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A B S T R A C T

We have introduced the use of multivariate NMR analysis in the development of accurate and robust prediction 
models, potentially arising from a correlation between soluble metabolite profiles and cell wall composition, for 
the determination of hemicellulose, cellulose and lignin contents in 8 species of greenhouse crop residues. The 
present paper demonstrates that discriminant buckets coming from a PLS-DA model in combination with linear 
models provide a useful and rapid tool for the determination of cell wall composition of these plant wastes. 
Regularized linear regression methods have also been applied to avoid overfitting, producing improved models 
specifically for lignin and cellulose determinations. The predictive models are also presented in a desktop ap-
plication available at http://www2.ual.es/NMRMBC/solutions. To verify the rationality and reliability of the 
models, control experiments following generally accepted protocols have been performed and compared to our 
predicted values.

1. Introduction

The potential for conversion of cellulosic, non-food-source biomass 
into biofuels is yet to be fully developed as a replacement for fossil fuels 
(Wyman, 2007). A lthough the inorganic components of biomass, 
especially chlorine, can cause pollution problems or deterioration of 
furnaces during burning, lignocellulosic biomass is recognized as one of 
the most important renewable resources available for conversion to 
fuels and other chemicals (US Department of Energy, 2011). In the last 
years, wood agricultural or forest residues have become an alternative 
bio-resource for obtaining bioethanol (Hallac et al., 2009). Thermal 
biomass processing via gasification or pyrolysis produces syngas and oil 
intermediates that are flexible feedstocks for fuel production (Chum 
and Overend, 2001; Ni et al., 2006).

Other uses of biomass generated from greenhouses crop residues are 
fertilizers, organic amendments, textile fibers, gardening and building 
materials, food industry (human and animal), timber industry (con-
glomerates, boards, etc.), pharmaceuticals and even for cosmetics 
(Vargas-Moreno et al., 2012). It is important to note that the production 
of biomass is about eight times the total annual world consumption of 
energy from all sources, and only a 7 percent of this annual production

of biomass is reused, which indicates that we are only partially ex-
ploiting nature's abundant renewable resources.

The chemical composition of cell walls of plants varies among 
species, but in general, it consists of 25 percent lignin and 75 percent 
carbohydrates. The latter is mainly attributed to the polysaccharides 
cellulose and hemicellulose. Cellulose is the major carbohydrate com-
prising the cell wall common to all plants, which is a β-1,4-linked 
glucose polysaccharide. Hemicelluloses are a class of polysaccharides 
that have variable compositions and structures depending on the plant 
source. They form hydrogen bonds with cellulose, covalent bonds with 
lignin, and ester linkages with acetyl units and hydroxycinnamic acids. 
Their general formulates are (C5H8O4)n and (C6H10O5)n, which are 
called pentosans and hexosans, respectively (Ren and Sun, 2010). The 
final main structural component, lignin, is a complex three-dimensional 
polyphenolic polymer that partially encases the plant cell-wall poly-
saccharides and cellulose microfibrils in lignified (i.e., secondary) plant 
cell walls. In addition to these three main polymers of lignocellulose, 
there are other non-structural components within the plant cell wall. 
These components, such as extractives, protein, ash, and pectin, vary 
greatly with species, tissue, plant maturity, harvest times, and storage, 
and are greatly influenced by environmental factors and stress (Davison
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instance, the geographical origin of grapes, the year of vintage, and 
even the grape variety (Du et al., 2007; López-Rituerto et al., 2012; 
Papotti et al., 2013; Son et al., 2008, 2009; Viggiani and Morelli, 2008). 

In this work, we have used NMR spectroscopy together with mul-
tivariate analysis, for the development of linear and regularized models 
for predicting the content of hemicellulose, cellulose and lignin of the 8 
main species of greenhouse crop residues generated in Almería (Spain).

2. Results and discussion

All the results of the structural analysis obtained by standardized 
analytical methods for the 8 crop residues studied herein were obtained 
from a previous study (Callejón-Ferre et al., 2014) and are summarized 
in Table 1. Briefly, lignin reached their maximum and minimum values 
in S. melongena L. (11.7%) and in C. sativus L. (6.5%), respectively. The 
cellulose content was maximum in S . melongena L. (24.8%) and 
minimum in C. vulgaris Schrad (14.5%). S . melongena L. was the crop 
residue with the highest amount of hemicellulose (22.7%). On the other 
hand, the biomass with the lowest percentage of hemicellulose was C. 
pepo L. with 13.5%.

A s mentioned earlier, NMR can provide direct identification and 
quantification of large set of compounds in just one measurement 
without prior treatment of the biomass sample. The 1H NMR spectrum 
and assignments of tomato crop residues are presented in Fig. 1. Signal 
assignments were based on reference spectra, the analysis of 1D and 2D-
NMR experiments such as 1H-1H TOCSY, 1H-13C HSQC, 1H-13C HMBC, 
and literature (Le Gall et al., 2003; Mounet et al., 2007).

The set o f 2D-NMR e xperiments had a  key role i n the 
confirmation o f some molecular structures. For i nstance, HMBC 
spectrum a llowed to a ssign the doublet a t δH 1.33 ppm to threonine 
instead o f l actic a cid, a nd to c onfirm the a nomeric proton signals 
to the c orresponding sugars. The optimized NMR a cquisition a nd 
processing parameters ( see Experimental section) were satisfactory 
for these k ind o f biomass samples, with highly reproducible spectra, 
suitable baseline c orrection a nd water suppression. Examples o f NMR 
spectra o f e ach o f the 8 biomass species a nalyzed a re reported i n 
Figs. S1–S7.

