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Abstract

We deal with some quasilinear elliptic problems posed in a bounded smooth convex domain � ⊂ RN

(N ≥ 3), namely

{
−�u = λu + μ(x)|∇u|q + f (x), x ∈ �,

u = 0, x ∈ ∂�,

where the data satisfy

μ ∈ L∞(�), μ � 0; f ∈ Lp(�), p > N, f � 0 and 1 < q ≤ 2.

We provide sufficient conditions on f, μ (allowing μ to vanish on ∂�) that yield the sharp estimate 
λ‖u‖L∞(�) ≤ C for any bounded solution u with λ ∈ (0, λ1), which is the non-coercive regime. The esti-
mate leads to remarkable consequences such as a multiplicity result and a precise asymptotic behavior of 
the bounded but blowing up solutions as λ → 0+.
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1. Introduction

For any λ ∈R, let us consider the following elliptic problem

{
−�u = λu + μ(x)|∇u|q + f (x), x ∈ �,

u = 0, x ∈ ∂�,
(Pλ)

where � ⊂ RN is a bounded domain of class C2, and the most basic condition on the data that 
we assume is

μ ∈ L∞(�), μ � 0; f ∈ Lp(�), p > N, f � 0 and 1 < q ≤ 2. (H0)

Problem (Pλ) can be seen as a viscous Hamilton-Jacobi equation with a linear zero-order term 
and under homogeneous Dirichlet boundary conditions. This is by now a classical model. We 
may establish its popularization in the ’80s with the celebrated works by Boccardo, Murat and 
Puel, see [6,7] and references therein, which have motivated a vast amount of research through 
the last decades. Some fundamental problems regarding (Pλ) are still open in the present, for 
instance those related to the maximal regularity conjecture of Lions [27], which in turn is linked 
to the existence of solution to systems of PDEs arising in mean field games. Recent advances in 
this direction can be found in [10,21].

The aim of the present paper is to analyze the structure of the set of solutions to (Pλ) for 
λ > 0. In this range, the problem is not coercive, which means an important obstacle for proving 
a priori estimates. A further difficulty in our case is that, for λ > 0, problem (Pλ) does not satisfy 
a comparison principle; we will give more details about this point later.

To be more precise, in our work we will be concerned with the set of bounded weak solu-
tions, i.e. solutions belonging to the space H 1

0 (�) ∩ L∞(�). Actually, as we describe later, the 
boundedness of the solution and the just regularity of the data imply that the solution belongs to 
C1

0(�). Although there are examples of unbounded solutions, even for very regular data [1], the 
literature shows that the set of solutions in the space H 1

0 (�) ∩ L∞(�) enjoys an interesting and 
rich structure. Let us review some works that, in our opinion, help understand the global behavior 
of the bounded weak solutions to (Pλ) (from now on, we will call them simply solutions unless 
confusion may arise).

A first observation, as was done in [4], is that every solution to (Pλ) with λ < λ1 is positive 
in �, where λ1 denotes the first eigenvalue of −� in H 1

0 (�). Moreover, there exists no positive 
solution to (Pλ) for λ ≥ λ1. See Section 2 below for further details.

As far as the existence of solution is concerned, it was first proved in [7] for λ < 0, which is 
called the coercive case. The keystone was to prove a global L∞-estimate on the solutions. The 
proof of the estimate is based on the choice of a suitable exponential test function that somehow 
gets rid of the gradient dependence in the equation.

We clarify that, actually, the needed summability for f in the result of [6] is only p > N/2. 
Furthermore, if q < 2, it is shown in [22] that unbounded solutions (but enjoying certain regular-
ity) exist and are a priori bounded provided one assumes even less summability on f , specifically 
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p = N(q − 1)/q . In our analysis, it is convenient to assume that p > N for several reasons, e.g. 
for assuring that every bounded solution belongs to C1

0(�), as in [14].
We turn to the limit coercive case corresponding to λ = 0. In contrast with the coercive case, 

existence for (P0) does not hold if f and μ are large in some sense [2], while existence holds 
provided the norms of f and μ are small enough [17] (see also [16,22]). In fact, under conditions 
on the data similar to (H0), one can find necessary and sufficient conditions for the existence of 
solution to (P0) in [11,12,29]. In any case, if there exists a solution to (Pλ) for λ ≤ 0, it is unique. 
The uniqueness is a consequence of a comparison principle that holds for λ ≤ 0 [3,5].

