataset variable acronyms, descriptions, and units.

Acronyms Description Unit
Tin Inside air temperature ◦C
Tout Outside air temperature ◦C
Hin Inside air relative humidity %
Hout Outside air relative humidity %
CO2in Inside CO2 concentration ppm

CO2out
Outside CO2 concentration (it can be considered constant as
400 ppm) ppm

RADin Inside solar radiation W/m2

Wv Outside wind velocity m/s
CO2diff Difference between inside and outside CO2 ppm
Hdiff Difference between inside and outside relative humidity %
Tdiff Difference between inside and outside air temperature ◦C
UVENTroof Vent opening signal %
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Figure 3. Example of some days contained in the experimental dataset from 10 October 2020 to 29
December 2020.

2.3. Long Short-Term Memory

In artificial neural networks, the LSTM cell is a powerful deep recurrent neural system
developed specifically to deal with the vanishing gradient problems that often occur when
learning long-term relationships between system inputs and target outputs [32]. This
fact motivates the application of LSTM-based neural networks for greenhouse climate
modeling, which involves short- and long-term dependencies for multiple inputs (e.g.,
different climate variables) and the idea that their numerical effects would gradually vanish
over time during the training of a neural network if LSTM structures were not used. For
this reason, the opening of greenhouse vents could be better estimated not only on the
basis of the current states of the measured climate variables but also on the basis of stored
information of the long-term past states. In this sense, as a recurrent network, the output of
an LSTM cell is fed back as input, creating a recursive flow of information with increased
capability for information storage.

An LSTM unit consists of four main components: a cell, an input gate, an output gate,
and a forget gate. The cell remembers values over varying time intervals, and the cell gates
control the flow of information. The LSTM structure consists of memory blocks, which are
recurrently connected subnetworks. The memory block objective is to maintain its state
over time while regulating information flow by means of nonlinear gate units. Figure 4
shows the architecture of an LSTM cell, involving an input signal x(t), an output signal
y(t), the cell state c(t), and different activation functions σ, g, and h. The components and
the way in which an LSTM block processes the flow of information are briefly explained
below [31]:
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Block input, z. It incorporates the current input x(t) and the previous value of the
output y(t−1) of one LSTM unit. It is calculated as follows:

z(t) = g
(

Wz x(t) + Rz y(t−1) + bz

)
(1)

where t is the time instant, Wz and Rz are the weights for x(t) and y(t−1), respectively, and
bz represents a bias weight vector.

Input gate, i. It is updated by merging x(t), y(t−1) and c(t−1) as follows:

i(t) = σ
(

Wi x(t) + Ri y(t−1) + pi � c(t−1) + bi

)
(2)

where � is a point-wise multiplication of the wights Wi, Ri, and pi, with x(t), y(t−1), and
c(t−1), respectively, in which bi is the bias vector associated with the input gate.

Forget gate, f . In this component, the LSTM unit decides which information from its
previous cell states c(t−1) should be removed. Hence, the activation value of the forget gate
at t is calculated with the following expression:

f (t) = σ
(

W f x(t) + R f y(t−1) + p f � c(t−1) + b f

)
(3)

where W f , R f , and p f are the weights associated with x(t), y(t−1), and c(t−1), respectively,
and b f is the bias of the forget gate.

Cell state, c. It is calculated by merging the previous value of the cell state c(t−1) with
the block input z(t), the input gate i(t), and the forget gate f (t) values as follows:

c(t) = z(t) � i (t) + c(t−1) � f (t) (4)

Output gate, o. Its value is calculated with the following expression:

o(t) = σ
(

Wo x(t) + Ro y(t−1) + po � c(t) + bo

)
(5)

where Wo, Ro and po are the weights associated with x(t), y(t−1) and c(t−1), respectively,
and bo is a bias weight vector.

Block output, y. Finally, the block output is calculated as:

y(t) = h
(

c(t)
)

� o(t) (6)
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In Equations (1)–(6), σ, g, and h refer to the point-wise nonlinear activation functions.
The function used for gate activation is the logistic sigmoid, as presented in Equation (7).

σ (x) =
1

1 + e1−x (7)

The hyperbolic tangent is often used as the block input and output activation functions,
g(x) = h(x) = tan h(x).

Generally, the vanishing gradient problems can be overcome by using a constant error
carousel (CEC), which preserves the error signal within each cell. In a neural network, the
role of the LSTM cells is to abstract a meaningful representation of the input time series
and then transmit them to the additional hidden layers. Although LSTM-based networks
are already performing very well, the potential for improvements is still being explored, as
indicated in the comprehensive state-of-art in [31].

