Tracking Traitors in Web Services via Blind
Signatures

J.A. Alvarez—Bermejol and J.A. Lépez-Ramos?
1 Dpt.Arquitectura de Computadores
Universidad de Almeria
Jjaberme@ual.es
2 Dpt. Algebra y Anélisis Matemaético
Universidad de Almeria
jlopez@ual.es

Abstract. This paper presents a method and its implementation, built
on the blind signatures protocol, to trace users sharing their licenses il-
legally when accessing services provided through Internet (Web services,
Streaming, etc). The method devised is able to identify the legitimate
user from those users who are illegally accessing services with a shared
key. This method is robust when detecting licenses built with no autho-
rization. An enhancement of the protocol to identify the last usage of
a certain license is also provided, allowing to detect a traitor when an
unauthorized copy of a license is used.

1 Introduction

The distribution of software, protected by licenses, has always been an issue
for the intellectual creators and their business’ models. Implementing counter-
measures for software piracy is a must for the software industry even before
the boom of the Internet era, the RojaDirecta saga should make clear why the
software industry -and the content industry- is looking for new enforcement
tools [1]. When the Internet was not so popular, sharing licenses was hard and
the methods employed to protect software were merely based in built-in pass-
words. Reverse engineering, decompilation and other not so advanced techniques
made it possible; a further step was then adopted, hash functions and cryptog-
raphy. As the code to check licenses was embedded in the program, the illegal
usage and duplication of licenses were an easy task. Support to avoid the discov-
ery of built-in hash functions was also provided from the Operating Systems in
order to harness possible abuses. As the Internet began to be used as a medium
to distribute licensed software (p2p networks are the proof), the licensing pro-
tection mechanism began to be weaker, those who cracked software posted their
tricks or distributed software packages to let any user unprotect software.

As the Internet acquired more relevance, protecting licenses and software
became harder. Software is illegally cracked and then redistributed, in a high
percent of the distributions malware is included in the distributed packages,

therefore creating ways to protect software is necessary not only for the sake
of the creators’ economy but for the integrity of the users, that might be com-
promised. As a solution, many authentication services were moved to Internet
servers, using licensed software means that it might be necessary establishing a
first connection to a server in order to authenticate the software and let it run.
Examples of such software range from antivirus software to games. Implementing
a license protection is a hot spot in software factories like the antivirus industry.
The antiviruses need a license to retrieve updated virus signatures databases in
order to keep the system protected. The strength of an antivirus, among others,
relies on its databases. Antivirus companies invest so much effort in building
such databases. A duplicated license harness this useful effort.

This paper proposes a method and a feasible architecture to access services
through the Internet, using licenses that cannot be replicated, duplicated, shared,
or even cracked. Concurrent usage of licenses would trigger the alarm system.
When licenses are not used concurrently, the method is able to detect the abuse
and report it to the legitimate user of the original license. The licenses do not
add information on users’ identity as opposed to other contributions like the one
developed in [2] and protects identity of legitimate users as in [3]. This work not
only detects false licenses but also abuses (like duplications, stolen keys, etc) of
original licenses.

1.1 Agent Based Computing

Internet is not as robust as your company’s wifi network. Traditional methods
to establish connections to Internet servers do not offer the dynamism that a
robust licensing mechanism may need so we based our method on a layered
multiagent architecture [4].Distributed systems based on agents are very attrac-
tive because of their inherent scalability and autonomy. Viewing software agents
(usually in the form of objects) as brokers and the interactions among agents as
the exchange of services, a multiagent system closely resembles a community of
human beings doing business with each other, and are widely envisioned to be
able to perform many commercial activities on behalf of human beings. Useful
properties of agents (see [5]) that distinguish them from traditional processes or
threads:

— reactive: responds fast to changes in the environment.

— autonomous: controls its own actions.

— proactive: does not simply act in response to the environment.

— temporally continuous: continually running process.

— communicative/sociallyable: communicates with other agents

— learning/adaptive: changes its behaviour based on its previous experiences.
— mobile : able to migrate from one machine to another.

flexible: the answer to an event is not predefined.

A multiagent system is a collection of agents that work in conjunction with one
another. They may cooperate to achieve a common goal or compete to achieve

individual goals. In this system the use of agents enhances communication and
allows for speedier transfer of data. Agent oriented computing differs from cen-
tralized object based computing in several ways and as such requires different
analysis and design methodologies [6]. Devices such as smartphones have seen a
major upsurge in popularity. Using a multiagent layered architecture to stream
media to those devices is efficient, as shown in [7].