Let us discuss the situation in which nonexistence for (P0) occurs. In this case, the author 
proved in [29] (for μ ≡ 1 and f ∈ L∞(�) but possibly nonpositive or sign-changing) that the 
(unique) solutions uλ for λ < 0 diverge locally uniformly in � as λ → 0−. In particular, zero is 
a bifurcation point from infinity to the left. Moreover, the author also shows a precise asymptotic 
behavior of the solutions as λ → 0−, namely

lim
λ→0− λ‖uλ‖L∞(�) = c0, uλ = v + ‖uλ‖L∞(�) + ελ,

where ελ ∈ W 1,∞
loc (�), ελ → 0 in W 1,∞

loc (�), and (v, c0) ∈ W 1,∞
loc (�) × R is the unique pair that 

satisfies that maxx∈� v(x) = 0 and

{
−�v = c0 + |∇v|q + f (x), x ∈ �,

v → −∞, x → ∂�.
(1.1)

Problem (1.1) is the so-called ergodic problem associated to (Pλ). We emphasize that c0 is an 
unknown in (1.1). The unique constant for which the ergodic problem admits a solution is re-
ferred to as the ergodic constant. We stress also that the solution to (1.1) is unique up to adding 
constants to v. See [24,25] for further details.

The ergodic problem has a stochastic interpretation and motivation, as explained for instance 
in [29]. From another point of view, (1.1) can be seen, via a change of unknown, as a singular 
weighted eigenvalue problem with homogeneous Dirichlet boundary condition, where the prin-
cipal eigenvalue coincides with the ergodic constant and the uniqueness up to additions turns into 
uniqueness up to multiplications [9].

An essential tool in the proofs in [29] is the mentioned comparison principle for λ ≤ 0. Indeed, 
it is straightforward to check by comparison that

−λ‖u‖L∞(�) ≤ ‖f ‖L∞(�) (1.2)

provided that λ < 0 and f ∈ L∞(�). This is one of the key ingredients to prove the mentioned 
asymptotic behavior.

It remains to describe the case in which (P0) admits a solution. If this is the situation, then 
the branch of solutions for λ ≤ 0 can be continued, using topological degree, to the range λ > 0, 
leading to existence of solution in the non-coercive case. In this regime, several recent results 
show that zero is a bifurcation point from infinity to the right and, as a consequence, there exist 
at least two solutions to (Pλ) for every λ > 0 small enough (notice that this is consistent with the 
validity of the comparison principle for λ ≤ 0). However, the lack of coercivity forces several 
restrictions involving q, μ and N , in contrast to the previous coercive and limit coercive cases. 
Let us clarify this point:
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1. In the pioneering works [4,23], the multiplicity result is achieved under the natural growth
condition q = 2. This allows the authors to perform the well-known Cole-Hopf transforma-
tion in order to obtain a semilinear equation in [23] and two semilinear inequalities in [4]. 
Even more, in [4] it is proved that the multiplicity result is a consequence of the fact that 
λ = 0 is a bifurcation point from infinity to the right. More information about the blowing 
up solutions as λ → 0+ is obtained in [14].

2. In the literature it is frequently assumed also that μ ≥ μ0 in � for some constant μ0 > 0. In 
some cases it has been shown that this condition can be relaxed to hold only in a subset of �
at the expense of localizing somehow the zero order term, see [13]. As far as we know, the 
first (and only) work in which μ is allowed to vanish on ∂� is [31]. The counterpart, apart 
from the assumption q = 2, is that the proof of the multiplicity result is valid only for low 
dimension N .

3. Finally, a multiplicity result for 1 < q < 2 is proved in [28]. However, and similarly as in 
[31], a restriction depending on the dimension appears. Specifically, the result is valid only 
for q ≤ QN , where QN ∈ (1, 2] and QN → 1 as N → ∞.

It is worth to remark that the original idea in [4] was to prove the multiplicity result as a direct 
consequence of an L∞-estimate of the type

‖u‖L∞(�) ≤ C(λ0). (1.3)

Under the conditions q = 2 and μ ≥ μ0 > 0, the authors of [4] prove that (1.3) holds for every 
solution u to (Pλ) with λ ∈ (λ0, λ1), for any fixed λ0 ∈ (0, λ1) and for some constant C(λ0) > 0
independent of λ.

In the present paper, we are able to prove a multiplicity result in the non-coercive regime for 
any q ∈ (1, 2] and any dimension N ≥ 3, and allowing μ to vanish on ∂�. In this sense, the result 
means a novelty with respect to the previous works. However, the techniques we employ require 
the following condition on μ

μ ∈ W 1,∞
loc (�), ∀ω ⊂⊂ �, ∃cω > 0 : μ ≥ cω, x ∈ ω. (H1)

We will also need the convexity of the domain �, as well as the following regularity and mono-
tonicity assumptions on μ, f , precisely

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

There exists δ0 > 0 such that f,μ ∈ C(�δ0) and,

for every x0 ∈ ∂� and η ∈ [η0 − δ0/2, η0), η0 = x0 · ν(x0),

one has that �ν(x0),η ∪ �′
ν(x0),η

⊂ �δ0 and

μ(x) ≤ μ(xν(x0),η) and f (x) ≤ f (xν(x0),η), x ∈ �ν(x0),η.