2.4. Network Architecture and Hyperparameters Preselection

The LSTM-based network employs full gradient training to adapt the learnable net-
work parameters (weights). The Backpropagation Through Time (BPTT) technique is used
to calculate the weights that connect the network components. The LSTM-based network
has a set of parameters, which are called hyperparameters. They are specifically determined
to define the network architecture and control the learning process in the training phase
before applying it to a dataset. These hyperparameters were selected as follows:

• The number of hidden layers. It is selected by trial and error between 4 or 5 layers.
Three types of hidden layers constituted the initial network architectures that were
tested: LSTM cells, Dense (feedforward ANN), and RNN layers, as shown in Table 3.
The reader is encouraged to find more details about RNNs and their relationship with
LSTM cells in [30].

• The number of neurons. The number of network weights, which depends on the num-
ber and type of the hidden layers and the number of their neurons, is recommended
to be much smaller than the number of data samples to avoid overfitting the network
to the training data and to favor the generalization of the network output [33]. Hence,
the number of neurons was selected accordingly, as presented in Table 3. The number
of network weights remains around 18,000, which is much smaller than the number of
training data samples (186,705 samples) multiplied by the number of selected inputs
(8–13 inputs).

• Historical input data. By trial and error, 40 samples (20 min) were chosen as historical
input data to capture all the delayed dynamics of the greenhouse climate, knowing
that it presents some slow responses to disturbances (i.e., external weather conditions)
and control actions as time-dependent events. It is a fundamental feature of RNNs,
specifically of LTSM-based networks, which allows the selective and meaningful
mapping of historical input data to the final output.

• Activation function. As presented in Equation (7), sigmoid is the selected function for
all the regular layers. It is proven to be significantly useful in the multinomial logistic
regression method, which can model types where the discrete output can have more
than two possible discrete outcomes [34]. This is particularly important considering
that the vent opening is normally a signal restricted to 11 states as discrete values
ranging from 0 to 100% with 10% jumps. These jumps are due to the resolution of the
motors used to open the vents in greenhouses.

• Optimizer. Adam is the selected optimizer. It is used as a mini-batch gradient descent
method. It is based on adaptive estimation of first- and second-order moments. It is
computationally efficient, requires little memory, and is suitable for problems with
noisy and sparse gradients [35].

• Learning rate. The default learning rate of 0.001 is used for Adam. Higher and lower
values were tested, but 0.001 proved to be more efficient in terms of loss reduction and
computation time.
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• Batch size. The batch size defines the number of samples to work within one iteration
before updating the internal weights of the network. By trial and error, the batch size
was set as 32 samples to accelerate the training process of the network.

• The number of epochs. An epoch is when all data samples pass through the neural
network. By trial and error, 150 epochs were deemed sufficient for this study. In
addition, the early stop feature is used to automatically stop the training of the network
if no improvement in the validation loss function is shown for more than 50 epochs.
In this case, the network with the best weights until that moment is stored. Also, the
training can be stopped manually when overfitting is graphically noticed, knowing
that the best network is automatically saved after every epoch.

Table 3. Selection of network architecture: number and type of layers and number of neurons.

Type of Layers Number of Neurons
Architecture A
(LSTM-ANN)

Architecture B
(LSTM-RNN)

Architecture A
(LSTM-ANN)

Architecture B
(LSTM-RNN)

Input layer LSTM LSTM Number of
inputs

Number of
inputs

First hidden
layer Dense RNN 50 30

Second hidden
layer Dense RNN 80 60

Third hidden
layer Dense RNN 80 60

Fourth hidden
layer Dense RNN 50 30

Fifth hidden
layer Dense / 15 /

Output layer Dense Dense 1 neuron for 1
target

1 neuron for 1
target

In summary, the network architecture obtained in this work is presented in Figure 5.
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3. Results and Discussion

In this section, a data analysis is performed to preselect network inputs. The prese-
lected inputs are then used to test two possible LSTM-based network architectures using
supervised learning. Finally, a network architecture is selected based on statistical and
graphical results and using different sets of the selected inputs in a PEP procedure. The
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methodology to develop the soft sensor is summarized in Figure 6. The development stages
of the soft sensor were carried out using the machine learning platform called Tensorflow.
The statistical evaluations are based on four loss functions which are the coefficient of
determination (R2), the mean absolute error (MAE), the maximum absolute error (MaxAE),
and the root mean absolute error (RMAE). The loss function used in the training process is
the mean square error (MSE). For the different tests, the computational unit used was a
computer with an AMD Ryzen 5 3400G and Radeon Vega Graphics, eight cores, 3.7 GHz,
and 8 GB RAM DDR4 1333 MHz. The developed soft sensor was coded and tested in
Python 3.9 using the Anaconda software and Visual Studio Code editor.
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3.1. Data Analysis and Inputs Preselection

