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Abstract

In this paper we propose an incremental
method for building classifiers in domains with
very large amounts of data or for data streams.
The method is based on the use of mixtures
of truncated exponentials, so that continuous
and discrete variables can be handled simulta-
neously.

1 Introduction

In the last years, Bayesian networks [1, 8] have
become a popular tool to solve classification
problems, where the goal is to obtain a model
able to assign a class label to an individual de-
scribed in terms of an observed set of random
variables [4], also called features. Classifica-
tion is said to be supervised when the training
data includes the value of the class for each
data item, and unsupervised otherwise. In this
work we are concerned with supervised classi-
fication.

One of the most successful classification
models based on Bayesian networks is the so-
called naive Bayes [2], where the features are
assumed to be independent given the class
variable.
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The use of Bayesian networks has also been
extended to regression problems, formulated
similarly to classification, with the difference
that the class variable is continuous [3, 7, 12].

In probabilistic networks, incremental al-
gorithms [4, 5, 6] are introduced to cope
with many problem domains that involve large
amounts of data. Exploiting the nature of in-
cremental learning algorithms, we are able to
learn both the structure and probability distri-
bution of Bayesian networks stepwise, where
at each step we update our present knowledge
with new knowledge obtained by learning from
new data. Note that two different sets of data
according to the same probabilistic problem
may consists of different knowledge about the
probabilistic model.

The aim of this paper is to introduce in-
cremental models for classification and regres-
sion, where discrete and continuous variables
can appear either as class or as feature. We
rely on the MTE (Mixtures of Truncated Ex-
ponentials) model [11], which appropriately
fits the Bayesian network framework.

The rest of the paper is organised as follows.
We give the basic definitions in section 2. The
incremental learning problem is considered in
section 3, where we describe our proposal. Sec-
tion 5 is devoted to the experimental analysis
and the paper ends with conclusions in section
6.



2 Preliminaries

A Bayesian network is a graphical represen-
tation of a probabilistic problem, formally de-
fined as a pair B = (G, P), where P is the
joint probability distribution on the set of ran-
dom variables Xy, and G is an acyclic di-
rected graph representing the dependence and
independence relations among this set of ran-
dom variables Xy satisfying the condition that
each graphically represented marginal or con-
ditional independence is valid also in the joint
probability distribution [13].

The MTE model [11] is formally defined as
follows:

Definition 1 (MTE potential) Let Xy be
a set of random wariables. Let Y =
{Y1,Ye,...,Ya} and Z = {Z1,Z2,...,Z:} be
the set of discrete and continuous random
variables, respectively, with V = d+c. We say
that a function f : Qx,, — R is a Mixture
of Truncated Exponentials potential (MTE po-
tential) if one of the next conditions holds:

e Y =0 and f can be written as:

f@)=f(z) =ao+ Y aiexp{d_ b z;}

forall z € Q., where a;, i =0,...,m and
bgj), i=1,...,c are real numbers;

oY = @ and there is a partition
D1,D2,...,Di of Q. into hypercubes

such that f is defined as
f(@)=f(2) = fi(2) if 2 € Di ,

where each fi, i =1,...,k can be written
in the form of equation 1.

o Y # @ and for each fized value y € Qy,
fy(2) = f(y,2) can be defined in the sec-
ond condition.

An MTE potential f is an MTE density if
it integrates up to 1.

3 The theory of incremental super-
vised classification

3.1 The k-step incremental classification

Incremental learning algorithms are applied
when (%) we may obtain new data for our prob-
lem domain to learn, (i) the size of the given
data is too large in a computational sense. In
incremental processes we learn our model in
steps, where at each step we only consider the
new set of data. One step may mean either a
time step implying that at certain time period
we obtain new data for updating the represen-
tation of the system or we separate the data
into disjoint subsets and, then, each step in-
dicates one subset of the data to be learned.
This is established in the following definition.