Although for the construction of the predictive models there is no 
need of any kind of assignment or knowledge regarding the metabolites 
contained in the samples, to demonstrate the potential of NMR in terms 
of structure identification, Table 2 shows some of the information de-
duced in terms of chemical shift and coupling constants for the 28 most 
abundant metabolites found in the crop residues of tomato.

To provide the best possible conditions for multivariate data ana-
lysis, the highest reproducibility should be achieved. Therefore, all 
samples were buffered and adjusted to pH 7.0 in order to minimize the 
variation in the chemical shifts produced by protonation or deproto-
nation phenomena. In the present study, principal component analysis 
(PCA) was performed on the 1H NMR data for visualizing variation in 
large, high-throughput datasets. Two types of plots were generated 
from the analysis: (1) the PCA scores plot that groups similar samples 
based on the input data and (2) PCA loadings plot that indicates which

Table 1
Mean values of percentages (% w/w) of hemicellulose, cellulose and lignin
obtained by standardized analytical methods for the 8 species of crop residues
analyzed.

Species Hemicellulose Cellulose Lignin

Cucurbita pepo L. 13.5 15.4 9.9
Cucumis sativus L. 19.0 19.2 6.5
Solanum melongena L. 22.7 24.8 11.7
Solanum lycopersicum L. 16.8 23.3 6.6
Phaseoulus vulgaris L. 18.3 18.0 8.1
Capsicum annuum L. 20.0 21.8 10.9
Citrillus vulgaris Schrad 18.6 14.5 9.8
Cucumis melo L. 15.3 18.6 6.6

et al., 2013). Depending on the plant species, there is considerable 
variation in the relative amounts of cellulose, hemicellulose and lignin 
within the cell walls (Davison et al., 2013), and is for this reason that 
potent predictive models of biomass of unknown composition and 
source are required towards large-scale implementation of a biomass-
to-biofuels industry (Lynd et al., 2008).

A lmería (Spain) is the region all over the world with the highest 
density of greenhouses (CA PMA , 2013), with more than 28,500 ha, 
largely given over to the production of tomatoes, peppers, melons, 
watermelons, aubergines, courgettes, cucumbers and beans. After har-
vest, about a million of tons per year of fresh weight crop residues are 
derived (Callejón-Ferre et al., 2011), which in terms of mean energy 
potential equals approximately a million of MW per hour and year. 
Greenhouse crop residues contain a mixture of highly volatile and 
highly nonvolatile compounds along with both low and high polarity 
compounds. Chromatographic techniques will only provide partial in-
formation about the composition of biomass. Several different analy-
tical techniques, such as elemental analysis, infrared spectroscopy, gel 
permeation chromatography, and wet chemistry methods have been 
employed to characterize biomass (Lupoi et al., 2015). Established wet 
chemical techniques (Lupoi et al., 2014) for studying greenhouse crop 
residues composition do not meet the requirement of rapid and real-
time detection in large-scale industrial biomass utilization, since they 
are time consuming, laborious and require harsh reagents (Lupoi et 
al., 2014). Even with a combination of all these analyses, a 
comprehensive view of the chemical properties of the biomass 
mixture is still not achieved. Thus, further research for rapid 
determination of components of biomass is required. Visible and near 
infrared (NIR) spectroscopy has been recognized as one of the most 
promising techniques for prediction of physical and chemical 
properties of mass materials, due to its pow-erful, rapid, 
nondestructive, simple sample preparation and good re-producibility 
(Xu et al., 2013). Very recently, Li et al. (2015) have developed a 
predictive model for the determination of hemicellulose, cellulose 
and lignin in Moso Bamboo based on characteristic NIR wa-velengths, 
obtaining R2 values of 0.921, 0.909 and 0.892, respectively. In fact, 
they established the use of 20–22 independent variables in their 
models, which significantly reduced the number of variables employed 
by linear methods described until then (Huang et al., 2008).

Despite NIR has become pervasive in the literature during the last 
decade, nuclear magnetic resonance (NMR) spectroscopy can offer di-
rect structural elucidation and in many cases quantification o f the 
majority of these small molecules detected in just one analytical step 
without prior treatment of the sample. Limitations are seen in method 
sensitivity since only the most abundant metabolites are detected, and 
in signal overlapping when the number of metabolites is relatively 
high (Coen et al., 2008; Keun et al., 2002; Lenz and Wilson, 2007). 
In ad-dition, NMR is established to be about four times more 
expensive than NIR spectroscopy (see Table S4 for cost analysis). On 
the positive side, NMR does not require frequent instrument 
recalibration between ana-lyses and provides relative standardization 
across a variety of samples. Consequently, 1H NMR spectroscopy has 
been used as an analytical tool for quantitative analysis of functional 
groups in biomass pyrolysis oils from a variety of biomasses (Mullen et 
al., 2009), aging reactions in bio-oil (Joseph et al., 2010), or to 
determine water content and relative viscosity (Dalitz et al., 2012), 
among many other applications related to biofuels (de Peinder et al., 
2009; Filgueiras et al., 2015; Masili et al., 2012). Thus, NMR 
instruments and instrument time available for this type of work are 
both limited, but still the analytical tool that produces the highest 
number of publications on metabolomics and metabonomics 
(Theodoridis et al., 2012).

