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Resumen

Durante décadas, las técnicas clásicas de control se han utilizado ampliamente en diversas
industrias para garantizar el funcionamiento estable y eficiente de sistemas dinámicos. Es-
tas técnicas, que son el fundamento de la teoría de control, desempeñan un papel vital en el
funcionamiento de numerosos procesos y sistemas. Se basan en modelos matemáticos que
describen la dinámica del sistema y buscan manipular las variables de entrada para controlar
su comportamiento. Operan según los principios del control por retroalimentación, monitore-
ando continuamente la salida del sistema y comparándola con un valor de referencia deseado.
Cualquier desviación entre las salidas reales y deseadas desencadena ajustes en la acción de
control, llevando el sistema de vuelta a su estado deseado. Estas técnicas clásicas de control
a menudo se basan en algoritmos bien establecidos, como el control Proporcional, Integral
y Derivativo (PID), que sigue siendo uno de los métodos más ampliamente utilizados en la
industria. El control PID logra un equilibrio entre estabilidad, capacidad de respuesta y precisión
en estado estacionario, lo que lo hace adecuado para una amplia gama de aplicaciones.

En el campo del control automático, los procesos industriales plantean desafíos únicos debido
a su inherente complejidad. Los sistemas que se encuentran en plantas de fabricación, procesos
químicos, redes eléctricas y redes de transporte exhiben interacciones intrincadas, no linealidades,
incertidumbres y dinámicas variables en el tiempo. Estas complejidades surgen de varios factores.
En primer lugar, la escala misma de estos sistemas presenta dificultades en el modelado, análisis
y diseño del control. Por otro lado, los procesos industriales a menudo involucran numerosos
componentes interconectados, subsistemas y variables, lo que dificulta capturar con precisión
su dinámica. Además, estos sistemas operan en tiempo real, lo que requiere respuestas de
control rápidas y precisas ante cambios en las condiciones de operación y ante la aparición de
perturbaciones.

La estructura de control típica en la industria se basa en un control jerárquico, teniendo
un control óptimo de alto nivel, y un control de bajo nivel basado en estrategias clásicas de
control. Actualmente, la mayoría de las contribuciones de control automático en investigación
tienden a derivar a resultados teóricos y enfocados a estrategias de control basadas en nuevas
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tecnologías, como Machine Learning o Deep Learning. Sin embargo, las clásicas son las más
afianzadas en la industria y, debido a esta tendencia en la investigación, durante los últimos
años se han ido reduciendo paulatinamente las contribuciones que estudian y mejoran estas
estrategias clásicas, dando por hecho que está todo resuelto y bien establecido. Sin embargo,
existen todavía muchos problemas por resolver y mejoras que proponer en las estrategias de
control clásicas y que son fundamentales para que los objetivos definidos por las capas más
altas puedan llevarse a cabo de forma satisfactoria. Es aquí donde surge la motivación del
desarrollo de esta tesis. Por un lado, aportar contribuciones a las estrategias de control clásicas
basadas en PID, rechazo a perturbaciones con el control por adelanto o el control en cascada.
Por otro lado, con el fin de demostrar estas estrategias en el sector industrial, se propone la apli-
cación de algunas de ellas para resolver el problema de control de diferentes procesos industriales.

Esta tesis aporta varias contribuciones a las estrategias de control clásicas basadas en control
PID, rechazo de perturbaciones con control por adelanto y control en cascada. Adicionalmente,
con el fin de demostrar estas estrategias en el sector industrial, se propone su aplicación para el
control de las variables más importantes en diferentes procesos industriales.

En primer lugar, se proponen diferentes contribuciones a las estrategias de control clási-
cas. De este modo, se han estudiado sistemas con incertidumbre en el modelo y sometidos
a perturbaciones, para los que se diseña un controlador robusto basado en una estructura de
control clásica. La principal aportación ha consistido en modificar los límites originales de
la metodología Quantitative Feedback Theory (QFT) para el problema de regulación en un
esquema de control por adelanto y diseñar un controlador PI robusto que tenga en cuenta esas
incertidumbres. Se demuestra en simulación cómo mejora el rendimiento del controlador en el
rechazo a las perturbaciones del sistema. También se ha estudiado el efecto de las perturbaciones
medibles en un control en cascada clásico. Se ha realizado un análisis sobre cómo implementar
el control por adelanto junto con el cascada basado en lo que dicta la literatura. Basándose en
ese estudio, se ha propuesto una solución compuesta por dos controladores por adelanto estáticos
que en paralelo aplicados tanto al lazo externo como al interno que mejora el rendimiento del
sistema, tanto en términos de su salida como de la señal de control. Se demuestra su viabilidad
con múltiples ejemplos en simulación. Por último, se ha estudiado en detalle el problema de
saturación en el rechazo a perturbaciones medibles mediante un control por adelanto clásico. En
este sentido, se aporta una regla de sintonía sencilla de la ganancia del controlador por adelanto
que permite modificarla cuando el sistema entra en saturación. Con este cambio el rechazo a la
perturbación se realiza de forma más rápida mejorando el rendimiento a la salida del sistema. Se
demuestra su validación mediante la aplicación a múltiples sistemas en simulación y además, se
implementa de forma satisfactoria en una plataforma de control de temperatura.

En segundo lugar, se han utilizado varias plantas experimentales para evaluar las aplicaciones
y estrategias de control desarrolladas. Tres contribuciones han sido desarrolladas para el control
y simulación de las variables más importantes en el crecimiento de las microalgas en un reactor
raceway a escala industrial, haciendo uso de la planta industrial ubicada en las instalaciones
del Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), cerca de la
Universidad de Almería. Concretamente se ha desarrollado una herramienta para simular la
producción de microalgas en fotobiorreactores industriales de tipo raceway. En ella se pueden
modificar múltiples factores del modelo para simular diferentes escenarios. Por ejemplo, la cepa,
el diseño físico del reactor, la estación del año en la que simula el modelo o la estrategia de
control que se desea implementar. También se ha resuelto el problema de control de pH haciendo
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uso de distintas estrategias de control, concretamente un controlador predictivo y un contro-
lador robusto basado en QFT. Este último se ha implementado en la planta capturando la gran
incertidumbre del modelo de crecimiento, obteniendo resultados satisfactorios. Por otro lado, se
ha implementado con éxito un controlador robusto combinado con la técnica de linealización
mediante retroalimentación para el control de temperatura de un invernadero. Un invernadero
situado en la Estación Experimental "Las Palmerillas" de Fundación Cajamar (El Ejido, Almería)
ha servido como planta de ensayo para la implementación del controlador propuesto, obteniendo
resultados satisfactorios.

Las reflexiones finales de esta tesis concluyen que, si bien las técnicas avanzadas de control y
los enfoques de aprendizaje automático están ganando popularidad en el control industrial, las
estrategias clásicas de control siguen siendo esenciales y continúan siendo utilizadas ampliamente
en instalaciones industriales complejas. Estas estrategias proporcionan una base sólida para el
diseño, operación y mantenimiento de sistemas de control, asegurando un rendimiento estable
y eficiente en entornos industriales complejos, y como se demuestra en esta tesis, aún siguen
teniendo margen de mejora.

Palabras clave: PID, control por adelanto, control en cascada, linealización por realimentación,
control predictivo lineal, teoría de la realimentación cuantitativa, anti-windup, invernadero,
reactor raceway de microalgas, TCLab.
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Abstract

For decades, classic control techniques have been extensively employed across process in-
dustry to ensure the stable and efficient operation of dynamic systems. These conventional
control methods, which serve as the basis of control theory, have played a vital role performing
numerous processes and systems. These techniques rely on mathematical models that describe
the dynamics of the system and aim to manipulate input variables to control its behavior. They
operate on the principles of feedback control, continuously monitoring the system’s output and
comparing it to a desired reference value. Any deviation between the actual and desired outputs
triggers adjustments in the control action, bringing the system back to its desired state. Classic
control techniques often rely on well-established algorithms, such as Proportional, Integral, and
Derivative (PID) control, which remains one of the most widely used methods in the industry.
PID control strikes a balance between stability, responsiveness, and steady-state accuracy, mak-
ing it suitable for a wide range of applications.

In the field of automatic control, industrial processes have unique challenges due to their
inherent complexity. Systems found in manufacturing plants, chemical processes, power grids,
and transportation networks exhibit intricate interactions, nonlinearities, uncertainties, and time-
varying dynamics. These complexities stem from various factors. Firstly, the large scale of these
systems presents difficulties in modeling, analysis, and control design. Moreover, industrial
processes often involve numerous interconnected components, subsystems, and variables, mak-
ing it challenging to accurately capture their dynamics. Additionally, these systems operate in
real-time, necessitating prompt and accurate control responses to changing operating conditions
in the presence of disturbances.

The typical control structure in the industry is based on hierarchical control, with high-level
optimal control layers based on economic or safety objectives and low-level control layers
based on classical control strategies. Currently, most automatic control research contributions
focus on theoretical results and control strategies based on new technologies such as Machine
Learning or Deep Learning. However, classical control strategies are the most established in the
industry, and due to this research trend, there has been a gradual reduction in contributions that
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study and improve these classical strategies, assuming that all the research is already done and
well-established. Nevertheless, there are still many open problems to solve and improvements to
propose in classical control strategies, which are essential for achieving objectives defined by
higher-level layers. These are the reasons that have motivated the development of this thesis.

This thesis provides various contributions to classical control strategies based on PID control,
disturbance rejection with feedforward control, and cascade control. Additionally, in order to
demonstrate these strategies in the industrial sector, their application to solve the control problem
in different industrial processes is proposed.

Firstly, different contributions to classical control strategies are proposed. Systems with model
uncertainties and subjected to disturbances have been studied, for which a robust controller
based on a classical feedforward control structure has been designed. The main contribution
lies in modifying the original limits of the Quantitative Feedback Theory (QFT) methodology
for the regulation problem with feedforward control and designing a robust PI controller that
considers the uncertainties. Simulation results demonstrate an improved controller performance
in rejecting system disturbances. The effect of measurable disturbances on classical cascade
control has also been studied. Based on literature guidelines, an analysis has been conducted
on how to implement feedforward control together with cascade control. From this study, a
solution composed of two static feedforward controllers applied in parallel to both the outer
and inner loops has been proposed, improving the system’s output and control signal perfor-
mance. Its feasibility has been demonstrated through multiple simulation examples. Lastly,
the saturation problem in rejecting measurable disturbances using classical feedforward control
has been examined in detail. A simple tuning rule for the feedforward controller gain has been
provided, allowing for modification when the system becomes saturated. This modification
enables faster disturbance rejection, improving the system’s output performance. Its validation
has been demonstrated through the application of multiple systems in simulation, and it has also
been successfully implemented in a temperature control platform.

Secondly, several control applications and strategies, including one developed in this thesis,
have been tested in various experimental plants. Firstly, three contributions have been devel-
oped for modeling and controlling the most important variables in microalgae growth. An
industrial-scale raceway reactor located at the Instituto Andaluz de Investigación y Formación
Agraria y Pesquera (IFAPA) facilities close to the University of Almería has been used as an
industrial plant. Specifically, a tool has been developed to simulate the production of microalgae
in industrial-scale raceway photobioreactors. Multiple factors of the model can be modified to
simulate different scenarios, such as the strain, physical design of the reactor, time of year for
the simulation, or the desired control strategy. The pH control of the microalgae growth has also
been addressed using different control strategies, specifically a linear predictive controller and
a robust controller based on QFT. The latter has been implemented in the real plant, capturing
the significant uncertainty in the process model and achieving satisfactory results. Furthermore,
a robust controller combined with a feedback linearization technique has been successfully
implemented for a greenhouse temperature control. The greenhouse located at the experimental
center "Las Palmerillas" Cajamar Foundation (El Ejido, Almería) has served as the testing plant
for the proposed controller, yielding satisfactory results.

The final reflections of this thesis conclude that while advanced control techniques and
artificial intelligence approaches are gaining popularity nowadays, classic control strategies
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remain essential and continue to be widely used in complex industrial facilities. They provide
a solid foundation for control system design, operation, and maintenance, ensuring stable and
efficient performance in challenging industrial environments. In this thesis, it is demonstrated
that there are still many open research problems around classic control techniques.

Keywords: PID, feedforward, cascade control, feedback linearization, model predictive control,
quantitative feedback theory, anti-windup, greenhouse, microalgae raceway reactor, TCLab.
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MCO2 Molecular weight of the carbon dioxide (g mol−1)
MO2 Molecular weight of the oxygen (g mol−1)
n Form exponent (-)
nl Number of lateral vents (-)
nr Number of roof vents (-)
N Receding horizon
Nu Control horizon
N1 Lower value of prediction horizon
N2 Upper value of prediction horizon
ℵ Filter derivative value
[O2] Dissolved oxygen concentration (%)
[O∗

2] Equilibrium concentration with gas phase for oxygen (mol m−3)
[O2]m Total dissolved oxygen in the medium (mol m−3)
P Process transfer function
pH Culture pH
P0 Nominal plant
Prs,o(t) Outside solar radiation (Wm−2)
Pt,o(t) Outside temperature (K)
Pws,o(t) Wind speed (m s−1)
PO2 Oxygen photosynthesis rate (KgO2 kg

−1s−1)
PCO2 Carbon dioxide photosynthesis rate (KgO2 kg

−1s−1)
PO2,max Oxygen maximum photosynthesis rate (KgCO2 kg

−1s−1)
PO2(DO) Dissolved Oxygen effect on the oxygen productivity (-)
PO2(pH) pH effect on the oxygen productivity (-)
PO2(Xr) Temperature effect on the oxygen productivity (-)
P Family of plants
P∗ Representative plants of P for design stage
Q Heat flow (W )
Qi Heat dissipated by heater i
Qac Accumulated heat in the greenhouse air (Wm−2)
Qcn−cv Heat transfer by convection and conduction in the cover between the outside and

the inside air (Wm−2)
Qcv,cal Convection heat transfer with the pipes heating system (Wm−2)
Qcv,ss Ground surface convection heat transfer (Wm−2)
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Nomenclature

Qliq Volumetric flow rate of the liquid (m3s−1)
Qm Volumetric flow rate of the medium (m3s−1)
Qs Solar radiation absorbed by the greenhouse air (Wm−2)
Qt,c Latent heating produced by the crop transpiration (Wm−2)
Qv Input and output exchange due to natural ventilation (Wm−2)
r, r(t) Reference variable, and reference variable at time t
rd Relative degree
Rs Saturation ratio
RT Time constant ratio
RO2 Respiration coefficient for dissolved oxygen (mg L−1)
ρ Density of the culture (kgm−3)
s Complex variable used in Laplace transform
S,R Closed loop polynomial in GPC design
Slim Stability limit specification in QFT
σh Stefan-Boltzmann constant
t Time
t0 Initial time
tf Final time
Td Disturbance model time constant
Ti Time constant of process i
Tm Sample time
Tp Time constant for the pole
Tpl T-polynomial in GPC design
Tdy Closed loop transfer function from input d to output y
Tt Anti-windup tracking time
Tu Process model time constant
Tuy Closed loop transfer function from input u to output y
Tz Time constant for the zero
⊤ Transpose
τi PID integral time
τd PID derivative time
u, u(t) Input variable, and input variable at time t
ulimit Control signal limit value
umax, umin Maximum and minimum values of the control signal
upeak Control signal peak value
usat Control signal saturated
u0 Control signal initial value
U Laplace transform of the control signal
Uven(t) Vent opening control signal (o)
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Nomenclature

v Virtual control signal in feedback linearization technique
vr Raceway reactor constant velocity (ms−1)
Vs Volume of each section (m3)
Vt,c Short wave transmission coefficient based on the cover

transmission coefficient, whitening and the shader mesh state (-)
Vv,a−l Areas of the sidewall ventilation openings (m2)
Vv,a−r Areas of the roof ventilation openings (m2)
w Raceway reactor width
ωi Specific frequency value
Ω Set of frequencies
Xh,i TCLab heater i temperature
Xr Raceway reactor temperature
Xt,a(t) Air temperature (K)
Xt,ss(t) Soil surface temperature (K)
X∞ Environment temperature (oC)
ξ(z−1) Characteristic polynomial of GPC design
ϕl Leakage by infiltration when vents are closed flux (m3s−1)
ϕv(t) Ventilation flow (m3s−1)
Φ Convertible function for feedback linearization
ψ Coordinates in feedback linearization
y, y(t) Output variable, and ouput variable at time t
Yb/O2 Biomass yield coefficient (kg)
z−1 Backward shift operator
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1. Introduction

In this introductory chapter, Section 1.1 offers a brief description of the current concerns
in the classic control strategies and their application in the industry. Section 1.2 presents the
main topics treated in this thesis. Section 1.3 sketches out the rest of the chapters, Section
1.4 summarizes all the publications developed during this thesis, and Section 1.5 contains the
personal and scientific achievements derived during the doctoral period.

1.1 Background and Motivation

Control theory has witnessed significant advancements over the years, with the development
of new algorithms, techniques, and solutions. There has been a growing focus on advanced
control techniques in control systems, while classic control techniques have received less at-
tention in recent literature. For example, integrating machine learning techniques in control
systems has emerged [16]. Data-driven control methods leverage large datasets and algorithms to
learn system dynamics, identify optimal control strategies, and adapt to changing environments.
Reinforcement learning, neural networks, and deep learning techniques have been explored
extensively recently [70, 76, 91, 122, 127].

Several reviews have studied the implementation of these new control strategies in the in-
dustry and have concluded that, despite the significant research interest in all these new control
techniques, the industry is hesitant to adopt them. Instead, they prefer to stick to classical control
strategies that have been proven to be effective. For example, in [16], the authors state that
the research field has recently expanded to include new areas incorporating Machine Learning
applications. However, it is uncertain whether this trend will continue, as it has been seen in
other fields where initial interest quickly diminished. One possible reason for this is the use of
cutting-edge algorithms that may be appealing to academics but lack practicality for industrial
practitioners. It emphasizes the importance of striking a balance between novelty and industrial
applicability. To gain acceptance, relying on established and well-understood techniques may be
more beneficial than complex and novel ones, which could potentially have a negative impact.

1



Chapter 1. Introduction

Therefore, while the appeal of advanced control techniques captivates researchers, it is crucial to
recognize the enduring significance of classic control techniques. As cited by Abramovitch in
[2]: "When the media and the public discuss such topics as self-driving vehicles and automated
drones, the buzzwords used are all about machine learning (ML) and artificial intelligence (AI),
with little mention of the "measure–compare–adjust–measure" loops that permeate and enable
such systems.", he emphasizes the significance of applying and teaching fundamental control prin-
ciples, underscoring their essential role as a base for emerging fields such as artificial intelligence.

These classic control strategies form the foundation of hierarchical control systems widely
implemented in industry, where different control layers interact to achieve system objectives.
They are the basis of the lower layer of the hierarchical control system, and their adequate
performance will ensure the upper layer’s control objectives. Classical control strategies, rooted
in well-established theories such as Proportional, Integral, and Derivative (PID) control [1, 135],
feedforward control (FF), cascade control (CC), feedback linearization (FL) or model predictive
control (MPC), have stood the test of time and proven their effectiveness in a wide range of con-
trol scenarios. For example, in [19], the authors state that, based on an extensive literature survey,
the PID controller has become the most widely used controller in various application domains
because of its simple structure and easy implementation. They study how to automatically tune
the PID parameters, concluding that tuning PID controllers would be a large research area.

Numerous studies have highlighted the significance of addressing load disturbances in the
process industry, particularly emphasizing the widespread use of feedforward control as a main
solution. In [77], a comprehensive review of feedforward control algorithms in industrial applica-
tions. The authors present the characteristics and application domains of the most representative
feedforward control algorithms and some benchmarks in industrial processes. In [37], a summary
of a set of new simple tuning rules that have been obtained, providing considerable improvements
in the control system performance and a short history of feedforward control is presented.

Moreover, several studies have researched the application and effectiveness of cascade control
in the industry. In [104], various series cascade control strategies for stable, integrating, and
unstable process models are briefly reviewed, and suitable tuning strategies are recommended.
Cascade control is widely used in industry, and authors emphasize the significant advantages
of this control strategy, including improved process stability, enhanced control accuracy, faster
response to disturbances, and better handling of complex and nonlinear systems. Besides, they
provide insights into selecting appropriate process variables, tuning methods for cascade control
loops, and integrating other classic control algorithms for optimal performance.

Furthermore, classic control techniques remain immensely important in the industrial land-
scape [136]. They are indispensable in ensuring critical systems security and efficient operation
across diverse sectors. Industrial systems have challenges in modelling, analysis, and control
system design. They often involve numerous interconnected components, subsystems, and
variables, making it challenging to accurately capture their dynamics. In this sense, classical
control strategies have a long history of successful application in diverse industries. The wealth
of knowledge and experience accumulated over the years has led to a deep understanding of the
strengths and limitations, making them a reliable choice for many industrial applications [134].
However, as industrial systems become more complex and dynamic, there is a need to improve
and tailor classical control strategies to meet specific requirements.
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1.2 Main Topics and Contributions of The Thesis

Due to the industry increasing complexity, uncertainties are an inherent part of the industrial
process. They can arise from various sources, such as parameter variations, disturbances, mea-
surement errors, and model mismatches, and reveal that uncertainty can significantly affect the
accuracy and performance of modelling and control systems, leading to a suboptimal operation,
reduced efficiency, and increased risks. In literature, several studies have researched the effects
of uncertainty on modelling and control in various industrial sectors. Authors in [108] aim that
managing uncertainties in industrial systems is a daily challenge to ensure improved design,
robust operation, accountable performance, and responsive risk control. Understanding the
challenges of uncertainty and exploring strategies to enhance modelling and control techniques
in the presence of uncertainties is important. To deal with these uncertainties, robust control
techniques must be applied. In [31], the author thoroughly covers the fundamentals of the Quan-
titative Feedback Theory (QFT) robust control technique, as well as practical control solutions
for unstable, time-delay, non-minimum phase or distributed parameter systems, plants with
large model uncertainty, high-performance specifications, nonlinear components, multi-input
multi-output characteristics or asymmetric topologies.

In summary, despite the increased interest in advanced control techniques and the relative lack
of attention given to classic control techniques in recent literature, there is still an extensive scope
for exploration and advancement in this field. The belief that everything has been accomplished
with classic control techniques is misguided, and further research and development are crucial.
It is important to recognize their significance and invest in the continued study and refinement
of classic control techniques to ensure the advancement and success of control systems in the
industry. By delving into the theoretical foundations, refining implementation methodologies,
and exploring novel applications, it is possible to unlock new potentials and enhance the effec-
tiveness of these techniques.

This thesis is driven by the motivation to address unresolved challenges within classical
control schemes, emphasizing their importance and applicability in industry. By applying these
strategies to different experimental plants, this research aims to provide practical evidence of
their effectiveness, contributing to the advancement of control theory and practice.

1.2 Main Topics and Contributions of The Thesis
This section briefly overviews the main topics studied and the contributions developed

throughout the thesis. It exposes the different contributions of classical control strategies and
their subsequent application in experimental plants.

1.2.1 Contribution on Classic Control Strategies
As mentioned before, classic control methods persistently hold significance in industrial

applications despite modern control technique advancements [65]. They offer robust and reliable
control solutions that are comprehensively understood and have a long history of successful
implementation. Moreover, they are relatively straightforward to implement within industrial
settings, require minimal computational resources, and can integrate into existing control systems.
Their simplicity also facilitates understanding, maintenance, and system upgrades.

Based on this fact, the control strategy extensively studied in this thesis, which proposes
modifications to unresolved issues, is based on classical control loops with PID controllers
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subjected to disturbances [1, 18, 135]. The PID controller is a well-established and widely
understood control technique with extensive research and practical experience, extensively used
in various industries. Based on the understanding that most industrial processes are affected
by disturbances, the control scheme applied throughout the thesis for the regulation problem is
feedforward control. This control strategy aims to improve system performance by compensating
for load disturbances in the system before they affect the output [38]. While there is extensive
literature on disturbance rejection, there are still unresolved issues, such as saturation in feed-
forward control schemes, uncertainty in the plant and disturbance models, or the rejection of
measurable disturbances in cascade control schemes.

In this regard, this thesis presents three solutions to the abovementioned problems. The
first contribution focuses on studying the presence of uncertainty in the regulation problem of
systems subjected to measurable disturbances. In this context, the strategy involves designing a
robust PID controller using QFT, modifying the original limits, and considering the uncertainties
inherent in the system [114].

On the other hand, a solution for the saturation problem is provided for feedforward control.
Some limitations have not been thoroughly studied for feedforward control, such as the saturation
of the control signal upon the arrival of the disturbance. When this happens, the power of the
feedforward control is compromised, resulting in a deteriorated performance at the output. Hence,
the other significant contribution proposes a tuning rule for the gain of the feedforward controller
upon the arrival of the measurable disturbance based on the saturation limit, peak value, and
steady-state value of the control signal. The improvement in output performance is demonstrated
through various simulations and experimental examples.

Finally, the rejection of disturbances using feedforward control in cascade control schemes
has been examined. This control strategy involves utilizing multiple control loops, where the
output of one control loop serves as the set-point or reference for another control loop. Its main
utility lies in enhancing disturbance rejection in the inner loop and stability by isolating the
effects of disturbances and changes in the inner loop from the outer loop [69]. However, the
literature has not extensively developed the study of applying feedforward control for disturbance
rejection affecting the outer loop. Therefore, the contribution focuses on implementing two
static feedforward controllers that enter both the inner and outer loops. For tuning the gain of
the feedforward controller that enters the inner loop, a simple rule is proposed based on the
parameters of both loop and disturbance models.

Overall, this thesis addresses the issues mentioned before by studying the presence of uncer-
tainty in regulation problems, proposing a tuning rule for feedforward control saturation, and
exploring the application of feedforward control in cascade control schemes. These contributions
aim to improve control system performance, enhance disturbance rejection capabilities, and
contribute to the advancement of classical control strategies in industrial applications.

1.2.2 Application on Experimental Facilities
The implementation of automatic control systems has revolutionized the management and

optimization of industrial processes, playing a vital role in their efficient operation. These
systems are specifically designed to monitor and control key parameters such as temperature,
pressure, flow rate, and level, ensuring optimal performance and reliability. With advancements
in automation and control technologies, the significance of automatic control in industrial facili-
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ties has become increasingly evident. The primary objective of automatic control is to enhance
efficiency, productivity, and safety in industrial operations. By continuously monitoring and
adjusting parameters in real-time, these control systems enable precise and accurate regulation.
They ensure that processes operate at optimal set-points, minimizing energy consumption and
waste generation. This not only results in significant cost savings but also contributes to environ-
mental sustainability, making industries more competitive in the dynamic market of today. In
this thesis, three different facilities have been used to implement some of the control techniques
and solutions defined in the document.

Several control techniques have been implemented in a raceway microalgae photobioreactor.
Extensive research has been conducted on raceway photobioreactors to facilitate large-scale
cultivation of microalgae in an industrial setting. Today, these reactors are widely recognized
as the preferred technology for industrial microalgae cultivation due to their scalability and
practicality. The appeal of raceway reactors lies in their relatively low initial investment costs
compared to alternative technologies like tubular photobioreactors, which necessitate more intri-
cate infrastructure and equipment. Additionally, raceway reactors offer other notable advantages,
including straightforward operation and minimal maintenance expenses. In this way, three
contributions have been developed and implemented in a real raceway reactor located in Almería,
Spain. A linear predictive controller was integrated into the model, enabling precise anticipation
of system behavior. Furthermore, a robust controller was developed to ensure stability and
reliable performance, with testing conducted both in simulation and in an actual industrial plant.
Lastly, an interactive tool was created to streamline the implementation of control strategies,
enhance comprehension of the intricate photobioreactor model, and provide comprehensive
training for researchers and plant operators alike.

A greenhouse facility has also been used in this thesis. Greenhouses play a crucial role in
modern agriculture by creating an environment that enables the cultivation of crops throughout
the year, regardless of external weather conditions. One of the key factors that directly influence
plant growth and productivity in a greenhouse is temperature control. A combination of the
feedback linearization control technique and QFT is used to address the challenging issue of con-
trolling the complex non-linear climate. By incorporating feedback linearization and leveraging
the principles of QFT, the aim is to effectively tackle the intricacies associated with controlling
non-linear climate dynamics.

Furthermore, temperature control is essential in various industries as it directly affects man-
ufacturing processes’ quality, safety, and efficiency. Maintaining precise temperature levels is
crucial for successfully operating and optimizing industrial systems. A temperature control
lab system has also been used as a benchmark problem to implement some of the new control
solutions developed in this thesis.

1.3 PhD Outline
The purpose of this document is to provide an overview of the key elements covered in the

thesis. The focus is primarily on the contributions made in the thesis, but there are also brief
explanations of general concepts included to facilitate understanding for the reader. The chapters
are structured in the following manner:
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• Chapter 2 is devoted to summarizing the main concepts and facilities involved in the
thesis. First, a comprehensive overview of the classic control schemes used in this thesis
is presented. Feedback control, PID control, feedforward control, cascade control, Gen-
eral Predictive Control (GPC), feedback linearization, and QFT are explained in detail.
Second, a wide description of the industrial facilities in which the control strategies have
been implemented is provided (the greenhouse, microalgae raceway photobioreactor, and
temperature platform, together with a description of the corresponding dynamic models).

• Chapter 3 studies three solutions for different classical control schemes in the presence
of measurable disturbances. Section 3.1 introduces a robust solution based on QFT for
the feedforward control scheme. This approach combines PI control with feedforward
compensators to effectively handle process uncertainties. In Section 3.2, a novel design
rule is proposed to improve the response of a classical feedforward control scheme when
saturation occurs due to disturbances. Finally, Section 3.3 presents a dual feedforward
scheme for a cascade control scheme, considering measurable disturbances at the output.

• Chapter 4 presents the implementation of the classic control techniques on industrial
facilities. In Section 4.1, three contributions are focused on the application of control
strategies to the raceway reactors. The implementation of a linear predictive controller in
simulation is first discussed. Also, the design and implementation of a robust controller
is addressed, where experimental results are presented. Lastly, an interactive tool is in-
troduced with the aim of simplifying the implementation of control strategies, improving
comprehension of the intricate photobioreactor model, and providing training opportu-
nities for researchers and plant operators. In Section 4.2, a combination of the feedback
linearization control technique and QFT is applied. This approach is utilized to effectively
handle the complex nonlinearities involved in a greenhouse temperature control problem.
Finally, the new control approach presented in this thesis to deal with saturation problems
in feedforward control scheme is evaluated in a lab-scale temperature system in Section 4.3.

• Finally, some conclusions and future research works are presented in Chapter 5.