Definition 2 (k-step incremental ap-
proach) If an incremental approach learning
a probabilistic model is updated in k steps
using k data sets, it is called a k-step
incremental approach.

Note that in a k-step incremental approach, k
sets of data are used, which may be related to
either time steps or separations of the entire
data, or both.

Definition 3 (k-step incremental classi-
fication) If the classification procedure is
learned by a k-step incremental approach, it
is called a k-step incremental classification.

In this paper we focus on supervised classifi-
cation and its incremental version, i.e. k-step
incremental supervised classification.

Recall that Bayesian networks consist of two
parts: (i) a graphical representation and (i) a
joint probability distribution. Therefore, since
they both are related to the k-step incremen-
tal supervised classification, we need to discuss
both parts in detail.

Regarding the graphical representation, we
propose that a k-step incremental supervised
classification model consists of k classification
models. Here, the i-th classification model
with ¢ < k represents the graphical represen-
tation of the learned model related to the i-
th set of data. However, given a data set to



classify, classification models learned from dif-
ferent sets of data may assign a different class
label to this data. Therefore, we also need
a node that represents the class label of the
entire k-step incremental supervised classifica-
tion model, explaining the introduction of the
so-called main classifier, denoted by Clys. The
main classifier node plays the following role in
this representation: it decides which class la-
bel has to be assigned to the data depending
on the class labels at each classification model
learned in the incremental approach. There
are many possible structures to represent the
relation between the main classifier and the in-
crementally learned classification models. In
this paper, considering the fact that the main
classifier depends on each learned classification
model and therefore on each class label, we
analyse the following two structures: (i) the
main classifier acts as the common child of the
k class variables of the k models, and (ii) the
main classifier is the common parent of the k
class variables.

To define the specific Bayesian network that
represents the incremental supervised classifi-
cation model, we also need to discuss the cor-
responding joint probability distribution. This
will be done subsequently. Recall that in our
acyclic directed graph, to represent each new
knowledge in an exact way, the learned clas-
sification graph was inserted into the graph.
Therefore, some classifiers may represent a re-
lation of two or more random variables as a de-
pendence, whereas other classifiers define this
relation as an independence. To represent this
precisely, at each new learned data set, we
label the set of random variables related to
the new data set by its step number, and in-
sert it into the combined set of random vari-
ables. Moreover, we also need to add a ran-
dom variable that represents the main classi-
fier of our approach, already described in the
graphical representation. For the formal def-
inition, we need the following notation. Let
for the k-step incremental classification Xy,
be the set of random variable of the i-th clas-
sification model and related to the data at
the i-th step. Furthermore, the main classi-
fier random variable is defined as Xci,,. Now,

we can define the entire set of random vari-
ables and the related probability distribution
as Xy = le U‘Xv2 U.. .UXVk, UX01M, and P
denotes the joint probability distribution re-
lated to Xv.

3.2 Model 1: The main classifier acting as
a child

The class label defined by the main classifier
depends on the k class labels in the graphi-
cal representation. This dependence can be
represented in a way, where the main classi-
fier acts as the parent of the k classifiers. To
express this formally, we need the following
notations. Let for the k-step incremental clas-
sification G; = (Vi, A;) be the graph of the
i-th classification model that is learned of the
data at the i-th step. A k-step incremental
supervised classification graph G = (V, A) can
be constructed in this way:

e the set of vertices is equal to the union of
the vertices of the k classification models
and the main classifier, formally, V = VU
VoU. . .UV, UClys, where V; denotes the set
of vertices of the ith classifier, 1 < i < k
and Cljs denotes the main classifier node;

e the set of arcs is equal to the union of
the arcs of the k classification models
and the arcs connecting the k classifiers
with the main classification node all di-
recting to the main classification node,
formally A = A3 U A2 U ... U Ax U
{(A1,Clum), (A2,Clar), ..., (Ag, Clar) }.