In evaluation of agricultural materials, NMR can give much more 
structural information than other analytical techniques; especially, for 
obtaining information about the molecular structure of components 
from one- and two-dimensional (1D and 2D) NMR spectra of several 
nuclei such as 1H, 13C, 19F, 31P, etc. In addition, the combination with 
chemometric techniques, has made possible the differentiation of, for



spectral areas contribute more to the variation between groups. The
PCA scores and loadings plots for the NMR spectra collected from 80
samples that span 8 biomass feedstock species are shown in Fig. 2 and

Fig. 1. 1H NMR spectra (600 MHz) of a D2O extract (pH 7.0) of tomato (Solanum lycopersicum L.) crop residues. Some of the identified metabolites are marked as: 1) 
valine; 2) i soleucine; 3) l eucine; 4) threonine; 5) a lanine; 6) γ -amino-butyrate ( GABA); 7) a cetate; 8) proline; 9) g lutamate; 10) g lutamine; 11) malate; 12) 
succinate; 13) c itrate; 14) a spartate; 15) a sparagine; 16) c holine; 17) myo-inositol; 18) f ructose; 19) trigonelline; 20) β-glucose; 21) α-glucose; 22) sucrose; 23) 
uridine; 24) a denosine; 25) f umarate; 26) tyrosine; 27) phenylalanine; 28) f ormate ( Table 2). The suppressed water signal i s marked with #.

Table 2
Summarizes the spectral information deduced for the metabolites identified on
tomato (Solanum lycopersicum L.) crop residues.

Metabolite Chemical shifts (ppm) and coupling constants (Hz)

1 Valine 1.00 (d, J=7.0 Hz), 1.05 (d, J=7.0 Hz)
2 Isoleucine 1.02 (d, J=7.0 Hz), 0.95 (t, J=7.2 Hz)
3 Leucine 0.97 (t, J=6.3 Hz)
4 Threonine 1.33 (d, J=6.7 Hz)
5 Alanine 1.48 (d, J=7.2 Hz)
6 GABA 1.91 (m), 2.31 (t, J=7.4 Hz), 3.02 (t, J=7.3 Hz)
7 Acetate 1.93 (s)
8 Proline 1.95–2.09 (m), 2.35 (m), 3.35 (m), 3.42 (m)
9 Glutamate 2.05 (m), 2.12 (m), 2.36 (m)
10 Glutamine 2.13 (m), 2.43 (m)
11 Malate 2.45 (dd, J=15.8; 8.3 Hz), 2.70 (dd, J=15.8; 3.9 Hz),

4.31 (dd, J=8.3; 3.9 Hz)
12 Succinate 2.42 (s)
13 Citrate 2.55 (d, J=16.1 Hz), 2.71 (d, J=16.1 Hz)
14 Aspartate 2.65 (dd, J=17.5; 9.1 Hz), 2.81 (dd, J=17.5; 3.6 Hz)
15 Asparagine 2.87 (dd, J=16.9; 7.7 Hz), 2.96 (dd, J=16.9; 4.2 Hz)
16 Choline 3.21 (s)
17 Myo-inositol 3.28 (t, J=9.4 Hz), 3.54 (dd, J=9.9; 2.8 Hz), 3.62 (t,

J=9.9 Hz), 4.06 (t, J=2.8 Hz)
18 Fructose 4.09 (m)
19 Trigonelline 4.44 (s), 8.08 (dd, J=7.5; 6.5 Hz), 8.85 (m), 9.13 (s)
20 β-glucose 4.65 (d, J=7.9 Hz)
21 α-glucose 5.24 (d, J=3.7 Hz)
22 Sucrose 5.42 (d, J=3.8 Hz)
23 Uridine 5.91 (d, J=8.2 Hz), 5.92 (d, J=4.7 Hz), 7.88 (d,

J=8.2 Hz)
24 Adenosine 6.08 (d, J=5.5 Hz), 8.25 (s), 8.35 (s)
25 Fumarate 6.52 (s)
26 Tyrosine 6.90 (d, J=8.3 Hz), 7.19 (d, J=8.3 Hz)
27 Phenylalanine 7.33 (m), 7.38 (m), 7.43 (m)
28 Formate 8.46 (s)

Fig. 2. PCA scores plot derived from 80 1H NMR spectra for the 8 different crop 
residues plant species evaluated.

Fig. S8, respectively. In overall, 80 measurements with 10 replicates for 
each species were included in the statistical analysis. The PCA scores 
plot (Fig. 2) between the two first principal components (PC1/PC2) 
accounted for 61.3% of the total variance of the data set. Pareto scaling 
was used as data preprocessing to give enough importance to the less 
intense peaks without overinflating them. As expected, very good dis-
crimination was observed between all the species under study. To assess 
which metabolites were mostly responsible for this discrimination, the 
loadings plot of PCA can be inspected (Fig. S8). However, PCA scores 
plot does not provide any information about the proximity between 
species. For this reason, hierarchical cluster analysis (HCA) based on 
Euclidian distance coupled with the Ward's minimum variance method 
(Ward, 1963) was applied (Fig. 3). For this analysis, 7 principal com-
ponents reduced from the original 1H NMR data were used, showing 
statistical distances in the resulting dendrogram. These distances were 
calculated by the Ward linkage method, and the tree was sorted by size.