1.4 Publications and Other Contributions
The research work of this thesis is supported by the publications listed below, where the name

of the Ph.D. candidate and author of this thesis has been highlighted in bold font. She also
took part in three other local conferences on the occasion of the Annual Meeting of the Ph.D.
Program in Informatics of the University of Almería, in which the progress of research work
is periodically shared among the members of the Department of Informatics and the academic
community.

1.4.1 Scientific Journals

Hoyo, Á., Moreno, J. C., Guzmán, J. L., and Rodríguez, F., “Robust QFT-based feedback
linearization controller of the greenhouse diurnal temperature using natural ventilation”, IEEE
Access, vol. 7, pp. 64148-64161, 2019. Impact factor in 2019 (JCR): 3.745. Journal Rank in
Category in 2019 (JCR): 35/156 (Q1) in Computer Science, Information Systems; 61/266 (Q2)
in Environmental Sciences. Reference: [62].
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1.4 Publications and Other Contributions

Hoyo, Á., Rodríguez-Miranda, E. Guzmán, J. L., Acién, F. G., Berenguel, M., and Moreno, J. C.,
“A computer-based tool to simulate raceway photobioreactors for design, operation and control
purposes”, Computers & Chemical Engineering, vol. 156, pp. 107572, 2022. Impact factor in
2022 (JCR): 4.3. Journal Rank in Category in 2022 (JCR): 42/112 (Q2) in Computer Science,
Interdisciplinary Applications; 44/143 (Q2) in Engineering, Chemical. Reference: [63].

Hoyo, Á., Guzmán, J. L., Moreno, J. C., and Baños, A., “Robust pH control in a raceway
photobioreactor”, Revista Iberoamericana de Automática e Informática industrial, vol. 19, no.
3, pp. 274-283, 2022. Impact factor in 2022 (JCR): 1.500. Journal Rank in Category in 2022
(JCR): 55/65 (Q4) in Automation & Control Systems; 28/30 (Q4) in Robotics. Reference: [55].

Hoyo, Á., Hägglund, T., Guzmán, J. L., and Moreno, J. C., “A practical solution to the saturation
problem in feedforward control for measurable disturbances”, Control Engineering Practice,
2023, (submitted to the journal and under review). Impact factor in 2022 (JCR): 4.9. Journal
Rank in Category in 2022 (JCR): 18/65 (Q2) in Automation & Control Systems; 70/276 (Q2) in
Engineering, Electrical & Electronic. Reference: [58].

Hoyo, Á., Guzmán, J. L., Moreno, J. C., and Hägglund, T., “Double feedforward compensation
for cascade control schemes”, 2023, (submitted). Reference: [59].

Barceló-Villalobos, M., Hoyo, Á., Rodríguez-Miranda, E., Guzmán, J. L., and Acién, F. G.,
“A new control strategy to improve the mass transfer capacity and reduce air injection costs in
raceway reactors”, New Biotechnology, vol. 70, pp. 49-56, 2022. Impact factor in 2022 (JCR):
1.44. Journal Rank in Category in 2022 (JCR): 10/79 (Q1) in Biochemical Research Methods;
29/159 (Q1) in Biotechnology & applied Microbiology. Reference: [8].

1.4.2 International Conferences

Hoyo, Á., Guzmán, J. L., and Berenguel, M., “Use of the benchmark for PID control in engineer-
ing studies at the University of Almería”, in 3rd IFAC Conference on Advances in PID Control,
Ghent, Belgium, 2018. Reference: [53].

Hoyo, Á., Moreno, J. C., Guzmán, J. L., and Hägglund, T., “Robust QFT-based PI controller for
a feedforward control scheme”, in 3rd IFAC Conference on Advances in PID Control, Ghent,
Belgium, 2018. Reference: [61].

Hoyo, Á., Guzmán, J. L., Acién, F. G., Berenguel, M., and Moreno, J. C., “A graphical tool to
simulate raceway photoreactors”, in IWA Conference on Algas Technologies and Stabilization
Ponds for Wastewater Treatment and Resource Recovery (IWAlgae), Valladolid, España, 2019.
Reference: [52].

Leal, M., Hoyo, Á., Guzmán, J. L., and Hägglund, T., “Double back-calculation approach to deal
with input saturation in cascade control problems”, in International Conference on Automatic
Control and Sof-Computing (CONTROLO), Bragança, Portugal, Julio, 2020. Reference: [72].
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Guzmán, J. L., Mañas, F., Hoyo, Á., Ramos-Teodoro, J., and Donaire, J. G., “Use of TCLab
kits for control engineering curricula at the University of Almería”, in 13th IFAC Symposium on
Advances in Control Education (ACE), Hamburg, Germany, 2022. Reference: [35].

Hoyo, Á., Mañas-Álvarez, F. J., Rodríguez-Miranda, E., Gil, J. D. and Castilla, M., and Guzmán,
J. L., “Bringing Automatics and Robotics closer to pre-university students”, in 13th IFAC Sympo-
sium on Advances in Control Education (ACE), Hamburg, Germany, 2022. Reference: [60].

1.4.3 National Conferences
Hoyo, Á., Guzmán, J. L., and Moreno, J. C., “Control robusto de procesos industriales no lineales
con compensación de perturbaciones”, in Proceedings of the XVI CEA Symposium on Control
Engineering, Almería, Spain, 2018, (in Spanish). Reference: [54].

Hoyo, Á., Guzmán, J. L., Moreno, J. C., and Berenguel M., “Control robusto con QFT del pH
de un fotobiorreactor industrial”, in XXXVIII Jornadas de Automática, Gijón, España, 2017.
Reference: [57].

Hoyo, Á., Guzmán, J. L., Moreno, J. C. and Berenguel M., “ Control predictivo lineal del pH en
un fotobiorreactor raceway”, in XL Jornadas de Automática, Ferrol, España, 2019. Reference:
[56].

Hoyo, Á., García-Mañas, F., Ramos-Teodoro, J., Sánchez-Molina, J. A., Guzmán, J. L., and
Rodríguez, F., “ Uso del paradigma Take-Home Labs para la enseñanza del control automático en
estudios de ingeniería”, in XLII Jornadas de Automática, Coruña, España, 2021. Reference: [56].

1.4.4 Local Conferences

Hoyo, Á., “Un simulador para la enseñanza de la producción de microalgas en fotobioreacotores
raceway”, in En el camino de la investigación educativa: Encuentro de investigación del alum-
nado 2019 (EIDA 2019), Almería, Spain, 2019. Reference: [47].

Hoyo, Á., “Contribuciones de control robusto para sistemas sometidos a perturbaciones”, in
Proceedings of the II Annual Meeting of the PhD Programme in Informatics of the University of
Almería, Almería, Spain, 2019, (in Spanish). Reference: [46].

Hoyo, Á., “Contribuciones de control robusto para sistemas sometidos a perturbaciones”, in
Proceedings of the III Annual Meeting of the PhD Programme in Informatics of the University of
Almería, Almería, Spain, 2020, (in Spanish). Reference: [48].

Hoyo, Á., “Contribuciones de control robusto para sistemas sometidos a perturbaciones”, in
Proceedings of the IV Annual Meeting of the PhD Programme in Informatics of the University of
Almería, Almería, Spain, 2021, (in Spanish). Reference: [49].

Hoyo, Á., “Contribuciones de control robusto para sistemas sometidos a perturbaciones”, in
Proceedings of the V Annual Meeting of the PhD Programme in Informatics of the University of
Almería, Almería, Spain, 2022, (in Spanish). Reference: [50].
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Hoyo, Á., “Contribuciones de control robusto para sistemas sometidos a perturbaciones”, in
Proceedings of the VI Annual Meeting of the PhD Programme in Informatics of the University of
Almería, Almería, Spain, 2023, (in Spanish). Reference: [51].

1.4.5 Intellectual Property Registration
During the development of the doctoral thesis, two intellectual property registrations have

been made in the Junta de Andalucía:

• "Herramienta gráfica para la simulación de reactores raceway". No: 04 / 2021 / 4183. 2021.
[52].

• "Herramienta SCADA para en Control y Supervisión de las instalaciones del proyecto
Sabana". No: 04 / 2021 / 4178. 2021.

1.5 Other Research, Teaching and Educational Activities
Regarding the rest of the milestones that evidence the acquisition of competencies needed

for the world of research, there are two which have been key: one is the three-month stay
(01/09/2022-30/11/2022) at the Department of Systems and Automatics of Lund University
(Lund, Sweden), within the Research Group by Tore Hägglund, which satisfies one of the re-
quirements to receive the Acknowledgement of International Ph.D.; the other corresponds to the
three research projects and the research contract in which the doctoral student has collaborated
(see the next subsection), as they provided a solid background in planning research.

Attending to educational and teaching involvement, the Ph.D. candidate has been engaged in
five editions of the European Researchers’ Night (from 2018 to 2022), one of the actions funded
by the Marie Skłodowska-Curie program; five of the European Robotics Week (from 2018 to
2022); six of the First Lego League (from 2018 to 2023); and several other activities under
educational programs of the University of Almería. Meanwhile, she has been giving lectures in
the subjects listed below and acted as a co-supervisor in one Bachelor’s thesis [71]:

• Industrial Informatics and Robotics, 118 hours, Computer Science Engineering Degree.

• Industrial Automation, 57 hours, Industrial Electronics Engineering Degree.

• Machine Control and Electric Drives, 4 hours, Industrial Electrical Engineering Degree.

1.5.1 Collaboration in Scientific Outreach Workshops for Girls
The doctoral student has been involved in several scientific outreach workshops during these

years, aiming to bring science closer to young people. Many of these workshops have focused
on motivating young girls and encouraging them to pursue STEM careers:

• Participation in the "Campus Tecnológico Para Chicas" program. University of Almería. July
2018-2022.
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• Participation in the "Talleres para jóvenes programadoras" program. University of Almería.
February 2018 and 2019.

• Participation in the "11 de Febrero - Día de la mujer y la niña en la Ciencia" program. 2018-
2022.

• Participation in the "Ciencia y Tecnología en femenino" program. Almería. 2018.

• Participation in the "Girls in Control" workshop at the 59th Conference on Decision and
Control. December 2020.

• Participation in the "I Jornadas Mujer y Automática" (Women and Automation Conference)
organized by the Spanish Committee of Automation, conducting scientific outreach activities.
April 2021.

1.5.2 Collaboration in Research Projects and Contracts

• UAL2020-TEP-A1991, Agricultural Collaborative Robot Inside the IoT I. University of
Almería through FEDER funds granted by the Ministry of University, Research, and Inno-
vation. Chief/Principal Investigator: Antonio Giménez Fernández and José Carlos Moreno
Úbeda (University of Almería). 2021-2023. 29.200 C.

• PY20_00767, Agricultural Collaborative Robot Inside the IoT II. University of Almería
through FEDER funds granted by the Ministry of University, Research, and Innovation.
Chief/Principal Investigator: Antonio Giménez Fernández (University of Almería). 2021-
2023. 78.500 C.

• 21_22_1_29C, Analysis and evaluation of the use of the Take-Home Labs paradigm for
teaching automatic control in engineering studies. Call for the Creation of Innovation Groups
and Good Teaching Practices. University of Almería. Chief/Principal Investigator: Francisco
de Asís Rodríguez Díaz (University of Almería). 2021-2022. 1.200 C.

• PID2020-112709RB-C21, Hybrid control and optimization of a sustainable biorefinery for
the industrial production of microalgae (HYCO2BIO). National Plan Project. Ministry of
Science and Innovation. Chief/Principal Investigator: José Luis Guzmán Sánchez and José
Carlos Moreno Úbeda (University of Almería). 178.000 C.

• DPI201784259-C2-1-R, Modelling and Control of the integrated process for microalgae
production and wastewater treatment using industrial reactors (CALRESI). National Plan
Project. Ministry of Economy and Competitiveness. Chief/Principal Investigator: José Luis
Guzmán Sánchez (University of Almería). 2018-2021. 147.200 C.

• DPI2014-55932-C2-1-R, Control and optimization of biomass production using microalgae
as a renewable energy source (PROBIOREN). National Plan Project. Ministry of Economy
and Competitiveness. Chief/Principal Investigator: José Luis Guzmán Sánchez (University of
Almería). 2015-2018. 123.000 C.
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1.5 Other Research, Teaching and Educational Activities

• 101060991 REALM, Horizon Europe – the Framework Programme for Research and Inno-
vation. Chief/Principal Investigator: José Luis Guzmán Sánchez (University of Almería).
2021-2027. 515.000 C.

1.5.3 Awards
The doctoral candidate has received the following awards during the period of the doctoral

thesis:

• Young Author Award for the article "Robust QFT-based PI controller for a feedforward control
scheme" at the 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control
in Ghent, Belgium, 2018 [61].

• IX edition of the "Implicación Social en las Universidades Públicas de Andalucía" Award.
Graduate Category. Foro de Consejos Sociales de Universidades Públicas de Andalucía, 2019.
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2. Material and Methods

Classic control strategies play a vital role in the industrial sector, offering valuable solutions
for achieving stable and efficient operation of various systems [65]. Despite the advancements in
modern control techniques, classic control strategies continue to hold significant importance in
various industries [106]. They are considered standard practices in the industry and are trusted
by professionals. They have been widely adopted in manufacturing, power generation, chemical
processing, and automation industries for decades.

Classic control techniques are based on feedback control that involves continuously compar-
ing the output or response of a system to a desired reference value or setpoint and using the
resulting error signal to adjust the control input. The key idea behind feedback control is to utilize
information about the system’s performance to make corrective adjustments and drive the system
toward the desired state. Classical control methods often employ well-established algorithms,
such as PID, cascade, or feedforward control for measurable disturbances [1, 18, 135].

In this context, this chapter provides a brief summary of the different control schemes, such
as feedback, feedforward, cascade control, GPC, Feedback Linearization, and QFT, in Section
2.1. In Section 2.2, all the industrial facilities used in this thesis and their models where these
control techniques have been implemented are exposed. These facilities are a greenhouse, a
photobioreactor, and a temperature platform (TCLab).

2.1 Automatic Control
Automatic Control is a highly complex field of engineering that cannot be easily summarized

in a few words. It encompasses various disciplines and requires a multidisciplinary approach.
Generally, it can be defined as utilizing various techniques to meet particular problem spec-
ifications autonomously. The breadth and scope of this field were acknowledged by Rufus
Oldenburger in 1978 when he commented on the name and extensive nature of Automatic
Control. He believed that the term encompassed all systems, as every system involves variables,
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and the focus lies in maintaining these variables at constant or desired values. This concept
applies to diverse biological, economic, political, and engineering systems, even if they do not
incorporate explicit automatic control devices [12, 40].

The origins of Automatic Control can be traced back to ancient Greece with the development
of water clocks and float regulators around 300 B.C. However, it is commonly associated with
the 18th century when centrifugal governors were developed and applied to wind and water
mills. James Watt’s governor, a significant invention during that time, is often regarded as a
symbol of Automatic Control [6]. Over the years, Automatic Control has continued to advance,
becoming pervasive in modern life, with applications in cars, industries, multimedia devices,
mobile phones, hospitals, and practically every device used by people today.

The fundamental concept that lies at the core of Automatic Control is feedback, which has
a significant impact on this fascinating field. As mentioned earlier, the objective of Automatic
Control is to meet particular problem specifications by maintaining a set of variables at a desired
value or within a predetermined range. Feedback plays a crucial role in achieving this objective
by providing a mechanism to correct the disparity between desired and actual performance.
While the idea of feedback can be traced back thousands of years, it is commonly attributed
to the early 1920s when significant advancements were made in the signal amplification field.
In his work on the signal amplification problem, H.S. Black employed high-gain amplifiers by
feeding back a portion of the output signal to reduce distortion caused by noise [17]. Similarly,
during that period, N. Minorsky conducted a comprehensive analysis in position control systems
and formulated a control law now known as three-term PID control [12]. Since those early days,
feedback features have been extensively analyzed and studied, with the scheme shown in Figure
2.1 serving as a common reference point for research and analysis [1].

Figure 2.1. Feedback basic block scheme.

The system under consideration consists of two main components: the process P and the
controller C. These components are represented as boxes, with arrows indicating the causal
relationship between inputs and outputs. The process, influenced by the manipulated variable
u (also known as the control signal), has a single input. This signal represents the actuator,
typically a valve or a motor, which facilitates the impact of the control variable on the process.
The process variable y, on the other hand, is the output of the process and is measured by a
sensor. In this context, the set point or reference value r represents the desired value of the
process variable. The control error e is the difference between the set point and the process
variable [1].

Various controllers have been employed to leverage the beneficial properties of feedback.
Among them, the PID controller stands out as the most widely used form of feedback control.
It has found applications in diverse environments and processes, undergoing modifications to
its original form, developing new tuning rules, and exploring its limitations. Presently, typical
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PID controllers or their variants are utilized to control most industrial processes. However, the
need for more advanced control techniques has emerged due to industrial competition, stringent
performance requirements, and the presence of complex and challenging-to-control processes.
A comprehensive overview of this evolution can be found in references [1] and [121]. The
control strategies employed in this thesis include PID control, cascade control, feedforward
control, feedback linearization, GPC, QFT, and their combinations. This section provides a brief
description of these control techniques.

2.1.1 PID Control
This section provides an introduction to PID control. PID controller is by far the most

common control algorithm. PID controllers have long been the dominant choice in industrial
applications, with estimates suggesting that over 90% of controllers used in the industry are of
the PID type [1]. These controllers are widely employed in the process industries, serving as
the foundation for advanced control algorithms and strategies. Despite the advancements in
control theory, PID controllers remain the go-to solution for addressing a wide range of control
problems. They are accessible to users with varying levels of control knowledge. In practice,
PID controllers often operate as PI controllers, omitting the derivative action. However, there
are scenarios where incorporating derivative action can lead to significant improvements [1, 135].

Various forms of PID controllers exist, with the following equation representing the standard
form:

u(t) = Kp

(
e(t) +

1

τi

∫ t

0

e(τ)dτ + τd
de(t)

dt

)
(2.1)

where the control error e = r − y, as shown in Figure 2.1 represents the difference between the
reference signal and the measured output. In the basic PID controller, the proportional gain is
denoted as Kp, the integral time as τi, and the derivative time as τd. In the Laplace domain, the
controller is represented as:

C(s) = Kp

(
1 +

1

τis
+ τds

)
(2.2)

Over time, various modifications have been made to the elementary PID controller, resulting
in different representations. These modifications mainly focus on how set-points are handled and
how signals are filtered. One such modification is the PID with set-point weighting, which offers
a more flexible structure. This variant of the PID controller is characterized by

u(t) = Kp

(
ep(t) +

1

τi

∫ t

0

e(τ)dτ + τd
ded(t)

dt

)
(2.3)

where ep = bsr− y and ed = csr− y, with bs and cs being the set-point weights. Thus, by tuning
the parameters bs and cs, different behaviors of the PID controller can be achieved to handle
reference tracking.

Another approach to representing the PID controller involves incorporating filters with the
derivative term to mitigate the impact of high-frequency noise on the control signal. Typically,
the derivative term is filtered using a first-order filter, or the ideal derivative can be combined
with a second-order filtering of the measured signal. The transfer function of a PID controller
with a filtered derivative can be expressed as:
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C(s) = Kp

(
1 +

1

sτi
+

sτd
1 + sτd/ℵ

)
(2.4)

with C(∞) = Kp(1 + ℵ) representing the high-frequency gain, parameter ℵ can be utilized to
minimize fluctuations in the control signal.

In practical scenarios, most physical processes face various constraints due to factors such
as physical limitations, safety requirements, or performance criteria. Anti-windup schemes
are commonly implemented in PID controllers to prevent integrator windup when the actuator
saturates. These schemes ensure that the system remains unaffected as long as saturation is not
active. However, when saturation occurs, the integral term in the controller is adjusted until the
system exits the saturation limit.

Figure 2.2. PID anti-windup scheme.

The back-calculation anti-windup method is one of the most common anti-windup methods
(see Figure 2.2), and here the integrator is dynamically changed with a tracking time constant Tt
when the control signal saturates [1]. In the literature, the selection of the tracking time constant
is a problem that still needs to be solved. However, there are some proposals about how to tune
it. It is recommended to set the tracking time constant in the interval 0 ≤ Tt ≤ τi [117].

In some contributions of the thesis, the controller C(s) is a PI controller with a transfer
function defined in Equation (2.2), with τd = 0. The Lambda tuning method has been considered
along the document. This method has been selected because it is commonly used in the process
industry [131]. It allows to achieve a first-order closed-loop transfer function for the process. In
this method, the tuning parameter, denoted by λ, determines the location of the closed-loop pole,
thereby establishing the desired closed-loop time constant. So the PI controller parameters are
given by (2.5) [25]. Notice that other tuning methods could be considered without affecting the
methodology presented in this thesis.

Kp =
Tu

Ku(λ+ Lu)
τi = Tu (2.5)
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2.1.2 Cascade Control
Load disturbance rejection is a critical aspect of process control applications. Implementing a

cascade control system is often considered to enhance performance in dealing with unmeasured
load disturbances. By incorporating an additional sensor, the fast dynamics of the process can
be separated from the slow dynamics. This separation allows for the practical rejection of
disturbances [135].

Figure 2.3. Cascade control scheme.

Figure 2.3 illustrates a typical configuration of a series cascade control system. This thesis
will focus on two nested loops for simplicity, but the concept can be extended to include more
loops if needed. The process transfer function is represented by P (s) = P2(s)P1(s), where y1 is
the primary output and y2 is the secondary output. The secondary controller, C2(s), controls y2,
while the primary controller, C1(s), controls y1. It is worth noting that the primary controller’s
output signal serves as the secondary controller’s set-point. Similarly, the inner loop is commonly
referred to as the secondary loop, while the outer loop is called the primary loop.

The cascade control system is effective because it takes advantage of the separation between
the slow dynamics represented by P1(s) and the fast dynamics represented by P2(s). This allows
efficient compensation of disturbances that affect the secondary loop before they significantly
impact the main process output, y1. Another advantage of the cascade control system is that the
inner loop can effectively address the presence of non-linearities in P2(s).

The effectiveness of cascade control is particularly noticeable when disturbances affect the
inner loop and when the secondary sensor is strategically placed to separate the fast dynamics
of the process from the slower dynamics [69]. However, when the secondary process exhibits
significant dead time or has a non-minimum phase, cascade control may not be generally benefi-
cial, considering the additional cost associated with the secondary sensor and controller. Another
advantage is that nonlinearities in the process within the inner loop are handled within that loop,
removing them from the more critical outer loop. Hence, the parameters of the overall control
system should be carefully chosen to achieve a tight tuning of the inner loop concerning the
outer loop. It is worth noting that having an integrator in the inner loop is not strictly necessary
since the outer loop can ensure zero steady-state error.

Typically, the overall cascade control system is designed by initially tuning the secondary
controller while keeping the primary loop in manual mode. This tuning process is based on
the secondary process transfer function. Subsequently, the primary controller is tuned using
the closed-loop transfer function of the secondary loop in conjunction with the primary process
transfer function. This approach ensures that the dominant dynamics are accounted for due to the
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tight tuning of the secondary loop. It should be noted that the design of a cascade control system
is sequential, which can make it more time-consuming compared to designing a traditional
single-loop controller. Therefore, there is a need for automatic tuning functionalities that can
simultaneously tune both controllers [135].

2.1.3 Feedforward Control
Control schemes with measurable disturbances compensation are well-known in the process

industry [38]. The combination of feedforward and feedback control, as shown in Figure 2.4,
can significantly improve control performance when the system is affected by a measurable dis-
turbance that impacts the system output. In an ideal situation, this control scheme can eliminate
the effect of the disturbance. However, even with some modelling errors or inversion problems,
the feedforward control still reduces the impact of the disturbance on the plant output.

Figure 2.4. Feedforward control classic scheme.

The diagram is composed of the process model Pu(s), the controller C(s), the reference r,
the process output y and the control signal u. There is also a measurable load disturbance d, and
the model Pd(s) describes the dynamics between this disturbance and the process output. The
objective of the feedforward control Cff (s) is to compensate for the disturbance d at the system
output y.

From the block diagram in Figure 2.4, the closed-loop transfer function relating the process
output with the disturbance is given by:

Tdy(s) =
Pd(s)− Cff (s)Pu(s)

1 + Pu(s)C(s)
(2.6)

where a perfect elimination of the load disturbance is obtained when:

Cff (s) =
Pd(s)

Pu(s)
(2.7)

In this thesis, it is assumed that the two process transfer functions can be approximated by
first-order systems with time delays (FOPDT), which is a classical choice in the process industry
[90]. They are defined in Equation (2.8), where Ku and Kd are the static gains, Tu and Td are
the time constants, and Lu and Ld are the time delays.

18



2.1 Automatic Control

Pu(s) =
Ku

Tus+ 1
e−Lus , Pd(s) =

Kd

Tds+ 1
e−Lds (2.8)

There are, of course, processes that are not well described by these transfer functions, but for
process control applications, this structure is normally suitable, and it has become the standard
model structure. In this thesis, the controller C(s) is a PID controller with a transfer function
defined in Equation (2.1).

Four possible feedforward structures, denoted as Cff , can be considered:

Static gain: Cff (s) = Kff

Static gain with time delay: Cff (s) = Kffe
−sLff

Lead-lag: Cff (s) = Kff
1 + sTz
1 + sTp

Lead-lag with time delay: Cff (s) = Kff
1 + sTz
1 + sTp

e−sLff

where substituting the parameters from Equation (2.8) in Equation (2.7), Kff = Kd/Ku,
Tz = Tu, Tp = Td and Lff = Ld − Lu, the lead-lag feedforward compensator becomes:

Cff (s) =
Kd

Ku

1 + sTu
1 + sTd

e−s(Ld−Lu) (2.9)

Implementing (2.9), a perfect feedforward compensation is applied. Nevertheless, if Ld < Lu,
the optimal parameters give a non-causal feedforward compensator since Lff becomes negative.
This means that perfect feedforward is not possible in this case, and Lff = 0 must be used. It is
common to just have a static feedforward compensator in this case:

Cff (s) = Kff =
Kd

Ku

(2.10)

where the effect of the disturbance in steady state is eliminated.

Other alternatives have been studied in the literature when implementing the ideal compen-
sator is unreliable. The tuning rule that takes the delay inversion problem into account presented
in [36] has been used along the thesis. This rule is based on setting the feedforward gain and
time constant Tp in order to reduce the overshoot in the process output and minimize the IAE
value. The compensator parameters are calculated as follows:

1. First, set Tz = Tu and Lff = max(0, Ld − Lu).

2. Then, Tp is calculated as:

Tp =


Td Lu − Ld ≤ 0

Td −
Lu − Ld

1.7
0 < Lu − Ld < 1.7Td

0 Lu − Ld ≥ 1.7Td

(2.11)
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3. Finally, the compensator gain is determined as:

Kff =
Kd

Ku

− K

τi
IE (2.12)

where:

IE =

{
Kd(Tu − Td + Tp − Tz) Ld ≥ Lu

Kd(Lu − Ld + Tu − Td + Tp − Tz) Ld < Lu

2.1.4 Feedback Linearization
The fundamental idea of the linear feedback linearization technique [107] is to treat nonlinear

systems as linear ones through algebraic transformations and feedback, as shown in Figure 2.5.

Figure 2.5. Feedback linearization classic scheme.

It taking into account that the gradient of a function ε(x) (defined on a subset U of Rn) is
denoted as dε(x) and defined as an n-dimensional vector, where the i element is the partial
derivative of ε concerning xi, with i = 1, 2, ..., n:

dε(x) =

(
∂ε

∂x1
,
∂ε

∂x2
, ...

∂ε

∂xn

)
(2.13)

The function Lfε is defined as the Lie derivative of ε with respect to f and is given by:

dε(x) =
∂ε

∂x
f(x) =

i=1∑
n

∂ε

∂xi
fi(x) (2.14)

The resulting function from Equation (2.14) can also be applied to another function g(x) as
following:

LgLfε(x) =
∂(Lfε)

∂x
g(x) (2.15)

If ε is k times differentiable with respect to f , the function Lk
fε(x) satisfies the following

recursion:

Lk
fε(x) =

∂(Lk−1
f ε)

∂x
g(x) (2.16)

On the other hand, considering a nonlinear system with a single input u and an output y, in
the form of:
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x = f(x) + g(x)u (2.17)

y = h(x)

The relative degree, rd, of the system, around an operating point xo is defined as the number
of times that y(t) needs to be differentiated at time t = to to obtain u(to). The relative degree of
a system of the form in Equation (2.17) is determined by the following conditions:

LgL
k
fh(x) = 0 ∀x around xo and k < rd − 1 (2.18)

LgL
rd−1
f h(xo) ̸= 0

The final goal of the feedback linearization technique is to perform a coordinate transformation
of the nonlinear system such that the resulting system becomes linear in which a linear control
can be applied. For this purpose, it is necessary that a convertible function Φi : Rn → Rn exists
in a region of the state spaces, such that Φ−1(Φ(x)) = x holds. That is to say, a diffeomorphism
should exist globally (across the entire space defined by x) or locally (in the neighborhood of a
given point). Starting from the system defined in Equation (2.17), it is possible to define Φ as a
set of functions that define a coordinate transformation around xo, given by:

Φ(x) =


Φ1(x)

Φ2(x)

.

.

Φm(x)

 =


h(x)

Lf (x)

.

.

Lrd−1
f h(x)

 (2.19)

being
rd ≤ n.

The new coordinates, ψ, will be:

ψi = Φi(x)L
i−1
f h(x) 1 ≤ i ≤ n. (2.20)

Assuming rd = n, which means a relative degree equal to the dimension of the state space of
the system, the system from Equation (2.17) in state space for the coordinates ψ can be obtained
as follows:

∂ψi

dt
=
∂Φ

∂x

dx

dt
= Lfh(x(t)) = Φi−1 = zi−1 ∀i < rd

dψrd

dt
=
∂Lrd−1

f h(x)

∂x
(f(x(t)) + g(x(t))u)

Lrd
f h(x(t)) + LgL

rr−1
f h(x(t))u(t) if i = rd. (2.21)

Asigning:

a(ψ) = LgL
rd−1
f h(x(t)) = LgL

rd
f − 1h(Φ−1h(Φ−1(t)))

b(ψ) = Lrd
f h(c(t)) = Lrd

f h(Φ
−1(t))

(2.22)

The system in Equation (2.21) could be resumed in:
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ψ̇i = ψi−1(t) if i < rd

˙ψrd = b(ψ) + a(ψu) if i = rd.