According to the definition above, the k
classification models remain marginally inde-
pendent, which is consistent with the fact that
they are learned from different sets of data.
However, if the classification label of the main
classifier is known, the classifier vertices of
the classification models become dependent on
each other, since the main classifier depends on
the values of the k class labels all representing
the learned knowledge of the k data sets.

The joint distribution P for a k-step incre-
mental supervised classifier for model 1, de-
fined for a set of random variables Xy, fac-
torises as



Figure 1: Model 1 of the 2-step incremental classification model for naive Bayesian classification. Model 2
is the same except for Clys, which is as indicated by the dashed lines.

P(Xv) = P(Xv,, Xvy, ..., Xv,, Xc1,, ) =
k
P(Clas | Cly, Cla,..., Cly) [[ P(Xv;) -
i=1
Note that if we want to reason in model
1, we need to learn the parameters P(Cly |
ClLy, Clg,...,Cly). The way of doing it is ex-
plained in Section 4.

3.3 Model 2: The main classifier acting as
a parent

In this section, the model for incremental su-
pervised classification is discussed, when the
main classifier has been chosen as the parent
node of the k classifiers. In the graphical rep-
resentation of model 2, the class variable of
each one of the k models are independent of
each other given the main class variable. This
assumption is compensated with the reduction
in the number of parameters that have to be
learnt from the data.

The joint distribution P for the case of
model 2 factorises as

P(XV) = P(XV17XV27"'7XV)€7XC1]\/I) =
k

P(Cly) [T P(Xv) -
i=1

We would like to emphasize that according
to model 1 which is the correct model to repre-

sent incremental approach to supervised clas-
sification, model 2 is introduced in this paper
due to the following reasons: (i) it is easier
to learn parameter P(Clys) for model 2 than
P(Cly | Cly, Cly,...,Cl) for model 1, since
learning P(Clas) requires less data, and (%)
we think it is interesting to compare the be-
haviours of model 1 and model 2 with each
other.

3.4 Incremental naive Bayesian classifica-
tion models

For the sake of simplicity, we have assumed in
this work that each one of the k classification
models is a naive Bayes. Let us denote the
feature variables as F = {F1, F»,..., F,}. The
entire set of random variables is Xy = CIUF.

Naive Bayesian classification models have
a straightforward graphical structure, hence
their name, because they make a very strong
independence assumption, namely, the fea-
ture variable are conditionally independent on
each other. This assumption in the graphi-
cal representation can be expressed as F; L
lg Fj | Clyi # j , whereas probabilistically,
P(CL, P\, Fs,...,F,) = P(CY[[, P(F; |
qal .

Naive Bayesian classification models satis-
fying these independence assumptions have
the advantage that by their graphical struc-
ture probabilistic reasoning is computation-
ally easy to execute. To start, firstly the



cause-effect parameters P(F; | Cl) with ¢ €
{1,2,...,n} are learned. Secondly, the clas-
sification process computes probability P(Cl |
Fi, Fs, ..., F,), and assigns to a data the class
label that has the highest a-posteriori proba-
bility.

The (in)dependence relations
Bayesian models have to be included in the
incremental models. The graphical represen-
tation of a 2-step incremental naive Bayesian
classification for model 1 and model 2 are
shown in figure 1.

of mnaive

4 The learning and classification al-
gorithms

In this section, we provide the learning and
propagation algorithms of k-step incremental
supervised classification models.

The pseudo code of the learning algorithm is
given in Algorithm 1, for which, according to
the definition of the k-step incremental classi-
fication, there are k data sets as inputs. Note
that this learning algorithm consists of four
main parts. In the first part, the incremental
Bayesian classification model is initialised by
setting it equal to the Bayesian classification
model learned from the first data set, and in-
serting the main classifier into the model aug-
mented with a dependence relation to the clas-
sifier in the first Bayesian classification model.
In the second part, we learn the Bayesian net-
works related to the remaining k — 1 sets of
data and insert these learned models into the
incremental model. Subsequently, in the third
part, we build the database of the incremen-
tal search. This database is necessary, since
it is used as the training set for the param-
eters of the main classifier which parameters
are unknown yet. A sample of this database
is constructed as follows. We take a sample of
an input data set, then compute each classifier
value in the k models having given the feature
values of this sample, whereas we set the main
classifier equal to the value of the classifier in
the sample. Doing so, we know that the value
of the main classifier is correct. Furthermore,
if there is some lack of information in any of
the k learned models, the assigned class la-