(H2)

In (H2), roughly speaking, �δ0 represents a neighborhood of the boundary at distance δ0, ν(x0)

is the normal unit vector at x0 pointing outwards, �ν(x0),η is the cap in � at the exterior side of 
the hyperplane x · ν(x0) = η, xν(x0),η is the reflected point of x with respect to the mentioned 
hyperplane and �′

ν(x0),η
denotes the set of all the reflected points. This is a usual notation when 

dealing with the moving plane technique (see Notation below). Observe that since � is convex, 
then (H2) is an assumption on the behavior of μ and f near ∂�. More specifically, both functions 
are continuous and essentially nonincreasing, along normal directions, near the boundary. Apart 
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from constant functions, examples of nontrivial functions μ and f satisfying (H2) are the distance 
function to the boundary, the first eigenfunction ϕ1 and, in general, any increasing function of 
them.

In spite of the convexity of � and (H2), our conclusions suggest that, if there is a solution 
to (P0), a multiplicity result for λ > 0 small should hold true assuming only (H0) and, possibly, 
a suitable control on μ from below, but for general bounded smooth domains � and for any 
dimension N ≥ 3. Moreover, we confirm that the condition q ≤ QN in [28], as well as several 
conditions regarding μ and N in Theorem 3 and Theorem 4 of [31], are technical, at least un-
der the mentioned assumptions, providing thus partial answers to some questions posed by the 
authors of both papers.

In the spirit of [4], the keystone of the proof of our multiplicity result is an L∞-estimate. 
Specifically, we prove the following result.

Theorem 1.1. Assume that � is convex and (H0), (H1), (H2) are satisfied. Then, there exists 
C > 0 such that

λ‖u‖L∞(�) ≤ C (1.4)

holds for every solution u to (Pλ) with λ ∈ (0, λ1). In particular, the only possible bifurcation 
point from infinity to the right for bounded solutions to (Pλ) is λ = 0.

Observe that (1.4) contains more information than (1.3) as we show an explicit dependence 
on λ. Actually, (1.4) is more reminiscent of (1.2). However, in contrast to the result in [29], we 
develop a proof of (1.4) in the absence of any comparison principle. Instead, we combine the 
following ingredients:

1. We employ the integral Bernstein method in order to get local estimates on ∇u in Lebesgue 
spaces. This is a classical method that dates back to [26] (there are recent improvements, see 
[10,21] and references therein). Nevertheless, gradient estimates in the non-coercive case 
and for x-dependent μ seem not to be available in the literature. We verify that, indeed, they 
can be obtained assuming (H1), and that they do not depend on λ.

2. Local estimates on λu in Lebesgue spaces are proved thanks to regularity theory on weighted 
Lebesgue spaces developed in [18].

3. An estimate near the boundary is achieved by using the moving plane method [19,30], in the 
spirit of [15]. This is the point where the convexity of � and condition (H2) come into play.

Once the estimate (1.4) is at hand, a multiplicity result can be proved by following the ideas 
in [4]. More precisely, we obtain the following result.

Theorem 1.2. Assume that � is convex and (H0), (H1), (H2) are satisfied. Assume in addition 
that (P0) admits a solution v0 ∈ H 1

0 (�) ∩L∞(�). Then there exists an unbounded and connected 
set � with

(0, v0) ∈ � ⊂ {(λ,u) ∈ [0, λ1) × L∞(�) : u solves (Pλ)},
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and � bifurcates from infinity to the right of the axis λ = 0. In particular, there exists λ0 ∈ (0, λ1)

such that, for every λ ∈ (0, λ0), (Pλ) admits at least two solutions uλ, vλ ∈ H 1
0 (�) ∩ L∞(�) that 

satisfy

lim
λ→0+ ‖uλ‖L∞(�) = ∞ and lim

λ→0+ ‖vλ − v0‖L∞(�) = 0.

Another remarkable by-product of (1.4), combined with the complementary local and bound-
ary estimates mentioned above, is a precise asymptotic behavior of the blowing up solutions uλ

as λ → 0. Specifically, we obtain in the non-coercive case the same behavior (actually slightly 
better thanks to (1.5) below) that is shown in [29] in the coercive case.

The precise statement reads as follows.