The available data were standardized and analyzed to study the relationships between
the greenhouse climate variables and the vent opening signal for the preselection of the
network inputs. The analysis was carried out in two phases: statistically, using different
correlation coefficients, and graphically, using regression analysis.

The dataset includes the opening signals for roof vents and lateral vents (UVENTroof
and UVENTlat), which are almost identical (see their linear regression analysis in the upper
right of Figure 7). In this sense, only the opening signal of the roof vents was used as the
target to be estimated for simplicity. To extract additional information from the dataset
and reduce the computational time of the training process, three variables Tdiff , Hdiff , and
CO2diff, representing differences between the inside and outside greenhouse environments,
were added to the dataset as potential inputs after calculating them as follows:

Tdiff = Tin − Tout (8)

Hdiff = Hin − Hout (9)

CO2diff = CO2in − CO2out (10)

In the statistical analysis, two cases were studied. First, using the complete signal
of the vent opening (UVENTroof ≥ 0%), and second, using only the time intervals when
the vents were open (UVENTroof > 0%), as presented in Table 4. In both cases, three
correlation coefficients were used: Pearson’s coefficient for the linear correlation analysis,
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and Spearman’s and Kendall’s rank coefficients [36] for the analysis of linear and nonlinear
relationships.
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Table 4. Statistical analysis of the linear and nonlinear correlation.

Pearson’s Coefficient Spearman’s Rank
Coefficient

Kendall’s Rank
Coefficient

UVENTroof
≥ 0%

UVENTroof
> 0%

UVENTroof
≥ 0%

UVENTroof
> 0%

UVENTroof
≥ 0%

UVENTroof
> 0%

CO2out 0.22 −0.05 0.09 −0.02 0.07 −0.02
Hout −0.34 −0.15 −0.03 −0.18 −0.02 −0.13
RADin 0.75 0.37 0.07 0.45 0.05 0.34
Tout 0.5 0.3 0.17 0.32 0.14 0.23
Wv 0.2 0.03 −0.01 0.11 −0.01 0.08
CO2in −0.3 0.14 −0.03 0.2 −0.02 0.14
Hin −0.07 −0.46 −0.03 −0.51 −0.02 −0.38
Tin 0.6 0.32 0.08 0.32 0.07 0.24
CO2diff −0.36 0.14 0.1 −0.19 0.07 −0.13
Hdiff −0.37 −0.4 −0.05 −0.36 −0.04 −0.26
Tdiff 0.5 0.19 −0.08 0.21 −0.06 0.14
UVENTroof 1 1 1 1 1 1

As for the graphical analysis, all the data variables were graphically represented, as
previously shown in Figure 3. Normally, it is expected that the vents are closed mostly at
night, so the inside solar radiation measurements could be useful as an indication of daytime
and nighttime periods. In addition, regression analysis to study the linear/nonlinear
and monotonic/non-monotonic relationships in the data was also performed for two
cases (UVENTroof ≥ 0% and UVENTroof > 0%), as shown in Figure 7. The presented
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curves were obtained using the “regplot” function of a Python data visualization library
called Seaborn [37]. This function has been developed as a practical tool to graphically
demonstrate linear and nonlinear data relationships and obtain the best-fit curve. It has
a useful feature called “x_estimator” for regression analysis when discrete variables are
involved. It can calculate and plot the mean of the y-axis samples corresponding to each
repeatable discrete value on the x-axis (a data category), which in most cases helps to
demonstrate how the best-fit curve was fitted to the data distribution.

The relationships represented by the values of correlation coefficients and the results
of the regression analysis are briefly discussed, and the potential inputs are initially selected
accordingly in Table 5. It is commonly known that, when manually controlling the opening
of greenhouse vents, farmers usually follow a predetermined time-based schedule to know
when the vents should be opened or closed and what their opening percentage should
be depending on the conditions of the crop, the season, and the greenhouse geographical
location. For these reasons, two time-related variables, Xhours and Xminutes, were also
considered as inputs to the soft sensor, which may be helpful to take into account specific
changes in the vent opening and climate evolutions that repeatedly occur at a given time.
In summary, based on the findings of the data analyses, 10 variables were selected as inputs
to the LSTM-based network: Xhours, Xminutes, RADin, Wv, CO2in, Hin, Tin, Tdiff, Hdiff, and
CO2diff.