Fig. 3. Hierarchical distance cluster analysis of the first seven principal com-
ponents generated by 80 1H NMR spectra. The distances between groups were 
calculated using Ward linkage method and the tree was sorted by size. These 
seven components encompass 98.9% of the total variance within the dataset.

By analyzing the dendrogram obtained, it is possible to observe the 
grouped samples according to their similarities, without taking into 
account their class membership. The dendrogram illustrates that the 
samples were grouped in three clusters, i.e. melon (C. melo L.) and 
water melon (C. vulgaris Schrad), tomato (S . lycopersicum L.) and egg-
plant (S. melongena L.), and finally courgette (C. pepo L.), cucumber (C. 
sativus L.) and pepper (C. annuum L.). Regarding greenbean (P. vulgaris 
L.), the diagram shows that these samples are closer in terms of meta-
bolic profile to melon and watermelon biomasses than to any other 
species.

In order to improve the discrimination among the different species 
and specially to select the most discriminant variables, a partial least 
squares discriminant analysis (PLS-DA) model was performed. This type 
of model is a supervised analysis that possesses high-efficiency resol-
ving ability, because it extracts the general characteristic classification 
information of the full spectrum, considers class member information 
provided by the auxiliary matrix in code during factor configuration, 
adds grouping variables artificially and intensifies intergroup differ-
ences. It has widely been applied for qualitative identification of food, 
drug and agricultural products (Gromski et al., 2015; Pontes et al., 
2017). The root mean squared error of cross validation (RMSECV) was 
calculated for the first ten latent variables for each plant species (Fig. 
S9), in order to define the optimal number of principal components 
necessary for the PLS-DA model (Rieppo et al., 2012). A PLS-DA model 
with 7 latent variables was generated based on the criteria of mini-
mizing RMSECV with the least number of latent variables. The quality 
of the PLS-DA model is indicated by the cross-validation parameters, R2 
and Q2, representing the explained variance and the predictive cap-
ability of the model, respectively. R2X and R2Y represent the fraction of 
variance of the X and Y matrix, respectively, and Q2Y represents the 
predictive accuracy of the model, with cumulative (cum) values of R2X, 
R2Y and Q2 equating to 0.990, 0.997 and 0.997 indicating an effective 
model. PLS-DA model was validated applying a permutation test for 
each class (Fig. S10). As expected, the PLS-DA scores plot (Fig. 4) of the 
first two latent variables showed a slight increase of clustering between 
species when compared to the PCA scores plot (Fig. 2). In addition, 
while PCA model with 7 latent variables explained 98.9% of the total 
variance, PLS-DA model explained 99.7% with the same number of 
latent variables. The variable importance in projection (VIP) scores 
estimate the contribution of the individual variables on the PLS-DA 
model. It is considered that variables with VIP values less than 1 do not 
influence s ignificantly to  th e su pervised mo del. Th e discriminant 
buckets from PLS-DA model with VIP values higher than 1 are reported

Fig. 4. PLS-DA scores plot derived from 80 1H NMR spectra for the 8 different 
crop residues plant species evaluated.

in Fig. S11, in which it is possible to observe that the most important 
variables for PLS-DA model were found in the region below 5.5 ppm of 
the 1H NMR spectra. The spectral areas showing the five largest VIP 
coefficients, thus contributing more significantly to the discrimination, 
contain the characteristic resonances of malic acid, citric acid and 
GABA (Table 2). In this way, the calculation of VIP scores from the PLS-
DA model allowed for the selection of 59 discriminant buckets.

These results indicate that, by using 1H NMR spectra coupled to PLS-
DA, all the crop residues can be rapidly differentiated between each 
other, and therefore we envisage that these 59 discriminant buckets will 
provide the best predictive models.

To predict c omposition f rom the NMR spectra, 59 mathematical 
multivariate models based on linear combinations were formulated, 
which included the 59 discriminant buckets with VIP coefficients 
higher than 1 found previously. The set of equations were progressively 
reduced to one equation (one for each of the desired components: 
hemicellulose, cellulose and lignin) by attending to their standardized 
coefficients (also called beta coefficients), which are used to compare 
the relative weights of the used variables. When the confidence interval 
around standardized coefficients of a specific variable has value zero, 
the weight of this variable in the model is not significant and therefore 
is rejected. In the case of hemicellulose, from the whole set of starting 
variables, only 18 discriminants buckets out of the 59 found in the PLS-
DA contributed with beta coefficients between −30.546 and 16.147, 
which afforded a  fi nal eq uation wi th an  ad justed R2  co efficient of 
0.636. The same protocol of rejecting variables with beta coefficients 
close to zero was applied for the prediction of cellulose and lignin. For 
these compounds, only 14 and 8 variables were needed to obtain 
equations with adjusted R2 coefficients of 0.937 and 0.906, respec-
tively. Figs. S12–14 show the significance of the variables selected for 
the prediction of the content of hemicellulose, cellulose and lignin by 
the standardized beta coefficient.