Theorem 1.3. Assume that � is convex and (H0), (H1), (H2) are satisfied. For any sequences 
{λn} ∈ (0, λ1) and {un} ⊂ H 1

0 (�) ∩ L∞(�) such that un solves (Pλn ) for all n with

‖un‖L∞(�) → ∞,

there exists {kn} ⊂ (0, ∞) such that kn → ∞ as n → ∞ and

un ≥ knϕ1 in �. (1.5)

Moreover,

lim
n→∞λn‖un‖L∞(�) = c0, un = v + ‖un‖L∞(�) + εn,

where εn ∈ W 1,∞
loc (�), εn → 0 in W 1,∞

loc (�), and (v, c0) ∈ W 1,∞
loc (�) ×R satisfies max

x∈�
v(x) = 0

and {
−�v = c0 + μ(x)|∇v|q + f (x), x ∈ �,

v → −∞, x → ∂�.
(1.6)

In addition, if we assume that f ∈ L∞(�) and there exist σ, b > 0 such that

lim
d(x)→0

μ(x)d(x)−σ = b, (1.7)

then there exists at most one constant c0 ∈ R for which (1.6) admits a solution in W 1,∞
loc (�) and 

the solution is unique up to adding constants.

The last part of Theorem 1.3 allows to completely characterize the singular behavior of uλ. 
Let us remark that, unlike the classical case (1.1), i.e. for μ constant, neither the uniqueness 
of c0 nor of v (up to adding constants) is known for problem (1.6) with general μ ∈ L∞(�)

vanishing on ∂�, to the best of our knowledge. Here we provide the proof of the uniqueness in 
the particular case of μ satisfying (1.7).

The plan of the paper is the following: in the second section we state some preliminary and 
essentially well-known results that will be needed in our proofs. The third section is devoted 
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to proving the local and boundary estimates commented above. Finally, in the last section we 
collect the proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3.

Notation.
We will denote the distance function to the boundary of � in the following way:

d(x) = dist(x, ∂�).

A neighborhood of the boundary at distance δ > 0 will be denoted by

�δ = {x ∈ � : d(x) < δ}.
We will write λ1 and ϕ1 to denote, respectively, the first eigenvalue and the first eigenfunction 
(normalized as ‖ϕ1‖L∞(�) = 1) of −� with homogeneous Dirichlet boundary conditions, i.e.,

⎧⎪⎨
⎪⎩

−�ϕ1 = λ1ϕ1, x ∈ �,

ϕ1 > 0, x ∈ �,

ϕ1 = 0, x ∈ ∂�.

For each 0 �= ν ∈ RN and η ∈ R we will use the notation �ν,η = {x ∈ � : x · ν > η} and xν,η

will denote the symmetric point of x ∈RN with respect to the hyperplane {x ∈RN : x · ν = η}.

2. Preliminary results

Let us start by clarifying some basic aspects of the solutions to (Pλ). First of all, under (H0), 
it is clear that −�u ≥ λu in �, so the weak maximum principle implies that every solution 
u ∈ H 1

0 (�) to (Pλ) with λ < λ1 is non-negative. Moreover, since f �≡ 0, the strong maximum 
principle implies that u > 0 in �. On the other hand, multiplying the equation in (Pλ) by ϕ1 and 
integrating by parts, it is straightforward to check that there exists no positive H 1

0 (�) solution to 
(Pλ) for any λ ≥ λ1. This was already observed in [4].

Let us also state the following well-known existence result for the non-coercive regime. See 
[4] or [28] for more details.

Theorem 2.1. Assume that (H0) is satisfied and that there exists a solution u0 ∈ H 1
0 (�) ∩L∞(�)

to (P0). Then, there exists an unbounded and connected subset of {(λ, u) ∈ [0, λ1) × L∞(�) :
u solves (Pλ)} that contains (0, u0). In particular, for any M > 0, there exist λ ∈ (0, λ1) and 
u ∈ H 1

0 (�) ∩ L∞(�) solution to (Pλ) satisfying that ‖u‖L∞(�) > M .

Let us emphasize that the main motivation of the present paper is to prove that, in fact, there 
exist at least two solutions to (Pλ) for every λ ∈ (0, λ0), for some λ0 > 0.

Throughout the paper, we will need to use a suitable comparison principle for subsolutions 
and supersolutions to the equation

−�u = μ(x)|∇u|q + f (x), x ∈ �.