(2.23)

Choosing the control law in the coordinate space as follows ψ:

u =
1

∂(ψ)
(−b(ψ) + v), (2.24)

the closed-loop system in state space will be formed by the set:

ψ̇i = ψi−1(t) if i < rd (2.25)
˙ψrd = v if i = rd. (2.26)

For a nonlinear system of the form in Equation (2.17), the output η in the new state space will
be η = h(Φ−1). Therefore, the control law from Equation (2.24) in the coordinate space x will
be:

u =
1

LgL
n−1
f h(x)

− Ln
fh(x) + v (2.27)

2.1.5 General Predictive Control
Model Predictive Control (MPC) is a control technique that belongs to a family of control

methods aiming to optimize a specific criterion by utilizing a predictive model of the system’s
behavior to calculate a sequence of future control actions. MPC offers the flexibility to incor-
porate various models, objective functions, and constraints, making it suitable for addressing a
wide range of operational requirements encountered in industrial processes. It combines optimal,
stochastic, multivariable, and constrained control with time-delayed processes to effectively
handle time-domain control problems [22, 79, 115]. MPC is particularly appealing to process
control operators with limited control knowledge, as its concepts are intuitive, and tuning is
relatively straightforward.

MPC offers the capability to control a wide range of processes, including those with simple
dynamics, long delay times, non-minimum phase zeros, or unstable dynamics. It also provides
a straightforward extension to multivariable plants and inherent compensation for dead time.
Additionally, MPC naturally incorporates feedforward control to handle measured disturbances
effectively. Dealing with constraints and tracking signals is simple and can be systematically
integrated during the controller design. A nonlinear programming (NLP) problem arises for
nonlinear constrained systems, although analytical solutions can be found in exceptional cases
[126]. Without constraints, the controller for linear systems is a linear control law. However, a
quadratic programming (QP) problem must be solved when constraints are present. MPC follows
the strategy depicted in Figure 2.6 and adopts the structure shown in Figure 2.7. Among the
various predictive control algorithms, GPC [23] is one of the most popular ones and the one used
in this thesis.

GPC uses an internal model to generate future plant behavior predictions. The predictive
control methodology relies on a controlled autoregressive integrated moving average model
(CARIMA) [23]. This model takes the form of a polynomial equation involving input sequence
u(t), output sequence y(t), time delay d, and zero-mean white noise ϵ(t). The polynomials
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Figure 2.6. MPC strategy.

Figure 2.7. Basic MPC structure.

A(z−1), B(z−1), and T (z−1) are expressed in terms of the backward shift operator z−1, and they
represent the dynamics of the system:

A(z−1)y(t) = z−dB(z−1)u(t− 1) + Tpl(z
−1)

ϵ(t)

∆
(2.28)

A(z−1) =1 + a1z
−1 + a2z

−1 + · · ·+ anaz
−na (2.29)

B(z−1) =b0 + b1z
−1 + b2z

−1 + · · ·+ bnb
z−nb (2.30)

Tpl(z
−1) =1 + t1z

−1 + t2z
−1 + · · ·+ tntz

−nt (2.31)

The choice of this model aims to achieve offset-free closed-loop behavior while accounting
for non-stationary disturbances. The polynomial Tpl(z−1) is typically set to 1 in GPC formu-
lations. To improve robustness, the Tpl − polynomial is utilized as a design element, acting
as a filter to attenuate prediction errors caused by high-frequency unmodeled dynamics and
unmeasured load disturbances. Without modelling errors, the Tpl−polynomial primarily affects
disturbance rejection without significantly impacting the algorithm’s set-point tracking capability.
Consequently, Tpl can be adjusted as a design parameter to enhance robust stability [22, 115].
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The GPC algorithm employs a quadratic cost function that considers the discrepancy between
the predicted trajectory, a predefined reference, and the control effort. The cost function is
expressed as follows:

J = E

{
N2∑

j=N1

δ(j)[ŷ(t+ j|t)− r(t+ j)]2 +
Nu∑
j=1

Λ(j)[∆u(t+ j − 1)]2

}
(2.32)

where E represents the expectation, ŷ(t + j|t) denotes an optimal prediction sequence of the
system output based on available data up to time t, ∆u(t + j − 1)]2 represents a sequence of
future control increments derived from minimizing the cost function, N1 and N2 correspond to
the minimum and maximum prediction horizons, Nu is the control horizon, and the weighting
sequences δ(j) and Λ(j) are used to penalize future tracking errors and control efforts, respec-
tively. The prediction horizons, control horizons, and weighting sequences are design parameters
that can be adjusted to fine-tune the controller. The reference trajectory r(t+ j) can be either
the set-point or a smooth approximation starting from the system output y(t) current value and
gradually converging towards the known reference using a first-order system.

The control increments computed by the GPC approach are determined by minimizing the
quadratic function from Equation (2.32) given by:

J = δ(y − r)⊤(y − r) + Λ∆u⊤∆u (2.33)

The sequence of future predictions consists of both the free and forced responses, expressed
as:

y = G∆u+ f (2.34)

where matrix G contains the coefficients of the system’s open-loop step response and f in-
cludes terms that depend on present and past plant outputs and past inputs. The optimization
process is performed by substituting the sequence of future outputs (2.34) into the cost func-
tion (2.33) to determine the optimal control increments that minimize the specified quadratic cost:

J =
1

2
∆u⊤H∆u+ b⊤∆u+ f0 (2.35)

with δ(j) = δ, Λ(j) = Λ, H = 2(δG⊤G + ΛI), b⊤ = 2δ(f − r)⊤G, f0 = δ(f − r)⊤(f − r).
The optimum solution without constraints is linear and given by:

∆u = −H−1b

When constraints are considered, a linear solution is unavailable, and the problem becomes
a quadratic programming task. A quadratic cost function with linear inequality and equality
constraints is used, expressed as ∆u ≤ c and ∆u = a for the control increment ∆u. The
specific constraints considered are outlined in Table 2.1 [22]. In this table, Γ represents an
N − dimensional vector (N = N2 − N1 being the length of the receding horizon) with all
elements equal to one, Υ is an N × N lower triangular matrix with all elements equal to one,
and Tm denotes the sampling time.

24
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Variable Lineal Constraint
Control signal amplitude
umin ≤ u(t) ≤ umax ∀t

Γumin ≤ Υ∆u+ u(t− 1)Γ ≤ Γ umax

Control signal increment
∆umin ≤ u(t)− u(t− 1) ≤ ∆umax∀t

Γ∆umin ≤ ∆u ≤ Γ∆umax

Output signal amplitude
ymin(t) ≤ y(t) ≤ ymax(t)

Γ ymin ≤ G∆u+ f ≤ Γ ymax

Envelope constraints
ymin(t) ≤ y(t) ≤ ymax(t)

G∆u ≤ ymax − f, ymax = [ymax(t+ 1) · · ·
· · · ymax(t+N)]

G∆u ≤ ymin − f, ymin = [ymin(t+ 1) · · ·
· · · ymin(t+N)]

Output overshoot
y(t+ j) ≤ γr(t)j = No1, · · · , No2

G∆u ≤ Γγr(t)− f

Output monotone behavior
y(t+ j) ≤ y(t+ j + 1) if y(t) < r(t)

y(t+ j) ≥ y(t+ j + 1) if y(t) > r(t)

G∆u+ f ≤
[
0⊤

G′

]
∆u+

[
y(t)
f ′

]
G′ and f ′ are the result of

eliminating the first row of G and f .
Limit inverse response

y(t+ j) ≤ y(t) if y(t) > r(t)

y(t+ j) ≥ y(t) if y(t) < r(t)

G∆u ≥ Γy(t)− f

Final state
y(t+N + 1) · · · y(t+N +mt) = r

ym = [y(t+N + 1), · · · , y(t+N +mt)]
⊤

ym = Gm∆u+ fm, Gm∆u = wm − fm

Output integral
Tm
∑j=t+Ni

j=t+1 y(t+ j) = I
[y(t+ 1) · · · y(t+Ni)]

TΓ = Gi∆u+ fi ≥ I

Table 2.1. GPC constraints list.

2.1.6 Quantitative Feedback Theory
Most control strategies are based on a mathematical model that simulates the dynamic behav-

ior of the processes to be controlled, which is used for designing the controller. Therefore, the
effectiveness of a control system largely depends on how well this mathematical model represents
the real process dynamics. In the field of automatic control, the most commonly used models for
design purposes are deterministic models, which do not account for possible errors or modelling
uncertainties. However, in some cases, these models may not provide sufficient information to
control a system properly, needing the use of robust control techniques that consider uncertainties
during the design phase.

In this context, industrial processes can be highly complex to accurately describe by a mathe-
matical model, leading to modelling errors [114]. Thus, any mathematical model will inherently
have uncertainties or modelling errors to some extent. To efficiently design an appropriate
controller, it is necessary to have information about potential sources of uncertainty and evaluate
their effects on the overall system behavior.
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Chapter 2. Material and Methods

The field of application for robust control contains all problems characterized by considering
model uncertainties that a fixed linear time-invariant controller can tolerate. In robust control,
the technique that considers uncertainties most accurately during the design phase is the QFT
methodology [114]. QFT is a powerful design technique that allows for achieving performance
and stability tolerances over a range of uncertain plants. It is a frequency-domain-based design
methodology that uses the Nichols chart to achieve the desired robust design over a specific
region of plant uncertainty. The objective is to design a compensator C(s) and a prefilter F (s) (if
necessary), as shown in Figure 2.8, such that the performance and stability specifications are met
for a family of plants P(s). This family can be considered as a set of plants P (s) with parametric
uncertainty (although QFT also supports non-parametric uncertainty), such as described by
Equation (2.36).

Figure 2.8. Two-degree-of-freedom feedback system.

P(s) =
{
κ

Pnr
i=1(s+ ℓi)Pmr

j=1(s
2 + 2βjω0j + ω2

0j)

sNrPar
r=1(s+ ζr)Pbr

s=1(s
2 + 2βsω0s + ω2

0s)
: (2.36)

κ ∈ [κmin, κmax], ℓi ∈ [ℓi,min, ℓi,max], ζr ∈ [ζr,min, ζr,max],

βj ∈ [βj,min, βj,max], ω0j ∈ [ω0j,min, ω0j,max],

βs ∈ [βs,min, βs,max], ω0s ∈ [ω0s,min, ω0s,max],

nr +mr < ar + br +Nr

}
The QFT technique uses plant uncertainty and a set of specifications as quantitative informa-

tion. The two-degree-of-freedom compensator {F,C} (hereafter, the variable s will be omitted
when necessary for clarity) must be designed so that plant behavior variations due to uncertainty
are within a specific tolerance margin in a closed loop. A typical QFT design consists of the
following steps:

1. Specifications definition. The model of the plant with uncertainty is obtained, and a set
of design frequencies is selected based on the system’s bandwidth, Ω = ω1, ω2, ..., ωk.
Specifications for stability, tracking, input and output disturbances, noise, and control
effort are defined for each frequency, and the nominal plant P0 is selected.

2. Templates calculation. Quantitative information about the uncertainties is represented by a
set of points on the Nichols chart. This set of points is called templates and graphically
defines the uncertainty for each design frequency ω. Figure 2.9 shows an example of
a system given by the transfer function Pu(s) = Ku/s(s + a), with Ku ∈ [1, 10] and
a ∈ [1, 10] for the frequency set Ω = {0.5, 1, 2, 38, 15, 30, 60, 90, 120, 180}rad/s.
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2.1 Automatic Control

3. QFT boundaries calculation. The specifications set in the first step are transformed for
each frequency ω into prohibited regions on the Nichols chart for the transfer function
L0(jω) = C(jω)P0(jω). These regions are defined by limits called boundaries. Each
specification is translated to each frequency as a different boundary, so each set of bound-
aries for a particular frequency is dealt with to obtain a single prohibited zone for that
frequency. Figure 2.10 shows the L0 design for the previous example.

4. Controller design (loop shaping). This step involves designing the controller such that the
transfer function L0(jω) = C(jω)P0(jω) satisfies the calculated "boundaries" from the
previous step.

5. Pre-filter synthesis. The filter F (s) is designed so that the closed-loop transfer function
from the reference to the output satisfies the design specifications for reference tracking.
Therefore, the variations of the closed-loop system must be within the desired range, as
shown in Figure 2.11.

6. Validation of the design. Finally, the closed-loop control system is validated to ensure
it satisfies all the specifications given in the first step for the entire set of plants and
frequencies within the bandwidth.

Figure 2.9. QFT templates calculation.

Time domain specifications

The closed-loop specifications for the system in Figure 2.8 are defined in terms of the input
or the output. Both must be bounded to ensure the uncertain system operates within a specific
range. For example:
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Figure 2.10. QFT boundaries calculation.

Figure 2.11. QFT filter adjustment.
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1. In a regulation problem, the objective is to have the system output close to 0 or a specific
operating point. In this case, the time domain specifications should be defined with operat-
ing regions where the goal is to have the plant output close to 0 or the specific operating
point (Figures 2.12a and 2.12b).

2. In a tracking problem, the plant output should follow the input reference with specific
characteristics within the time domain. Figure 2.12c shows an example of the specific
region where the system output should remain.

Frequency domain specifications

The closed-loop specifications for the system in Figure 2.8 are typically defined in terms of in-
equalities in the closed-loop transfer function of the system, as shown in Equations (2.37)-(2.42).

1. Disturbances rejection at the plant output:∣∣∣∣ yd0
∣∣∣∣ = ∣∣∣∣ 1

1 + P (jω)C(jω)

∣∣∣∣ ≤ δdo(ω) ∀ ω > 0, ∀ P ∈ P (2.37)

2. Disturbances rejection at the plant input:∣∣∣∣ ydi
∣∣∣∣ = ∣∣∣∣ P (jω)

1 + P (jω)C(jω)

∣∣∣∣ ≤ δdi(ω) ∀ ω > 0, ∀ P ∈ P (2.38)

3. Stability: ∣∣∣ y
rF

∣∣∣ = ∣∣∣∣ P (jω)C(jω)

1 + P (jω)C(jω)

∣∣∣∣ ≤ Slim ∀ ω > 0, ∀ P ∈ P (2.39)

4. Tracking:

Bl(ω) ≤
∣∣∣y
r

∣∣∣ = ∣∣∣∣F (jω)P (jω)C(jω)1 + P (jω)C(jω)

∣∣∣∣ ≤ Bu(ω) ∀ ω > 0, ∀ P ∈ P (2.40)

5. Noise rejection: ∣∣∣y
n

∣∣∣ = ∣∣∣∣ P (jω)C(jω)

1 + P (jω)C(jω)

∣∣∣∣ ≤ δn(ω) ∀ ω > 0, ∀ P ∈ P (2.41)

6. Control effort: ∣∣∣u
n

∣∣∣ = ∣∣∣∣ C(jω)

1 + P (jω)C(jω)

∣∣∣∣ ≤ δce(ω) ∀ ω > 0, ∀ P ∈ P (2.42)

For the specifications given in equations (2.37), (2.38), and (2.40), small arbitrarily chosen
specifications can be achieved by designing the controller C such that |C(jω)| → ∞. Therefore,
with a slight deviation from the operating point due to some disturbance and sensitivity close
to zero, the control system becomes more independent of the plant uncertainty. To achieve an
increase in |C(jω)|, it is necessary to increase the cutoff frequency (the frequency in rad/s at
which the magnitude of the open-loop transfer function L0(jω) = P0(jω)C(jω) is 0 dB in the
system). Therefore, to achieve small arbitrary specifications, increasing the system’s bandwidth
is necessary. In this context, the control effort is defined from the noise sensor input n to the
control signal u.
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(a) Regulation problem.

(b) Regulation problem for other initial conditions.

(c) Tracking problem.

Figure 2.12. Time domain specifications examples.
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On the other hand, increasing the value of the controller |C(jω)| poses a problem in terms of
the control effort and sensor specification for disturbance rejection, as increasing the bandwidth
will make the sensor noise affect the system more. A balance must be achieved among all the
specifications. The stability specification is related to the relative stability margins: phase margin
and gain margin.

Translation of specifications from the time domain to the frequency domain

As mentioned earlier, the design in QFT is conducted in the frequency domain, so it is
necessary to transfer the specifications defined in the time domain to the frequency domain. One
way to do this, for example, for tracking problems, is by assuming a model of the closed-loop
transfer function between the reference signal r and the output signal y, denoted as Try(s), and
searching for parameter values that satisfy the limits defined in the time domain for the system’s
output.

As an example, a first-order system given by Pu(s) = Ku/(s + a) is considered. When
the reference signal r(t) is a unit step function, the system’s output is defined as y(t) =
(Ku/a)(1 − e−at). Therefore, to achieve y(t) = r(t) for a sufficiently long time t, the value
of Ku must be set to Ku = a. For a first-order model, Tu = 1/a = a/ωb represents the time
constant. Generally, a higher bandwidth leads to a faster response to the system’s output.

Controller design

The goal is to design a two-degree-of-freedom controller {F,C} as shown in Figure 2.8 in
order to satisfy all the previously defined specifications and achieve closed-loop stability for the
entire plant P in P . The specifications are translated from the time domain to the frequency
domain using circles in the Nyquist Chart, which define the allowed regions for the function
L0(jω) = P0(jω)C(jω). The allowed region is the exterior of the circles in equations (2.37)-
(2.41) and the interior for equation (2.42). Combining the allowed regions generated for all
specifications of each function L0 corresponding to each plant P in P , a set of constraints is
obtained at each frequency ω for the controller C. The boundaries of these regions, represented
in the Nichols Chart, are called boundaries. These frequency-domain limits can be formulated
for both the controller C and the function L0(jω) = P0(jω)C(jω) for any nominal plant P0.

2.2 Experimental Facilities
This section presents the different experimental plants used in this thesis. Each plant is

described in detail, including its characteristics and modelling approach. Furthermore, various
control strategies have been implemented and tested in each plant, aiming to optimize the plant’s
performance and achieve the desired objectives. The details of these control strategies will be
thoroughly discussed in Chapter 4, highlighting their effectiveness and applicability to specific
industrial contexts. By analyzing and comparing the results obtained from different plants,
valuable insights and recommendations can be drawn, contributing to improve control systems
in industrial facilities.

2.2.1 Raceway Reactors for Microalgae Production
Raceway photobioreactors have been studied since 1950 with the aim of providing a solution

for the industrial-scale cultivation of microalgae. Nowadays, due to their scalability and feasibil-
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ity, they are considered the most suitable technology for the industrial cultivation of microalgae.
The popularity of raceway reactors stems from their low initial investment cost compared to
other technologies, such as tubular photobioreactors, which require more complex structures and
equipment. Other relevant advantages of raceway reactors include their simplicity of operation
and low maintenance costs.

There are mainly two types of reactors: closed tubular and open raceway. The most commonly
used are raceway reactors, mainly due to their lower initial investment cost than tubular reactors,
which require more complex structures and equipment. Raceway photobioreactors have been
studied since the 1950s to provide a solution for large-scale microalgae cultivation. Today, due to
their scalability and feasibility, they are considered the most suitable technology for large-scale
microalgae cultivation. Other relevant advantages of raceway reactors are their simplicity of
operation and low maintenance costs [137]. Numerous studies have focused on the optimal
selection of design and configuration of raceway photobioreactors to ensure optimal conditions
for microalgae growth. Currently, numerous designs of photobioreactors vary slightly from
the original design proposed by Oswald and Golueke [94], who suggested the optimal growth
conditions [101].

Several studies have focused on the optimal selection of design and configuration for raceway
photobioreactors to ensure optimal growth conditions for microalgae. Currently, various designs
of raceway photobioreactors differ slightly from the original design proposed by Oswald and
Golueke [95], which ensures optimal growth conditions. Despite the abundance of reactor
structure designs, the core work remains the same, and a multitude of similar factors must be
achieved to obtain the desired biomass production, all of which are related to variables that
influence the growth process [101]. The three main parts of a raceway reactor are the loop, the
sump and the paddle wheels, as shown in Figure 2.13.

Figure 2.13. Raceway recator scheme.
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These biological systems exhibit complex dynamics that pose challenges in modelling and
control [64]. In recent years, various biological models of microalgae have been developed. In
[15], a model captures the effect of temperature and light on microalgae growth, thus predicting
its productivity. In [119], a microalgae-bacteria model is developed and validated based on
the respiration and photosynthesis ratios in wastewater treatment processes with microalgae.
Similarly, in [7], photosynthetic efficiency is improved by optimizing the light and dark regimes
to which the cells are exposed. Furthermore, models based on first principles have also been
developed, as shown in [27]. In [113], a new temperature model is obtained that determines the
evolution of the culture temperature based on reactor design and external conditions, which was
used for indirect temperature control in [32].

As indicated in [24], the most important variables affecting microalgae growth are medium
temperature, solar radiation, pH, and dissolved oxygen. Additionally, the photosynthetic re-
sponse of microalgae to solar radiation depends on many other variables, making the system
highly complex [28]. For raceway reactors, the system’s architecture generally determines the
requirements for solar radiation incidence and temperature operating conditions. Therefore, the
variables to be controlled in this type of reactor are pH and dissolved oxygen. Both variables
have a highly dynamic nature dependent on the photosynthesis process, and it is necessary to
maintain them close to desired operating points [102]. Between these two variables, pH is the
most crucial variable to control as it directly influences proper photosynthesis. This variable
exhibits strongly nonlinear dynamics, affected by CO2 injection into the medium and CO2

consumption during photosynthesis. CO2 plays a vital role in the final biomass production of
microalgae, as approximately half of the biomass consists of carbon. The demand for CO2 in
raceway reactors can be met in various ways and is mainly characterized by the source of CO2

used. Carbon dioxide can be obtained from the atmosphere, supplied as a pure gas, or provided
through flue gas. In the first case, growth is carbon-limited, as only 5% of the required carbon
for the culture is directly transferred from the atmosphere. On the other hand, the most effective
transfer yield is obtained from pure carbon dioxide.

The microalgae raceway reactor used in this thesis is located at the IFAPA center, close to
the University of Almería, Spain (Figure 2.14). It is composed of two 50 m long and 1 m wide
channels connected by a U-shaped bend, providing a total surface of 100 m2. As recommended
by [83], the reactor is operated at a constant liquid height of 0.15 m in order to reduce dark zones.
The total reactor volume is 15 m3. The reactor flow is driven by a paddlewheel made up of 8
aluminum blades of 1.5 m diameter, controlled by an electric motor. Its speed is set at 2 m/s.
Carbonation is carried out in a sump of 1 m depth, 0.65 m length, and 1 m width. It is located at
1.8 m downstream of the paddlewheel. The microalgae strain used for the experiments in this
thesis corresponds to Scenedesmus almeriensis. This type of microalgae is characterized by a
high growth rate, withstanding temperatures of up to 45 ◦C, and pH values ranging from 7 to 10.
Optimum growth conditions are 30 ◦C and a pH value around 8.

Model Description

The dynamic models for microalgae production in raceway reactors from [15, 28, 64, 113,
119] are combined and implemented as the kernel of the tool developed in this thesis and
described in Chapter 4. The models consider fluid-dynamic, mass transfer and biological
phenomena taking place in the reactor. Notice that all these models were properly validated
using real data at an industrial scale in previous works.
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Figure 2.14. Microalgae raceway reactor located at the IFAPA center, close to the University of
Almería.

Regarding the biological model, oxygen production is directly related to biomass production.
The model can be represented by (2.43).

PO2 = PO2(Iav) · PO2(Xr) · PO2(pH) · PO2(DO) (2.43)

The oxygen productivity is composed by four terms: photosynthesis rate PO2(Iav), tem-
perature effect PO2(Xr), pH effect PO2(pH) and dissolved oxygen effect PO2(DO). The
photosynthesis rate term is a quantitative factor that represents the oxygen production per unit
of biomass and time [kgO2 kg

−1 s−1], whereas the rest of the terms are dimensionless and
normalized factors with values between 0 and 1.

The photosynthesis rate is defined in Equation (2.44) as the oxygen production rate per
biomass unit. It is calculated as a function of the following microalgae strains biological
parameters: maximum photosynthesis rate under culture conditions PO2,max [kg O2 kg

−1s−1], the
form exponent n [−], the minimum light need by microalgae to achieve maximum photosynthesis
Ik [µ E m−2 s−1] and the average irradiance, Iav [µ E m−2 s−1]. The average irradiance integrates
the local irradiance values alongside culture depth over the total volume of the culture in the
reactor, and it is calculated according to Equation (2.45). The equation is based on the incident
radiation I0 [µEm−2 s−1] on the total surface of the reactor, the biomass concentration Cb

[g L−1], the biomass light attenuation Ka [m
2 g−1] and the culture depth h [m]. Notice that the

biomass concentration varies with time, t, and position along the reactor channel, x.

PO2(Iav) =
PO2,maxI

n
av

Ink + Inav
(2.44)

Iav(t, x) =
I0(t)

KaCb(t, x)h

(
1− e−KaCb(t,x)h

)
(2.45)
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In Equation (2.43), a cardinal model is used where the values of the variable only exist on
a range between the maximum and minimum tolerable values, with a Gaussian form [84, 85].
According to this model, the contribution to oxygen productivity from temperature and pH
variables is defined by Equations (2.46) and (2.47), respectively. The temperature term PO2(Xr)
depends on the maximum Xr,max, minimum Xr,min, optimal Xr,opt temperatures for the selected
strain and on the current culture temperature, Xr. In the same way, the term for pH PO2(pH)
depends on the maximum pHmax, minimum pHmin, optimal pHopt of the selected strain and the
current pH value. For the dissolved oxygen term, a model considering inhibition by product [24]
is used, as shown in (2.48). It depends on the actual dissolved oxygen value DO, the maximum
DO2,max for the selected strain, and on a form parameter mf .

PO2(Xr) =
(Xr −Xr,max)

(Xr,opt −Xr,min)
·

· (Xr −Xr,min)
2(

(Xr,opt −Xr,min)(Xr −Xr,opt)− (Xr,opt −Xr,max)(Xr,opt +Xr,min − 2Xr)
) (2.46)

PO2(pH) =
(pH − pHmax)

(pHopt − pHmin)
·

· (pH − pHmin)
2(

(pHopt − pHmin)(pH − pHopt)− (pHopt − pHmax)(pHopt + pHmin − 2pH)
) (2.47)

PO2(DO) = 1−
(

DO

DOmax

)mf

(2.48)

The temperature model implemented in the software was developed in [113]. Equation (2.49)
shows the thermal balance in the reactor.

dXr

dt
=
Qirradiance +Qradiation +Qevaporation +Qconvection +Qinlet −Qoutlet

h · A · Cp · ρ
(2.49)

The temperature of the culture in the reactor Xr [
◦C] depends on the heat flow from sunlight

Qirradiance [W ], the heat flow from long-wave radiation Qradiation [W ], the convection heat flow
Qconvection [W ], the heat flow between the reactor and the layer under it through the conduction
process Qconduction [W ], the heat added when the medium is supplied to the reactor Qinlet [W ],
the heat subtracted when the medium is removed from the reactor Qoutlet [W ], the culture depth
h [m], the reactor surface A [m2], the specific heat capacity of the culture Cp [J kg

−1 ◦C−1], and
the density of the culture ρ [kg m−3]. A detailed description of this model can be found in [113].

Regarding the engineering model, the reactor is divided into two main parts: channel and
sump. Constant velocity vr [ms−1] and liquid height h [m] is assumed, so the volumetric flow
rate of the liquid Qliq [m

3 s−1] is defined as the multiplication of the cross-sectional area of the
channel and velocity (where w represents the reactor width). Mass balances have been applied to
each reactor section in liquid and in gas phases. In this paper, for the sake of simplicity, only
mass balances in the liquid phase are presented (Equations (2.50)-(2.55)). Mass balances in the
gas phase are described in [28].
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In the liquid phase, three main components are taken into account: biomass concentration
Cb [kg m

−3], dissolved oxygen [O2] [%] and total inorganic carbon concentration [CT ] [molm
−3].

For each section of the reactor, mass balances with these three components are defined.

For the channel, the proposed balances are shown in Equations (2.50) to (2.52). The oxygen
mass transfer is a function of the volumetric coefficient for oxygen into the channel KlaO2c [s

−1]
and the logarithmic driving force. The carbon dioxide mass transfer is calculated in the same
way, using instead the volumetric mass transfer for carbon dioxide into the channel KlaCO2c [s

−1].
The variables used in these equations are: the oxygen photosynthesis rate PO2 [kgO2 kg

−1 s−1],
the carbon dioxide photosynthesis rate PCO2 [kgCO2 kg

−1 s−1], the biomass yield coefficient
Yb/O2 [kg], the molecular weight of the oxygen MO2 [g mol

−1], carbon dioxide MCO2 [g mol
−1],

the equilibrium concentration with gas phase for oxygen [O∗
2] [molm

−3] and the equilibrium
concentration with gas phase for dioxide carbon [CO∗

2] [molm
−3].

∂Cb(t, x)

∂t
= −whvr

∂Cb(t, x)

∂x
+ whPO2(t, x)Cb(t, x)Yb/O2 (2.50)

wh
∂[O2](t, x)

∂t
= −whvr

∂[O2](t, x)

∂x
+

+ wh
PO2(t, x)Cb(t, x)

MO2

+ whKlaO2c([O
∗
2](t, x)− [O2(t, x)]) (2.51)

wh
∂[CT ](t, x)

∂t
= −whvr

∂[CT ](t, x)

∂x
+

+ wh
PCO2(t, x)Cb(t, x)

MCO2

+ whKlaCO2c([CO
∗
2](t, x)− [CO2(t, x)]) (2.52)

Analogous mass balances are applied to the sump, where the air and carbon dioxide are
injected. Equations (2.53) to (2.55) show the corresponding balances. In these equations, the
volume of each section Vs [m3] is corrected by a gas hold-up (εs) to determine the right liquid
volume in each section. The terms of the volumetric flow rate of the liquid Qliq [m

3 s−1] and the
volumetric flow rate of culture medium Qm [m3 s−1] are also included. The constants included
in this equation are, the dissolved oxygen [O2]m [molm−3] and the total inorganic carbon in the
medium [CT ]m [molm−3].

dCb,out(t)

dt
= − Qliq

Vs(1− εs(t))
(Cb,out(t)− Cb,in(t))+

+ PO2(t)Cb,in(t)Yb/O2 −
Qm

Vs(1− εs(t))
Cb,out(t) (2.53)

d[O2]out(t)

dt
= − Qliq

Vs(1− εs(t))
([O2]out − [O2]in(t)) +

PO2(t)Cb,out(t)

MO2

+

+KlaO2s([O
∗
2](t)− [O2](t)lm) +

Qm

V s(1− εs(t))
([O2]m − [O2]out(t)) (2.54)
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d[CT ]out(t)

dt
= − Qliq

Vs(1− εs(t))
([CT ]out(t)− [CT ]in(t)) +

PCO2(t)Cb,out(t)

MCO2

+

+KlaCO2s([CO
∗
2](t)− [CO2](t)lm) +

Qm

V s(1− εs(t))
([CT ]m − [CT ]out(t)) (2.55)

2.2.2 Greenhouse
A greenhouse is an enclosed structure where the variables that affect the growth and de-

velopment of crops can be manipulated. The growth of a crop is primarily determined by the
climatic variables of its environment and the amount of water and fertilizers applied through
irrigation. Therefore, proper management of these variables allows for control over crop growth.
That is why a greenhouse is ideal for cultivation, as it provides a closed environment where
these variables (ventilation, heating, shading system, water and fertilizer supply, etc.) can be
manipulated to achieve optimal plant growth and development. However, achieving the optimal
conditions for climatic variables and fertigation comes with economic costs regarding energy,
water, and fertilizers. Therefore, from an economic perspective, the goal is not necessarily to
maximize production but to maximize profit, which is the difference between the income from
selling the final product and its associated costs. Other objectives, such as quality or water use
efficiency, can also be considered in maximizing the overall benefit [111].