Algorithm 1: Incremental learning al-
gorithm

Input: Sets of data D1, Do, ..., Dk
Output: The incremental model
Learn Bayesian network B; of dataset
D1;

Initialise the incremental Bayesian
network B as B = By;

Insert the main classifier Clys into B;

4 Insert an arc between Cl; and the

classification vertex Cl; with direction
depending on the choice of the model;

5 for i =2 to k do

10
11

12

13

14
15
16
17
18
19
20
21

22
23
24
25

Learn Bayesian classifier B; of
dataset D;;
Rename the set of random
variables {F1, F», ..., F,,Cl} in
Bayesian network B; into
{F,,Fs,,...,Fn,,ClL};
Insert B; into B;
Insert an arc between Cl; and Cl;
with direction depending on the
choice of the model;
end
Initialise dataset D with elements
{Fi,,...,Fn,Cli,...,Fi,..., Fn,,
Cli, Clar };

foreach sample d; in D;, 1 <i<k,
insert a new sample into database D

filling the elements as follows do

forall feature F;, € d;; 1< j<n

do
for m =1 to k do

| Fj. = Fi;

end

end

if (i =m) then

| Cln =ClL, Cl € di;

else
propagate value Cl,, = cl,, in
By, given evidence
{F1,, = F1,, F,, =
Fy,...,Fn, =Fn}

end

set Cl]w = Cli;

end

Learn the parameters for Clys from D;




bel for the feature variables of this sample can
differ from the correct value. This difference
provides the opportunity to learn the param-
eters for the main classifier that is done in the
fourth part of the algorithm.

Algorithm 2: Incremental classifi-
cation algorithm

Input: The incremental classifier
B with the set of random
variables Xy =
{Fi,,...,Fn,,Cl,...,
Fi,...,Fn,, Cly, Cla},
and the set of observations
{F1,...,Fn}.

Output: The assigned class label
Clas = clys for the set of
observations in the input.

1 fori=1 tok do

2 for j =1 ton do
3 set Fji :Fj,
F; e {Fy,...,FL.};
4 end
5 end

Compute Clys = clys by
propagating evidence
{Fi,,...,Fny, ..., Fip,...
Bayesian network B.

(=)

7Fnk} in

The classification algorithm is given in Al-
gorithm 2. Here, the set of observed random
variables is equal to the set of feature variables
of a model. In the algorithm, these feature
variables are filled in as evidence for the re-
lated feature variables at each classifier, and,
subsequently, we assign a class label to the
main classifier applying a propagation algo-
rithm.

We would like to emphasize that the algo-
rithms introduced in this section are not re-
stricted to naive Bayesian classifiers but they
are also applicable to other classifier models.

5 Experimental results

In this section, we discuss the results of our
experiments that are carried out on sets of
random variables that are either only discrete

(see tables 1 to 4) or only continuous (see ta-
bles 5 to 6). We would like to note that the
experiments are only executed for 2-step in-
cremental naive Bayesian classifiers. In both
cases we have used toy networks and databases
sampled from them. We have considered two
settings: not divided knowledge and divided
knowledge. Not divided knowledge means that
two train databases are sampled at random,
and therefore follow the same model, whilst di-
vided knowledge means that the two databases
are sampled with some restrictions, in order
to force them to contain distinct information.
We believe that the later approach imitates
the situation in which the data comes from a
continuous stream, where the underlying dis-
tribution may change, or even if the model is
the same, the amount of data required to prop-
erly recovering it is huge. The results reported
in tables 1 to 4 for the discrete case, show the
classification accuracy for the two initial clas-
sifiers, the classifier obtained by merging the
two databases, and the incremental classifier.
It can be seen that the incremental classifier
is never worse than the individual ones, and
often it is even competitive with the global
classifier. The results reported in tables 5 to 6
for the continuous class framework, also show
that the incremental regression model behaves
intermediately between the two initial models
and the global one, as it was intuitively to be
expected. The accuracy is measured in terms
of the root mean squared error. The columns
mean and median indicate whether we use the
median or the mean of the posterior distribu-
tion of the class variable to predict [12].