Since the functions we work with are not smooth and may even blow-up near ∂�, we state here 
for convenience of the reader a valid comparison result that is essentially contained in [3].
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Theorem 2.2. Assume that (H0) holds and let u, v ∈ W 1,N
loc (�) ∩ C(�) be such that

− �u ≤ μ(x)|∇u|q + f (x), x ∈ �,

− �v ≥ μ(x)|∇v|q + f (x), x ∈ �,

lim sup
d(x)→0

(u(x) − v(x)) ≤ 0. (2.1)

Then u ≤ v in �.

Regarding the previous statement, we only clarify that in the original result (Lemma 2.2 in 
[3]) it is required that u, v ∈ C(�) and u ≤ 0 ≤ v on ∂�. However, checking carefully the proof, 
it is only needed that, for any k > 0, there exists δk > 0 such that u − v − k ≤ 0 in �δk

. This 
condition clearly holds as a consequence of the boundary condition (2.1).

Finally, we prove the following regularity result that is essentially contained in [14].

Proposition 2.3. Assume that (H0) is satisfied. Then every H 1
0 (�) ∩ L∞(�) solution to (Pλ)

belongs to C1
0(�).

Proof. Let λ ∈ R and let u ∈ H 1
0 (�) ∩L∞(�) be a solution to (Pλ). Let us consider the following 

problem

{
v − �v = μ(x)|∇v|q + f (x) + (λ + 1)u, x ∈ �,

v = 0, x ∈ ∂�.
(2.2)

Obviously, u is a solution to (2.2). We aim to prove that there exists a C1
0(�) solution to (2.2), 

which by uniqueness (see Theorem 1.1 in [3]) coincides with u. In order to do so, let u ∈ C1
0(�)

be the unique solution, given by Theorem 2.2 in [14] and Theorem 1.1 in [3], to

{
v − �v = μ(x)|∇v|2 + g(x), x ∈ �,

v = 0, x ∈ ∂�,

where g = |f | + |λ + 1||u| + μ ∈ Lp(�). One readily shows that u is a supersolution to (2.2). 
Moreover, the maximum principle implies that u � 0.

On the other hand, let u ∈ C1
0(�) be the unique solution to the linear problem

{
v − �v = −g(x), x ∈ �,

v = 0, x ∈ ∂�,

where g = |f | + |λ + 1||u| ∈ Lp(�). It is easy to see that u is a subsolution to (Pλ) and that 
u � 0 by virtue of the maximum principle. In sum, Theorem 2.1 in [14] implies that there exists 
a solution v ∈ C1(�) to (2.2). �
0
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3. Local and boundary estimates

We dedicate this section to proving several results that will lead to the L∞-estimate (1.4). We 
state such results in three subsections.

3.1. Local estimates on ∇u: the Bernstein method

We use the integral Bernstein method in order to demonstrate local estimates on ∇u in 
Lebesgue spaces. In the first result we assume a stronger hypothesis than (H1) on the growth 
of μ, i.e.

{
μ ∈ W 1,∞

loc (�) and there exist σ, τ ≥ 0, b1, b2 > 0 such that
μ ≥ b1ϕ

σ
1 , |∇μ| ≤ b2ϕ

−τ
1 , in �.

(3.1)

Then, using that (H1) implies (3.1) in compactly embedded subsets of �, we will deduce as a 
corollary the local estimates assuming only (H1).

Theorem 3.1. Let 1 < q ≤ 2, f ∈ LN(�) and μ ∈ L∞(�) satisfying (3.1). Then, for every

α >
2 max{σ + 1,2σ + τ }

q − 1
(3.2)

and every r > 0, there exists C > 0 such that∫
�

|∇u|rϕ
rα
2

1 ≤ C, (3.3)

for every non-negative u ∈ W 2,p(�) (p > N ) satisfying

−�u = λu + μ(x)|∇u|q + f (x), x ∈ �

with λ ∈ (0, λ1).

Remark 3.2. We observe explicitly that the convexity of the domain � is not needed in the proof 
of this theorem.

Proof. In the proof, ε will denote a positive constant that can be taken as small as necessary, its 
value may vary from line to line. Furthermore, C will denote a positive (possibly large) constant 
whose value may vary from line to line too.

We divide the proof in two steps. In the first one, we assume further regularity on f and u in 
order to be able to differentiate the equation satisfied by |∇u|2. In the second one, we clarify that 
the result is actually true for less regular f and u by performing a regularizing argument. This is 
a usual procedure when dealing with the Bernstein method.