The diversity of elements that compose a greenhouse and their interrelationships make it a
highly complex system where energy, mass, and information are dynamically present in different
magnitudes. The crop is the main element and is subject to the influence of various variables,
such as climate variations (temperature, humidity, photosynthetically active radiation (PAR)), and
carbon dioxide (CO2 levels), nutrition (water and nutrients), biological factors (pests, diseases,
viruses, bacteria), and crop management practices (pruning, pesticides). These variables interact
with each other with a high degree of complexity, requiring their identification and modelling as
subsystems. Therefore, it is necessary to have an adequate greenhouse model (usually dynamic)
that represents all these interactions and allows for its operation. The greenhouse structure, the
crop’s type and condition, the actuators’ effect, and external climatic conditions all affect the
behavior of the greenhouse.

The following variables are considered the most important for addressing the climate control
problem (see Figure 2.15):

• Controlled variables: These variables are directly related to the crop growth. On one
hand, there are climate variables such as PAR radiation, internal temperature, and CO2

concentration. Relative humidity can be controlled using CO2 since it is directly related to
the crop’s absorption of CO2. On the other hand, there are fertilization variables such as
water supply, pH, and electrical conductivity.

• Disturbances: These variables affect the system but cannot be controlled. In this case,
they include external climate conditions (temperature, relative humidity, solar radiation,
rainfall, wind direction, and speed), medium transpiration (dependent on the crop’s state),
and greenhouse structural variables (structure, soil, etc.).
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• Control variables: These variables are used to compensate for the effects of disturbances
and set-point changes in the system, and they are directly related to the actuators within the
process. The commonly used actuators include natural ventilation, heating, humidification
systems, and CO2 injection.

Figure 2.15. Greenhouse climate control problem.

All the processes that happen inside and outside the greenhouse have a strong relationship
between them. The inside diurnal temperature varies by convective air exchange between the
outside and inside [21]. This exchange rate, coupled with CO2 taken by the crop during pho-
tosynthesis, determines the concentration of CO2 in the greenhouse. When the photosynthetic
rates are higher, the concentration of CO2 falls below the atmospheric, producing a growth
deficit that is increased when the crop reaches its maximum development [111]. Furthermore,
the photosynthesis rate indirectly affects the humidity content because when the leaves stomata
are opened to capture the CO2, the plant emits water vapor through the transpiration process,
increasing the humidity inside the greenhouse. This released vapor can be reduced, and the
concentration of CO2 is increased by ventilation [129].

Inside the greenhouse, the crop growth is influenced by PAR radiation, temperature, and
CO2 level. Under diurnal conditions, PAR radiation and temperature influence the process
of plant photosynthesis. In particular, temperature influences the speed of sugar production
by photosynthesis, and a higher radiation level implies a higher temperature. Thus, radiation
and temperature have to be in balance, and it is necessary to maintain the temperature at a
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level optimal for the photosynthesis process. The diurnal temperature control problem is the
refrigeration of the greenhouse air using natural ventilation to reach the optimal temperature.
The air exchange and flow inside the greenhouse are determined by natural ventilation as a
consequence of the difference between inside and outside temperatures. The objective of the
control system is to maintain the inside temperature close to an optimal level [111], having a
direct effect on crop growth. This is the control problem treated in this thesis.

The parral greenhouse used in this work is located at The Cajamar Foundation (El Ejido,
Almería, South-East Spain) (Figure 2.16).

Figure 2.16. Greenhouse facilities used for the experiences performed in this thesis.

The structure of the greenhouse, the type and state of the crop, the effect of the actuators,
and the outlet environmental conditions affect the dynamic behavior of the greenhouse climate
(see Figure 2.15). The material that covers the greenhouse is a polyethylene film of 200 µm
thickness, installed on a galvanized steel structure. The actuators are a hinged roof window with a
maximum opening angle of 45◦ and a lateral window with a length of 37 m and an opening of 45◦.

The greenhouse has a great variety of sensors to obtain data. Soil temperature is measured
using semiconductor sensors at different depths (just below the surface layer of the soil and
50 mm deep) and on both sides of the mulch. Eight semiconductor contact sensors have been
installed along the cover to measure the outside temperature. The temperature of the air and the
relative humidity inside the greenhouse are measured through thermosensitive and capacitive
sensors, respectively, positioned in the upper part of the crop. Outside the greenhouse, a
meteorological station has been installed at a height of 6 m to measure temperature, relative
humidity, global radiation, photosynthetic radiation (PAR), rain, and wind speed and direction.
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Model Description
In order to describe the indoor climate greenhouse model, the following hypothesis are as-

sumed:

• The state variable for the system is the air temperature, Xt,a, and it is also considered the
controlled variable.

• There are three external elements that interact with the greenhouse: outside air, floor
surface, and the crop.

• Exogenous variables and disturbances affecting the system and considered as environ-
mental conditions are the outdoor air temperature, Pt,o, wind speed Pws,o, outdoor global
radiation, Prs,o and ground surface temperature, Xt,ss.

• System control input is ventilation position Uven.

• Air is not inert to solar radiation.

• There is no reflection.

• Air physical characteristics, such as density or specific heat, are constant with temperature
and time.

Thus, according to the previous statements, the accumulated heat on the greenhouse air is
given by the following balance equation [111]. Notice that references to t variable have been
deleted in equations in order to obtain more compact expressions:

Qac = Qs +Qcv,ss +Qcv,cal −Qcn−cv −Qv −Qt,c (2.56)

where Qac is the accumulated heat in the greenhouse air, Qs is the solar radiation absorbed by
the greenhouse air, Qcv,ss is the heat transfer by convection and conduction in the cover between
the outside and the inside air, Qcv,cal is the convection heat transfer with the pipes heating system,
Qcn−cv is the convection and conduction heat transfer between the input and output greenhouse
air, Qv is the heat transfer to the outside air due to ventilation and infiltration losses, and Qt,c is
the latent heating produced by the crop transpiration.

Expressing the accumulated heat in the greenhouse as the variation of inside air temperature
Xt,a with respect to time, it results in:

Csh,aCd,a
Cv,s

Ca,s

dXt,a

dt
= Qs +Qcv,ss −Qcn−cv −Qv −Qt,c (2.57)

where Csh,a is the air specific heat, Cd,a is air density, Cv,s is air volume, Ca,s is the surface
ground area, and where Qcv,cal is zero due to the heating system is turned off.

Then, according to the results obtained in Equation [111] for the balances presented in (2.57),
and considering that in this paper only the diurnal dynamics is considered (Qcv,cal = 0), the
following greenhouse temperature simplified model is obtained:
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Csh,aCd,a
Cv,s

Ca,s

dXt,a

dt
= CaocVt,cPrs,o + Ccv(Xt,ss −Xt,a)− Ccn−cv(Xt,a − Pt,o)−

− Cd,aCsh,a

Ca,s

ϕv(Xt,a − Pt,o)− Et(Cet − CfXt,a) (2.58)

where Caoc is the greenhouse air short wave absorption coefficient, Vt,c is the short wave trans-
mission coefficient based on the cover transmission coefficient, whitening, and the shader mesh,
Ccv is the greenhouse air-soil surface convection coefficient, ϕv is the ventilation flow, Cet is the
evapotranspiration constant, Cf is the conversion factor and Et is the crop evapotranspiration
which is obtained based on the crop state and climate variables such as greenhouse air humidity
and net radiation. The ventilation flow is represented by:

ϕv=

[ Vv,a−lVv,a−r√
V 2
v,a−l + V 2

v,a−r

2(
2CgCven,h

Xt,a − Pt,o

Xt,a + Pt,o

)

+

(
Vv,a−l + Vv,a−r

2

)2

Cven,wP
2
ws,o

]0.5
Cv,d + ϕl (2.59)

with

Vv,a−l = Cv,l−lCv,w−lUvennl (2.60)

Vv,a−r = 2Cv,l−rCv,w−r sin
(Uven

2

)
nr (2.61)

where Vv,a−l and Vv,a−r are the areas of the sidewall and roof ventilation openings respectively,
Cg is the gravity constant, Cvent,h is the ventilation effective height, Cvent,w is the ventilation
wind effect coefficient, Cv,d is the ventilation discharge coefficient and ϕl is the leakage by
infiltration when vents are closed flux. Cv,l−l and Cv,l−r are the length of the lateral and roof
vents respectively, Cv,w−l and Cv,w−r are the width of lateral and roof vents respectively, and
nl and nr is the number of lateral and roof vents respectively. The evaporation process in soil
surface has been neglected due to the greenhouse being mulched [111].

Variable Uven is the vent opening (control signal) and represents the aperture value for both
lateral and roof windows. Thus, the model presented in Equation (2.58) allows to describe the
evolution of the diurnal greenhouse temperature (process output) based on the vent opening
(control signal) and the process disturbances. Notice that this nonlinear model has been calibrated
and validated in previous works with a goodness of fit over 90% [105, 111]. This model was
used in this thesis to develop a robust feedback linearization approach as presented in Chapter 4.
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2.2.3 TCLab

This section summarizes a commercial example of a pocket-sized device called APMonitor
Temperature Control Lab, abbreviated to TCLab [5]. TCLab (see Figure 2.17) is a low-cost
portable device intended as an educational tool for model identification and testing of control
strategies. The TCLab kit is a multi-variable system consisting of two heaters (transistors),
whose temperatures need to be controlled and two thermal sensors (thermistors). Its compact
size and being an Arduino-based device make TCLab an easy-to-use kit for control engineering
students. Over the last years, TCLab has been proven to be a suitable tool in different university
courses, as described below [35, 60].

Figure 2.17. Picture of a TCLab kit [5].

TCLab’s control objective is to make its transistors reach a certain temperature by varying
the current passing through them. Each sensor-actuator pair is attached to a sink, in permanent
contact, and glued with a thermochromic material (as shown in Figure 2.17). Both sensors and
actuators are connected to an Arduino board, as depicted in Figure 2.18.

Figure 2.18. TCLab connections diagram [5]. Black “A” indicates actuators, blue “C” indicates
connection, and green “S” indicates sensors.
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The USB connector is used to transfer code from a personal computer to the microcontroller,
allowing students to program any control strategy that they need to implement. Although Arduino
uses its own language, which is similar to C++, it is possible to program Arduino with other
high-level languages, such as Python, Matlab® or Simulink®, thanks to the available libraries
from different developers. This is the case for the activities carried out in this thesis, for which
all the programming is done in either Matlab® or Simulink®.

In order to work with TCLab, a basic thermal model that considers the main physical
phenomena is used. The broad approach of considering a multi-variable system yields an
expression for each of the transistors, as stated in (2.62) and (2.63):

mcp
dXh,1

dt
= UhAc(X∞ −Xh,1) + ϵhσhAc(X

4
∞ −X4

h,1) +QC12 +QR12 + αh,1Q1 (2.62)

mcp
dXh,2

dt
= UhAc(X∞ −Xh,2) + ϵhσhAc(X

4
∞ −X4

h,2)−QC12 −QR12 + αh,2Q2 (2.63)

where m is the mass of the transistor-thermistor-sink assembly (from now on, “heater”), cp
is its specific heat capacity, Ac is the surface in contact with the environment, Uh is the over-
all heat transfer coefficient , X∞ is the environment temperature, ϵh is the emissivity, σh is
the Stefan-Boltzmann constant, αi is a factor that relates the current passing through transis-
tor i to the heat produced, Xh,i is the temperature of heater i, Qi is the heat dissipated by
heater i, QC12 = UhAs(Xh,2 −Xh,1) is the convective heat transfer from heater 1 to heater 2,
QR12 = ϵhσhAs(X

4
h,2 −X4

h,1) is the radiative heat transfer from heater 1 to heater 2, and As is
the surface area between heaters.
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3. Contributions to Classic Control Strategies

Most industrial processes are affected by load disturbances. A regulation problem is classi-
cally known as the design of a feedback controller to reduce the effects of load disturbances in the
process output. However, if the disturbance can be measured, it can be accounted for in advance
to help the feedback controller reject it. The most common solution to reject measurable load
disturbances is feedforward control [37, 77, 120, 123]. It is commonly used in process industry.
It is implemented in most distributed control systems to improve the control performance in
applications such as distillation columns [92], power plants [138] or microalgae cultures, among
many other examples [4].

Feedforward control provides the ability to take control actions before the disturbance affects
the process output. The ideal compensator is formed as the dynamics between the disturbance
and the process output divided by the dynamics between the control signal and the process
output, with the reversed sign. If this feedforward compensator is used, the effects of the load
disturbance can be removed completely from the process output. However, it is normally not pos-
sible to implement and apply this ideal feedforward compensator since it results from a division
between two process transfer functions. Thus, the compensator may be non-causal (having a neg-
ative delay), non-proper (having more zeros than poles), or unstable. Another reason is that the
compensator may require so large control signal actions that the control signal becomes saturated.

In recent years, research results dealing with the design of tuning rules to improve feedforward
control when perfect cancellation is not realizable have been presented [37, 38, 41, 109, 110].
This research has mainly been focused on the delay inversion problem leading to non-causal
compensators. In this thesis, another problem that makes the ideal compensator non-realizable is
treated, namely the fact that feedforward control signals often become saturated.

In the adjustment and design of feedforward control, ideal linear models of both the plant and
disturbance are used. In industry, process models can be complex, and often the parameters may
have uncertainty because of modelling approximation for control design proposes. Therefore, by
employing robust control strategies such as QFT [114], attempts are made to compensate for the
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differences between the model used in feedforward control and the actual plant and disturbance
models.

Similarly, due to the complexity of industrial processes, it is sometimes necessary to combine
different control strategies to achieve the best process performance. In this regard, strategies
such as cascade control are widely used and implemented [135]. Since they can also be subject
to disturbances, it is necessary to combine them with feedforward control and, therefore, develop
solutions to address these issues.

This chapter provides three solutions for classical control schemes that deal with measurable
disturbances. In Section 3.1, a QFT-based robust solution is presented for the feedforward
control scheme, where PI control is combined with feedforward compensators, considering the
uncertainties of the processes. Section 3.2 proposes a new design rule to improve the response
when saturation occurs in a classical feedforward control scheme due to a disturbance effect.
Lastly, in Section 3.3, a dual feedforward scheme is proposed for a cascade control scheme
subjected to measurable disturbances at the process output.

3.1 Robust QFT-Based PI Controller for a Feedforward Control
Scheme

Usually, when feedforward is calculated, nominal models are used, and the robustness case is
not studied. Notice that when uncertainties are considered, the feedforward control scheme dete-
riorates even for the perfect cancellation case. In that case, the cancellation of the feedforward
is not perfect, and the closed-loop specifications may not be fulfilled when the system deviates
from the nominal conditions [36]. Thus, it is interesting to analyze this situation and propose
robust solutions for this problem.

There are only a few works in literature where the robustness of the feedforward control
scheme has been studied. In [36], the robustness of the feedback control with feedforward
compensator was analyzed with respect to uncertainties in the process gain and approximated
high-order dynamics. It was demonstrated that the variability of the process model parameters
affects the response of the PID controller with the feedforward compensation. The authors in [4]
presented a robust design solution for feedforward controllers when the available dynamic mod-
els include estimated limits for the uncertainties. A model-based design and tuning procedure is
proposed to account for model uncertainties. It is derived that the feedforward and the feedback
controllers should be tuned simultaneously for efficient disturbance rejection. This idea has been
used later in other works. For instance, in [133], a sequential tuning of feedforward controllers
within an IMC control structure is proposed. In that work, the compensator is defined as the
invertible part of the quotient plus a tunable filter which is chosen to minimize the interaction
between both controllers. Furthermore, in [109], a robust design methodology for simultane-
ously tuning both feedforward and feedback controllers is presented. Disturbance rejection
performance condition is expressed as a degradation band above a desired shape. Finally, in
[26], QFT was used to design robust feedback and feedforward controllers. New QFT bounds
were obtained for the design stage, and it was the first time that the feedback was linked to the
existence of a feedforward controller in QFT.

The aim of the contribution is to propose a QFT-based robust solution for the classical
feedforward control scheme (see Figure 2.4) presented in this thesis, where PI control is combined
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with feedforward compensators [61]. The idea consists in moving the uncertainties effect to
bounds in the QFT specifications and then designing a robust PI controller. The main contribution
is based on modifying the original boundaries of the QFT methodology for the regulation problem
and designing a robust PI controller to account for the uncertainties. Notice that the feedforward
compensator is not designed from a robust point view since its effect is moved to the QFT
specifications.

3.1.1 Preliminaries
The feedforward control scheme used in this work is shown in Figure 2.4. It consists of a

feedback controller C(s), a process Pu(s), a set-point signal r, a control signal u, and a process
output y. The disturbance d, which is measurable, influences the feedback loop as shown in the
figure. The transfer function between the load d and the output y is Pd(s). The feedforward
compensatorCff (s) feeds the disturbance d, and its output is added to the feedback control signal.

A PI controller is considered as feedback regulator C(s), defined in Equation (2.2), with
τd = 0. The models of the process Pu(s) and the disturbance Pd(s) are described by first-order
transfer functions without time delay, as shown in Equation (2.8), where the gains and the time
constants in both cases, Ku, Tu for the process and Kd, Td for the disturbance, are the parameters
that bring the uncertainty to the system as described below. Notice that in this contribution, the
free-delay case is considered the first approach to the robust problem. However, the solution can
easily be extended to the time delay case. The proposed feedforward compensator is given by
the Equation (2.9).

3.1.2 Robustness Analysis and Design
Such as described in Section 2.1.3, the feedforward element is commonly used as a lead-lag

compensator described by Equation (2.9). Usually, it is calculated from models in Equation (2.8),
assuming that there is no uncertainty [36]. Notice that for the nominal case, and if there are no
inversion problems, the disturbance effect can be totally canceled.

In this contribution, uncertainties in gain and time constant are assumed in the process transfer
functions Pu and Pd to perform a robustness analysis of the classical feedforward control design.
Thus, now a set of plants given by the following equations is defined:

Pu(s) ∈ P =

{
Ku

1 + Tus
, with Ku ∈ [Ku,low, Ku,high], Tu ∈ [Tu,low, Tu,high]

}
(3.1)

Pd(s) ∈ P =

{
Kd

1 + Tds
, with Kd ∈ [Kd,low, Kd,high], Td ∈ [Td,low, Td,high]

}
(3.2)

P 0
u (s) =

K0
u

T 0
us+ 1

(3.3)

P 0
d (s) =

K0
d

T 0
d s+ 1

(3.4)

where P 0
u and P 0

d are the nominal plants.
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The first issue to be analyzed is to observe how the use of the feedforward control scheme and
the presence of uncertainties affect the system specifications in the regulation control problem.
The closed-loop transfer function from disturbance to system output is defined as:

Tdy(s) =
Pdg(s)

1 + C(s)Pu(s)
(3.5)

where Pdg is given by the following equation:

Pdg(s) = Cff (s)Pu(s) + Pd(s) (3.6)

Notice that Cff = 0 represents the classical regulation problem.

When Pu and Pd are uncertain, and QFT is used to design the feedback regulator, the
specification for the robust regulation problem is given, from Equation (2.37), as:∣∣∣∣ 1

1 + C(jω)Pu(jω)

∣∣∣∣
dB

≤ δdB(ω)− |Pdg(jω)|dB = γr(ω) (3.7)

for all plants Pu, Pd ∈ P , and where γr is the new specification bound.

Therefore, it can be observed how the feedforward compensator and the uncertainties affect
the bound in the specification problem. Thus, according to Equations (2.37) and (3.7), there are
two different ways to account for the robust control problem:

• The first one would be to use Equation (3.7) and follow the classical robust design with
QFT. In this case, the specification bound γr depends on the uncertainties and the feed-
forward compensator present in Pdg(jω). Then, the minimum value of γr for all plants
Pu, Pd ∈ P , must be considered as specification. Once this minimum bound is calculated,
classical QFT is used to obtain the resulting controller. However, a very conservative
solution will be obtained since the specification bound is computed for the worst possible
case.

• A second solution to this problem is to consider the specification from Equation (2.37) and
to modify the boundary calculation in QFT. So, new boundaries are obtained considering
the presence of the feedforward compensator and then a robust controller is obtained based
on these new limits. This is the new solution proposed in this contribution and presented
in the following.

First, the nominal plants P 0
u (s) and P 0

d (s) are selected, and the nominal feedforward com-
pensator is calculated using the rules proposed in [36]. That is, Kff = K0

d/K
0
u, Tp = T 0

d and
Tz = T 0

u .

Then, the algorithm proposed in [86] to compute classical boundaries in QFT is modified in
order to include a new kind of boundary that assures the satisfaction of specification in Equation
(2.37) when Cff ̸= 0. It is important to remember the concept of crossection defined in [86].
Fixed a phase in Nichols Plane (NP) (and the frequency ω for which the boundary is being com-
puted), the crossection is a function of the magnitude of the nominal open-loop transfer function
L0 = CP 0

u , that provides a value of interest, the value of Max|Tdy(jω)|dB in this contribution.
Obviously, the location of L0(jω) in the NP depends on the value of C(jω) because P 0

u is fixed.
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Figure 3.1. Crossections for the regulation problem for Cff = 0 (red) and for Cff ̸= 0 (blue) for
ω = 1 rad/s and phase(L0(jω)) = −100 degrees. Two specifications are shown, for δdB = −20
(- -) and δdB = −10 (-·).

Figure 3.1 shows an example of crossection for the regulation problem for the cases with and
without feedforward compensator and for ω = 1 rad/s and phase(L0(jω)) = −100 degrees. In
this figure, two different specifications are shown for δdB = −20 and δdB = −10, respectively.
It can be observed how, for specifications where δdB < −20, both cases are equal for this
frequency. See for instance, the case where both solutions cut the specification of δdB = −20 at
the value of 5.66 dB. However, for specifications with δdB ≥ −20 both solutions are different.
This means that different boundaries will be obtained for both cases, and thus, different control
designs must be done. For instance, for the specification of δdB = −10, the case where Cff = 0
does not cut the limit, while the case with Cff ̸= 0 cuts the specification bound at the value
of -4.19 dB. Thus, a more restrictive solution is given for the case when the feedforward is
included in the control scheme. This result indicates that the use of the feedforward compensator
can affect the control problem negatively when modelling errors appear in the system. This
fact can better be seen in Figure 3.2. This figure shows the boundaries for the specification
of δdB = −10. As observed, the boundary is open when Cff ̸= 0 and closed when Cff = 0,
thus being the first one much more restrictive. However, it is interesting to see how, for the
zone around (-180o, 0 dB), the boundary for Cff ̸= 0 is smaller and thus less restrictive. In any
case, this is usually protected by the stability boundaries, and thus it is not an important advantage.
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Figure 3.2. Boundary comparisons for the regulation problem for Cff = 0 (red) and for Cff ̸= 0
(blue) for ω = 1 rad/s and for the specification δdB = −10.

Thus, it is concluded that QFT can be used as a robust control design method when a
feedforward control scheme is considered to account for the uncertainties in the process. However,
the presence of the feedforward compensator affects to the calculation of the classical boundaries
in QFT, and new specifications must be fulfilled during the controller design stage as shown in
the following section with numerical examples.

3.1.3 Numerical Example
This section presents a numerical example to demonstrate the contributions described in the

previous section. Let’s assume the following models for the process:

Pu(s) ∈ P =

{
Ku

1 + Tus
, with Ku ∈ [1, 10], Tu ∈ [1, 10]

}
(3.8)

and

Pd(s) ∈ P =

{
Kd

1 + Tds
, with Kd ∈ [3, 7], Td ∈ [11, 15]

}
(3.9)

with nominal models P 0
u given by K0

u = 1 and T 0
u = 10 and P 0

d given by K0
d = 3 and T 0

d = 11.
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Such as commented in the previous section, there are two possible solutions to the problem
based on considering the specifications as shown in Equations (2.37) or (3.7). The following
subsections show the analysis and results for both cases.

Classical Solution
One solution for the problem would be to use the specification of the problem according

to Equation (3.7) for the worst case and then use the classical stages for QFT with classical
boundaries.

Figure 3.3 shows different values for the γr function defined by Equation (3.7) for all the
plants in P . The curve represented by asterisks shows the case when Cff = 0, and the rest of the
curves are all γr values when Cff ̸= 0. Is is assumed that δdB = −40dB. Thus, it is observed
how for this nominal choice, there are many cases of uncertainty where the presence of the
feedforward compensator results in a more restrictive specification (a more aggressive controller
will be required) since they are below the case when Cff = 0. Therefore, this result indicates
that, in this case, the selection of the nominal plant cannot be made arbitrarily. It would be neces-
sary to obtain the nominal plant that gives the maximum value of γr for all possible combinations.
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Figure 3.3. Right side of Equation (3.7) with Cff = 0 (*) and with Cff ̸= 0 (-) for nominal
models P 0

u given by K0
u = 1 and T 0

u = 10 and P 0
d given by K0

d = 3 and T 0
d = 11.

If this is performed for this example, the results presented in Figure 3.4 are obtained for the
best case. That is, it is the selection of the nominal models that give the less restrictive γr values.
This solution has been obtained for the nominal models P 0

u given by K0
u = 10 and T 0

u = 1 and
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P 0
d given by K0

d = 3 and T 0
d = 11. It can be seen that when Cff ̸= 0 all γr functions are greater

than or equal to the γr function corresponding to Cff = 0. Then, the function that must be used
as the specification in Equation (3.7) is given by γr(ω) = δdB − |Pd(jω)|dB, which is the same
specification as when the feedforward term is not considered. If any other value for nominal used
to compute Cff is chosen, some γr functions will be located below the line with asterisks in the
Figure 3.4 as shown in the case of Figure 3.3. Thus, the specification would be more restrictive,
and a more demanding feedback controller will be necessary in order to ensure the specifications.
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Figure 3.4. Right side of Equation (3.7) with Cff = 0 (*) and with Cff ̸= 0 (-) for nominal
models P 0

u given by K0
u = 10 and T 0

u = 1 and P 0
d given by K0

d = 3 and T 0
d = 11.

Hence, it is concluded that when the specification from Equation (3.7) is considered, the same
specification as the case when Cff = 0 can be used for the robust control problem.

New Solution

In this case, the specification (2.37) is considered, and the new solution described above is
used for this example.

Then, classical stability specifications in QFT and the new kind of disturbance rejection
specifications, including the feedforward element, are taken into account. A phase margin greater
than or equal to 45 degrees for the whole uncertainty set is used as stability specification. So,
this specification on the closed-loop transfer function is given by:
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∣∣∣∣ C(jω)Pu(jω)

1 + C(jω)Pu(jω)

∣∣∣∣ ≤ 2.32dB ∀ ω > 0 (3.10)

On the other hand, a disturbance rejection specification is given by δdB = −40dB is assumed.
The set of design frequencies chosen is Ω = {0.1, 1, 10, 100} rad/s.

Figure 3.5 shows the templates for the set of design frequencies and for the set of plants from
Equation (3.8). Figure 3.6 shows the stability bounds, all of which are closed boundaries, and the
disturbance rejection bounds, all open boundaries, for the same set of frequencies. A nominal
open-loop transfer function shaped fulfilling all the boundaries is drawn, given by a PI controller
with Kp = 400 and τi = 100. The parameters used for the Cff element are Tz = 10, Tp = 11,
and Kff = 3.

Figures 3.7 and 3.8 show that the control system satisfies all the specifications from a fre-
quency domain point of view.

Finally, Figures 3.9 and 3.10 show the results in the time domain for the proposed robust
control approach presented in this contribution and for the nominal control design presented
in [36], respectively. It can be observed how for the proposed case, the disturbance is almost
rejected beside the uncertainties with an important performance improvement with respect to the
nominal case in Figure 3.10. Moreover, this result is achieved with very similar control effort as
shown in the controller output signal of both figures.
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Figure 3.5. Templates for ω ∈ {0.1, 1, 10, 100} rad/s.
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Figure 3.6. Nominal open-loop shaping and stability and disturbance on output rejection bounds
taking the FF element into account.
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Figure 3.7. Tdy(jω) transfer functions and specification.
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Figure 3.8. Tdj(jω) transfer functions and specification.
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Figure 3.9. Time domain simulations for the proposed robust control design. A unitary step
disturbance was included at time t = 3 seconds.
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Figure 3.10. Time domain simulations for nominal control design [36]. A unitary step disturbance
was included at time t = 3 seconds.

3.1.4 Conclusions
This contribution has analyzed the classical feedforward control scheme for measured distur-

bances for the case when uncertainties are considered. QFT has been used as a robust control
design method. It was shown that the presence of the feedforward compensator changes the
classical QFT specification for the regulation problem. This modification leads to two different
solutions. The first one consists in using the same specification as the case when the feedforward
is not considered, and classical QFT boundaries for the control design process are calculated.
This approach would result in very conservative results, and the presence of the feedforward
compensator would not give remarkable advantages. The second solution is based on modifying
the boundaries of the regulation problem with QFT to include the presence of the feedforward
controller. In this case, new boundaries were obtained, and the QFT method was used to design
a robust PI controller to account for uncertainties in obtaining promising results.

This contribution was presented and obtained the Young Author Award for the article "Robust
QFT-based PI controller for a feedforward control scheme" at the 3rd IFAC Conference on
Advances in Proportional-Integral-Derivative Control in Ghent, Belgium, 2018 [61].
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3.2 A Practical Solution to the Saturation Problem in Feedforward
Control for Measurable Disturbances

The potential of feedforward control is based on the possibility of taking large control signal
actions at sudden load disturbance changes. However, sometimes the system actuators are unable
to reach these large control signal values, and saturation problems may appear. When it happens,
the power of the feedforward control is reduced. It is obvious that control signal saturation
limits the capacity of the controller, but in this thesis, it is shown that the saturation problem is
aggravated by the anti-windup function that is enabled when the control signal is saturated.