1.2 Multiagent layered architecture proposal

A multiagent layered architecture, as shown in figure 1, is the implementation
chosen for the method proposed in this paper to protect media/content stream-
ing, software or whatever that is covered by a license restriction.

4 N

SERVICE LAYER : agents allowed to step in here, are provided with high quality and broad band media streaming.

[Authorised user HD content L The counter gets updated (

pro\/i der. J— L Crypto counter manager. J \
|
[

| S, o g
777777777 b Z ABORTED e Interface to
! ‘\ GUUNTTTTTTTITN . query license counts
i / . . - - . from the crypto
STEP 1 MEDIA PROVIDERS: Security agents let users arrive hereif licenseis valid and no concurrent usage is reported. counter
Low QoSisprovid§d meanwhile the license is deeply checked (these agents run code on GPU devices) '
] | .
. v.v Intelligent Agent that checks the concurrence N
booaad L~ of avalidand anillegal license. ;
[xiied 0000 idi i ing 0000 ¢
g,:,:.:.:.} Also checks the validity of alicense by querying
sgesetse
Netetetets] =2

25 its crypted count.

LICENSING LAYER: gy‘gents check for valid licenses and avoid concurrent usage. Illegal Iicerm:s aremarked in ablack/il/st.

5) e woos [B) & B ()

System wide layer (agents are scattered in servers that can be geogWed)

lllegal user of avalid license
that isin usein other node.

node N

A valid Illegal Usage
license User with avalid of avalid license
usedillegaly license, used illegaly code
in other by third parties.
K location/node j

Fig. 1. Multiagent layered architecture proposal

As sketched in figure 1, our proposal establishes several layers of cooperating
and intelligent agents to solve the problem of whether a license is valid or not.
An agent can migrate to the upper layer taking with itself all the necessary
information about the owner of the license. When an user connects to the server,
an agent is selected to manage the licensing procedure and the connection at the
first stage, the Licensing Layer, here the agents verify whether there is another
license running at the same server using the protocol devised in section 2. In
figure 1 it can be seen that if there exist several copies (see figure 1, case 1) then
the connection is aborted and the owner of the license is reported (the license
is then blacklisted). It may happen that the connection with an illegal copy of
a license (while the valid one is active) is taking place in a different server, in
this case the agent would proceed to the next step, the Media Providers layer
where the user is provided with a low quality streaming, meanwhile the agent
is verify globally if the license corresponds to a legitimated user. If another
copy is running, then as in case 1, the licenses are blacklisted and the users are
reported (see figure 1, case 2). Otherwise, the agent proceeds to migrate to the
next layer, the Service Layer, where a High Definition media is streamed to the
end user. The last scenario may contemplate a non-concurrent-in-time usage of
licenses, in such situation the cryptocounter, see section 2.2, is used to provide
valid access to the content. Following sections are devoted to deeply explain the
protocol devised in this section.

2 Method

The method used to detect, in this paper, illegal usage of licenses is based on a
existing protocol for digital cash over finite fields. The original protocol can be
found in [8, Chapter 11].

We are assuming that the services provided by the Web Server make use of
a session key, namely Kg.

Set up phase: The Server chooses large primes p and ¢ such that p = 2¢ + 1
and g the square of a primitive element in Z,. The server calculates g1 =, gk
and g2 =, g*2 for ki and ks secret, and random numbers and makes public

{p. @ 9, 91, 92}

Three hash functions are also selected: Hi, that takes an integer and returns,
also, an integer and Hs and Hj that take 5 and 4 integers respectively and return
each, a single integer mod gq.

The Server chooses its secret identity x and computes and makes public

{ho =p gz, hl =p gfv h’2 =p g;}

2.1 Protocol

1. When an user logs into a content Server by the first time, the agent selected
to guide him through the connection, chooses u randomly and sends I =, g}
to the content Server.

. The Server stores I along with some information to identify the user and
sends, to the agent, a private ticket that will be used to get the corresponding
session key Kg every time the user wishes to access the service.

. The Server chooses w and computes and sends to the agent the triple

{2 =, (Ig2)", h=p " k=, (I2)"}

. The agent then chooses seven random numbers (s, z1, 2,11, N2, N3, ng) and
computes:

- A=, (Iga)*.

- B=s, gf1g§2.

- z=p 2%

—a=, h"g"2.

— b=y, kA,

—a =y h"gm.