Step 1: The case of further regularity

In addition to the hypotheses in the statement, let us assume that u ∈ C3(�) and also the 
following condition on f .
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f ∈ W 1,∞
loc (�) and there exists γ > 0 such that ϕ

γ

1 |∇f | ∈ L∞(�). (3.4)

Let us fix α satisfying (3.2). Let us denote w = |∇u|2 and φ = ϕα
1 . Notice that

|∇φ|2 ≤ Cφ
2(α−1)

α . (3.5)

It is straightforward to check that

2|D2u|2φ − �(wφ) =(2λ + αλ1)wφ +
(

1 + 1

α

) |∇φ|2
φ

w

− 2
∇φ

φ
∇(wφ) + qμw

q−2
2 ∇u∇(wφ) (3.6)

+ 2w
q
2 φ∇μ∇u − qμw

q
2 ∇u∇φ + 2φ∇u∇f,

almost everywhere in �. Observe that (3.6) makes sense thanks to the facts that u ∈ C3(�) and 
μ, f ∈ W 1,∞

loc (�).

On the other hand, by Cauchy-Schwarz inequality, using the inequality (a − b)2 ≥ a2

2 − 2b2

with a = λu + μ(x)|∇u|q and b = −f , and taking into account that λu ≥ 0, we get

|D2u|2 ≥ 1

N
(−�u)2 ≥ μ2(1 − εN)

2N
|∇u|2q − 2(1 − εN)

N
f 2 + ε(−�u)2. (3.7)

Combining (3.6) and (3.7) leads to

μ2(1 − εN)

N
wqφ + 2ε(−�u)2φ − �(wφ) ≤ (2λ + αλ1)wφ

+
(

1 + 1

α

) |∇φ|2
φ

w

− 2
∇φ

φ
∇(wφ) + qμw

q−2
2 ∇u∇(wφ) + 2w

q
2 φ∇μ∇u (3.8)

− qμw
q
2 ∇u∇φ + 2φ∇u∇f + 4(1 − εN)

N
f 2φ.

Now we multiply (3.8) by (wφ)β for some β > 1 to be chosen later, and we integrate over �, so 
we obtain

(1 − εN)

N

∫
�

μ2wβ+qφβ+1 + 2ε

∫
�

(−�u)2wβφβ+1 + β

∫
�

|∇(wφ)|2(wφ)β−1

≤ (2λ + αλ1)

∫
�

(wφ)β+1 +
(

1 + 1

α

)∫
�

wβ+1|∇φ|2φβ−1

− 2
∫

∇φ∇(wφ)wβφβ−1 − q

∫
μwβ+ q

2 φβ∇u∇φ (3.9)
� �
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+ q

∫
�

μwβ+ q−2
2 φβ∇u∇(wφ) + 2

∫
�

wβ+ q
2 φβ+1∇μ∇u

+ 2
∫
�

wβφβ+1∇u∇f + 4(1 − εN)

N

∫
�

wβφβ+1f 2.

Notice that, by virtue of (3.4) and (3.1), the terms involving ∇f and ∇μ are finite if β is taken 
large enough.

Next, we estimate the right-hand side of (3.9) term by term using Young inequality. We clarify 
that the terms that will appear depending on ε will be absorbed by one of the three positive terms 
in the left-hand side of (3.9), being ε a positive constant that can be chosen as small as needed. 
The remaining terms will have the form C

∫
�

wβφβ+1f 2 + C, where C > 0 is a possibly large 
constant that does not depend on f , λ nor u. We clarify that C may be taken independent on �
as well, but depending on two fixed bounded domains �′, �′′ such that �′ ⊂⊂ � ⊂⊂ �′′ (this 
will be used in Step 2).

Regarding the first term in (3.9), bearing in mind (3.1), we derive

(2λ + αλ1)

∫
�

(wφ)β+1 ≤ ε

∫
�

μ2wβ+qφβ+1 + C

∫
�

ϕ

(
α− 2σ

q−1

)
(β+1)

1

= ε

∫
�

μ2wβ+qφβ+1 + C.

About the second one, taking (3.5) into account, we obtain

(
1 + 1

α

)∫
�

wβ+1|∇φ|2φβ−1 ≤ C

∫
�

φ
2(α−1)

α
−2wβ+1φβ+1

≤ ε

∫
�

μ2wβ+qφβ+1 + C

∫
�

ϕ
(β+1)

(
α− 2(σ+1)

q−1

)
−2

1 . (3.10)

Hence, we take β large enough in order to have

∫
�

ϕ
(β+1)

(
α− 2(σ+1)

q−1

)
−2

1 < ∞.