A controller with integral action must have an anti-windup function to prevent the integral
term from winding up when the control signal saturates [1, 128]. The back-calculation anti-
windup scheme is one of the most common schemes. When the control signal saturates, the
back-calculation method changes the integral term dynamically with a tracking time constant
[80]. In this thesis, it is shown that this change of the integral action may cause sluggish load
disturbance responses, and this is the opposite of the intention for adding feedforward action to
the feedback controller.

To overcome this problem, it is suggested to reduce the gain of the feedforward compensator
during periods of control signal saturation. A method to calculate this gain reduction is presented,
and several simulation examples show that this idea will result in a great performance improve-
ment in these cases. The proposed algorithm is tested on a lab-scale temperature control system
to demonstrate noticeable practical capabilities, and experimental results presented in Chapter 4.

3.2.1 Problem Statement
Figure 3.11 shows a blocks diagram of the classical feedback control scheme to deal with

the rejection of load disturbances. The diagram is composed of the process model Pu(s), the
controller C(s), considering the control signal saturation block, the reference r, the process
output y, the control signal u, and the output from the control signal saturated usat. There is
also a measurable load disturbance d, and the model Pd(s) describes the dynamics between this
disturbance and the process output.

Figure 3.11. Feedback control scheme with control signal saturation.

It is assumed that the two process transfer functions can be approximated by a FOPDT, defined
in Equation (2.8). Ku and Kd are the static gains, Tu and Td are the time constants, and Lu and
Ld are the time delays.
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Since d in Figure 3.11 is measurable, feedforward can be used to improve the load disturbance
rejection. Figure 3.12 shows a block diagram where a feedforward compensator Cff (s), that
takes disturbance d as input and subtracts its output from the feedback control signal, has been
added to the feedback loop. The difference between the control signal given by the controller
(u), and the one saturated (usat), is esat = u− usat.

Figure 3.12. Feedback control loop complemented with feedforward and anti-windup.

From the block diagram in Figure 3.12, one can see that when the control signal is not
saturated, the closed-loop transfer function relating the process output with the disturbance signal
is given by

Tdy(s) =
Pd(s)− Cff (s)Pu(s)

1 + Pu(s)C(s)
(3.11)

where perfect elimination of the load disturbance is obtained if Equation (2.7) is applied.

As commented previously, this ideal compensator is, unfortunately, normally not realizable,
see [36]. The most common reason is the delay inversion problem that arises when the delay in
Pu(s) is longer than the delay in Pd(s). Other reasons may be that the compensator becomes
unstable or gets derivative action or that the control signal becomes saturated. In this contribution,
only the delay inversion and control signal saturation problems are treated.

As described in Chapter 2, in industry, the feedforward compensator Cff (s) is often just
a static gain, but a significant improvement can often be made when the following lead-lag
structure is used, see [37]. The structure that will be treated in this section is defined in Equation
(2.9).

The saturation problem in the control loop arises when the control variable u exceeds the
limits of the actuator. If it happens, the actuator will stay within these limits for a period of time
in spite of changes in the error signal. Due to this, it is necessary to implement an anti-windup
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technique in order to avoid the windup of the integral term of the controller. In Figure 3.12,
the back-calculation anti-windup method is implemented. This is one of the most common
anti-windup methods, and here the integrator is dynamically changed with a tracking time
constant Tt when the control signal saturates [1]. The tracking constant choice Tt = 0.3Ti has
been used in this thesis for all the examples in order to normalize the results, but of course, other
tuning choices can be made.
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Figure 3.13. Comparison of different implementations for control at saturation problem.

Figure 3.13 shows an example to present a performance comparison between different
cases for the control problem in the presence of saturation. The process model parameters are
Ku = Kd = 1, Lu = Ld = 1, Tu = 10, Td = 4, and the PI controller has been designed with
the Lambda method, where λ = 0.2Tu. The controller parameters are Kp = 3.3, τi = 10. The
control signal is limited between ±1.4. The figure shows responses to a step load disturbance
with magnitude d = 1 at time t = 5s. Notice that the reference signal, r, will be equal to 0 in
order to show better the disturbance rejection response. This choice for the reference signal will
be used for the rest of the examples in this contribution.

In Figure 3.13, it can be observed that in the case of feedforward without saturation, a perfect
cancellation of the disturbance d is obtained. It can also be seen that this perfect cancellation
requires a significant peak in the control signal at the time when the disturbance arrives. However,
if the control signal saturates, the ideal feedforward is no longer realizable. The case when the
anti-windup is not included shows a large overshoot in the process output and a long saturation
time. This is because the windup of the integral term occurs. In the third case, the anti-windup
function is enabled. With this implementation, it can be seen that there is no overshoot in the
process output, and the anti-windup helps the controller leave the saturation earlier. However, it
can also be seen that the response is sluggish. The reason is that the anti-windup function has
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caused a significant increase of the integral term to counteract the desired large negative peak
of the control signal because of the feedforward action. The sluggish response is caused by the
slow recovery of this term.

Therefore, it can be observed that the performance of the process output is highly affected
due to the control signal saturation and the anti-windup function. So, the goal of this thesis
contribution has been to find a method to improve the process output performance by reducing
this bad influence of the anti-windup function on the feedforward action. For this purpose, the
Integral Absolute Error (IAE) has been considered as a metric to quantify the control system
performance, as presented in the next section.

3.2.2 Proposed Method

Figure 3.14. Feedforward and anti-windup scheme with the new gain-reduction factor α.

Thus, according to the discussion in the previous section, the sluggish response when the
feedforward control signal is saturated is caused by the anti-windup function. So, a natural rem-
edy would have been to modify this function in some way. This is, however, not an option since
the anti-windup function is there to prohibit windup for many other reasons than the saturation
caused by the feedforward action. Therefore, the problem must be solved by modifying the
feedforward action itself when the control signal saturates.

The approach taken in this thesis is to reduce the gain of the feedforward action during the
time period when the control signal is saturated, looking for an improvement of the IAE value. In
this way, the anti-windup action is reduced, and the control system performance will be improved.
The approach is illustrated in Figure 3.14. The figure shows the same scheme as in Figure 3.12,
except that a gain-reduction factor α has been added to the feedforward path. The factor α is one
when the control signal is not saturated, which means that the original feedforward compensator
is retained. However, when the control signal saturates, α will obtain a value smaller than one,
making the desired control signal peak smaller so that the desired control signal is closer to
the saturation limit. This will reduce the magnitude of the error esat, and therefore also the
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modification of the integral term, contributing to reducing the impact of the anti-windup scheme
on the feedforward control response.
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Figure 3.15. Comparison between different feedforward schemes.

To show the capabilities of the proposed idea, Figure 3.15 shows the same example as pre-
sented in Figure 3.13, but includes the new approach from Figure 3.14 with α = 0.78. It can be
seen that the time when the control signal is saturated has been increased in comparison with
the case without gain reduction, i.e., when α = 1, and the process output performance has been
highly improved with a faster disturbance rejection without any overshoot.

However, the tuning of α is the key factor in the proposed scheme since it has a direct influence
on the system performance. This can be seen in Figure 3.16, which shows the same example as
before, but considering different α values. As observed, the new α parameter affects the control
signal saturation and the performance of the process output.

Therefore, tuning rules for α should be defined within the proposed control approach ac-
cording to a desired design objective. In this thesis, the calculation of α is performed based
on a tradeoff between the amount of the control signal exceeding the saturation limits and the
IAE of the control system. Notice that the aim of this approach is not focused on reducing the
time that the system is in saturation (as typically pursued when saturation problem arises), but
also to improve the control system performance. Therefore, the following three steps have been
performed to obtain the proposed tuning rule for the α parameter:
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1. The feedforward control signal is characterized and normalized based on the feedforward
controller parameters and the saturation limits.

2. The previous control signal characterization is used within an optimization problem to find
the optimal value of α that minimizes the IAE metric for a wide range of different scenarios.

3. Finally, a simple tuning rule for α is derived and generalized based directly on the feedfor-
ward control parameters and the saturation limits.

All these steps are summarized in the following sections.
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Figure 3.16. Comparison of the new scheme implementation with different values of the new
gain-reduction factor α.

Step 1. Control signal characterization
An important piece of information in this study is to obtain a relationship between the peak

value of the control signal when the system does not saturate, upeak, and the distance to the
saturation value, ulimit. This idea can be observed in Figure 3.17, which shows the responses to
a load disturbance and some measures to characterize the control signal.

The values of these measures shown in Figure 3.17 can be obtained using the initial and the
final value theorems on Equation (2.9), resulting in the initial peak value and the final value of
the control signal at a step load disturbance of magnitude d:
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upeak = lim
t→0

u(t) = lim
s→∞

−sCff (s)
d

s
= lim

s→∞
−sKd

Ku

Tus+ 1

Tds+ 1

d

s
= −Kd

Ku

Tu
Td
d

ufinal = lim
t→∞

u(t) = lim
s→0

−sCff (s)
d

s
= lim

s→0
−sKd

Ku

Tus+ 1

Tds+ 1

d

s
= −Kd

Ku

d
(3.12)

From Figure 3.17 and Equation (3.12), it can be seen that a peak will only occur when
|upeak| > |ufinal|, and this will occur only when Tz > Tp. Therefore, we assume that this relation
holds from now on. The ratio between Tz and Tp is important for the determination of the gain
reduction factor α since it gives information about the control signal peak. Thus, the following
time-constants ratio is defined

RT =
Tp
Tz

where : RT ∈ (0, 1) (3.13)

The relation between the control signal and the saturation limits is of course, also important
for the determination of α. The control signal saturation limits are umax for the upper limit and
umin for the lower limit. To simplify, ulimit is used to refer to the saturation limit, applicable for

Figure 3.17. A load disturbance response and some measures to characterize the control signal
behavior.
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both control signal limits. Using notations defined in Figure 3.17, the saturation ratio is defined as:

RS =
upeak − ulimit

upeak − u0
where : RS ∈ (0, 1) (3.14)

The saturation ratio, RS , represents the amount of control effort that is being lost due to
saturation. Values of RS close to 1 occur when the saturation is high, and values close to 0 when
there is almost no saturation (we assume |upeak| > |ulimit|).

Thus, two different ratios, RT , and RS , have been defined to characterize the feedforward
control signal based on the compensator parameters and the saturation limits.

Step 2. Optimization of the α factor
In this thesis, suitable values of α have been found following an optimization procedure. The

main objective is to find an α value to reduce the saturation effect while improving the control
performance. Thus, a global optimization method has been applied to minimize the IAE at step
load disturbances, as a metric to evaluate the performance. It is defined as

min
α

∫ T ∗

0

|e(t)| dt such that : 0 < α ≤ 1 (3.15)

where T ∗ is the simulation time for the optimization procedure.

The optimization problem was run through a wide range of tests by varying the ratios RT

and RS in order to cope with an extensive range of combinations. The time-constant ratio RT

has been changed from 0.02 to 0.98 in steps of 0.02. For each value of RT , different values
of RS are swept, using ten different values of the ulimit between upeak and ufinal. With each
combination, the optimization problem defined in Equation (3.15) has been evaluated in or-
der to find the optimal value of α in each simulation. The test parameters have been set as:
Ku = 1, Lu = 1, Kd = 1, Ld = 1, and u0 = 0. Notice that these values are not affecting
to the feedforward saturation problem as observed from the equations derived in the previous
section. On the other hand, it is important to mention that in order to separate the influence of the
anti-windup control scheme and the tracking constant Tt, the tests have been performed without
the anti-windup function.

Figure 3.18 shows the results of the optimization where the optimal value of α is shown versus
RS . Each line represents a separate RT value. The one on the far right represents the smallest
RT value (0.02, largest difference between the time constants), and the one to the far left the
highest RT value (0.98, smallest difference between the time constants). It can be seen that when
the saturation ratio RS is small and the time-constant ratio RT is large, the gain-reduction factor
α is close to 1. However, when the control signal saturates more, this factor becomes smaller. It
can also be observed that when RT is small, upeak is high and, therefore can have a larger RS .
On the other hand, when the time constants are close so that RT is small, upeak is small, and so
is the RS value. In these cases, the factor α is almost 1. Notice that a wider range of simulations
could have been performed for the results shown in Figure 3.18. Nevertheless, these variations
are enough for the approximations performed in the next section and the obtained tuning rule.

Step 3. Tuning rule for the α factor
Due to the complexity of the problem described above and the variation of the responses in

Figure 3.18, this section presents a linear approximation to derive an equation for α. To find
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the equation, the result of the optimization described above has been divided into five different
regions. The mean value of each region has been calculated in order to estimate a linear function.
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Figure 3.18. Result of the optimization tests.

Figure 3.19 shows these different regions where the solid highlighted curves represent the
mean values of each RT group. So, by analyzing these values, a general linear function can be
obtained as defined in Equation (3.16).

α =

{
f 0 < f < 1

1 else

f(RS, RT ) = −1.6RS −RT + 1.9

(3.16)

In Figure 3.19, the dotted highlighted lines represent the approximation of the new function
in each RT region, showing an adequate fitting.

To show an example of the validation for Equation (3.16), a test has been carried out to
compare the optimal and approximate values of α. The example parameters are: Ku = 1, Tu =
10, Lu = 1, Kd = 1, Td = 4, Ld = 1, and RS = 0.51 (ulimit = −1.22). The controller
parameters are Kp = 3.3, τi = 10 Figure 3.20 shows the simulation responses for this example.
As observed, the α values obtained by applying the equation (α = 0.68) and the optimal method
(α = 0.61) are very close, resulting in an almost identical response.
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Figure 3.19. Optimization test sections. The highlighted continuous curves represent the mean
values of each section. The dotted highlighted curves represent the linear approximation of the
developed equation in each region.
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Figure 3.20. Comparison between α obtained by (3.16) and optimization method.
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Thus, a new equation has been developed to calculate a new gain-reduction factor α to apply
to the feedforward compensator in order to reduce its gain and improve its performance when
the control signal saturates.

3.2.3 Examples

In this section, the use of the gain-reduction factor α, determined according to the method
presented in the previous section, is applied to five different process models Pu and Pd with
different relations between the process model parameters. The process models have the following
characteristics:

• Example 1: Ku = Kd, Lu = Ld, small RT and large RS .

• Example 2: Ku ̸= Kd, Lu = Ld, small RT and medium RS .

• Example 3: Ku = Kd, Lu < Ld (no inversion problem), small RT and medium RS .

• Example 4: Ku = Kd, Lu > Ld (inversion problem), small RT and medium RS .

• Example 5: Ku = Kd, Lu = Ld, small RT and medium RS . P1 and P2 are second-order
transfers function with two real poles.

In the examples, performances of the classic feedforward scheme with anti-windup and the
new scheme with gain reduction proposed in this contribution are compared. A step disturbance
with amplitude d = 1 is applied at time t = 5 s, and u0 = 0. The anti-windup scheme is applied
in both schemes with Tt = 0.3τi, and the controller has been tuned with the Lambda method
(2.5), with λ = 0.2Tu.

IAEnorm Imaxnorm

Example 1 0.63 0.31
Example 2 0.66 0.26
Example 3 0.68 0.62
Example 4 0.73 0.53
Example 5 0.26 0.53

Table 3.1. Normalized IAE and maximum integral values in the five examples.

Table 3.1 summarizes the comparisons. The IAE has been used as the metric to evaluate
performance. To normalize it, in each example, it has been calculated as follows:

IAEnorm =
IAEα=eq

IAEα=1

(3.17)

The maximum value of the integral term has also been used in the comparison, and it has
been normalized as:

Imaxnorm =
Imaxα=eq

Imaxα=1

(3.18)

67



Chapter 3. Contributions to Classic Control Strategies

Notice in Equations (3.17) and (3.18) the subscripts α = eq means the use of the α tuning
rule from Equation (3.16). As observed, in all cases, the indicators are below 1, which means
that the proposed method is running better than the feedforward with α = 1.

Example 1

The parameters in this example are: Ku = 1, Tu = 10, Lu = 1, Kd = 1, Td = 2, Ld =
1, RS = 0.7 (ulimit = −1.5), RT = 0.2. The PI controller parameters are Kp = 3.3, τi = 10.
The gains and the delays are the same in both transfer functions, but there is a large difference
between the time constants. The parameters give a small RT value and a large value of RS .
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Figure 3.21. Example 1 simulation results comparing the proposed solution for the saturation
problem and the classic feedforward control.

In Figure 3.21, the improvement of the new method compared to the classical scheme can
be seen. The load disturbance response in the process output is rejected faster, and the control
signal stays at the saturation limit for a longer time. Regarding the integral term, it can be seen
that it has decreased because of the reduction in the feedforward gain. It can also be seen that
at the time instant when α returns to 1, and therefore the feedforward gain comes back to its
original value, the integral increases and makes the control signal continue to be saturated for a
longer time. Looking at the IAEnorm value of Table 3.1, the new scheme has decreased the IAE
value by a factor of 0.63 compared with the classical one. The integral maximum value has also
been reduced by a factor of 0.31.
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Example 2
The parameters in this example are: Ku = 19, Tu = 10, Lu = 1, Kd = 80, Td = 3, Ld =

1, RS = 0.57 (ulimit = −6), RT = 0.3. The PI controller parameters are Kp = 0.17, τi = 10.
The delays are the same, but the gains differ between the two models, and are very high.
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Figure 3.22. Example 2 simulation results comparing the proposed solution for the saturation
problem and the classic feedforward control.

It can be seen in Figure 3.22 that the method works also in this case with high gains. The load
disturbance is rejected faster with the new method, and the behavior of the integral is the same
as in the previous example, allowing the control signal to saturate for a longer time. As shown in
Table 3.1, the implementation of the new scheme improves the value of the IAE by a factor of
0.66 compared to the classic one, and the integral maximum value has been reduced by a factor
of 0.26.

Example 3
The results for this example are shown in Figure 3.23. The parameters in this example are:

Ku = 1, Tu = 10, Lu = 3, Kd = 1, Td = 3.5, Ld = 7, RS = 0.47 (ulimit = −1.5), RT =
0.35. The PI controller parameters are Kp = 2, τi = 10. The gains are the same, but the delays
are different in the two models. Since Lu < Ld, there is no delay inversion problem.

As in the previous examples, it can be seen in the process output plot that the disturbance is
rejected faster when the new scheme is used. In this case, the saturation time of the control signal
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is considerably longer for the new scheme compared with the classic one, and yet, unlike the
previous examples, the time period when the feedforward gain is reduced is minor. Regarding
the IAE index, from Table 3.1 an improvement by a factor of 0.68 is obtained, and the integral
maximum value has been reduced by a factor of 0.62.
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Figure 3.23. Example 3 simulation results comparing the proposed solution for the saturation
problem and the classic feedforward control.

Example 4
The parameters in this example are: Ku = 1, Tu = 10, Lu = 6, Kd = 1, Td = 3, Ld = 4.

The PI controller parameters are Kp = 1.25, τi = 10. The gains are the same, but the delays
differ between the two models. In this example, Lu > Ld results in a delay inversion problem.
This means that the classic tuning rule can not be used. Instead, the tuning rule that takes the
delay inversion problem into account presented in [36] has been used. This rule is based on
setting the feedforward gain and time constant Tp in order to reduce the overshoot in the process
output and minimize the IAE value. The compensator parameters are calculated as defined in
Equations (2.11) and (2.12).

Figure 3.24 shows the results of this simulation, where the saturation and time-constant ratio
parameters are: RS = 0.67 (ulimit = −1.5), RT = 0.18. It can be seen in the process output
plot that the new gain-reduction factor α improves the load disturbance rejection. In this case,
the time period when the control signal saturates with the new scheme is shorter than in the
previous examples, and also the time when the compensator gain is reduced. From Table 3.1,
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the IAE value is decreased by a factor of 0.73, and the maximum value of the integral term has
been reduced by a factor of 0.53. This example shows that the use of the gain reduction factor is
not restricted to the classical feedforward tuning rule, but can be applied to other tuning rules as
well.
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Figure 3.24. Example 4 simulation results comparing the proposed solution for the saturation
problem and the classic feedforward control.

Example 5
In this example, two second-order transfer functions with two real poles, defined in Equation

(3.19), have been selected. The parameters are: Ku = 1, Tu,1 = 10, Tu,2 = 5, Lu = 0, Kd =
1, Td,1 = 3, Td,2 = 1, and Ld = 0.

Pu(s) =
Ku

(Tu,1s+ 1)(Tu,2s+ 1)
e−Lus

Pd(s) =
Kd

(Td,1s+ 1)(Td,2s+ 1)
e−Lds

(3.19)

To apply the rule, the half-rule approximation to a first-order system with time delay has
been applied [125]. So, the resulting first-order approximated models are shown in Equation
(3.20), resulting in the parameters: Ku = 1, Tu,approx = Tu,1+Tu,2/2 = 12.5, Lu,approx = Lu,1+
Lu,2/2 = 2.5, Kd = 1, Td,approx = Td,1 + Td,2/2 = 3.5, and Ld,approx = Ld,1 + Ld,2/2 = 0.5.
The PI controller parameters are Kp = 2.5, τi = 12.5.
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Pu(s) ≈
Ku

(Tu,1 +
Tu,2

2
)s+ 1

e−(Lu+
Tu,2
2

)s

Pd(s) ≈
Kd

(Td,1 +
Td,2

2
)s+ 1

e−(Ld+
Td,2
2

)s

(3.20)

Once the approximation is made, Lu,approx > Ld,approx, which results in a delay inversion
problem. As it has been done in Example 4, for designing the feedforward, the tuning rule
that considers the delay inversion problem is used [36]. The new pole Tp and gain Kff are
calculated as defined in Equations (2.11) and (2.12). Hence, the new values of the time-constant
and saturation ratio are RT = 0.19 and RS = 0.66.
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Figure 3.25. Example 5 simulation results comparing the proposed solution for the saturation
problem and the classic feedforward control.

The simulation results are presented in Figure 3.25. The process output plot demonstrates
the enhancement in load disturbance rejection achieved by the new gain-reduction factor α. The
control signal saturates for a longer time than in the previous example, and the compensator gain
reduction occurs within an increased time period. Analysis of Table 3.1 reveals a 0.71 decrease
in the IAE value and a 0.26 reduction in the maximum integral term value.

This example illustrates the robustness of the gain reduction factor, even when approxi-
mating a second-order system as a first-order system with delay. As presented in Example 4,
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it is demonstrated again that the proposed approach can be applied not only to the classical
feedforward tuning rule but also to other existing tuning methods to deal with inversion problems.

3.2.4 Conclusions

This contribution treats a problem that has not been recognized before, namely the negative
influence anti-windup functions may have on feedforward control actions. An efficient feedfor-
ward compensator will often give significant peaks in the control signal at step changes in the
load disturbance, and these peaks may cause saturation of the control signal. The anti-windup
function avoids integrator windup by modifying the integral term of the controller when the
control signal saturates. It is shown that this modification of the integral term may cause sluggish
load disturbance responses at feedforward control, which is the opposite of the intention with the
use of feedforward.

In this contribution, it is suggested to overcome the problem by reducing the gain of the
feedforward compensator during periods of control signal saturation, and in this way reduce
the anti-windup effect on the load disturbance response. Therefore, a gain-reduction factor α is
introduced in the feedforward path. The factor is one when the control signal is not saturated, but
when the control signal becomes saturated, α gets a value less than one. An optimization-based
method to determine α is presented based on the IAE criterion. The result of the optimization
is approximated by a simple linear function that gives α as a function of the parameters of the
compensator and the distance from the actual control signal peak to the saturation limit.

The proposed strategy to handle the feedforward saturation problem and the choice of gain-
reduction factor α have been tested through simulations of different SISO process models.
Nevertheless, this solution can be easily extrapolated to a MIMO system by considering de-
coupled control loops. The examples show that the strategy works well and gives significant
improvements in the load disturbance responses.

This contribution has resulted in a scientific journal article, indexed in the Journal Citation
Report (JCR), and is currently under review [58].

3.3 Double Feedforward Compensation for Cascade Control
Schemes

Control schemes like feedback control may not always be adequate for effectively managing
complex processes in the process industry. Alternative control strategies such as feedback plus
feedforward, cascade control, and cascade control with feedforward components may be required
to address the control challenges. Implementing these control schemes offers enhanced capabili-
ties and flexibility, enabling better control system performance and handling of complexities in
the process industry.

In some processes, adopting a cascade control structure is crucial for improving load distur-
bance rejection and system performance. This structure consists of two control loops: an inner
loop nested within an outer loop. The inner loop must exhibit a faster dynamic response than the
outer loop, specifically for handling load disturbances in the inner loop. By incorporating the
intermediate process measurement, load disturbances affecting the inner loop can be mitigated
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before propagating to the primary outer loop, enhancing the robustness of the control system
and ensuring reliable operation even in challenging process conditions. In the literature, several
studies can be found analyzing and implementing this control technique. In [104], a survey
studying the cascade control strategies in which controller parameters are expressed in terms of
known process model parameters is developed. In [78], two new two-degree-of-freedom control
structures are proposed for cascade control systems, both of which are identical in the controller
design procedure. In [68], a PI–PD Smith predictor scheme is used in the outer loop, and internal
model control is in the inner loop of the cascade control in order to improve the performance.

Despite the power of cascade control to reject disturbances that affect the inner loop, there
may be some disturbances that it can not take over efficiently, and they can substantially influence
the operation and performance of industrial processes. When the disturbances are measurable,
considering them in advance can aid the feedback controller in effectively mitigating their impact.
Feedforward control is the mainly used solution to reject measurable load disturbances [37, 77].
Despite that, there is a limited number of studies in the literature that specifically address the re-
jection of measurable disturbances in a cascade control scheme. In [140], a feedforward–cascade
controller for dissolved oxygen concentration in an activated sludge process is designed in order
to meet stricter effluent quality standards at a minimum cost. In [82], a cascade control with a
non-linear model-based feedforward is proposed to control a McKibben artificial muscle actuator.
However, the combination and tuning of both control schemes have not been treated before.

In this thesis, a simple new method for rejecting measurable disturbances of the output outer
loop in cascade control is presented. The solution is based on analyzing various designs and
implementations of feedforward control within the cascade scheme. The proposed approach
suggests the implementation of two static feedforward controllers, one entering the outer loop and
the other entering the inner loop. The gain of the feedforward controller in the inner loop will be
adjusted according to the proposed design rule to enhance the performance of the process output.
The variation in process dynamics has been taken into account for the design. Several examples
are proposed to validate the robustness of the proposed equation. All of them demonstrate how
the performance at the output of the outer loop in rejecting the disturbance significantly improves
while also reducing its control effort.

3.3.1 Preliminaries

In this section, the classical cascade control scheme described in Section 2.1.2 is used, but
adding a load measurable disturbance at the process output (see Figure 3.26).

This contribution will focus on two nested loops for simplicity, but the concept can be ex-
tended to include more loops if needed. The scheme is composed by the inner loop process
P2(s), the controller C2(s), the signals e2 (inner error), r2 (inner reference) and y2 (inner process
output). The outer loop is defined by the process P1, the controller C1(s), and the signals e1
(outer error), r1 (system reference) and y1 (system output). There is also a measurable load
disturbance d, and the model Pd(s) describes the dynamics between this disturbance and the
process output.

It is assumed that the three process models (P1(s),P2(s) and Pd(s)) are first-order systems
with time delay. They are defined in Equation (3.21), where K1, K2 and Kd are the static gains,
T1, T2 and Td are the time constants, and L1, L2 and Ld are the time delays:
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Figure 3.26. Cascade control scheme with measurable disturbances at the process output.

P1(s) =
K1

T1s+ 1
e−L1s , P2(s) =

K2

T2s+ 1
e−L2s , Pd(s) =

Kd

Tds+ 1
e−Lds (3.21)

The controllers C1(s) and C2(s) are PI with transfer functions defined by Equation (2.2), with
τd = 0. Note that this is only the basic structure.

The Lambda tuning method described in Section 2.1.1 is considered to calculate the PI
controller parameters according to (2.5), where λ is the desired closed-loop time constant [131].

3.3.2 Feedforward on Cascade Control with Load Disturbances

As mentioned in Section 2.1.2, the main objective of cascade control is to minimize the impact
of the non-linearities and disturbances that affect the inner loop, improving the performance of
the outer loop. However, when measurable disturbances affect the output y1, other control strate-
gies, such as feedforward control, can be implemented to minimize their impact. In this section,
two simple solutions found in the literature to solve the rejection-to-measurable-disturbances
problem in cascade control schemes are analyzed.

Since d is measurable, feedforward can be used to improve the load disturbance rejection
(Section 2.1.3). This is defined by Equation (2.9). Two possible solutions are studied based on
the feedforward implementation to address load disturbances on cascade control. First, and as
usually done in the literature, the feedforward is designed for Pu = P1P2 and is added to the
inner loop control signal (u2). Secondly, the feedforward is designed with Pu = P1P2cl, being
added to the outer loop control signal (u1), with P2cl the closed-loop dynamics of the inner loop.

Solution 1

Based on the processes and the classical definition of feedforward, the first solution is to
design a feedforward controller using an approximation of the product of both processes P1

and P2, introducing disturbance rejection with Cff2(s) to u2, as shown on Figure 3.27. So, an
approximation to a first-order system with time delay (Equation (3.22)) has been applied to the
product P1P2. Based on T1 > T2 and using the half-rule approximation [125], the first-order
approximated model is:
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Pu(s) =
Ku

Tus+ 1
e−(Lus) (3.22)

where:

Pu(s) = P1(s)P2(s) =
K1K2

(T1s+ 1)(T2s+ 1)
e−(L1+L2)s ≈ K1K2

(T1 +
T2
2 )s+ 1

e−(L1+L2+
T2
2
)s (3.23)

Figure 3.27. Cascade control scheme with feedforward controller Cff2.

Simulations without feedforward and with both static gain and lead-lag feedforward have
been implemented and compared. The parameters for the simulation are: K1 = 1, K2 = 1,
Kd = 1, T1 = 30, T2 = 10, Td = 20, L1 = 0, L2 = 0 and Ld = 0. Applying the previous
approximation, the resulting processes parameters are Ku = 1, Tu = 35, and Lu = 5. For the
static gain feedforward, there are no inversion problems, and it is calculated as:

Cff2(s) =
Kd

K1K2

= 1

When proceeding with the lead-lag calculation, inversion problems arise as Lu > Ld. There-
fore, the rule defined in Equations (2.11) and (2.12) is applied, resulting in:

Cff2(s) = Kff
Tzs+ 1

Tps+ 1
= 0.91

35s+ 1

17.06s+ 1

In Figure 3.28, the outer and inner loop outputs performance and control signals can be
observed, without feedforward, with static compensator, and with lead-lag compensator, respec-
tively. It can be seen that the feedforward contribution, in this case, is low, and the system output
is practically the same as not including it. So, this solution is not recommendable to be used due
to the low contribution to the system performance.