—-c = ny'Hy(A, B, Z,a,b) and d =, nngg(A,B,z,a,Hl(T)), where

H,(T) denotes the hash value of the user’s ticket T

. The agent sends to the Server, the pair {¢, d}
. The Server computes and sends back to the agent the pair

{a1 =¢gcx+w, di =4 dz+ w}

. The agent computes r =; nic; + no and r =4 n3dy + ng.
The license corresponding to the ticket T will be then

L:{A7 B} ZV a7 b? r? al? /,1/}

Theorem 1. The following equalities hold for a L = {A, B, z, a, b, r, o/, r'}
corresponding to the ticket T':

Hy(A,B,z,a,b) / Ha(A,B,z,a,H (T
T ah 2(12, Ar =, bZHg(A,B,z,a,b) r =, a’ho 2(z,a,H1(T))

g) 9

Proof. Firstly we recall that 1’ = nzdy +n4 and thus v’ = ngdz +nzw+na.
Then d =, n; ' Ho(A, B, z,a, Hi(T))

a/héqg(A,B,Z,a,Hl(T)) HZ(A B s Z2,a Hl(T))

h"sg n4h
())n (g)HQ(A ,B,z,a,H1(T))
gn4+zH2(A B,z,a,H,(T))
wnz+na+zHs(A,B,z,a,H1(T))

wns

wng+ng+axnsd

p 9
p 9
r9
9

Analogously we get ¢" =, ahH2(A B,z,a,b)

Let us show now that A" =, bzH2(A5:z.a.b),

bzH2(A,B,z,a,b) =, ksm1 Anz ,/sHz2(A,B,z,a,b)
=, (192)11137“ (192)sn2 (IgQ)stQ(A,B,z,a,b)
=, (IgQ)wsnl+sn2+st2(A,B,z,a,b)

Ep (192)w5n1+sn2+znlsc
Ep ((IQZ)S)wnlJrnng:rnlc
= Awnitnatanic
=p
=, Anl(w+cx)+n2
=, A"
since Hy(A, B, z,a,b) =¢ nic and ¢; =4 w + cz.
8. The user accesses the content Server and demands the license.
9. The agent in charge of driving the validation procedure, sends to the Server
the pair (h(T'), L) corresponding to the currently logged user.

10. The Server checks that the equalities of Theorem 1. If these holds, then the
Server stores the license and computes the hash Hs(A, B, H1(T'),t) where ¢
denotes a time-stamp.

11. The agent now computes

s1 = H3(A,B,H{(T),t)us+x1 and so = H3(A,B,H1(T),t)s + x4

where u is the private information generated by the agent in step 1 and s,
z1 and xo are the random integers generated also by the agent in step 4.

12. The Server checks that g7'g5> =, AM3(AB.Hi(T).t) B and if so, then the client
is sent the session key Kg encrypted using 7" and the pair (h(T"), L) is stored
along with the 4-tuple (s1, s2, H3(A, B, H1(T'),t)) until the user leaves/logs
out the system.

Theorem 2. With the above notation, the following equality holds

gilg;2 =, AHs(ABHi(T)t) g

Proof. Since I =, g}, A=, (Ig2)® and B =, ¢g7' g5 we get that

s1,.s2 — H3(A,B,H(T),t)us+x1 H3(A,B,H1(T),t)s+z2
9192 =p 1 P}

= (g%)Hg(A,B,Hl(T),t)sgitlgfs(AaB,Hl(T)at)sggz
=) (g ge) AL g1 g2

=) ((Igp)*)Ha(ABH(T).0) gt g2

Ep AHg(A,B,Hl (T),t)B

Proposition 1. The above protocol avoids the usage of a certain license by two
different users simultaneously, it protects and avoids the usage of a stolen license
and the reuse of a recorded message previously submitted for a requested service.

Proof. If a legitimated user shares all his private information (which comprises
the ticket, the license and all the private numbers generated through all the
steps of the protocol) with someone else and this fake license is used to au-
thenticate (H1(T'), L) along with another triple (s}, s, Hs(A, B, H1(T),t’) while
the legitimated user (or a third person holding the information) is still logged

in the system, then the Server, as it is shown in [8, 11.1.9], the private infor-
mation v that identifies the legal user by means of I =, g} is derived from
u=q (51— 81)(s2 — s5) 7"

Note that if someone steals a license (H3(T'), L), in order to get the service,
the user needs to know, also, the private information w to produce s; and ss.
Trying to forge these numbers implies satisfying the Theorem 2 which is a hard
problem since it involves the discrete logarithm.

The reuse of a recorded message (H1(T), L) is equivalent to the previous
comment.

Proposition 2. The above protocol provides anonymity to users.

Proof. 1t easily observed that through this protocol there is no possibility for
anybody, including the Server, to compute u, which is the only information that
identifies the user.