3.2. Training and Testing the LSTM-Based Network

The described LSTM-based network was trained and tested using different architec-
tures and inputs in a PEP procedure to obtain the final network for the soft sensor, knowing
that the target to be estimated is the greenhouse vent opening (UVENTroof). The training
process consists of identifying the network weights by minimizing a loss function (MSE)
that indicates the error between the real measured signal of the vent opening and the output
of the trained network (i.e., the vent opening estimated by the soft sensor).

3.2.1. Dataset Splitting

The development of any ANN requires dividing the available data into three sets
(for training, validation, and testing processes) manually or automatically, depending on
different techniques. In this work, the time series data were manually divided based on the
evolution of the target variable as one of the main factors when manually splitting data.
Hence, the data were divided as presented in Figure 8, consisting of the following parts:

• A training dataset is used for the network learning process to adjust its parameters.
The complete dataset includes two different control methods for the opening of the
vents. One is an automatic control showing rapid changes (before sample 160,000), and
the other is a time-dependent control showing fewer changes (after sample 160,000).
The training dataset was selected to include both types of control for the vent opening
to enhance the training process with sufficient information. Moreover, this dataset
was shuffled to ensure generalization during the training process. It contains 64 days
representing 80% of the total dataset, from 19 October 2020 to 22 December 2020.

• A validation dataset was also used during the training process to provide an unbiased
evaluation of the network while being fitted to the training dataset. The validation
dataset is also involved in other forms of network preparation, such as feature and
threshold selection. The validation dataset was selected to contain 8 days representing
10% of the complete dataset: 4 days from the start of the complete dataset (from 14
October 2020 to 17 October 2020) and another 4 days from the end (from 26 December
2020 to 29 December 2020). These days were selected because they present the different
types of control for the opening of the vents.

• A test dataset is used to perform an unbiased evaluation of the final network. The test
dataset was also selected to contain 8 days representing 10% of the complete dataset:
4 days from the start of the dataset (from 10 October 2020 to 13 October 2020) and
another 4 days from the end (from 22 December 2020 to 25 December 2020).
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Table 5. Statistical analysis of the linear and nonlinear correlation between the potential inputs and
the target vent opening signal.

UVENTroof

Pearson’s
Coefficient

Spearman’s
Rank

Coefficient

Kendall’s Rank
Coefficient

Regression
Analysis

Prior Knowledge about
Physical Intractions

Inputs
Pre-Selection

CO2out Weak correlation No correlation No correlation

Weak
non-monotonic

negative
correlation

Not influenced by greenhouse
vent opening.

The network could implicitly
consider it a reference for the
difference between inside and

outside climate.

Eliminated

Hout
Weak negative

linear correlation

Weak negative
correlation when
UVENTroof > 0%

Weak negative
correlation when
UVENTroof > 0%

Monotonic
negative
nonlinear

correlation

Not influenced by greenhouse
vent opening.

The network could implicitly
consider it a reference for the
difference between inside and

outside climate.

Eliminated

RADin

Significant
positive linear

correlation

Moderate positive
correlation when
UVENTroof > 0%

Moderate
positive

correlation when
UVENTroof > 0%

Monotonic
positive nonlinear

correlation

Not influenced by greenhouse
vent opening.

Considered as a reference for
the diurnal and nocturnal

periods, knowing that vents
are mostly closed at night.

Selected

Tout
Moderate positive
linear correlation

Moderate positive
linear correlation

Moderate positive
linear correlation

Monotonic
positive linear

correlation

Not influenced by greenhouse
vent opening.

Probably correlated because it
increases in the midday by

solar radiation, which makes
its evolution somehow
similar to UVENTroof.

Eliminated

Wv Weak correlation
Weak correlation

when
UVENTroof > 0%

Weak correlation

Weak correla-
tionAssociated
non-monotonic

variations

Not influenced by greenhouse
vent opening.

The network could consider
its effect on the ventilation

rate, in turn, on the
greenhouse air variables
implicitly throught vent

opening.

Selected

CO2in

Weak
negativelinear

correlation

Weak positive
correlation when
UVENTroof > 0%

Weak positive
correlation when
UVENTroof > 0%

Non-monotonic
nonlinear

correlation when
UVENTroof > 0%

Rapidly influenced by vent
opening.