Solution 2
The second solution is to design a lead-lag feedforward controller with an approximation

of the product of the outer process P1 and the closed-loop inner loop transfer function P2cl,
introducing disturbance rejection with Cff1(s) in u1, as shown on Figure 3.29. The controller
C2 has been designed with the Lambda method, giving a closed-loop time constant λ2. An
approximation to a first-order system with time delay has been applied to the product of P1P2cl.
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Figure 3.28. Simulation results for control scheme in Figure 3.27.

Based on T1 > λ2 and using again the half-rule approximation [125], first order with time
delay approximated model Pu, defined in Equation (3.22), is:

Pu(s) = P1(s)P2cl(s) =
K1

(T1s+ 1)(λ2s+ 1)
e−(L1+L2)s ≈ K1

(T1 +
λ2
2 )s+ 1

e−(L1+L2+
λ2
2
)s (3.24)

Figure 3.29. Cascade control scheme with feedforward controller Cff1.

As done in the first solution, simulations have been done to compare the system performance
without feedforward, with static gain compensator, and with lead-lag feedforwards. The sim-
ulation parameters used are: K1 = 1, K2 = 1, Kd = 1, T1 = 30, T2 = 10, Td = 20, L1 = 0,
L2 = 0 and Ld = 0. By applying the approximation mentioned above, the resulting process
parameters are Ku = 1, Tu = 32.5, and Lu = 2.5. In the case of the static gain feedforward,
there are no inversion problems, and its calculation is as follows:

77



Chapter 3. Contributions to Classic Control Strategies

Cff1(s) =
Kd

K1

= 1

Again, in the calculation of the lead-lag feedforward, inversion problems will arise due to the
condition Lu > Ld. As a solution, the rules specified in Equations (2.11) and (2.12) are applied,
giving:

Cff1(s) = Kff
Tzs+ 1

Tps+ 1
= 0.95

32.5s+ 1

18.53s+ 1
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Figure 3.30. Simulation results for control scheme in Figure 3.29.

Figure 3.30 shows the simulation results. It can be observed that, in this case, the implementa-
tion of both static gain and lead-lag feedforwards improves the disturbance rejection performance
at the system output. If the lead-lag response is analyzed in detail, mainly focusing on the
control signal of the internal loop u2, it can be seen that a similar response to the one obtained
with Cff2(s) is achieved. However, implementing it in the external loop also helps reach the
steady-state value faster, unlike first solution.

On the other hand, the static feedforward generates less accumulated value on the control
effort in u1. Due to the absence of the lead-lag peak, as observed from Equation (3.12), the
steady-state value of the control signal is the value obtained by applying the static feedforward.
Therefore, when the disturbance arrives, less error is generated in the control signal. From this
analysis, the idea developed in the work emerges. The objective is to combine both feedforward
Cff1(s) and Cff2(s) in such a way that a response in the control signal of the external loop
u1 similar to the one obtained with the static gain Cff1(s) is achieved, aiming to reach the
steady-state value as quickly as possible and with minimal control effort. And for the control
signal of the internal loop, the goal is to design a feedforward that accelerates the response as
much as possible, obtaining a response similar to the signal obtained by the lead-lag Cff1(s).
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3.3.3 Proposed Solution
Based on the analysis conducted above, this section proposes a simple solution based on static

feedforward controllers, which are widely used in industry, and also simplifies the approxima-
tions made with lead-lag controllers. In this way, both controllers Cff1(s) and Cff2(s) work
simultaneously, as shown on the scheme in Figure 3.31. The controller Cff1(s) is responsible
for bringing the outer loop to the value of the new steady state to eliminate the steady-state error
in the output as quickly as possible. The controller Cff2(s) provides a fast response to reject the
disturbance.

Figure 3.31. Proposed cascade with double feedforward control scheme.

The static feedforward controllers are calculated as follows:

Cff1 =
Pd

P1P2cl

=
Kd

K1

Cff2 =
Pd

P1P2

α =
Kd

K1K2

α

A new term α has been included in the feedforward Cff2(s) in order to modify its gain to
optimize the IAE value of the process output as performance criteria. The design of both PI
controllers has been carried out using the Lambda method, described in section 2.1.1. The
closed-loop time constants are λ1 and λ2 for the outer and inner loops, respectively.

To perform that, first, the time domain closed-loop response is derived for the scheme in
Figure 3.31. The Laplace transform of system output, assuming r1 and d as Laplace transform of
reference and disturbance inputs, respectively, is given by:

y1 = dPd +
P1

λ2s+ 1
(C1r1 − C1y1 + Cff1d) +

P1P2Cff2

1 + P2C2

d

where:

u1 = C1(r1 − y1),
P2C2

1 + P2C2

=
1

λ2s+ 1
so:

y1 =
P1C1

λ2s+ 1 + P1C1

r1+

(
(λ2s+ 1)Pd

λ2s+ 1 + P1C1

+
P1Cff1

λ2s+ 1 + P1C1

(λ2s+ 1)P1P2Cff2

(λ2s+ 1 + P1C1)(1 + P2C2)

)
d
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Developing, and substituting:

1 + P2C2 =
λ2s+ 1

λ2s

λ2s+ 1 + P1C1 =
λ1λ2s

2 + λ1s+ 1

λ1s

y1 =
λ1sP1C1

λ1λ2s2 + λ1s+ 1
r1+

(
(λ2s+ 1)λ1sPd

λ1λ2s2 + λ1s+ 1
+

λ1P1sCff1

λ1λ2s2 + λ1s+ 1
+
λ1λ2s

2P1P2Cff2

λ1λ2s2 + λ1s+ 1

)
d

Now, the two real poles of the denominator are calculated:

p1,2 =
−λ1 ±

√
λ21 − 4λ1λ2

2λ1λ2
=

−λ1 ±
√
λ1(λ1 − 4λ2)

2λ1λ2

If a fixed ratio λ1/λ2 = 4 is assumed to ensure that a response with two real poles is obtained:

p1,2 =
−λ1 ±

√
4λ2(4λ2 − 4λ2)

24λ2λ2
= − 1

2λ2

So, if r1 = 0 is considered, and instantiating the values of P1, P2 and Pd from Equation (3.21),
the following expression for y1 is obtained:

y1 =
(λ2s+ 1)λ1sKd

(2λ2s+ 1)(2λ2s+ 1)(Tds+ 1)
d+

λ1K1sCff1

(2λ2s+ 1)(2λ2s+ 1)(T1s+ 1)
d+

+
λ1λ2s

2K1K2Cff2

(2λ2s+ 1)(2λ2s+ 1)(T1s+ 1)(T2s+ 1)
d

Then, using the following approximation:

(2λ2s+ 1)(2λ2s+ 1) ≈ (4λ2s+ 1)

It is obtained:

y1 =

(
(λ2s+ 1)λ1sKd

(4λ2s+ 1)(Tds+ 1)
+

λ1K1sCff1

(4λ2s+ 1)(T1s+ 1)
+

λ1λ2s
2K1K2Cff2

(4λ2s+ 1)(T1s+ 1)(T2s+ 1)

)
d

In the first transfer function, the time constants can be separated to cancel the zero, obtaining:

y1 =

(
λ1sKd

(3λ2s+ 1)(Tds+ 1)
+

λ1K1sCff1

(4λ2s+ 1)(T1s+ 1)
+

λ1λ2s
2K1K2Cff2

(4λ2s+ 1)(T1s+ 1)(T2s+ 1)

)
d

Now, using λ1 = 4λ2, Cff1 = Kd/K1 and Cff2 = αKd/(K1K2), we have

y1 = Kd4λ2

(
s

(3λ2s+ 1)(Tds+ 1)
+

s

(4λ2s+ 1)(T1s+ 1)
+

λ2s
2α

(4λ2s+ 1)(T1s+ 1)(T2s+ 1)

)
d
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Once the final expression is obtained, it is transformed into the time domain:

y(t) =Kd4λ2

(
−e−

t
3λ2 + e

− t
Td

Td − 3λ2
+

−e−
t

4λ2 + e
− t

T1

T1 − 4λ2
+

α2λ2e
− t

T2

(T1 − T2)(T2 − 4λ2)
−

− α2λ2e
− t

T1

(T1 − T2)(T1 − 4λ2)
− α2λ2e

− t
4λ2

(T1 − 4λ2)(T2 − 4λ2)

)
When attempting to analyze it, a problem of exponential sum arises, which does not have a

direct analytical solution. Due to this, a numerical solution based on optimization is studied to
calculate the optimal value of α. A global optimization method has been applied to minimize the
IAE at step load disturbances, as a metric to evaluate the performance. It is defined as

min
α

∫ tf

0

|e1(t)| dt such that 0 ≤ α (3.25)

So, the optimization problem was run through a wide range of tests by varying the ratio be-
tween T1 and T2, with T2/T1 < 1. Also, the value of Td has been modified, normalizing the ratio
between the disturbance time constant and the time constant equivalent, where Tu = (T1+0.5λ2).
The time-constant ratio T2/T1 has been changed from 0.1 to 0.9 in steps of 0.1. For each value
of T2/T1 different values of Td/Tu are swept, using different values of Td. Simulations with a
ratio below 0.3 have not been taken into account due to the difference between the time constant
of the external and internal loop being so large that the implementation of a cascade control loop
would not be applicable. With each combination, the optimization problem defined in Equation
(3.25) has been evaluated in order to find the optimal value of α in each simulation. The test
parameters have been set as: K1 = 1, K2 = 1, Kd = 1, L1 = 0, L2 = 0, Ld = 0, and u0 = 0.

Figure 3.32 shows the results of the optimization where the optimal value of α is shown
versus Td/Tu. Each line represents a different T2/T1 value. The ones on the upper side represent
the smallest values, where T2/T1 < 0.3, the largest difference between the time constants. The
ones that are on the lower side represent the highest values, where T2/T1 < 0.9, the smallest
difference between the time constants.

Due to the complexity of the problem described above and the variation of parameter α
observed in Figure 3.32, a piecewise linear approximation has been carried out to obtain an
equation for the calculation of α. The obtained equation is a piecewise linear equation of first
order (3.26).

α =


0.25β + φ if x ≤ 0.25

βx+ φ if 0.25 < x ≤ 1.15

0 if x > 1.15

(3.26)

with

x =
Td
Tu

=
Td

T1 + 0.5λ2
, β = −1.91

(
T2
T1

)−0.86

, φ = 2.28

(
T2
T1

)−0.84

The values of β and φ depend on the ratio between T2/T1, and x on the ratio between Td/Tu.
The developed equation has a constant value of x = 0.25 for the ratio of Td/Tu smaller than
0.25. For values between Td/Tu > 0.25 and Td/Tu ≤ 1.15, the equation is linear, with a slope
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depending on the value of Td/Tu and the ratio between T2/T1. For values above Td/Tu > 1.15,
α will be 0, so no Cff2(s) will be needed.

In Figure 3.32, the validation of the equation represented by the circles is shown. It can
be observed how the proposed rule fits accurately the results obtained from the optimization
problem.
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Figure 3.32. Optimization test. The continuous curves represent the values obtained by the
optimizer. The dotted curves represent the validation of the developed equation.

Tuning Guideline
This section summarizes the proposed design rule for the new control scheme in Figure 3.31,

including the tuning for the new gain of the feedforward controller Cff2(s) by a factor α. The
different steps to design the compensator are:

1. Set the closed-loop time constants for the inner and outer PI controllers in such a way that
the following relationship is fulfilled:

λ1
λ2

≥ 4

2. Set the outer feedforward controller in the following way:

Cff1 =
Kd

K1

e−Lff1

Lff1 = max(0, Ld − (L1 + L2))
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3. Set the inner feedforward controller in the following way:

Cff2 = α
Kd

K1K2

e−Lff2

α =



0.25β + φ if x ≤ 0.25

βx+ φ if 0.25 > x ≤ 1.15

0 if x > 1.15

with

x =
Td
Tu
, where : Tu = (T1 + 0.5λ2)

β = −1.91

(
T2
T1

)−0.86

φ = 2.28

(
T2
T1

)−0.84

and

Lff2 = max(0, Ld − (L1 + L2))

3.3.4 Examples
In this section, the use of the gain-reduction factor α for the feedforward Cff2(s), determined

according to the method presented in the previous section, is applied to processes with different
relations between the processes model parameters. The processes models have the following
characteristics:

• Example 1: K1 ̸= K2 ̸= Kd, L1 = L2 = Ld, T2/T1 = 0.35, Tu > Td > T2.

• Example 2: K1 = K2 = Kd, L1 = L2 = Ld, T2/T1 = 0.65, Td < T2.

• Example 3: K1 = K2 = Kd, L1 = L2 = Ld, T2/T1 = 0.55, Td > Tu.

• Example 4: K1 = K2 = Kd, L1 < Ld, L2 = 0 (no inversion problem), T2/T1 = 0.5,
Tu > Td > T2.

• Example 5: K1 = K2 = Kd, L1 > Ld, L2 = 0 (inversion problem), T2/T1 = 0.5,
Tu > Td > T2.

• Example 6: K1 = K2 = Kd, L1 = L2 = Ld. P1(s), P2(s) and Pd(s) are second-order
transfers function with two real poles.

In each example, four cases are analyzed. The cascade control scheme only with Cff1(s), as
shown in Figure 3.29, is simulated for the static gain and the lead-lag feedforwards. Then, the
scheme in Figure 3.31 with Cff1(s) and Cff2(s) calculated as static gains with α obtained by
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the optimization method and with the new equation proposed in this contribution are compared,
to validate the proposed equation. In addition, values of T2/T1 outside the range selected for
modelling have been chosen to demonstrate the robustness of the proposed solution. A step
disturbance with amplitude d = 1 is applied at time t = 5 s. The controllers have been tuned
with the Lambda method (2.5), fulfilling the condition λ1/λ2 = 4.

Moreover, two indices in order to objectively evaluate the control performance are proposed:
the Integral Absolute Error for the outer loop error (IAE) and the Sum of Control Increments
(SCI) of the outer control signal, given by:

IAE =

∫ tf

t0

|e1(t)| dt (3.27)

SCI =

∫ tf

t+0

(u1(t)− u1(t
−))dt (3.28)

where t+o = t0 + dt and t− = t− dt.

The SCI value has been used in the comparison to measure the outer control signal u1 effort
has been reduced with the proposed solution. It has been normalized as:

SCInorm =
SCIα

SCIlead−lag

(3.29)

where SCIα and SCIlead−lag denote the sum of control increments from the simulation of the
proposed solution developed in this contribution and the classical feedforward scheme only with
Cff1, respectively. Table 3.2 summarizes the comparisons.

IAE(1) IAE(2) IAE(3) SCInorm

Example 1 59.53 19.27 12.01 0.49
Example 2 20.78 5.28 9.45 0.44
Example 3 3.60 2.95 3.00 1.03
Example 4 14.25 6.54 4.90 0.49
Example 5 19.63 8.22 10.09 0.43
Example 6 13.72 6.47 6.32 0.56

Table 3.2. Normalized SCI and IAE values in all the examples. IAE(1): Cff1 = Static gain,
IAE(2): Cff1 = Lead− lag, IAE(3): α from Equation (3.26).

Example 1
The parameters are: K1 = 10, K2 = 15, Kd = 6, T1 = 30, T2 = 10.5, Td = 20, L1 = 0,

L2 = 0 and Ld = 0. The controllers parameters are: Kp1 = 0.17, τi,1 = 32.10, λ1 = 16.8 for
C1(s), and Kp2 = 0.17, τi,2 = 10.5, λ2 = 4.2 for C2(s). The gain values differ to see how the
new implementation does not depend on them. The time constant of the disturbance model is
in between the time constants of the inner and outer loops. There is no time delay, but when
the approximation in Equation (3.24) is done to implement the lead-lag feedforward controller,
an inversion problem will appear, and so the rules defined in Equations (2.11) and (2.12) are used.
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Figure 3.33 shows the simulation results. The four evaluated cases previously commented can
be observed. The static feedforward controller Cff1(s) provides a slow response with overshoot,
whereas the lead-lag controller performs better with a faster response. The validation of the
equation can also be observed, as the proposed solution and the optimizer yield almost identical
responses. Furthermore, the performance of the proposed solution achieves very similar results
in the output of the process y1 compared to the lead-lag controller, resulting, in this case, a better
IAE value. However, when examining the control signal u1 and the SCInorm value in Table 3.2,
the control effort is reduced by a factor of 0.49 with the new solution compared to the lead-lag
controller. Additionally, in the inner loop, it can be observed how the response of the controller
u2 accelerates due to the change in the value of α and the resulting control signal, which in this
example is α = 3.33.
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Figure 3.33. Simulation results in Example 1.

Example 2
The parameters are: K1 = 1, K2 = 1, Kd = 1, T1 = 35, T2 = 13.5, Td = 10, L1 = 0,

L2 = 0 and Ld = 0. The controllers parameters are: Kp,1 = 1.26, τi,1 = 38.75, λ1 = 27 for
C1(s), and Kp,2 = 2, τi,2 = 13.5, λ2 = 6.75. In this example, all the gains are the same, and the
time constant of the disturbance is smaller than the inner loop process time constant. As in the
previous example, when implementing the lead-lag feedforward controller by approximating
(3.24), an inversion problem arises, despite the absence of time delay. To address this, the rules
defined in Equations (2.11) and (2.12) are employed.

By observing Figure 3.34, it can be seen that the static feedforward controller Cff1(s) yields
a poorer response in disturbance rejection. Both the lead-lag controller and the proposed solution
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achieve similar performance in the output of the process, with the lead-lag controller having
a minor overshoot, as reflected in the IAE values obtained (see Table 3.2). However, when
examining the control signal of the outer loop u1, the control effort is highly reduced by a factor
of 0.44 with the proposed solution. In this case, observing the control signal of the inner loop, the
proposed solution also reduces the control signal peak, with the value obtained by the equation
for reducing the gain of Cff2(s) being α = 3.89.
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Figure 3.34. Simulation results in Example 2.

Example 3
In this example, the models parameters are: K1 = 1, K2 = 1, Kd = 1, T1 = 35, T2 = 14,

Td = 40, L1 = 0, L2 = 0, Ld = 0. The controllers parameters are: Kp,1 = 1.22, τi,1 = 38.75,
λ1 = 28 for C1(s), and Kp,2 = 2, τi,2 = 14, λ2 = 7 for C2(s). Similar to previous examples,
implementing the lead-lag feedforward controller based on the approximation of (3.24) leads
to an inversion problem, despite the absence of any time delay. To tackle this issue, the rules
specified in Equations (2.11) and (2.12) are utilized again. In this case, all the gains are equal,
and the time constant of the disturbance is larger than the approximated time constant Tu.

Analyzing the results in Figure 3.35, it can clearly be observed that, in this case, the three
responses give similar output performances. Since Td > Tu, implementing the lead-lag controller
does not highly improve the static controller because there is no peak in control signal u1. This
behavior is also evident when analyzing the IAE values obtained in Table 3.2. Consequently,
in this case, the proposed solution achieves a similar control effort of the output control signal
u1. Similar to previous examples, it is validated that the equation provides the same value as the
optimizer, which is α = 0.51.
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Figure 3.35. Simulation results in Example 3.

Example 4
The parameters in this example are: K1 = 1, K2 = 1, Kd = 1, T1 = 35, T2 = 15, Td = 20,

L1 = 2, L2 = 0 and Ld = 8. The controllers parameters are: The controller parameters are:
Kp,1 = 1.08, τi,1 = 38.75, λ1 = 30 for C1(s), and Kp,2 = 2, τi,2 = 15, λ2 = 7.5 for C2(s).
Gains are the same in all the models; the disturbance time constant is between T2 and Tu, and in
this case, time delay has been included in the disturbance and outer process model. Lu < Ld, so
there are no inversion problems to calculate the lead-lag controller.

Figure 3.36 shows the results of this example. It can clearly be observed how the equation is
validated again with the results of the optimization. It can also be seen that the contribution of
the static feedforward, in this case, is limited. However, both the lead-lag feedforward and the
proposed solution reduce the impact of the disturbance on the output y1. From Table 3.2 it can
bee seen that the new solution improves the output performance. Regarding the control effort of
the external control signal u1, once again, the proposed solution with α = 2.56 has reduced it by
a factor 0.49. This example demonstrates that the rule is independent to the time delay in the
processes. Nevertheless, more examples with delay are analyzed in the following sections.

Example 5
In this example, the parameters of the processes are: K1 = 1, K2 = 1, Kd = 1, T1 = 30,

T2 = 12.5, Td = 16, L1 = 6, L2 = 0 and Ld = 2. The controllers parameters are: Kp,1 = 0.97,
τi,1 = 33.12, λ1 = 25 for C1(s), and Kp,2 = 2, τi,2 = 12.5, λ2 = 6.25 for C2(s). Now, Ld < Lu,
therefore, inversion problems on the calculation of the lead-lag controller will occur, so the rules
defined in Equations (2.11) and (2.12) are used.
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Figure 3.36. Simulation results in Example 4.

In this case, it is shown in Figure 3.37 how the proposed response with α = 2.75 achieves
a performance at the output y1 that is similar to the case of Cff1(s) with lead-lag, but with a
reduced control effort of u1 by a factor of 0.43. Similarly to previous examples, the equation is
validated by observing that the result with the equation is equal to what the optimizer provides.
In this example, as can be observed from Table 3.2, the IAE index is very similar to the one
obtained with the lead-lag controller. Once again, it is demonstrated that the proposed solution
is independent of time delay and, in the case of inversion problems, employing two static
feedforward controllers yields responses very similar to a lead-lag controller with design rules
applied to enhance its performance.

Example 6

In this example, a second-order transfer function with two real poles, defined in Equation
(3.30), has been selected. The parameters are: K1 = 1, K2 = 1, Kd = 1, T1,1 = 25, T1,2 =
10, T2,1 = 10, T2,2 = 2, Td,1 = 15Td,2 = 5, L1 = 0, L2 = 0 and Ld = 0.

P1(s) =
Ku

(T1,1s+ 1)(T1,2s+ 1)
e−L1s

P2(s) =
Ku

(T2,1s+ 1)(T2,2s+ 1)
e−L2s

Pd(s) =
Kd

(Td,1s+ 1)(Td,2s+ 1)
e−Lds

(3.30)
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Figure 3.37. Simulation results in Example 5.

To apply the rule, an approximation to a first-order system with time delay has been applied,
using the half-rule approximation [125]. So, first orders approximated models are shown in
Equation (3.31), resulting in the parameters: K1 = 1, T1,approx = 27, L1,approx = 5,K2 = 1,
T2,approx = 11, L2,approx = 1, Kd = 1, Td,approx = 17.5 and Ld,approx = 2.5. The controllers
parameters are: Kp,1 = 1, τi,1 = 29.75, λ1 = 22 for C1(s), and Kp,2 = 2, τi,2 = 11, λ2 = 5.5
for C2(s).

P1(s) ≈
K1

(T1,1 +
T1,2

2
)s+ 1

e−(L1+
T1,2
2

)s

P2(s) ≈
K2

(T2,1 +
T2,2

2
)s+ 1

e−(L2+
T2,2
2

)s

Pd(s) ≈
Kd

(Td,1 +
Td,2

2
)s+ 1

e−(Ld+
Td,2
2

)s

(3.31)

Once the approximation is made, Lu,approx = L1 + L2 > Ld,approx, which results in a delay
inversion problem. As it has been done in Example 5, for designing the feedforward, the tuning
rule that considers the delay inversion problem is used [36]. The new pole Tp and gain Kff are
calculated as defined in Equations (2.12) and (2.11).

Results can be observed in Figure 3.38. In this example, the validation of the equation is
once again observed. The response at the output of the static feedforward is the one that shows
a minor improvement in disturbance rejection. However, the proposed solution and the static
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feedforward exhibit similar responses, achieving faster disturbance rejection. Regarding the
control effort of u1, once again, a reduction of 0.56 is obtained. This example demonstrates that
the proposed solution, with two static feedforward controllers, is robust against approximations
in high-order models to first-order systems.
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Figure 3.38. Simulation results in Example 6.

3.3.5 Conclusions
This contribution addresses the issue of measurable disturbances at the output of a cascade

control system by introducing a novel solution. While the existing literature commonly adopts
lead-lag or static feedforward control approaches to mitigate this problem, this study thoroughly
examines these solutions, motivating the proposed control scheme. An alternative approach
by implementing two static controllers, one in the outer loop and the other in the inner loop is
presented. The gain of the outer feedforward controller is calculated using traditional methods.
Similarly, the gain for the inner controller follows the conventional approach described in the
literature but including a weighting factor, denoted as α, to minimize the IAE of the control error
of the main process output.

To determine the optimal value of α, an optimization-based method is introduced, consider-
ing the relationship between the time constants of the inner and outer loop processes and the
disturbance. The optimization process results are approximated using a simple piecewise linear
function that defines α based on the process parameters. Through rigorous simulation experi-
ments, the study demonstrates the effectiveness of this straightforward and solid approach. It not
only enhances the performance of the process output but also reduces the overall control effort
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required, highlighting the advantage of calculating and implementing static-gain feedforwards
instead of lead-lags.

This contribution has led to a scientific journal article that is currently under the review
process, and the journal is indexed in the Journal Citation Report (JCR) [59].
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4. Contributions to the Automation of Industrial Processes

This chapter presents the simulation and experimental results on the evaluation of some of
the control strategies summarized in this thesis for the facilities described in Chapter 2. In
Section 4.1, three contributions are presented for a raceway reactor. In Section 4.1.1, a linear
model predictive controller will be implemented in simulation. Additionally, in Section 4.1.2, a
robust controller will be designed and implemented both in simulation and in the industrial plant.
Lastly, in Section 4.1.3, an interactive tool will be introduced to facilitate the implementation of
control strategies, enhance understanding of the complex model of photobioreactors, and provide
training for both researchers and plant operators. In Section 4.2, the results of the combination of
feedback linearization strategies with a robust controller for the temperature control problem in a
greenhouse are presented. Finally, Section 4.3 shows the results of implementing the contribution
presented in Section 3.2 for temperature control in a temperature control laboratory.

4.1 Microalgae Raceway Photobioreactors

Environmental sustainability and the need for new renewable and clean energy sources drive
the search for more environmentally friendly solutions, such as microalgae cultivation in indus-
trial photobioreactors. Microalgae biomass requires low water consumption, making it possible
to cultivate them in any location [14, 34]. Additionally, due to their high lipid content, microalgae
biomass can be transformed into biodiesel through the direct transesterification process [3, 73],
providing an alternative solution to fossil fuels. Microalgae are also used in cosmetics, animal
feed, and wastewater treatment [66].

As indicated in [24], and described in Chapter 2, the most important variables affecting
microalgae growth are the temperature of the medium, solar radiation, pH, and dissolved oxygen.
Additionally, the photosynthetic response of microalgae to solar radiation depends on many other
variables, making the system highly complex [29]. For raceway reactors, the requirements for
solar radiation exposure and operating temperature conditions are generally determined by the
system’s architecture and geographical location. Therefore, the variables to be controlled in
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this type of reactor are pH and dissolved oxygen. Both variables have highly dynamic behavior
strongly dependent on the photosynthesis process, and it is necessary to keep them close to
desired set-points [100]. Between these two variables, pH is the most important to control as
it directly influences the proper execution of photosynthesis. This variable exhibits a strongly
nonlinear behavior, affected by the injection of CO2 into the medium and the consumption of
CO2 during photosynthesis. Control of this variable has been approached in the literature from
different perspectives. In [29], a linear control was implemented by combining a PI controller
with a lead controller around the desired operating point. In [57], a robust PID controller based
on QFT was used in a raceway reactor. To control the pH during the night without solar radiation
and to achieve reduced CO2 injection during the day, a control based on events combining
daytime and nighttime dynamics was proposed in [112]. On the other hand, in [102], an event-
based control using model predictive control was implemented, which was later improved and
combined with selective and simultaneous dissolved oxygen control [101].

Furthermore, efficient simulator tools for complex industrial processes are crucial in training
operators and enhancing their understanding of the system [30]. They provide a virtual environ-
ment where operators can simulate and practice different scenarios, gaining valuable hands-on
experience without the risks and costs of operating the real system. One of the main advantages
is that they allow operators to familiarize themselves with the process dynamics, equipment
behavior, and control strategies in a safe and controlled environment. They can explore different
operating conditions, observe the system’s response to various disturbances, and learn how to
handle abnormal situations without threatening production [11].

Simulators also enable engineers to test and validate different control techniques before im-
plementing them in the real system [98]. They provide a platform for evaluating the performance
of different control algorithms, tuning control parameters, and assessing the system’s response to
changes in set-points or disturbances. This iterative process of experimentation and optimization
helps to identify the most effective control strategies and fine-tune them for optimal performance.
They also visually represent the industrial process, allowing operators to visualize the interactions
between different components and variables. This visual feedback enhances their understanding
of the system’s behavior and helps them identify potential bottlenecks, inefficiencies, or safety
hazards. It also facilitates real-time troubleshooting and real-time decision-making by providing
real-time data and visualizations. Overall, simulator tools for complex industrial processes offer
a cost-effective and efficient way to train operators, understand system behavior, and optimize
control strategies. They provide a virtual platform for experimentation, learning, and continuous
improvement, ultimately leading to safer and more efficient industrial operations.

According to the previous review, in this section, three contributions applied to the reactors
are presented. First, a linear predictive controller is implemented in simulation to regulate the
pH in raceway reactors. Additionally, a robust controller for pH control will be designed and
implemented both in simulation in the model and in the real facility. Lastly, an interactive tool is
introduced to facilitate the implementation of control strategies, enhance understanding of the
complex model of photoreactors, and provide training for both researchers and plant operators.

4.1.1 Generalized Predictive Control
This contribution presents the implementation of a Generalized Predictive Controller, defined

in detail in Section 2.1.5 for pH control in a raceway photobioreactor for microalgae cultivation.
The nonlinear dynamics of pH are directly and indirectly influenced by other system variables,
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such as the supply of CO2 to the culture medium, excess O2 resulting from microalgae photosyn-
thesis, solar radiation, and biomass concentration. Typically, these reactors are controlled using
simple on/off controllers that do not consider the system model or CO2 consumption. Given
the importance of maintaining pH within specific ranges directly impacting productivity, this
study opts for designing a linear predictive control strategy that constrains the system’s output to
optimal values, thereby increasing productivity while reducing CO2 usage.