Proposition 3. Only the corresponding authority (the server) is able to provide
valid licenses.

Proof. Computing numbers, that verifies the Theorem 1, involves discrete loga-
rithms, for instance even a legal user knowing A, B, z, a and T will need to solve

a discrete logarithm in order to produce ' such that g” =, a’héb(A’B’Z’a’Hl(T))

However, since an user might share his key with somebody else and due to
anonymity, this unauthorized usage could be detected only in the case in which
the legal and the unauthorized users make use of it simultaneously as noted in
Proposition 1.

2.2 Detecting copies of licenses

The purpose of this section is to settle an extension to the method in order
to detect when a copy of a license, when no other copy of it is active at the
moment, is used and determine who is responsible of the corresponding sharing
(violation).

We now introduce a new parameter in the license L that is nothing but a
cryptocounter where the only one able to update values of the counter is the
owner of a certain private key. A version also based on the discrete logarithm is
easily obtained as follows:

Let f € Z, the initial value of the counter and let £; be random. Then the
first value of the counter is (a1, b1) = (¢** mod p, (¢¢)** mod p). To increase the
counter we make (az,by) = (a1g*? mod p,b1(g)*2g mod p), for ¢ some secret
value owned by the Server.

Now given (an,b,) = (a** | mod p,b,_1(g°)*"g mod p), then a?~'=%b, = g"
and so only the Server, who is the only knowing a can get g™ and thus, via a
simple search, n.

The application is now clear. Thus a license is defined as

L:{A’ B? Z? a7 b? T? a/’ r/’ C/}

for ¢’ a cryptocounter as above. The Server has to store a copy of the license
and the 4-tuple appearing in Step 12. Then each time a license is used, the
cryptocounter is increased by the Server. When the user leaves the system, the
Server sends the user L’ with the corresponding value ¢’ increased.

Thus, the protocol is the same until step 9. In step 10, the Server checks the
same equalities as above and that the corresponding ¢’ equals the stored value.
In case the value that ¢’ gives rise is less than the value that provides the stored
one, this means that a copy of a license is being used to access the service. Then
the protocol follows the same Steps 10, 11 and 12 and operates as in Proposition
1 to detect the legal user that shared all his private information.

Thus, the only way to avoid fraud detection when using this protocol is that
both legal and unauthorized users share the information that the Server sends
back after leaving the service each time. This attack could be carried out when
the group of people which the legal user shares his license with is formed by few
and trusted and people, since in other case it is quite probable that one of the
members of the group shares the information to others and the situation could
become one of those that the protocol detects as fraudulent.

3 Implementation

The implementation of such a system need to be scalable. Common agents’ plat-
forms tend to be inefficient to handle thousands of agents concurrently operating
on a same server with different calculations (checking licenses’ validity). The im-
plementation we propose here is one built on high performance concurrent and
migratable objects provided by the charm++ [9] runtime. Implementations for
high performance and costly applications are proven to be efficient in terms of
concurrent usage of resources, scalability and load adaptivity issues when using
message-driven computing. To build our model, high-level abstractions are useful
to target the model of the implementation without having to deal with details of
the architecture underneath [10]. A farm cpan based model (see Fig.2) was used
to have fully concurrent charm objects per processor. Load balancing is executed
asynchronously as exposed in [11]. Figure 2 shows an implementation proposal
for the licensing server. To instrument the agents layer, the platform proposed in
[12] was used as a model for our implementation so both, agent communications
and overloaded computing nodes were efficiently reduced.

As figure 2 shows agents are labeled as slave objetcts. Whenever a new server
is added to the infrastructure, then a new node object is created to host and
monitor the computation. Slaves can be sent to the new node when the node is
set to available. Slave objects communicate using messages (remote invocation

SLAVE OBJECTS

-~

SLAVE OBJECTS

fl

=l

NODE OBJECT

=]

NODE OBJECT

COLLECTOR

I

Data Structures

Convergence parameters.

fl

Lot iveadedigiveData(1D)

SLAVE OBJECTS Dataset

O

NODE OBJECT

| checkConvergence(Reduction)

ReduceClient (callBack)

[threaded] finalize()

RetriveData)—
: GoCalculate(
inter-object comms ‘SendSolution
CallBack()
ErrorCommunication()

Concurrent Object acting as master

Beat Statistics

ActivateLB()

STAGE
SLAVE OBJECTS

] zzﬂ

" NODE OBJECT

CONTROLLER

)
MIGRATE) - -=-=-=-f--=---= R

RUNTIME
MANAGER

Workers (Concurrent Objects)