The performances of the models were assessed by calculation of the 
mean squared error (MSE), the root mean squared error (RMSE) and the 
mean absolute percentage error (MA PE). Together with these, we 
provided the Akaike information criterion (AIC), which offers a relative 
estimation of the information lost when the model is applied, and the 
Schwarz criterion (SBC), which takes into account the statistical 
goodness of fit and the number of parameters that have to be estimated. 
Table 3 shows the list of correlation coefficients and errors for each of 
the predicted components together with the number of discriminant 
buckets employed for each equation. Interestingly, cellulose and lignin 
represent the components with lower absolute values of AIC and SBC 
parameters, indicating that both predictive equations minimize the 
information lost during the prediction, which is correlated with the 
highest adjusted coefficient of determination (adjusted R2). The pre-
dictive equations are summarized in Table 4. The predictive models



in metabolism and meets most of cell energy requirement by the 
complete oxidation of acetyl-CoA, a key product in the catabolism of 
carbohydrates, fatty acids and amino acids (Desideri et al., 2015). 
Therefore, the energy demand for cellulose biosynthesis produces 
changes in amino acids and organic acids content since amino acids are 
considered substrate for the TCA cycle whereas malic acid, citric acid 
and succinic acid are intermediate compounds that are found in the 
TCA cycle. The same can be extrapolated to hemicellulose and lignin 
biosynthesis. The rest of metabolites encountered are present in two or 
three predictive equations as it is indicated in Table 5. Whole cell wall 
information in terms of lignin subunit composition and lignin interunit 
linkage distribution, can be found in Mansfield et al. (2012) report.

Fig. 5 provides the prediction values (X axis) of all the models with 
respect to the values found experimentally (Y axis), as well as the error 
limits. In Fig. 5 the dashed lines represent the curves fitted by the linear 
regression models whereas solid lines denote the confidence interval. 
The active values for formulating the model appear as blue circles and 
the independent values for the evaluation of the model are identified by 
red triangles. All the graphs presented good correlations between the 
observed and predicted data.

K-fold c ross-validation tests were a pplied i n order to e valuate the 
predictive validity o f our l inear regression e quations. For this 
purpose, the whole dataset was randomly partitioned i nto two sets o f 
60 a nd 20 samples. The f ormer set i s employed to train the model 
and the l atter to validate i t v ia the root mean squared e rror o f 
prediction ( RMSEP) out o f these 20 data. We performed this test one 
hundred times a nd the c al-culated RMSEP o f e ach o f the l inear 
expressions o f e ach o f the c om-ponents under study a re shown i n 
Fig. 6 ( black dots). The RMSEP values a re highly dispersed that go 
from 2.9 to 6.0 i n hemicellulose, f rom 3.0 to 7.0 i n c ellulose, a nd 
from 2.0 to 3.5 i n the prediction o f l ignin ( Table S2). I n order to 
avoid this broad dispersion o f the RMSEP values, a nd the potential 
over-fitting, a n a lternative method based on a  regularized l inear 
regression was a pplied. I t i ntroduces a  c ost f unction that tries to 
push the c oefficients f or many variables to z ero by means o f a  reg-
ularized term, which c ontains the l ambda parameter, λ ( Evgeniou e t 
al., 2000). To f ind these new c oefficients, we have used the g radient 
des-cent method, which i s a n i terative method that uses the 
derivative o f the c ost f unction a nd then tries to c onverge such that 
the c ost f unction i s minimized a lways selecting the direction with 
the most pronounced i ncrement. As a n e xample, F ig. 7 shows the 
comparison o f both l inear a nd regularized methods i n the 
hemicellulose percentage a long the 8 species under study. F igs. S15 
and S16 show the rest o f the predicted c omponents. The λ parameter 
was set i n a ll the c ases to 10−6. I t i s c learly observed how the 
regularized relationships ( red l ine i n F ig. 7) a void over-fitting since 
the red l ine proceeds a lmost straight a long the ten samples per 
species o f the training set. I n order to e valuate the regularized 
models, we perform the k -fold c ross-validation once a gain. F ig. 6 
shows i n triangles the sharper dispersion o f RMSEP values ( Table 
S3) f or e ach o f the predicted c omponents, pointing out that the reg-
ularized e xpressions have a  significantly higher predictive a ccuracy.

The new regularized predictive equations including the new coef-
ficients are summarized in Table 6. The new adjusted R2 values for the 
prediction of hemicellulose, cellulose and lignin are 0.692, 0.940 and 
0.908, respectively. Interestingly the prediction of hemicellulose sig-
nificantly improved their fitting parameters, whereas the other two 
remain almost unchanged but as has been shown previously, with no