Process Model

From a theoretical perspective, pH control is a nonlinear problem that can only be linearized
under certain circumstances [28]. As described in Section 2.2, considering that the process
output is the pH of the culture, the opening of the CO2 injection valve is the manipulated variable,
and solar radiation is the major disturbance of the system. The behavior of the system can be
highly simplified and be represented by the following differential equation [13], [124]:

τr
dpH

dt
= αu(t− Lu) + β(pH0 − pH) + γrI (4.1)

The pH0 is the pH at the equilibrium point, β is a factor to adjust the system’s time constant,
α is the static gain of the system, u is the control signal representing CO2 injections, Lu is the
time delay, and γr and τr are parameters that depend on solar radiation, I , and the state of the
culture, respectively.

This low-order linear model has been identified, taking into account the photobioreactor’s
structure, the pH sensor’s location, and the dynamics observed in the data. Thus, the model
mentioned above relating the pH output and CO2 injection can be represented by the following
transfer functions [13]:

pH =
Ku

1 + Tus
e−LusuCO2 (4.2)

where pH is the culture pH, uCO2 is the valve opening percentage, Ku is the static gain, Tu the
time constant and Lu time delay.

The models used in this study were obtained around pH values (operating point) where, as
shown in Figure 4.1, the system productivity is maximum [101]. Thus, a pH of 7.8 was chosen
as the operating point, according to the selected microalgae strain (see Chapter 2).

Different pulse trains have been applied to the CO2 injection throughout the daylight period
to obtain the model. The obtained model is based on the first-order transfer function of the
first term in Equation (4.2). Figure 4.2 shows, as an example, the validation of the model for
a specific testing day [61]. It is important to note that only the part of the model that depends
on CO2 injection has been used, and the radiation term has been disregarded due to its minimal
effect on the pH (with small gain values, on the order of 10−4). The oscillatory component of the
dynamics is due to the continuous recirculation in the reactor. These dynamics could have been
captured with a second-order term, as proposed in [13], but it is considered unmodeled dynamics
in this work. The resulting model is given in seconds and is as follows:

pH =
−1.65

1 + 3390s
e−110suCO2 (4.3)
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Figure 4.1. Productivity and pH relation.

Figure 4.2. Model validation for the implementation of GPC in the reactors. The obtained model
is represented in red.
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GPC Implementation
The GPC involves applying a control sequence [22] that minimizes the cost function defined

in Equation (2.32).

The minimum of J , assuming no constraints on the control signal, can be computed by setting
the gradient of J equal to zero, such that the optimal solution can be obtained by minimizing the
quadratic function expressed in vector form:

J(u) = (Gu+ f − r)⊤(Gu+ f − r) + Λu⊤u (4.4)

where G contains the step response coefficients of the process, f is the free response of the
system, w is the future reference trajectory, and u represents the future increments of the control
signal. Equation (4.4) can be rewritten as defined in Equation (2.35).

The quadratic function obtained is minimized subject to the system’s constraints (Table 2.1)
by solving a classical quadratic programming problem. In this case, the implemented constraints
in the controller are those related to the amplitude and increment of the control signal, as well as
the amplitude of the system output:

umin ≤ u(t) ≤ umax

∆umin ≤ ∆u(t) ≤ ∆umax

ymin ≤ y(t) ≤ ymax

Results
Two simulation tests are presented for a day with changing radiation conditions due to the

passage of clouds in order to evaluate the proposed control strategy.

Both tests were conducted under the same external radiation conditions but with variations in
the output constraint and appropriate limitations imposed on the control signal and its increments.
The set-point for the pH at the output, yref , was fixed at 7.8. The main objective of this work is to
evaluate the possibility of limiting pH variations through the constraint management capability of
the GPC algorithm. Hence, the proposed tests focused on the same simulation day but considered
two different allowable ranges for the output to analyze the achievement of this objective. The
minimum and maximum prediction horizons were set with values of N1 = 1 and N2 = 500,
respectively. The control horizon is Nu = 3, and the control effort weighting is set to Λ = 200
[115]. The sampling time was set to 5 seconds.

The constraints are set with the following values:

0 ≤ u(t) ≤ CO2max

∆umin ≤ ∆u(t) ≤ ∆umax

ymin = yref − Ymin ≤ y(t) ≤ ymax = yref + Ymax
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The control variable is limited to the values that the real system can provide, between 0 and
the maximum CO2max value of 12 L/min. The control signal increment was also set to a value
of 12 L/min. Lastly, the system output is constrained to values very close to the reference value
of yref = 7.8, as mentioned in Section 2.2.1; maintaining the pH value close to this reference
will increase productivity. In this case, it is possible to limit the maximum and minimum values
around the reference, yref , by setting values for Ymin and Ymax, respectively. The simulation
activates the control algorithm once the radiation exceeds 100 µE/m2s.

Figure 4.3 shows the first test where the output limits were imposed with Ymin = 0.2 and
Ymax = 0.2. It can be observed that the GPC algorithm successfully keeps the output within
the established bounds. It should be noted that in some instances, it exceeds these limits due
to modelling errors existing at that operating point between the obtained linear model and the
nonlinear model used as a simulator [29]. The use of CO2 is minimized by only pulsing when
necessary to maintain the reference within the desired values and also comply with the control
signal constraints.
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Figure 4.3. Control test with output constraint limits Ymin = 0.2 and Ymax = 0.2.

The second test is shown in Figure 4.4. In this case, the reference is the same as in the previous
test. However, the output signal bounds have been reduced to Ymin = 0.1 and Ymax = 0.1 to
achieve a lower pH variation and, therefore, have a more positive impact on the system’s
productivity. It can be observed that all the imposed constraints are still satisfied. However, a
change in the CO2 injection by the GPC algorithm can be observed compared to the previous test.
The injection frequency is increased with smaller pulses to keep the pH within the established
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limits. Therefore, it can be concluded that the GPC algorithm is a helpful solution for maintaining
the pH at optimal values while reducing CO2 consumption.
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Figure 4.4. Control test with output constraint limits Ymin = 0.1 and Ymax = 0.1.

The proposed solution has achieved results very similar to other works obtained in [29, 61,
112]. These works address different control strategies in tubular and raceway photobioreactors,
such as robust control with QFT or PI control based on events distinguishing between day and
night. The main advantage of this strategy compared to the ones mentioned earlier is that it
allows us to intrinsically manage the treatment of constraints and the issue of pH variability at
the process output.

Unlike other similar works implementing predictive control in a raceway photobioreactor,
such as in [101], where event-based predictive control is applied, this work made use of the con-
straints that the predictive controller allows to impose on the process output. The obtained result
is satisfactory, as it can be observed that the system output is bounded within the established
limits while the control signal also adheres to its constraints. This ensures that productivity is
maximized as long as the pH value remains close to the set reference value while reducing the
environmental impact due to the reduced CO2 injection enabled by this control strategy.

Conclusions
This contribution presents the generalized linear predictive control of the pH in a raceway

reactor. The obtained results are satisfactory, as it is observed that the system output stays within
the established limits while the control signal also meets its constraints. This ensures that the
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productivity is maximized as long as the pH remains as close as possible to the established
reference value, reducing the environmental impact due to the decrease in CO2 injection. It
is planned to evaluate the behavior of the control algorithm over several consecutive weeks in
simulation, conducting tests under different external conditions to observe its performance. After
that, the proposed control can be implemented in an industrial reactor. The design and evaluation
of new nonlinear versions of predictive control algorithms are also planned. Besides, this
contribution has resulted in the publication of a scientific article in a national control conference
[56].

4.1.2 Robust Control

Most of the control strategies mentioned above are based on a nominal plant model assuming
that the pH is always close to the desired operating point. However, as previously mentioned, the
solid nonlinear component of the system leads to modelling errors, requiring consideration of
possible uncertainties in the control strategy design process. In this regard, this work presents a
new solution for pH control by designing a robust controller using QFT [44]. In this approach,
the nonlinear dynamics of the system and the different sources of error are captured in the form
of a low-order model with parametric uncertainty. Once this model is obtained, a robust PID
controller is designed to meet specific performance and stability specifications [61]. Similar to
other methodologies, such as the one proposed in [132] for PID tuning, the sensitivity function
is employed, but the controller structure is not restricted in this case. The results have been
successfully evaluated in a nonlinear process simulator [29], analyzing the behavior at different
operating points and under various external working conditions. Subsequently, the controller has
been implemented in a real reactor described in Section 4.1, where several experiments have
been conducted over consecutive days at different operating points.

In this contribution, a model of the system with parametric uncertainty covering the typical
working ranges of pH has been developed, and later a robust controller with QFT is designed to
achieve certain robust performance and stability requirements. The resulting control algorithm
has been evaluated in simulation and real tests against different working conditions and at
different operating points, obtaining satisfactory results.

Simplified Model

This section presents the low-order linear model identified, taking into account the structure
of the photobioreactor, the sensor and actuator distribution, and the dynamics observed in the
data. Considering that the output of the process is the pH of the culture, the opening of the
CO2 injection valve is the manipulated variable, and solar radiation is the major disturbance of
the system, the behavior of the system can be represented by the transfer function defined in
Equation (4.2), where pH is the pH of the culture, uCO2 is the valve opening percentage, Ku is
the static gain, Tu is the time constant, and L is the time delay [13].

These parameters, especially the system gain and time constant, exhibit considerable variation
due primarily to the influence of solar radiation, which directly affects the photosynthesis process
and thus causes changes in the process dynamics.

In order to capture the potential uncertainty of the process, various experiments have been
conducted for different operating points around which the system productivity is maximized.
[101]. In this way, operating points of pH=7, pH=8, and pH=9 were selected, covering a wide
operation range. Different pulse trains in CO2 injection were applied throughout the daylight
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period around each operating point for 20 days under different environmental conditions. Figure
4.5 shows the model validation for a specific test day.

Figure 4.5. Model validation for pH in the contribution of a QFT controller in the raceway
reators.

A total of 60 experiments were conducted, spanning 20 days for each of the three different
operating points. Using the reaction curve method, models were obtained for each of these
experiments. Uncertainty bounds were then calculated for the pH model, resulting in the
following family of plants (time constants and delays in seconds):

P (s) ∈ P =

{
Ku

1 + Tus
e−Lus, with (4.5)

Ku ∈ [−4.1,−0.35], Tu ∈ [3.4, 8] · 103, Lu ∈ [1, 1.4] · 102
}

It is essential to highlight the significant parameter variability due to the diurnal effect of
radiation on the photosynthesis process and the change in operating points. In addition to the
parametric uncertainty in the models, it is important to consider the uncertainty introduced by
the sensors and actuators, as well as external factors such as weather conditions (e.g., rain or
wind), reactor temperature, etc.

Controller Design
This section presents the design of the proposed QFT robust controller using the model with

uncertainty presented in the previous section. The objective is to design a controller C and a
prefilter F if necessary, as shown in the diagram in Figure 2.8, where all the specifications are
met for the plant family P [39]. A proprietary package developed in Matlab® has been used for
the controller calculation [86].
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The first step in QFT controller design is to define the set of design frequencies and the desired
behavior and stability specifications for the closed-loop system, expressed as inequalities on the
closed-loop transfer functions. Considering the model uncertainty shown in Equation (4.5), as
well as the magnitude of the time constant and delay, a set of low frequencies has been selected
to cover the system’s operating range: Ω = {0.0001, 0.0005, 0.001, 0.01} rad/s. Additionally,
the specifications are defined in the frequency domain. For this system, a stability specification
with a phase margin greater than or equal to Slim = 45◦ for all operating points has been chosen,
as defined by Equation (2.39).

For reference tracking, the specifications are given by Equations (2.41), (4.6) and (4.7), which
correspond to a closed-loop time constant between 3500 and 8200 seconds.

Bl(s) =
1

(6400s+ 1)(2600s+ 1)(1000s+ 1)
(4.6)

Bu(s) =
1

3500s+ 1
(4.7)

It should be noted that, as shown in the closed-loop tests, the pH starts at a different initial
value each day, so it is necessary to perform set-point tracking to ensure that the pH is close to
the optimal value required by the cultivated microalgae strain.

Once the specifications are defined, the uncertainty is represented in the Nichols Chart for the
frequencies in Ω, as shown in Figure 4.6. A plant from the set is chosen as the nominal plant,
P0(s) ∈ P , defined in Equation (4.8). In each template, the nominal plant is marked with an
asterisk.

P0(s) =
−4.1

3390s+ 1
e−100s (4.8)

Next, based on the specifications defined earlier and the templates, for each frequency ω in
the set Ω, forbidden regions are obtained in the Nichols Chart for the open-loop transfer function
[86].

L0(jω) = C(jω)P0(jω)

These bounded regions are defined as boundaries, with one for each frequency and specifica-
tion defined. Figure 4.7 shows the boundaries corresponding to the stability specification of 2.32
dB and the reference tracking specification given by the difference in magnitude in dB between
the bounds in Equations (4.6) and (4.7), evaluated for the frequencies in the set Ω.

Once all the boundaries are defined, the open-loop function L0(jω) must have a shape that
satisfies all the limits for each frequency. Figure 4.7 also shows the fitting of the nominal
open-loop function for the tuned PID controller in series form [1]. The controller C(s) and the
filter F (s) are given by the following equations:

C(s) = −34.28

(
1 +

0.00035

s

)(
1 + 83.89s

)
(4.9)

F (s) =
1

4762s+ 1
(4.10)
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Figure 4.6. Templates (ω1 = 0.0001, ω2 = 0.0005, ω3 = 0.001, ω4 = 0.01).

Figure 4.7. Adjustment of L0, stability boundaries and tracking (ω1 = 0.0001, ω2 =
0.0005, ω3 = 0.001, ω4 = 0.01).

The final step in the controller design is to validate whether the specifications for frequencies
outside the set Ω are met with the selected controller. Figures 4.8 and 4.9 show the validation of
the design for the tracking and stability specifications in the frequency domain, respectively.
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Results
In this section, the robust controller design is evaluated through simulation in different operat-

ing points, as well as its performance in the actual raceway reactor.

To evaluate the proper performance of the controller in simulation, several days with different
weather conditions and operating points have been used as a reference to assess the controller’s
performance in the face of process dynamics variability. This allows for assessing its behavior
before implementing it in the actual plant. The simulations have been carried out using the
nonlinear model of the photobioreactor described in Section 2 and implemented in Simulink
[28]. In order to analyze the system’s behavior in different operating points and evaluate if it
meets the designed specifications for reference tracking, downward step changes in pH have
been applied at the beginning of the day. It is worth noting that these situations naturally occur
in the daily operation of the process since pH values reach close to 9 during the night, and each
morning it is necessary to bring the pH value close to the optimal values for the specific strain
being cultivated.

Figures 4.10 and 4.11 show two example experiments for a sunny day and a cloudy day, each
of them at different operating points, starting the step changes in pH at initial values of 8.3 and
7.9, respectively. In these figures, it can be observed that the system’s behavior is consistent
with the design specifications. It is nearly the same on both days despite starting from different
operating points and being subjected to different weather conditions, demonstrating the proper
functioning of the proposed robust controller. Notice that, the oscillations in the pH response are
due to implementing the nonlinear model based on partial differential equations.

In Figure 4.12, the behavior of the reactor on a cloudy day can be observed. At the beginning
of the day, the pH is in an open loop (no control during the night), reaching a pH value close to 8
in the early morning. When switching from manual to automatic mode, the system successfully
reaches the reference, in this case, a pH of 7.4. It is worth noting how the controller quickly
rejects disturbances caused by the passage of clouds, as can be observed shortly before 14:00 (2
PM).

Figure 4.13 shows a less cloudy day where the goal is to maintain a pH of around 7.8 during
the day. To achieve this, the control is switched from manual to automatic once the radiation
is sufficient for the microalgae to perform photosynthesis. The satisfactory response of the pH
reaching the reference can be observed when the automatic mode is activated, around 9:30 AM.
The control signal is smooth throughout the day, and disturbances due to changes in radiation are
adequately rejected.

As observed in the experimental tests, the behavior of the robust controller is valid for the
uncertainty introduced by different operating points, changes in set-points, and varying weather
conditions.
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Figure 4.10. Simulation experiment on a sunny day with an initial pH value of 8.3.

Figure 4.11. Simulation experiment on a cloudy day with an initial pH value of 7.9.
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Figure 4.12. Real raceway reactor implementation with a set-point of pH=7.4.

Figure 4.13. Real raceway reactor implementation with a set-point of pH=7.8.
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Conclusions

This contribution presents the robust control with QFT of the pH in a raceway-type reactor.
The experiments demonstrate the good performance of the controller for the different operating
points and under the tested operating conditions. Overall, the proposed control strategy effec-
tively regulates the pH levels in the reactor, providing stability and accurate tracking of reference
values. The robustness of the controller allows it to handle uncertainties and disturbances,
ensuring reliable operation even in the presence of external factors. These results highlight the
effectiveness and practicality of the developed control approach, making it a promising solution
for pH control in raceway reactors and similar industrial processes.

This contribution has led to a publication of a scientific journal article in "Revista Iberoameri-
cana de Automática e Informática industrial", Q4 in the Journal Citation Report (JCR) [55].

4.1.3 A Computer-Based Tool to Simulate Raceway Photobioreactors for Design,
Operation, and Control Purposes

Given the intricate nature of the reactor model, as outlined in Section 2.2.1, the complexity of
these processes becomes evident when considering aspects such as design, operation, modelling,
and control [34]. In this sense, there is a need to develop tools that allow the user to easily
simulate the behavior of the system and to modify the main parameters from biological, design,
and operation perspectives. Therefore, in this work, a graphical tool for the simulation of the
raceway reactor is presented. This tool includes the nonlinear models developed in [119], [29]
and [113], and the control algorithms presented in [102] and [112]. It has been developed
using M-code and the App Designer from Matlab® [81]. It allows to access and to modify the
most important variables of the process, to simulate the system, and to observe the results in
a straightforward and graphical way. Notice that the proposed tool also permits to modify the
reactor structure and its design. Moreover, different strains can be studied by including their
biological parameters. Real data related to the weather variables from a meteorological station
of an industrial raceway reactor are used as inputs to the tool covering different seasons of the
year. Furthermore, several control approaches can be analyzed for pH and DO variables in order
to study the impact on biomass productivity [63].

There are two main control strategies implemented in the tool that can be used independently
or jointly. The first one, as done in [102], a selective pH and dissolved oxygen control is
implemented as shown in Figure 4.14. This control scheme allows addressing simultaneous pH
and DO control, satisfying all requirements. In the diagram, it can be observed that pH and DO
are controlled with their own controller (CpH and CDO, respectively), which provides two control
signals (upH and uDO). A selective mechanism determines the control signal to be used in the
system (uSC) using selective logic (PRW ). The pH controller will be prioritized when the pH
value is outside of established limits around its pH set-point (SPpH) (a dead band is used to have
some control tolerance). When pH is inside the limits, the DO controller will be selected in order
to try to achieve its DO set-point (SPDO). In the developed tool, the dissolved oxygen is always
implemented by using an On/Off controller, and for pH PI or On/Off controllers can be selected.
The set-points are set by the user. The second control strategy is daytime/nighttime control. It
has been demonstrated that by controlling the pH during the daytime and nighttime, important
performance improvements can be achieved [112]. So, the pH is controlled 24 hours a day using
a PI or an On/Off control for the daytime period and an On/Off control for the nighttime (notice
that during the nighttime, microalgae do not perform photosynthesis).
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Figure 4.14. Selective control scheme for DO and pH [102].

The Tool

In this section, the functionality of the developed tool is described, which highlights the
theoretical concepts exposed in the previous section. The tool is available through http:
//www2.ual.es/sabana/data-center-2/ for both MacOS and Windows operating
systems.

The software used for the design of the tool is the Matlab App Designer®, a tool for the
development of graphical user interfaces (GUI) or user interfaces in general, that improves the
accessibility of software applications, eliminating the need to learn a particular programming
language to build them and avoiding the need to write commands in order to execute the different
functionalities for an application. Matlab® Apps are stand-alone Matlab® programs with a GUI
that automates a task or calculation. These App can be run under the Matlab environment (which
is the recommendable option) or as stand-alone executable programs without Matlab® [81].
Notice that the tool only uses weather data as input. All system variables are simulated using the
models and control approaches presented in the previous section.

Initialization and parameters configuration

The tool is designed in three different areas, as shown in Figure 4.15. Starting at the top, the
Play and Stop buttons are observed, which allow running or stopping the simulation. Below
these buttons, there is a box with text that gives information about the program’s execution. On
the right part, there is a group of radio buttons that allows running the simulation in open-loop
(the Manual radio button) or in closed-loop (the Automatic radio button). The tab in which the
control parameters can be configured will be explained later. In the middle area, there is a panel
to configure and modify all the parameters of the reactor.

In the tool configuration area, there are four different tabs to modify the most important
parameters of the process, as shown in Figure 4.16. In the first tab (Figure 4.16a), the initial
values of the pH, dissolved oxygen, biomass concentration, and temperature can be set for the
start of the simulation. When the manual model is selected, it is possible to modify the flow
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Figure 4.15. Main screen of the raceway reactor simulation tool.

value for the CO2 and the air, and the start and end times, being able to select how much flow
and for how long it is applied. At the bottom, a drop-down element is provided to choose the
season of the year chosen for the simulation, spring, summer, autumn, or winter, where real
weather data from the reactor described above are used as inputs to the model. The second tab
(Figure 4.16b) is dedicated to the biological variables. It is possible to modify the biological
parameters of the microalgae and thus be able to simulate different strains. From the design
parameters tab (Figure 4.16c), it is possible to modify the physical dimensions of the reactor:
length, height, and width. The last tab is focused on the control approaches (Figure 4.16d). These
parameters are used when the automatic option is selected. As the main variables to control
are pH and dissolved oxygen, the corresponding set-point values can be modified. Control
can be done only on pH, only on dissolved oxygen, or on both variables at the same time by
using the selective control approach discussed above. On the other hand, the reactor can also be
controlled only during the day when there is solar radiation or during the day and night. For the
control of dissolved oxygen, the On/Off method is used. To control the pH, On/Off or PI control
strategies can be selected, being able to modify the design parameters (Kp and τi) for the last one.

After the simulation, the results are displayed in two areas. On one hand, at the left (Figure
4.17), quantitative results for productivity (Pb) and carbon dioxide (CO2) consumption are given
for the simulated day. On the other hand, the results can be seen graphically on the right part
of the tool. In the first tab, Figure 4.18a displays the evolution of the dissolved oxygen and pH
along the day. Below them, the plot shows two different variables, the CO2 and air flows, that
are used to control the pH and the dissolved oxygen, respectively. In manual mode, a specific
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schedule is manually set. In the second tab, Figure 4.18b shows the evolution of the temperature
and the solar radiation, the biomass productivity (Pb), and the microalgae biomass concentration
(Cb) along the day.

(a) Initialization menu. (b) Biologic variables menu.

(c) Design parameters menu. (d) Control design menu.

Figure 4.16. Menu panel tabs.

Figure 4.17. Numeric simulation results.

Ilustrative Examples
Notice that there is a large number of possible scenarios to perform the simulation of the

system. So, this section presents some of the most representative ones. It is important to note
that all the results obtained are computational. The data required by the model to compute the
simulation are taken from the real raceway reactor, described in Section 2. The first example is
a simulation of two different seasons of the year with different climate conditions in order to
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(a) Dissolved Oxygen, pH, carbon dioxide, and air
flow graphics.

(b) Radiation, temperature, productivity, and biomass
concentration graphics.

Figure 4.18. Graphical results.

analyze the weather effect. Then, in a second example, a comparison of the productivity is made,
changing the culture depth of the reactor for the same weather conditions. After that, two differ-
ent strains are simulated, the Nannochloropsis gaditana and the Scenedesmus almeriensis, to see
their behavior in the same reactor and under the same operating conditions. Their characteristic
parameters are defined in Table 4.1. Finally, two different control strategies are compared to
control the culture pH.

Parameter
Nannochloropsis

gaditana
Scenedesmus
almeriensis

Units

Xr,max 41 48 ◦C

Xr,min 4.6 9 ◦C

Xr,opt 32 29 ◦C

PO2,max 139 350 mg L−1h−1

n 2 2 -
Ik 151 200 µEm−2s−1

Table 4.1. Strains characteristic parameters, [7, 15].
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Season impact

The time of year in which the reactor is operated is a crucial factor for microalgae produc-
tivity. In order to show this effect, two extreme cases will be simulated, summer and winter,
respectively. For this simulation, the Scenedesmus almeriensis strain was used (see Table 4.1 for
the characteristic parameters).

In Figure 4.19, closed-loop simulations with an On/Off control for summer (Figure 4.19a)
and winter (Figure 4.19b) seasons are shown. At the top of the figure, the numeric results can
be observed. As expected, in summer the total production, Pb = 24.74 [gbiomass m

−2 day−1], is
higher than in winter, Pb = 10.09 [gbiomass m

−2 day−1].

Observing the graphics results can also be seen the considerable difference in the radiation
curve, being directly proportional to the productivity curve. The most significant differences in
these two curves lie in the hours of solar radiation per day (12 hours in summer and 9 hours
in winter), and its maximum value. On the other hand, the variation in the environmental
temperature between these two days is relevant, as studied in [113], also affecting the growth of
microalgae, being the maximum reached in winter Xr = 18 [◦C] and in summer Xr = 34 [◦C]
and the minimum Xr = 11 [◦C] and Xr = 24 [◦C], respectively.

(a) Open loop simulation on summer. (b) Open loop simulation on winter.

Figure 4.19. Summer and winter graphical results.
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Moreover, the influence of solar radiation on the system through the pH can be also observed
just by looking at the total carbon dioxide flow consumed each day. The microalgae pH increases
with solar radiation, so to keep it on the desired set-point value, the system introduces CO2

to lower it. In summer, this process is faster than in winter because there is much more sun-
light, and thus the photosynthesis process increases. For that reason, the system requires more
CO2, being able to have a great difference between both seasons of the year. In the example, in
summer the consumption value is CO2 = 56.45 [L day−1], and in winter CO2 = 39.19 [L day−1].

Culture depth influence

The culture depth can directly affect the productivity of the system. As studied in [112], the
reactor temperature can be regulated in microalgae raceway reactors by modifying the culture
depth. This study is important because an inadequate temperature strongly reduces biomass
productivity even if there is enough sunlight. For this example, the depths 0.1 [m] and 0.3 [m]
are chosen. Both simulations have been done in the same conditions, a closed-loop simulation
with an On/Off control, using the Scenedesmus almeriensis strain, in spring and with the same
initial values for variables in Figure 4.16a.

Figure 4.20 shows the configuration parameters, the performance results, and the graphical
representations for both cases. The graphical results provide information about productivity
throughout the day. The average value when culture depth is of 0.1 [m], is Pb = 22.44 [gbiomass

m−2 day−1], lower than when is 0.3 [m] that is Pb = 28.24 [gbiomass m
−2 day−1]. It is shown

that by increasing the volume of the reactor, the production of microalgae increases. Otherwise,
in [9], it is shown that by increasing the culture depth, the photosynthetic light integration is
reduced, and therefore, productivity decreases. This study will be included in the model in future
versions to improve its behavior. It can also be observed how the curve keeps the maximum
productivity for more time along the day for the case of a lower culture depth. As shown in this
example, with this tool, it is possible to study which is the optimum culture depth for a given
strain and for each season of the year in order to maximize the system productivity.

Strain selection

Two different strains are simulated as commented above, Scenedesmus almeriensis and
Nannochloropsis gaditana. The values of the characteristic parameters are shown in Table
4.1 [7, 15]. The simulation conditions are the same for both strains. The analysis is done in
spring and with an On/Off daily controller, where the pH set-point is set to 8. The results
can be seen in Figure 4.21. At the top of the figure, the different biological configurations of
both strains are set. Below, the graphical results are given, which are very similar for both
cases. However, the numerical results provide very interesting information for each strain.
It can be observed that there is a great difference between CO2 consumption, 34.1 [Lday−1]
and 50.21 [Lday−1], respectively. With the Scenedesmus almeriensis the average productivity
along the day is Pb = 18.89 [gbiomassm

−2 day−1], but with the Nannochloropsis gaditana is
Pb = 9.48 [gbiomassm

−2 day−1]. So, it can be concluded that the best strain for this location and
conditions would be the Scenedesmus almeriensis.

In the tool, other strains can be simulated in order to find which one is appropriate for any
location and see how it grows for any season of the year.
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(a) Open loop simulation. Height 0.1m. (b) Open loop simulation. Height 0.3m.

Figure 4.20. Graphical results changing the system height.

Control strategies

Another advantage of this simulation tool is to evaluate different control schemes to maintain
the pH and the dissolved oxygen at a desired value. Traditionally, raceway reactors are operated
by On/Off controllers during the daytime, but different studies have shown that other types of
controllers, such as PI, are much more efficient [112]. Therefore, in this example, an On/Off
controller for the pH during the day is compared with a PI controller with an anti-windup scheme
[1]. Both simulations are run under the same conditions, in summer and with a pH set-point value
of 7.5. For the PI control case, a low-order linear model is identified as shown in Equation (4.2),
in which parameters are static gain Ku = −1.74, time constant Tu = 3390 [s] and time delay
Lu = 100 [s]. Lambda tuning rule (Section 2.1.1) has been selected to tune the PI controller,
with a closed-loop time constant of λ = 0.2Tu. Thus, the resulting PI controller parameters are
Kp = −0.78 and τi = 3390 [s].

Figure 4.22 shows both simulations. It can be seen how the pH oscillates around the set-point,
especially for the On/Off control with an important oscillatory behavior. With respect to the
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(a) Scenedesmus almeriensis results. (b) Nannochloropsis gaditana results.

Figure 4.21. Strain change graphical results.

control effort, the On/Off controller provides a more aggressive control signal as expected.
This is also observed in the CO2 consumption, which is 90.69 [Lday−1] and 23.65 [Lday−1],
for the On/Off and PI control, respectively. In the case of biomass productivity, both control
approaches give similar results, being Pb = 27.32 [gbiomassm

−2 day−1] for On/Off control and
Pb = 25.44 [gbiomassm

−2 day−1] for PI controller. The reason is that in spite of the oscilla-
tions, the pH value is kept very close to the optimum of 7.5. Thus, these results show how the
PI control is more efficient than the On/Off control and highlight the importance of choosing
a control strategy looking for a trade-off between performance and control effort (CO2 injections).
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(a) On Off control. (b) PI control.

Figure 4.22. Graphical results for control strategies.