Considered to have the fastest
reaction to UVENTroof .

Selected

Hin

Moderate
negative linear

correlation when
UVENTroof > 0%

Moderate
negative

correlation when
UVENTroof > 0%

Moderate
negative

correlation when
UVENTroof > 0%

Negative
monotonic
nonlinear

correlation

Rapidly influenced by vent
opening.

Considered to have a high
sensitivity to UVENTroof.

Selected

Tin
Moderate positive
linear correlation

Moderate positive
correlation when
UVENTroof > 0%

Weak positive
correlation when
UVENTroof > 0%

Non-monotonic
nonlinear

correlation

Influenced by vent opening.
Considered to have a high
sensitivity to UVENTroof.

Selected

CO2diff

Moderate
negative linear

correlation

Weak negative
correlation when
UVENTroof > 0%

Weak negative
correlation when
UVENTroof > 0%

Non-monotonic
nonlinear

correlation

Rapidly influenced by vent
opening.

Considered to have a high
sensitivity to UVENTroof.

Selected

Hdiff

Moderate
negative linear

correlation

Moderate
negative

correlation when
UVENTroof > 0%

Weak negative
correlation when
UVENTroof > 0%

Monotonic
nonlinear

correlation

Rapidly influenced by vent
opening.

Considered to have a high
sensitivity to UVENTroof.

Selected

Tdiff
Moderate positive
linear correlation

Weak positive
correlation when
UVENTroof > 0%

Weak positive
correlation when
UVENTroof > 0%

Non-monotonic
nonlinear

correlation

Influenced by vent opening.
Considered to have a high
sensitivity to UVENTroof.

Selected
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3.2.2. Network Training and Progressive Elimination Procedure for Input Selection

The network training process was performed using different architectures and inputs.
As presented in Table 3, two architectures, “A” and “B”, were preselected based on multiple
tests. The first tests focused on evaluating a simple architecture (LSTM-ANN) consisting
of an LSTM layer as an input layer, five hidden layers, and an output layer of a dense
type. Secondly, a deep network (LSTM-RNN) was tested consisting of an LSTM layer as
an input layer, four RNN hidden layers to increase the capability of the resulting network,
and a dense output layer. The LSTM layer was used in both cases as an input layer to take
advantage of its ability to abstract a meaningful representation of the input time series, and
then the extracted higher-level information was transmitted to the hidden layers in order
to produce the output, which is the estimated vent opening signal.

The preselected architectures were trained, tested, and statistically evaluated with
different inputs in a PEP procedure, as presented in Table 6. According to the input
preselection in Section 3.1 and the greenhouse climate dynamics, the first PEP procedure
consisted of eliminating the input Wv because it was not correlated with the opening signal
of vents. It is a very noisy variable that was graphically observed to cause undesirable
fluctuations in the evolution of the output of the networks (i.e., the estimated vent opening).
The second PEP procedure consisted of preserving Wv and eliminating Tout, Hout, and
CO2out because these variables do not change when the vents are opened or closed, and
their physical effects on the greenhouse climate are already taken into account in the
calculated climate differences, Tdiff, Hdiff, and CO2diff. It was concluded that the elimination
of these inputs resulted in a decrease in the error values; thus, the PEP is an efficient
procedure for improving the estimation and reducing the size of the data.

Table 6. Statistical evaluation of the obtained LSTM-based networks using different cost functions.

All the Available Inputs Eliminating Only Wv Eliminating Tout, Hout and CO2out

R2 RMSE
(%)

MAE
(%)

MaxAE
(%) R2 RMSE

(%)
MAE

(%)
MaxAE

(%) R2 RMSE
(%)

MAE
(%)

MaxAE
(%)

Architecture A
(LSTM-ANN) 0.77 9.8 3.94 77.66 0.74 10.04 4.04 99.03 0.77 9.64 5.33 65.76

Architecture B
(LSTM-RNN) 0.61 12.76 5.98 93.05 0.75 10.32 5.43 63.42 0.8 9.13 4.45 62.94
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The time consumed for the training processes of the LSTM-ANN network is around
6 h, and for the LSTM-RNN network, it is around 9 h, which is considered an acceptable
time consumption with a moderate computational cost. According to the results presented
in Table 6, architecture “B” with an LSTM-RNN network outperforms architecture “A”
with an LSTM-ANN network. Moreover, based on the PEP procedure, the best results
for the LSTM-RNN network are obtained using only 10 selected inputs which are: Xhours,
Xminutes, RADin, Wv, CO2in, Hin, Tin, Tdiff, Hdiff, and CO2diff.