Nº R2 Adj. R2 MSE RMSE MAPE AIC SBC

Hemicellulose 18 0.636 0.528 3.592 1.895 7.744 142.296 185.554
Cellulose 14 0.937 0.923 0.802 0.896 3.720 14.384 48.115
Lignin 8 0.906 0.896 0.364 0.603 5.734 −60.941 −41.503

were fitted to a training dataset that contains 60 samples and evaluated 
using a test dataset formed by 20 samples, which were always in-
dependent of the samples from the training set. It should be pointed out 
that test samples never included samples from the training set. The 
letters in the equations represent the discriminant buckets selected by 
PLS-DA analysis, and their assignments are listed in Table 5. Detailed 
identification of these and much more metabolites, including chemical 
shifts and multiplicities, can be found in Table S1. Interestingly, only 
citrulline and leucine contain signals that are present in the buckets 
employed in the three predictive equations, and only succinic acid was 
exclusively found in the predictive equation of cellulose. As expected, 
sucrose signals are contained in the buckets used for cellulose and 
hemicellulose predictive models since the substrate for cellulose 
synthesis UDP-glucose is formed by catabolism of sucrose via sucrose 
synthase (Fujii et al., 2010) and for example, in the case of mannans, 
sucrose is involved in the nucleotide sugar conversion to GDP-mannose 
and UDP-galactose (Pauly et al., 2013). Moreover, the tricarboxylic acid 
(TCA ) cycle may explain the correlation found between the dis-
criminant amino acids and organic acids detailed in Table 5 and the cell 
wall composition. It is well-known that a number of reactions involved 
in cellulose biosynthesis require ATP consumption, for instance, large 
amounts of A TP are consumed in the formation of matrix poly-
saccharides and their transport towards the cell wall (Tarchevsky and 
Marchenko, 1991). In this regard, TCA cycle occupies a central position

Table 5
Metabolites associated with the discriminant buckets and the predicted com-
ponent hemicellulose (H), cellulose (C) and lignin (L).

Component Bucket Metabolite

H/C
L

V′,W′,X′,Y′,Z′,A″/V′,W′,X′,Y′,Z′
F′,Y′,Z′,A″

Citrulline

H,C/L E’’/E′ Leucine
H/C/L F/O′,P’/J′,K′ Malic acid
H/C I,U/S Sucrose
H,C B″ Alanine
H,C C″ Threonine
H,C C″ 2-hydroxyisobutyric acid
C/L N’/J′,K′ Citric acid
H/C R′,S′,T′,U’/R′ Glutamic acid
H/L G’/Q′ γ-aminobutyric acid
C O’P’ Succinic acid

Table 4
Predictive linear regression equations for hemicellulose, cellulose and lignin.

= + + +

+
+ + +

Y F I U G

V W X Y
Z A B C

229,05 1178,20 19635,49 5720,91 5935,34

924,851 13391,95 49651,35 66848,34
35461,98 29914,26 426,65 1889,89

hemicellulose

D E3987,93 11087,90
= + + +

+ + +
+ +

Y S N O P R
V W X Y Z

B C D E

54,90 1835,99 188,31 206,58 334,34 3067,67
481,38 2160,55 13990,30 26541,92 25534,76
4787,12 986,41 1314,31 3416,79

cellulose

= +Y F J K Q18,48 1025,57 161,26 152,42 2497,36lignin

+Y Z A E2817,72 6152,03 3640,10 2330,44

Table 3
Linear regression evaluation parameters for hemicellulose, cellulose and lignin predictive models.



Fig. 6. Scatter root mean squared error of prediction
(RMSEP) using k-fold cross-validation test for the
prediction of hemicellulose, cellulose and lignin
contents. Dots (black) and triangles (orange) corre-
spond to linear and regularized models, respectively.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the Web ver-
sion of this article.)

Fig. 5. Scatter graphs for the three regularized models 
showing their reliability as predictors of crop residues 
composition. Active values are represented in blue circles 
whereas testing values are shown in red triangles. Both solid 
lines are the upper and lower 95% prediction limits. Linear 
equations and their evaluation parameters are provided in 
Tables 3 and 6 for non-regularized and regularized linear 
models, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web 
version of this article.)



and regularized prediction values together with the committed errors, 
are all given in Fig. 8. A s expected, the prediction of hemicellulose 
present higher error values (up to 22%), while for the other two com-
ponents the errors are in all the cases below 1%.

3. Conclusions

We have described the use of multivariate NMR analysis in the
development of accurate and robust prediction models, originated from
a correlation between NMR fingerprints of soluble extracts and cell wall
composition, for the determination of hemicellulose, cellulose and
lignin on 8 species of greenhouses-derived biomass. These results de-
monstrate that 1H NMR discriminant buckets coming from PLS-DA in
combination with linear models provide a useful and rapid tool for the
determination of cell-wall biomass composition of greenhouse crop
residues. Some of these specific spectral regions belong to malic acid,
sucrose, GABA, glutamic acid, citrulline, alanine, threonine, leucine,
citric acid, 2-hydroxyisobutyric acid and succinic acid. This straight-
forward procedure uses just a 1H NMR spectrum and avoids the use of
tedious and time-consuming chemical methods. We have also shown
that regularized linear regression produces a sharper dispersion of er-

rors in the content predictions and minimize overfitting, which pro-
vides improved models that are available in a desktop application. This
study provides relevant information for unraveling greenhouse crop
residues composition and therefore tackles important issues regarding
its adequate management.

We believe these models proved to be the ones most applicable for
bioenergy industries, with highest fitting parameters described so far
and therefore the most applicable to real biomass management.

4. Experimental

4.1. Chemicals

All chemical reagents were of analytical grade. D2O (99.9% D) and
TSP (98.0% D) were purchased from Eurisotop (Saint-Aubin, France)
whereas the enzyme inhibitor sodium azide (NaN3) and the mono-
potassium phosphate (KH2PO4) were purchased from Sigma Aldrich
(Steinheim, Germany).