We estimate the third term in the following way:

−2
∫
�

∇φ∇(wφ)wβφβ−1 ≤ ε

∫
�

|∇(wφ)|2(wφ)β−1 + C

∫
�

wβ+1|∇φ|2φβ−1,

and the second part of the right-hand side term of the previous inequality can be controlled as in 
(3.10).
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Similarly, we treat the fourth term as follows:

−q

∫
�

μwβ+ q
2 φβ∇u∇φ ≤ q

∫
�

μwβ+ q+1
2 |∇φ|φβ

≤ ε

∫
�

μ2wβ+qφβ+1 + C

∫
�

wβ+1|∇φ|2φβ−1,

so we are reduced again to (3.10).
Let us deal with the fifth term:

q

∫
�

μwβ+ q−2
2 φβ∇u∇(wφ) ≤ (β − 3ε)

∫
�

|∇(wφ)|2(wφ)β−1

+ q2

4(β − 3ε)

∫
�

μ2wβ+qφβ+1.

Hence, taking β even larger if necessary, the fifth term is absorbed by the left-hand side of (3.9).
We consider now the sixth term:

2
∫
�

wβ+ q
2 φβ+1∇μ∇u ≤ 2

∫
�

|∇μ|w 2β+q+1
2 φβ+1

≤ ε

∫
�

μ2wβ+qφβ+1 + C

∫
�

|∇μ| 2(β+q)
q−1 μ

− 2(2β+q+1)
q−1 φβ+1

≤ ε

∫
�

μ2wβ+qφβ+1 + C

∫
�

ϕ

(
α− 4σ+2τ

q−1

)
(β+1)−2(σ+τ)

1 .

Once more, we choose β large enough so that

∫
�

ϕ

(
α− 4σ+2τ

q−1

)
(β+1)−2(σ+τ)

1 < ∞.

In order to control the seventh term, we integrate by parts, resulting

2
∫
�

wβφβ+1∇u∇f = −2
∫
�

div(wβφβ+1∇u)f

= 2
∫
�

(
wβφβ+1(−�u) − βwβ−1φβ∇(wφ)∇u − (wφ)β∇u∇φ

)
f.
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We treat these last three terms separately. On the one hand,

2
∫
�

wβφβ+1(−�u)f ≤ ε

∫
�

(−�u)2wβφβ+1 + C

∫
�

wβφβ+1f 2.

On the other hand,

−2β

∫
�

wβ−1φβ∇(wφ)∇uf ≤ ε

∫
�

|∇(wφ)|2(wφ)β−1 + C

∫
�

wβφβ+1f 2.

And lastly,

−2
∫
�

(wφ)β∇u∇φf ≤ C

∫
�

wβφβ+1f 2 + C

∫
�

wβ+1|∇φ|2φβ−1,

where we recall that this last integral can be dealt with as in (3.10).
Then, combining all the estimates for the right-hand side terms in (3.9) we obtain,

(
1

N
− O(ε)

)∫
�

μ2wβ+qφβ+1 + ε

∫
�

(−�u)2wβφβ+1+

+ε

∫
�

|∇(wφ)|2(wφ)β−1 ≤ C

∫
�

wβφβ+1f 2 + C,

where dropping the first two positive terms in the left-hand side we arrive to

∫
�

|∇(wφ)
β+1

2 |2 ≤ C

∫
�

wβφβ+1f 2 + C.

Moreover, Sobolev inequality yields

⎛
⎝∫

�

(wφ)
N(β+1)

N−2

⎞
⎠

N−2
N

≤ C

∫
�

wβφβ+1f 2 + C.

Next, we apply Hölder inequality and derive

⎛
⎝∫

�

(wφ)
N(β+1)

N−2

⎞
⎠

N−2
N

≤C

⎛
⎝∫

�

(wφ)
N(β+1)

N−2

⎞
⎠

β(N−2)
(β+1)N

⎛
⎝∫

�

|f |pβ φ
N(β+1)
N+2β

⎞
⎠

N+2β
N(β+1)

+ C,

where pβ = 2N(β+1) . Observe that pβ < N for every β > 0.

N+2β
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We now apply Young inequality and arrive at

⎛
⎝∫

�

(wφ)
N(β+1)

N−2

⎞
⎠

N−2
N

≤ ε

⎛
⎝∫

�

(wφ)
N(β+1)

N−2

⎞
⎠

N−2
N

+ C

⎛
⎝∫

�

f pβ φ
N(β+1)
N+2β

⎞
⎠

N+2β
N

+ C.

In conclusion, for every β large enough, the following estimate holds:

⎛
⎝∫

�

(wφ)
N(β+1)

N−2

⎞
⎠

N−2
N

≤ C

⎛
⎝∫

�

|f |pβ φ
N(β+1)
N+2β

⎞
⎠

N+2β
N

+ C. (3.11)

Thus, since the right-hand side of the previous inequality is bounded and w = |∇u|2 and φ = ϕα
1 , 

we obtain (3.3) with r = 2N(β+1)
N−2 . The restrictions on β allow to assure that (3.3) is true for 

r >
2N(β+1)

N−2 and then, by Hölder inequality, for every r > 0.