Concerning the graphical evaluation, the training process of the best LSTM-RNN
network presented an adequate convergence for the evolution of the training and validation
cost function, as shown in Figure 9. The training process was manually stopped when
the onset of divergence (see the red box in Figure 9) was observed as a sign of network
overfitting. An example of estimation results using the training data is shown in Figure 10,
which presents a satisfactory fit between the actual and estimated vents opening, avoiding
overfitting to the training data. The results using the test dataset with the 10 selected inputs
are shown in Figure 11. In addition, Figures 12 and 13 show other results using the test
dataset with 12 inputs and 13 inputs, respectively. The estimated opening of vent results
were filtered to present a less noisy signal. A first-order filter was used for the output of the
LSTM-RNN network, with a time constant of 250 s. In Figure 11, the results obtained with
the LSTM-RNN network show a satisfactory fit to the real vent opening by reproducing
the time intervals in which the vents are opened and closed, as well as the maximum
opening amplitudes, and by estimating the main changes in the signal. It can be noticed
that the fit is better in one part (see samples after 12,000) than in another due to the different
evolution of the opening signal of vents. It is less challenging for the network to estimate
the part of the signal with fewer changes per day because it is a repetitive dynamic, and
the changes in the opening values occur more slowly and far apart over time. These two
factors allow the network to learn more about this part of the signal than the variant part.
In other words, the fewer changes per day in the opening of the vents, the easier it is for
the network to interpret the corresponding change in the greenhouse climate and the more
accurate the estimation provided by the soft sensor. This fact is particularly interesting for
most traditional greenhouses, in which farmers manually open and close the vents in a
similar way, so these results confirm the usefulness of the developed soft sensor in that
context. However, it can be concluded that it will be necessary to train the LSTM-RNN
network with larger datasets to increase the accuracy of estimating the rapid changes in
vent opening.
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4. Conclusions

A soft sensor based on an LSTM-RNN neural network has been developed to estimate
the opening of greenhouse vents using a set of measurable climate variables. A comprehen-
sive statistical and graphical data study was performed using different linear and nonlinear
correlation coefficients and regression analyses. Based on the results of this data analysis
and trial-and-error training processes, two possible network architectures (LSTM-ANN and
LSTM-RNN) and ten inputs were preselected for the soft sensor design. In addition, a series
of training and testing processes were carried out in a PEP procedure. It has been shown
that the external climate variables Tout, Hout, and CO2out are necessary to calculate the
corresponding differences between the inside and outside greenhouse climate Tdiff, Hdiff,
and CO2diff to be used as inputs to the LSTM-based network. It has also been found that
Hdiff is the most correlated input presenting a negative monotonic nonlinear correlation
with the opening signal of vents.

The best network architecture is the LSTM-RNN, due to its performance in estimating
the actually recorded opening of vents with reduced error values: R2 = 0.8, RMSE = 9.13%,
MAE = 4.45% and MaxAE = 62.94%. As for the graphical results, the soft sensor developed
using the LSTM-RNN network provides a good fit between the estimated and the real
vent opening in both daytime and nighttime. However, the estimation is more accurate
when there are fewer changes in the opening of vents. Moreover, it has not been possible
to compare the obtained network and results with other works since this study is the first
attempt to estimate the opening of greenhouse vents.

Consequently, the results confirm that the soft sensor is suitable for use in greenhouses
where farmers manually operate the opening of the vents. In this context, the soft sensor
could be applied to:

• Estimate and monitor the evolution of the natural ventilation flux.
• Develop predictive models for greenhouse climate evolution as a function of the

estimated vent opening.
• IoT platforms and decision support systems to provide recommendations to farmers

after analyzing the measured data, and for example, alert them to close the vents when-
ever a high wind velocity is detected to avoid any risk of damage to the greenhouse
and crop.

In conclusion, the contribution of this work to the field of greenhouse agriculture lies
in the possibility of offering a tool that can be applied to estimate the opening signal of
vents without the need to have installed specific sensors on the vents of a greenhouse or
control systems for natural ventilation.

In future works, the use of larger datasets to improve the performance of the soft sensor
will be studied. The focus will be on improving the estimation results when fast changes in
the vent opening occur. The soft sensor could also be tested in different greenhouses with
different shapes and geographical locations.
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