4.2. Greenhouse crop residue sampling

The plant species studied were courgette (Cucurbita pepo L.), cu-
cumber (Cucumis sativus L.), eggplant (Solanum melongena L.), tomato
(Solanum lycopersicum L.), greenbean (Phaseoulus vulgaris L.), pepper
(Capsicum annuum L.), watermelon (Citrillus vulgaris Schrad), and melon
(Cucumis melo L.). The experimental design used to produce the samples
analyzed was the same for each species, where two adult plants (at the
end of their life cycle) were randomly collected on different areas of the
southeast of Almería (Spain), and from this pool of plants multiple
samples were collected and taken to the laboratory for analysis within
24 h.

Table 6
Regularized linear regression evaluation parameters for hemicellulose, cellulose and lignin predictive models.

Nº R2 Adj. R2 MSE RMSE MAPE AIC SBC

Hemicellulose 18 0.692 0.601 2.628 1.621 6.790 177.300 160.559
Cellulose 14 0.940 0.927 0.691 0.831 3.399 2.388 36.119
Lignin 8 0.908 0.896 0.364 0.603 5.734 −60.941 −41.503

Fig. 7. Hemicellulose (%) vs training set. The value of λ was set to 10−6. The
red and green (dashed) lines correspond to the regularized and linear regres-
sions, respectively. The black dots represent the experimental data. (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the Web version of this article.)

evidences of over-fitting. A gain, a mong t he t hree p redicted compo-
nents, cellulose and lignin represent those with lower absolute values of 
AIC and SBC parameters, indicating that both predictive models mini-
mize information lost better than the rest. This statement agrees with 
highest adjusted R2 values of 0.940 and 0.908, found for both of them.

The predictive equations are summarized in Table 7 and they are 
presented in a desktop application available at http://www2.ual.es/
NMRMBC/solutions.

To verify the rationality and reliability of these models, control 
experiments were conducted with biomasses mixtures whose compo-
sition have been validated according to the accepted US Department of 
Energy-National Renewable Energy Laboratory (NREL) methods. The 
mixtures were based on the 8 evaluated biomasses, where eggplant and 
melon represented a 40% of the mixture and the rest of plant species in 
a 10% each. The ratios between eggplant and melon in the 5 mixtures 
analyzed varied between 1:1 to 1:2.3, respectively. The experimental

Table 7
Predictive regularized linear regression equations for hemicellulose, cellulose 
and lignin.

= + + +Y F I U G4.34 126.03 1654.51 862.42 149.66hemicellulose
+ + + +R S T U V14.43 658.26 315.54 732.39 69.92

+W X Y Z363.42 1292.45 200.26 503.04 650.10
+A B C D E912.59 624.16 720.64 1186.46

= +Y S N O P R36.36 344.30 31.81 37.10 0.59 218.82cellulose
+V W X Y Z112.11 483.29 186.68 368.74 316.46

+B C D E30.84 264.37 545.96 124.14

= +Y F J K Q17.70 1202.47 160.93 142.50 2323.08lignin

+Y Z A E2495.51 6143.54 3480.20 2230.56

http://www2.ual.es/NMRMBC/solutions
http://www2.ual.es/NMRMBC/solutions


4.3. Cell wall component analysis

The roots were separated, and all foreign elements were removed, 
analyzing only the aerial part. The analyses were performed according 
to UNE-CEN/TS 14780:2008 EX (A ENOR, 2008) and A STM 
D1107-84(ASTM, 1984) protocols. The parameters studied were 
hemicellulose (H), cellulose (C) and lignin (L). All these data have 
been previously reported (Callejón-Ferre et al., 2014), and we will use 
them here with no further modifications. To verify the models, 
control experiments following protocols derived from the National 
Renewable Energy La-boratory (NREL) were performed (technical 
report NREL/TP-510-42619 (Sluiter et al., 2005) and technical report 
NREL/TP-510-42618)(Sluiter et al., 2008), and compared to our 
predicted values.

4.4. NMR sample preparation

Fifty milligrams o f f reeze-dried sample o f e ach biomass were e x-
tracted i n 1.5 mL Eppendorf tubes with 0.85 mL o f KH2PO4 buffer 
(pH 7) i n D2O c ontaining the sodium salt o f 3-
(trimethylsilyl)propionic-2,2,3,3-d4 a cid ( TSP, 0.01%ww) a nd sodium 
azide ( NaN3, 90 μM). The e xtracts were v igorously vortex-stirred 
for 20 min a nd c entrifuged a t 13,500 rpm f or 10 min. F ive hundred 
microliters o f the supernatants were transferred i n oven-dried 5 mm 
NMR tubes f or spectral a nalysis.