Conclusions
This contribution presents a novel software tool to simulate the performance of microalgae

cultivation in raceway photobioreactors. It allows the user to evaluate these complex systems
in a very simple way, helping to study, for example, the feasibility of its implementation at an
industrial scale. The tool provides different functionalities, such as the possibility of modifying
the biological variables of the model to use any strain. The reactor design parameters are also
editable, letting to simulate the process using different reactors parameter values and test which
configuration is the more adequate. The four seasons of the year are available to analyze the
evolution of the microalgae under different weather conditions. Several control strategies can also
be applied in order to analyze the performance improvements. This tool has been developed only
for one location, Almería (Spain). Future versions will allow to configure any world location,
introducing its representative climate parameters along the year. Furthermore, additional control
strategies will be included, as well as the option to simulate several consecutive days when
necessary.

This contribution has been published in a scientific journal article in "Computers & Chemical
Engineering" journal, Q2 in the Journal Citation Report (JCR) [63].
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4.2 Greenhouse
The main objective of greenhouses is to increment the economic benefits of the farmer looking

for a balance between the cost of obtaining the optimal climate conditions for crop growth and
the fulfillment of the regulations on agriculture and the environment, which are often based
on obtaining a product suitable for human consumption, avoiding pollution and minimizing
the impact on the environment. The automatic control strategies allow farmers to meet these
objectives.

The microclimate provided by a greenhouse allows to obtain crop production in seasons
that otherwise would not be possible. Furthermore, crop growth needs suitable environmental
conditions to maximize its production. So, it is important to keep climatic variables inside the
greenhouse in optimal conditions, in special temperature and humidity variables. This can be
achieved using automatic control techniques. Therefore, over the years, the scientific community
has been actively working on the modelling and control of greenhouses, trying to optimize the
use of resources (water, energy, human worker hours,...) while minimizing the effects on the
environment. A survey of the literature on greenhouse climate control is presented in [130]. In
[75], for example, a hierarchical architecture is proposed where the lower layer consists of a
linear quadratic optimal controller based on a linearized model for the greenhouse temperature.
In this case, a heating system is used as a control actuator. However, the standard tool to
obtain the necessary environmental conditions is the regulation of the natural ventilation of the
greenhouse. In [141], a PSO-based MPC is used to control the temperature of a greenhouse
using forced heating and natural ventilation. In [118], a Bayesian network is implemented to
control the greenhouse indoor temperature, acting directly on the ventilation. This network learns
from previous manual and automatic control actions for predefined set-points in the presence of
changing outer environmental conditions. In [139], a two time-scales receding horizon optimal
control system is implemented to control a greenhouse where forced heating, CO2 supply, ven-
tilation, and LED lighting are used to achieve the crop growth objectives. In [99], Symmetric
Send-On-Delta event-based PI controllers are applied to control the inside air temperature using
natural ventilation. In [33], the greenhouse temperature is controlled using natural ventilation by
a nonlinear model predictive control strategy. The controller is based on a second-order Volterra
series model obtained from experimental data. In [105], a multiobjective hierarchical control
architecture is proposed for the greenhouse crop growth problem.

The control problem difficulty resides in the complexity of the greenhouse model. Its be-
havior is described in terms of a system of non-linear differential equations describing mass
balances and energy transfer in the plastic cover, soil surface, one soil layer, and crop. These
processes depend on the outside environmental conditions, greenhouse structure, type and state
of the crop, and on the effect of the control actuators [111]. To deal with the greenhouse non-
linearities, some classical methodologies based on non-linear control theory have been used
for designing the controller. The feedback linearization control law [42] is a clear example. In
[97], a model-based combined scheme of feedback with feedforward linearization is proposed
to cope with the external disturbances, taking the constraints on the actuators into account
to define feasible set-points. A PI feedback controller is used to cope with the uncertainty
of the process but in an implicit form, without explicitly considering the uncertainty in the
designing process. In [74], an adaptive feedback linearization-based predictive control is pro-
posed in order to control the greenhouse temperature, and in [103], a non-linear model predictive
control via feedback linearization of the greenhouse is proposed to control the inside temperature.
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Nevertheless, classical feedback linearization control strategies rely on detailed system mod-
els, so they are not capable of coping with model uncertainties. Some robust control techniques
have been applied to control greenhouses climate, considering the uncertainties of the model. In
[87], robust control techniques based on the QFT are used to achieve adequate values of inside
greenhouse temperature in spite of uncertainties and disturbances acting on the system.

In this contribution, the feedback linearization control technique (2.1.4) is used combined
with QFT (2.1.6) in order to cope with the complex non-linear climate control problem. At
first approach, feedback linearization control was implemented in the real system, taking the
non-linear model for the greenhouse into account. The results obtained showed that the ap-
proximated greenhouse model using only feedback linearization was not a linear model with
fixed parameters due to physical parameters variability and disturbances. Then a robust control
technique complementing the feedback linearization law was used, aimed at achieving desired
values of inside greenhouse temperature in spite of uncertainties and disturbances acting on the
system. Experimental results are presented to validate the proposed control approach.

Feedback Linearization

In this section, the calculation of the controller is developed, combining feedback linearization
and QFT control techniques. Due to the strong non-linearity and complexity of the system, FL is
used first to simplify the controller design. So, a linearized FOPDT model of the plant can be
obtained from the combination of FL with the greenhouse nonlinear model. Afterwards, this
linear FOPDT model is calibrated by making tests on the real plant, where the FL non-linear
block is placed in series with the greenhouse. Notice that due to the modelling errors and
variability of the process disturbances, an uncertain FOPDT model is obtained. Then, for this
reason, QFT is used to design a robust controller to control the combination of FL and the
greenhouse. Figure 4.23 shows the control scheme implemented in the real system, and that will
be described in detail in this section.

Figure 4.23. Feedback linearization and QFT control scheme for greenhouse temperature control
problem.
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In order to deal with the nonlinearities of the model, the feedback linearization technique is
used. The main idea behind this technique [42] is the treatment of nonlinear systems as if they
were linear by means of algebraic transformations and feedback [67]. Equation (2.58) can be
rewritten as follows:

Csh,aCden,a
Cvol,a

Carea,ss

dXt,a(t)

dt
+ (Ccnv,ss−a + Ccnd−cnv,a−e − Cevap,2ET )Xt,a(t) =

Caoc,aVtoc,cuPrs,e(t) + Ccnv,ss−aXt,ss(t) + Ccnd−cnv,a−ePt,e(t)−
Cden,aCsh,a

Carea,ss

ϕv(t)− Cevap,1ET

(4.11)
Then, this model is transformed into canonical form Equation (4.12) using functions g and b

which depend on system disturbances, ϱ = (Prs,e, Xt,ss, Pt,e, ET ) (references to t variable have
been deleted in equations in order to obtain more compact expressions):

ẋ = g(x, ϱ) + b(x, ϱ) · v (4.12)
y = h(x)

where

x = Xt,a (4.13)

g(x, ϱ) = −Carea,ss · (Ccnv,ss−a + Ccnd−cnv,a−e − Cevap,2ET ) · x
Csh,aCden,aCvol,a

(4.14)

b(x, ϱ) =
Carea,ss

Csh,aCden,aCvol,a

(4.15)

v = Caoc,aVtoc,cuPrs,e + Ccnv,ss−aXt,ss + Ccnd−cnv,a−ePt,e −

−Cden,aCsh,a

Carea,ss

ϕv − Cevap,1ET (4.16)

h(x) = x (4.17)

Then, the following first-order input-output relationship is found:

Aψ̇(t) +Bψ(t) = v(t)

η(t) = ψ(t) (4.18)

where ψ = x = Xt,a and

A = Csh,aCden,a
Cvol,a

Carea,ss

B = (Ccnv,ss−a + Ccnd−cnv,a−e − Cevap,2ET )

So, FL makes it possible to use a linear controller to regulate the inside temperature Xt,a by
means of the virtual control signal v(t) and according to (4.18). Then, once the virtual control
signal is calculated, the real control signal Uven is computed according to Equation (4.16).

120



4.2 Greenhouse

To account for the actuator saturation (the window opening is limited between 0º and 45º), a
standard anti-reset wind-up mechanism [1] has been implemented. Since anti-windup must be
applied to the virtual signal, window opening limits are transformed into virtual signal limits
using the inverse transformation of Equation (4.16). Thus, in this case, the limits on the virtual
control signal (vmin(t) and vmax(t)) (see Figure 4.23) are computed from Equations (2.60), (2.61)
and (4.16). The maximum value of v(t) is obtained when the variable Uven has its minimum
value, while the minimum value of v(t) corresponds to the maximum value of Uven, taking into
account that Uven varies between 0º and 45º.

In order to identify the characteristic parameters for the linear model, the FL block was
implemented at the real plant input, and several open-loop step inputs were applied to the virtual
control signal, v(t). The open-loop tests were performed around noon and for 15 days with
many different disturbance profiles. Figure 4.24 shows an example of four open-loop tests where
different profiles of solar radiation and wind speed are observed. Figure 4.25 represents the
first of these days. As it can be seen from the figure, an overdamped response was observed as
expected, and thus a FOPDT model was used to capture the process dynamics relating to the
greenhouse inside temperature, Xta(t), with respect to the virtual control signal, v(t). Figure
4.25 shows also a validation of the FOPDT model obtained for this day. Therefore, different
FOPDT models were obtained for all 15 open-loop tests, and it was observed that the FOPDT
model parameters vary within a certain range, which results in the following uncertain model:

P (s) ∈ P =

{
Xt,a(s)

V (s)
=

Ku

Tus+ 1
e−Lus, with (4.19)

Ku ∈ [0.0021, 0.0084]oC/%, Tu ∈ [9, 32]min, Lu ∈ [2, 7]min

}
Notice that this variation in the linear model parameters is because of the complexity of

the process and the modelling error coming from the coefficients in the nonlinear model from
Equation (2.58). So, this uncertain model is used in the following section to design a robust PI
controller for the control system.

QFT-Based PI Controller

Due to the uncertainty in the system observed in the previous section, a robust control tech-
nique must be used. QFT methodology [45] is chosen for this purpose. The first step in QFT is
to choose performance and stability specifications. Notice that the final control scheme is given
by Figure 4.23.

Considering the uncertain model given by Equation (4.19), and according to the magnitude
of the time constant and the delay, the low-frequency range is of interest in this case. So,
Ω = {0.0001, 0.005, 0.01, 0.1} rad/s is selected as the design frequencies set. A specification
of phase margin greater or equal to 45º for all plants is considered. Due to the nature of the
system, the main objective to take into account is the regulation problem. So, the following
specification for input disturbances rejection is considered:

∣∣∣∣ P (jω)

1 + C(jω)P (jω)

∣∣∣∣ ≤ ∣∣∣∣ Kdrjω

(Tdrjω + 1)nr

∣∣∣∣ ∀ω ∈ Ω (4.20)
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Figure 4.24. Open-loop tests with the feedback linearization block for 4 days.
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Figure 4.25. Greenhouse model validation.
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where Tdr = (0.95/nr)Tol, with Kdr = 9, nr = 2 and Tol = 9 min. The parameter Tol is chosen
as the open loop time constant for the slowest plant. The nominal plant chosen for design is
given by K0

u = 0.0021 ºC/%, T 0
u = 32 min, and L0

u = 2 min.

In order to proceed with the design of the controller, the value sets or templates [10], which
describe the system uncertainty in the Nichols Chart, are computed from Equation (4.19), and
the design frequencies set Ω, resulting in the representation showed in the Figure 4.26.

Using the algorithm in [86], the performance and stability boundaries are computed as shown
in Figure 4.27. Then, the nominal open loop transfer function is shaped to fulfill the required
specifications [20]. Based on the resulting boundaries, a PI controller can be tuned to satisfy the
specifications, resulting in the PI controller given by (4.21). Figure 4.27 shows the nominal open
loop transfer function fulfilling all boundaries for frequencies in Ω.

C(s) =
0.14(s/0.0007 + 1)

s
(4.21)
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Figure 4.26. Templates for frequencies in Ω.

Figures 4.28 and 4.29 show the validation for the designed PI controller. All the specifications
are satisfied.

As commented above, regarding the saturation problem, an anti-windup approach was used
for the resulting PI controller, where the constraints in the vents were mapped to constraints in
the virtual control signal.
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Figure 4.27. Stability and disturbances rejection bounds, and nominal open loop shaping.
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Figure 4.28. Validation for stability specification (Phase Margin of 45 degrees).
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Figure 4.29. Validation for input disturbances rejection specification.

Experimental Results

In this section, the results of performance at the real facilities are shown and discussed.
Figures 4.30-4.32 show three different experimental tests for different weather and operating
point conditions. The control signal, Uven, is expressed in percentage for a clear understanding.
Furthermore, in these experiments, different set-point profiles are given to analyze the response
of the proposed control approach. Figures 4.30a and 4.30b show the results for a cloudy day with
important variations in the wind speed. As observed from Figure 4.30a, different step changes
were performed for the inside temperature in order to show how the proposed control approach
is able to follow the reference in spite of the disturbances variations. Moreover, from this figure,
it is also observed that the virtual control signal is changing continuously to provide an adequate
vent aperture in order to compensate for the disturbance variations. Notice that the main changes
on the virtual control signal are mainly due to solar radiation variations, as observed in time
instants 115, 155, and 285 min. On the other hand, the virtual control signal presents a high
variability due to the wind speed disturbance. However, this variability is compensated by the
feedback linearization, and thus it does not appear on the vent aperture.

Figures 4.31a and 4.31b show a second example for a clear day, but with a constant wind
speed of around 4 m/s. Figure 4.31a shows how both the virtual control signal and the vent
aperture from the robust PI controller and the feedback linearization block, respectively, softly
vary in this case to keep the inside temperature close to the proposed reference. The higher
changes in the ventilation control signal occur exactly where the changes in the temperature
reference are applied. In the rest of the experiment, the ventilation aperture varies slowly due to
soft variations in the system disturbances. However, it can be observed that from the time instant
875 to the end of the experiment, the virtual control signal starts to increase to compensate for
the continuous decrease in solar radiation. On the other hand, again, the variability in the wind
speed is translated to the virtual control signal but not to the ventilation aperture.
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(a) Process output and the control signals.
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(b) Process disturbances: solar radiation, outside temperature, soil temperature, and wind speed.

Figure 4.30. Control results for test 1.
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(b) Process disturbances: solar radiation, outside temperature, soil temperature, and wind speed.

Figure 4.31. Control results for test 2.
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(b) Process disturbances: solar radiation, outside temperature, soil temperature, and wind speed.

Figure 4.32. Control results for test 3.
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Figures 4.32a and 4.32b show a third example of a cloudy day with separated and intermittent
passing clouds. In this case, a slow wind speed was observed, and for this reason, now the virtual
control signal does not have too much variability. Figure 4.32a shows the control results where
it can be seen how the virtual control signal and the vent aperture strongly vary around time
instants t = 620 min and t = 740 min to compensate for the strong radiation changes. Thus, it is
again observed how the proposed control approach attenuates the effect of the disturbances on
the ventilation aperture. This is an important advantage for the actuator lifetime.

So, it has been observed how the proposed control approach is able to cope with the non-linear
behavior of the system and the process variability due to important changes in the operating
point and process disturbances. The control scheme was able to keep the proposed set-point
values providing promising results for the greenhouse inside temperature control problem.

Conclusions
This contribution has presented the combination of two control techniques in order to ap-

proach the diurnal greenhouse climate control problem. First, a feedback linearization control
strategy has been implemented and validated in the plant. Despite canceling the non-linearities
of the model, discrepancies from the real system were observed being captured as parametric
uncertainty. Then, a PI controller was designed using QFT and evaluated in the real system. The
proposed control approach was tested on different days with different weather and operating
conditions. The control system was able to reach the proposed setpoint changes in spite of the
changes in the disturbances and in the operating points.

This research work has been published in a scientific journal article in the "IEEE Access"
journal, which is recognized as a Q1 journal in the Journal Citation Report (JCR) [62].

4.3 TCLab
This section presents the real implementation of the proposed control approach described in

Section 3.2 on a thermal system, defined in Section 2.2.3.

The TCLab platform is a commercial product of APMonitor [5], whose structure and appear-
ance are shown in Figure 2.18, constituting an excellent testing field for multivariable control
strategies at the industrial level (it can be observed that the actuators and sensors it incorporates
are also illustrative of those used in chemical and industrial environments in general). As de-
scribed in Section 2.2.3, the model consists of two transistors (actuators) that dissipate heat by
passing an electric current through them, whose intensity is regulated by the Arduino board. It
also has two thermistors (sensors) that vary their electrical resistance based on the temperature at
which they are located. So, by measuring the voltage drop produced by a known current, it is
possible to determine the temperature. Each thermistor is attached to one of the transistors using
thermochromic adhesive, ensuring direct heat transmission between the actuator and the sensor.
The adhesive is black and turns pink as the assembly heats up. A red LED is also used on the
board to indicate if either of the transistors exceeds 40 oC.

Arduino can be directly used as a controller if its microcontroller is programmed for that
purpose or the application is promoted by its manufacturer. Arduino can serve as an interface
between the physical system and a computer control system. This is made possible by libraries
that enable communication between Arduino and software such as Python or Matlab®.
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Note that the platform consists of a pair of sensors and actuators implies that it is a multi-
variable system from a control perspective. However, for applying the contribution defined in
Section 3.2 on it, a single transistor has been used, making it a single-variable system, and the
second transistor is used only to introduce disturbances into the system, as can be seen in Figure
4.33. The heat transfer phenomena considered in the simplified model provided by the manu-
facturer for the platform are convection and radiation, as expressed in Equations (2.62) and (2.63).

Figure 4.33. TCLab problem block diagram.

The suitability of TCLab as an experimental facility for automatic control has been studied
in multiple recently published works in the scientific literature, as cited below. In [116], the
advantages and disadvantages of using TCLab as a portable laboratory are presented, compared
to other low-cost prototypes used for teaching purposes. In [89, 93], it is demonstrated that
TCLab is an excellent platform for students in introductory control courses to identify models
and test PID controllers. Furthermore, some studies have explored advanced control techniques
with TCLab, such as feedforward control, cascade control [88], model predictive control [96],
and sliding mode control (SMC) [43].

To get the output models regarding the input and the load disturbance, two tests on the
real platform have been carried out. As can be seen in Figure 2.18, the controlled variable or
process output is Temperature 1 (oC), and the control signal is Heater 1 (%). The measurable
disturbance is the Heater 2 (%), which affects the process output through the temperature effect
from transistor 2. Heater 1 and 2 control signal limits are 0%− 100%.

To obtain the linear models of the system around an operating point given by a Temperature
1 equal to 33 oC and a control signal of Heater 1 equal to u0 = 18.3%, several step-like open-
loop tests have been carried out. Both process and disturbance models were approximated as
first-order systems with delay, which parameters are:

Pu(s) =
Ku

Tus+ 1
e−Lus =

0.51

667s+ 1
e−12s, Pd(s) =

Kd

Tds+ 1
e−Lds =

0.08

446s+ 1
e−76s (4.22)

Figure 4.34 and 4.34 show the validation of the obtained models through a step test. Figure
4.34 depicts the validation of Pu, with a 5% step change in Heater 1. Figure 4.34 validate Pd,
with a 20% step change in Heater 2.
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Figure 4.34. TCLab process model validation.
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Figure 4.35. TCLab disturbance model validation.

Once the models are obtained, the solution presented in Section 3.2 is implemented. Two
different closed-loop tests around the selected operating point are performed, one with the classic
scheme and the other with the new solution. A step disturbance signal with an amplitude of
d = 100% is applied using Heater 2 at time t = 1040 s. The PI controller was tuned with the
Lambda method, with λ = 0.6Tu, and the anti-windup scheme is applied in both cases with
Tt = 0.3τi. The control signal peak and final value are upeak = −7.5, ufinal = 2.31, respectively.
The parameters to apply the proposed solution are calculated from Equations (3.13), (3.14), and
(3.16):

RT =
Tp
Tz

=
446

667
= 0.67

RS =
upeak − ulimit

upeak − u0
=

−7.5− 0

−7.5− 18
= 0.3
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α = −1.6RS −RT + 1.9 = −1.6(0.3)− 0.67 + 1.9 = 0.7

First, a simulation test is done to validate the proposed solution, and subsequently, a test
is done on the actual board. Figure 4.36 shows the simulation test, resulting in a value of
IAEnorm = 0.79, and the maximum value of the integral has been reduced by Imaxnorm = 0.34.
The results confirm the validity of applying the solution in simulation, significantly improving
system performance by 0.79. It can be seen how the new solution enhances disturbance rejection,
leading to a notable 0.34 reduction in the maximum integral value. With the proposed solution
successfully validated through simulation, the next step is implementing it in the real system.
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Figure 4.36. Simulation results.

Figure 4.37 shows the results obtained in the real temperature control platform. As happened
in the simulation example presented before, it can be observed that the implementation of the
new control scheme with α = 0.7 significantly improves the performance of the process output,
returning to the reference value faster than the classic scheme. The control signal remains at
saturation for a longer time than the classic scheme owing to the change in the α value. The IAE
value is considerably improved, resulting in a normalized IAE value of IAEnorm = 0.64. In
addition, the maximum integral value is reduced by a factor Imaxnorm = 0.85. This high value
in the integral is due to the errors that can be observed in the experiment, and therefore, a value
as low as in the simulation is not obtained.
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Figure 4.37. Experimental results in the TCLab.

Conclusions
Implementing the proposed solution from Section 3.2 in an experimental temperature control

laboratory, the practical application of this approach is demonstrated. The experimental labora-
tory serves as a testbed for validating the effectiveness and performance of the proposed solution
in a controlled environment. This validation process is essential to ensure that the solution’s
theoretical concepts can effectively translate into practical applications and other more complex
plants, yielding similarly satisfactory results.

This contribution has resulted in a scientific journal article, indexed in the Journal Citation
Report (JCR), and is currently under review [58].
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5. Conclusions and Future Works

In this final chapter, the main ideas derived from the previous chapters serve to conclude
this thesis. Section 5.1 discusses some of the topics covered within the thesis, analyzing their
drawbacks and benefits, and reiterates the importance and originality of the contributions already
presented in Chapter 1. Section 5.2 presents possible future research to continue working on
these topics.

5.1 Conclusions

This thesis summarizes two major contributions. Firstly, classical control strategies have been
studied, and modifications have been proposed for their improvement. Secondly, the validity of
implementing these strategies and others in industrial systems, such as a microalgae reactor, a
greenhouse, and a temperature control laboratory, have been demonstrated.

Regarding Chapter 3, three contributions are proposed. All of them share the common goal of
studying different systems subjected to measurable disturbances. Section 3.1 has examined the
classical feedforward control scheme in the presence of measured disturbances and uncertainties.
A robust control design has been utilized. The analysis reveals that the introduction of a feedfor-
ward compensator alters the traditional QFT specification for the regulation problem. This leads
to a solution that involves modifying the boundaries of the regulation problem within QFT to
incorporate the presence of the feedforward controller. By adopting this approach, new bound-
aries are derived, and the QFT method is employed to design a robust PI controller that accounts
for uncertainties. Furthermore, a new approach is proposed to deal with saturation problems
when a measurable disturbance arrives. The effectiveness of the suggested approach in Section
3.2 for addressing the feedforward saturation problem and the selection of the gain-reduction
factor α has been evaluated using simulations of various SISO process models. The simulation
examples demonstrate that the strategy performs well and significantly enhances the response to
load disturbances. Moreover, the solution has been implemented in a temperature control system,
highlighting its applicability to real-world nonlinear systems, described in Section 4.3. The
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results indicate substantial improvements in load disturbance rejection when saturation issues
occur. In addition, the contribution from Section 3.3 addresses the challenge of measurable dis-
turbances in cascade control systems by proposing a novel solution. Through rigorous simulation
experiments, the study demonstrates the effectiveness of this straightforward and solid approach.
This solution not only improves the process output but also reduces the overall control effort
required.

All these contributions described above demonstrate that there is still research to be done in
classical control, and many improvements for various problems need to be developed. Moreover,
the continuous advancement of control theory and the application of classical control strategies
in complex industrial systems highlight the ongoing relevance and potential for further explo-
ration in this field. By studying deeper classical control techniques and identifying areas for
enhancement, researchers and practitioners can continue to refine and optimize control systems,
ultimately leading to more stable, efficient, and reliable operations in diverse applications. The
study of classical control still needs to be continued, and there is ample opportunity for future
research and innovation in this important discipline.

Regarding Chapter 4, three experimental plants, two of them industrial plants, have been
studied. Firstly, the control of the main variables of a microalgae raceway photobioreactor has
been investigated. Additionally, control strategies have been applied to address the climate
control problem in a greenhouse. Lastly, one of the developed strategies has been implemented
in a temperature control platform.

The proposed solution presented in Section 4.1.1 implements a GPC control algorithm in the
simulation of a microalgae raceway photobioreactor. The results are highly satisfactory, as it is
evident that the system output remains within the established limits while the control signal also
adheres to its constraints. This ensures that productivity is maximized by maintaining the pH
value close to the desired reference while simultaneously reducing the environmental impact
through minimized CO2 injection facilitated by this control strategy. The contribution presented
in 4.1.2 introduces a robust control strategy with QFT for pH regulation in a raceway-type
reactor. The experimental results demonstrate the remarkable performance of the controller
across various operating points and under different testing conditions. The proposed control
strategy effectively maintains the desired pH levels in the reactor, ensuring stability and accurate
tracking of reference values. The robust nature of the controller enables it to handle uncertainties
and disturbances, ensuring reliable operation even in the presence of external factors. These
results emphasize the effectiveness and practicality of the developed control approach, making it
a promising solution for pH control in raceway reactors and other similar industrial processes.
The contribution of Section 4.1.3 introduces a new software tool for simulating the performance
of microalgae cultivation in raceway photobioreactors. The tool offers a user-friendly interface
that simplifies the evaluation of these complex systems, making it easier to study their feasibility
for industrial-scale implementation. It provides various functionalities, including the ability to
modify the biological variables of the model to accommodate different strains. Additionally, it
allows users to adjust reactor design parameters, enabling simulations with different parameter
values to determine the most suitable configuration. The tool covers all four seasons of the
year, facilitating the analysis of microalgae evolution under different weather conditions. It also
supports the application of various control strategies to assess performance improvements.
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5.1 Conclusions

The contribution from Section 4.2 has presented the combination of two control techniques
in order to approach the diurnal greenhouse climate control problem. First, a feedback lin-
earization control strategy has been implemented and tested in the plant. Despite canceling the
non-linearities of the model, discrepancies from the real system were observed being captured as
parametric uncertainty. Then, a PI controller was designed using QFT and evaluated in the real
system. The proposed control approach was tested on different days with different weather and
operating conditions in a real greenhouse. The control system was able to reach the proposed
setpoint changes in spite of the changes in the disturbances and in the operating points.

In Section 4.3, the solution proposed in Section 3.2 is implemented in an experimental labora-
tory to control the temperature, defined in detail in Section 2.2.3. First-order system models with
time delay are obtained through open-loop tests for both the disturbance and the plant. Once
these models are validated, a simulation test is conducted to verify the validity of the proposed
method, followed by a test on the real platform. The results demonstrate how the new solution
improves the rejection of the measurable disturbance by applying the proposed rule when the
control signal is saturated. This showcases its applicability on an experimental scale.

These contributions provide valuable insights into the practical implementation of classical
control strategies in industrial facilities. The successful operation of these strategies on complex
systems highlights their robustness and effectiveness in controlling various processes and achiev-
ing desired outcomes. While simplifications may be necessary to facilitate implementation, the
demonstrated correct functioning of these strategies underscores their reliability and suitability
for industrial applications. These findings emphasize the importance and relevance of classical
control techniques in addressing the control challenges faced by complex industrial systems. Fur-
thermore, the importance of designing simulators for operator training and the implementation of
control strategies for study purposes before applying them in the real plant is also demonstrated.

As stated in the previous Section 1.2, readers are referred to the contributions of this thesis
with regard to the research objectives. These are recapped below and include the publications
that support them:

• A robust QFT-based PI controller for a feedforward scheme has been studied [61].

• A practical solution to the saturation problem in feedforward control for measurable distur-
bance is presented and implemented in a temperature control lab [58].

• A new approach with double feedforward compensation for cascade control scheme is pro-
posed [59].

• A linear model predictive control subject to constraints, is implemented in simulation to
control the pH of a microalgae raceway photobioreactor [56].

• A robust control strategy is implemented in simulation and in real microalgae raceway photo-
bioreactor [55].

• A computer-based tool to simulate raceway photobioreactors for design, operation, and control
purposes is developed [63].
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• Feedback linearization technique is implemented and combined with robust control to control
the temperature of a real greenhouse [62].

5.2 Future Works
In terms of future work, the main perspectives include the issues discussed in this section.

As this thesis has demonstrated, there is still a significant amount of research and problem-
solving that needs to be done in the field of classical control strategies. Research works in this
direction should continue. The contributions presented in this thesis serve as a first step for
further exploration and development in this area. The identified limitations, challenges, and
unresolved issues provide a clear motivation to continue working on classical control methods.
This includes improving existing techniques and algorithms and exploring novel approaches to
address specific control problems. By addressing these gaps, researchers can further enhance the
effectiveness, efficiency, and applicability of classical control strategies in various domains. The
potential for innovation and improvement in this field is extensive, and the quest for refining and
optimizing classical control techniques remains an ongoing and inspiring work.

It is crucial to recognize the industrial utility of these advancements and to perform further
testing and validation of these new solutions in different experimental plants. This evaluation
will help to demonstrate their viability and effectiveness in industrial scenarios. These new
contributions to control strategies can be implemented in practical applications, such as photo-
bioreactors, greenhouses, solar furnaces, and various laboratory setups, such as height control in
tanks or temperature control laboratories. This iterative process of testing and refining ensures
that the developed solutions are not only theoretically demonstrated but also applicable to real
industrial environments. The goal is to bridge the gap between theory and practice, making
significant contributions to classical control strategies and benefiting industrial processes and
systems. Thus, some possible future works include:

• Continue studying cascade control schemes and find solutions to problems such as control
signal saturation in both loops.

• Continue studying the effect of disturbances on different classical control schemes and
seek new solutions to improve the performance of the process when disturbances occur.

• Investigate how uncertainty affects different classical control schemes and propose solu-
tions based on the design of robust controllers that consider this uncertainty.

• Apply all these developed strategies in different industrial plants accessible to the Uni-
versity of Almería, such as microalgae photobioreactors, greenhouses, solar furnaces, a
four-tank height control laboratory, or a temperature control laboratory.
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It teaches people to accept reality, with wonder and admiration,

not to mention the deep awe and joy that the natural
order of things brings to the true scientist.
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