MAIN OBJECT

BeatAccounting()
CCS_connect_manager()
HIGH LEVEL COMPOSITION : FARM MODEL Computation CheckBeats()

ALL OBJECTS ARE OPERATING AT THEIR HIGHER CONCURRENT MODE AGENTS OPERATING CONCURRENTLY

Fig. 2. Multiagent layered implementation proposal

of their methdos, accesible via proxy objects). In order to avoid that the mon-
itoring of the computation affects performance, agents are able to send signals
to a special object that do not belong to the computation. This object gathers
signaling information from agents and is able to detect a decrease in perfor-
mance [11] so load balancing is invoked asynchronously and agents are moved
to other computing nodes.

4 Conclusions

A new protocol to protect services provided through the Internet has been shown
and proved to work efficiently when illegal usage of licenses is taking place, even
when the licenses are not in use at the same time. Also, a layered multiagent ar-
chitecture was sketched in order to show a feasible implementation. The agents’
platform proposed is built by composing high performance and concurrent ob-
jects that communicate using asynchronous messages. Such issue enables the pro-
posed platform to interleave computation and communication phases, so when
an agent is communicating, then another is efficiently scheduled to do its CPU
related computations. We have, also, used and enhanced our proposal by fol-
lowing the implementation sketched in [12] to relieve the effect of unmaskarable
latencies and to efficiently move agents from one processor to another.

These latency hiding issues and the migratable characteristic of the cited
objects are prone to build high level and efficient compositions whose details are
not tied to machine specific architectures because the charm++ runtime deals
with them for us. The proposed platform, that we have developed, to implement
the security protocol exposed in this paper, seizes these properties.

References

10.

11.

12.

. Picker, R.C.: The yin and yang of copyright and technology. Commun. ACM 55(1)

(2012) 30-32

Lou, X., Hwang, K.: Collusive piracy prevention in p2p content delivery networks.
Computers, IEEE Transactions on 58(7) (july 2009) 970 —983

Ding, Y., Fan, L.: Traitor tracing and revocation mechanisms with privacy-
preserving. In Wang, Y., ming Cheung, Y., Guo, P., Wei, Y., eds.: CIS, IEEE
(2011) 842-846

Kosuga, M., Yamazaki, T., Ogino, N., Matsuda, J.: Adaptive qos management
using layered multi-agent system for distributed multimedia applications. In: ICPP.
(1999) 388-394

Franklin, S., Graesser, A.C.: Is it an agent, or just a program?: A taxonomy for
autonomous agents. In Miiller, J.P., Wooldridge, M., Jennings, N.R., eds.: ATAL.
Volume 1193 of Lecture Notes in Computer Science., Springer (1996) 21-35
Silva, D., Braga, R., Reis, L., Oliveira, E.: A generic model for a robotic agent
system using gaia methodology: Two distinct implementations. In: Robotics Au-
tomation and Mechatronics (RAM), 2010 IEEE Conference on. (june 2010) 280
—285

Leetch, G., Mangina, E.: A multi-agent system to stream multimedia to handheld
devices. In: Computational Intelligence and Multimedia Applications, 2005. Sixth
International Conference on, IEEE (2005) 2-10

Trappe, W., Washington, L.: Introduction to cryptography: with coding theory.
Pearson Prentice Hall (2006)

Kale, L., Arya, A., Bhatele, A., Gupta, A., Jain, N., Jetley, P., Liflander, J.,
Miller, P., Sun, Y., Venkataraman, R., Wesolowski, L., Zheng, G.: Charm++ for
productivity and performance: A submission to the 2011 HPC class II challenge.
Technical Report 11-49, Parallel Programming Laboratory (November 2011)
Capel Tunon, M., Lopez, M.: A parallel programming methodology based on
high level parallel compositions (cpans). In: Electronics, Communications and
Computers, 2004. CONIELECOMP 2004. 14th International Conference on. (feb.
2004) 242 — 247

Alvarez-Bermejo, J.A., Roca-Piera, J.: A proposed asynchronous object load bal-
ancing method for parallel 3d image reconstruction applications. In: Proceedings
of the 10th international conference on Algorithms and Architectures for Parallel
Processing - Volume Part I. ICA3PP’10, Berlin, Heidelberg, Springer-Verlag (2010)
454-462

Jang, M.W., Agha, G.: Adaptive agent allocation for massively multi-agent ap-
plications. In Ishida, T., Gasser, L., Nakashima, H., eds.: Massively Multi-Agent
Systems 1. Volume 3446 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg (2005) 575-575