4.5. NMR analysis and statistics

A ll 1H-NMR spectra were recorded on a Bruker A vance III 600 
spectrometer operating at a proton frequency of 600 MHz using a 5 mm 
QCI quadruple resonance pulse field gradient cryoprobe and equipped 
with a SampleCase that allowed the automatic analysis of 24 samples in 
a row. A ll samples were measured at 293 ± 0.1 K, without rotation 
and using 8 dummy scans prior to 80 scans. Acquisition parameters 
have been set as follows: size of fid = 64 K, spectral width = 20.5 ppm, 
acquisition time = 2.73 s, relaxation delay = 5 s, FID resolution = 
0.36 Hz. Data acquisition was achieved using an experiment with a 
NOESY presaturation pulse sequence (Bruker 1D noesygppr1d) with 
water suppression via irradiation of the water frequency during the 
recycle and mixing time delays. The spectra were automatically phased, 
baseline-corrected, and calibrated to the TSP signal at 0.0 ppm. The t1

time was set to 4 μs and the mixing time (d8) to 10 ms. Acquisition and 
processing of spectra were carried out with TOPSPIN software (version 
3.1; Bruker Biospin GmbH, Germany). The spectrometer transmitter 
was locked to D2O frequency using a mixture H2O−D2O (9:1). The 
NMR experiments employed in the statistics were carried out with a 
fixed receiver gain (RG) of 57, which was estimated adequate through 
several tests. 1H–1H total correlation spectroscopy (TOCSY), 1H-13C 
heteronuclear single quantum coherence (HSQC), 1H-13C heteronuclear 
multiple bonds coherence (HMBC) spectra were recorded using stan-
dard Bruker sequences. The TOCSY spectra were generated applying a 
relaxation delay of 2.0 s, spectral width in both dimensions of 
7194.25 Hz and a RG of 64.0. It was processed using sine-bell window 
function (SSB = 2.0). The HSQC spectra were acquired using a relaxa-
tion delay of 1.0 s, spectral width of 7211.54 Hz in F2 and 24900.71 Hz 
in F1. In this case, a quadratic sine window function (SSB = 2.0) was 
applied. The HMBC spectra were recorded with the same parameters 
used in the HSQC spectra except for 37729.71 Hz of spectral width in 
F1. The coupling constant for HSQC experiment was fixed to 145 Hz 
whereas HMBC experiment was obtained using fixed coupling constants 
of 145 and 8 Hz (long range).

For the statistics, the 1H NMR spectral data ( from δH 0.5–10.5 
ppm) were reduced i nto 0.04 ppm spectral buckets ( the value o f 
each bucket represents the total a rea within the respective spectral 
region) using Amix software ( version 3.9.4; Bruker Biospin GmbH, 
Germany). The spectral region c orresponding to water ( from δH 

4.74–4.82 ppm) was removed. The spectra were then normalized to 
total spectral a rea ( Craig e t a l., 2006) a nd i mported i nto S IMCA -P 
software ( version 14.0; Umetrics, Sweden) f or multivariate statistical 
analysis. Normalization step was c arried out on the data matrix i n 
order to c orrect v ertical scale e rrors originated f rom the different 
water c ontent i n the samples.

Subsequent multivariate data analysis was performed on the as-
sumption of normally distributed data and the mean center was applied 
for all multivariate analysis. Prior to application of the PCA and PLS-DA 
models on the NMR data matrix, it was pretreated to put the spectra in 
the most suitable form for the successive data analysis. Pareto scaling 
was chosen over other pretreatment methods (as autoscaling or variable 
stability (VAST) scaling) as it allows to upweight the contribution of 
lower intensity peaks without overinflating excessively the noise 
(Ritota et al., 2010).

Fig. 8. Experimental values for hemicellulose, cellulose and lignin compared to those predicted with equations given in Table 7. Errors committed are given in d).

http://www.astm.org/Standards/D1107
http://www.astm.org/Standards/D1107


For the predictive linear models, a total of 59 variables, selected 
thanks to PLS-DA model, were originally used and then reduced down 
to 18 for hemicellulose, 14 for cellulose and 8 for lignin, by attending to 
their standardized beta coefficients. The evaluation and validation of 
the models involved the coefficient of determination (R2), adjusted R2, 
MSE, RMSE, RMSEP, MAPE, AIC and SBC (Dempster, 1969).

All predictive equations employed 60 (75%) data as the training set 
and 20 (25%) random data for the validation set. The RMSEP was de-
termined for validation purposes. While the RMSE measures the error 
between the estimator and the true value, the RMSEP calculates the 
error between what the predictive linear regression predicts for a de-
fined value and true value. For this reason, RMSEP allows to assess the 
quality of the predictive linear regression. Once the random data for 
validation set were selected, the predictive linear regression was ap-
plied to the random data set. The RMSEP obtained using the validation 
data set was compared with the RMSE obtained by training data set. As 
expected, in all cases both error values were similar. It proves the great 
prediction power of the predictive linear regression models herein de-
veloped.

The linear regression models were elaborated using the statistical 
software XLSTA T 2009, which allowed the calculation of the sig-
nificance of the variables of the mathematical prediction models by the 
use of the beta coefficients and Student's t-test. Beta coefficients provide 
the relative contribution of each bucket to the final e stimated value 
whereas the Student's t-test provides a corrector factor with the aim to 
approximate the collected samples to the total population. Thus, the 
relative significance values for hemicellulose, cellulose and lignin were 
lower to 0.05. The regression models were validated with independent 
samples that were not used to create the models. The data observed in 
the new experiments and predicted by the models were compared with 
a paired-sample test based on Student's t-test. The validation test takes 
the differences b etween t he o bserved a nd p redicted v alues i n in-
dependent samples and assesses whether the mean is statistically dif-
ferent from zero. The results obtained from the paired Student's t-test 
indicate that there are not statistical differences between the true values 
and the predictive values calculated through the linear regression 
models since the probability of the null hypothesis was higher than 0.05 
in all cases. Therefore, this result agrees with the RMSEP and RMSE 
values previously introduced.
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