6 Conclusion

In this paper we have proposed a method for
constructing incremental classification models
able to deal with discrete and continuous vari-
ables. The preliminary results shown in sec-
tion 5 show that the proposed models behave
reasonably well with the toy examples. We
think that the incremental approach is spe-
cially interesting for the case of the MTE dis-
tribution, where it is not possible (at least
given the state-of-the-art) to keep the suffi-



nr. dbl nr. db2 H acc 1 acc. 2 acc. all “ acc. Incr

250 250 86.6 83.3 86.6 86.6
200 200 80 83.3 83.3 83.3
100 100 83.3 83.3 86.6 83.3
50 50 83.3 80 83.3 83.3
25 25 73.3 76.6 83.3 76.6
20 20 70 73.3 80 73.3
15 15 63.3 76.6 83.3 76.6
10 10 63.3 70 83.3 70

Table 1: Model 1: all binary, 10 ran var, class states 2, test 30, not divided knowledge

nr. dbl [ nr. db2 “ acc 1 [ acc. 2 “ acc. Incr
262 237 50 53.3 50

200 200 50 53.3 50

100 100 50 53.3 50

50 50 50 56.6 56.6

25 25 50 53.3 53.3

20 20 50 56.6 56.6

15 15 50 53.3 53.3

10 10 50 56.6 56.6

Table 2: Model 1: all binary, 10 ran var, class states 2, test 30, divided knowledge

nr. dbl ‘ nr. db2 H acc 1 ‘ acc. 2 ‘ acc. all “ acc. Incr
250 250 80 82 78 82
200 200 78 82 80 84
100 100 82 78 80 78
50 50 82 80 78 82
25 25 74 74 82 80
20 20 70 74 82 76
15 15 68 74 86 78
10 10 54 68 70 76

Table 3: Model 1: features binary, class var not bin, 10 ran var, class states 4, test 30, not divided
knowledge

nr. dbl nr. db2 “ acc 1 acc. 2 “ acc. Incr
241 237 52 38 62
200 200 54 38 64
100 100 56 40 66
50 50 62 60 70
25 25 54 57.9 66
20 20 56 60 68
15 15 54 57.9 66
10 10 46 48 56

Table 4: Model 1: features binary, class var not bin, 10 ran var, class states 4, test 30, divided
knowledge

“ nr. of samples mean median
db 1 45 0.1455 0.1518
db 2 28 0.1388 0.1444
All 73 0.1460 0.1498
Incr 73 0.1380 0.1463

Table 5: Model 2: not divided knowledge



H nr. of samples ‘ mean ‘ median “ nr. of samples ‘ mean ‘ median
db 1 45 0.1784 0.1740 db 1 45 0.1331 0.1398
db 2 28 0.1396 0.1476 db 2 28 0.1388 0.1444
All 73 0.1252 0.1249 All 73 0.1412 0.1457
Incr 73 0.1380 0.1463 Incr 73 0.1328 0.1356
(a) (b)
Table 6: Model 2, divided knowledge (a) and Model 1, not divided knowledge (b).

cient statistics necessary to estimate the pa-
rameters, and therefore, the only possibility to
update an MTE model so far was to re-learn
from scratch. Our plan is to continue with
the theoretical and experimental analysis of
the proposed models, as well as the extension
of them to handle deterministic relationships
among the class variables and the main class.
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