Step 2: The general case.

Now, our objective is to prove the result (in the generality of the statement) by applying 
Step 1. In order to do that, we consider a sequence {�n} of standard non-negative compactly 

supported regularizing kernels. The usual example is �n(x) = CnN�(nx), where �(x) = e
1

|x|2−1

for |x| < 1, �(x) = 0 for |x| ≥ 1 and C = 1/‖�‖L1(RN). Thus, we get 0 ≤ �n ∈ C∞
c (RN), 

supp(�n) = B(0,1/n), ‖�n‖L1(RN) = 1.
Denoting again by u, f, μ their extensions by zero outside �, we may consider the functions 

un(x) = (�n � u)(x) = ∫
RN �n(x − y)u(y)dy and fn = �n � f . Recall that un, fn ∈ C∞

c (RN)

and both have support contained in � + B(0,1/n). Moreover, using that u ∈ W 2,p(�), we have

�un(x) =(��n � u)(x) =
∫
RN

��n(x − y)u(y)dy

=
∫
�

��n(x − y)u(y)dy =
∫
�

�n(x − y)�u(y)dy

−
∫

∂�∩B(x, 1
n
)

(
u(y)

∂�n

∂ν
(x − y) + ∂u

∂ν
(y)�n(x − y)

)
dσy.

In particular, �un(x) = (�n � �u)(x) for every x ∈ � \ �1/n. Thus, given ω ⊂⊂ �, we have 
that ω ⊂ � \ �1/n for n large enough and then, in ω, it is satisfied that

−�un = λun + �n �
(
μ(x)|∇u|q) + fn

= λun + μ(x)|∇un|q + gn,

where gn := [
fn + �n � (μ(x)|∇u|q) − μ(x)|∇un|q

]
.
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Observe that gn ∈ LN(ω). Furthermore, hypotheses (3.1) and (3.4) are satisfied in ω for ϕ1,ω

the first eigenfunction in ω. Therefore, we can apply Step 1 to get

⎛
⎝∫

ω

(wnϕ
α
1,ω)

N(β+1)
N−2

⎞
⎠

N−2
N

≤ C

⎛
⎝∫

ω

|gn|pβ ϕ
α

N(β+1)
N+2β

1,ω

⎞
⎠

N+2β
N

+ C, (3.12)

with wn = |∇un|2 and with C > 0 independent on n.
Now we use the convergence properties of the convolution, i.e. �n � z converges to z in 

Lr(RN) whenever z ∈ Lr(RN), 1 ≤ r < ∞, and �n � z converges uniformly to z in compact sets 
of �′ whenever z ∈ C(�′), being �′ any open set in RN . Indeed, on the one hand, recall that 
∇un = �n � ∇u in � \ �1/n and, by the Sobolev embeddings, ∇u ∈ C(� \ �1/n)

N . Therefore, 
wn converges uniformly to w = |∇u|2 in ω. Furthermore, we also have that μ|∇u|q ∈ C(�), so 
gn − fn → 0 uniformly in ω too. On the other hand, since f ∈ LN(RN), it follows that fn → f

in LN(RN).
Thus, we can pass to the limit in (3.12) and we get

⎛
⎝∫

ω

(wϕα
1,ω)

N(β+1)
N−2

⎞
⎠

N−2
N

≤ C

⎛
⎝∫

ω

|f |pβ ϕ
α

N(β+1)
N+2β

1,ω

⎞
⎠

N+2β
N

+ C.

Finally we get (3.11) when ω tends to � taking into account the convergence of ϕ1,ω to ϕ1 and 
the fact that C does not depend on ω. In conclusion, Step 1 continues to hold for general solutions 
u ∈ W 2,p(�) (p > N ) and less regular datum f . The result is now proved. �

As a consequence of Theorem 3.1 applied in open subsets compactly embedded in � we can 
improve the local estimates using (H1) instead of (3.1).

Corollary 3.3. Assume (H0) and (H1). Then, for every r > 0 and every ω ⊂⊂ �, there exists 
Cω > 0 such that every solution u ∈ C1

0(�) to (Pλ), λ ∈ (0, λ1) satisfies

∫
ω

|∇u|r ≤ Cω.

Proof. Let ω̃ ⊂⊂ � be open such that ω ⊂⊂ ω̃. We can apply Theorem 3.1 in ω̃. Observe that 
(H1) implies that (3.1) is satisfied in ω̃ for b1 small and b2 large enough. �
3.2. Local estimates on λu

This subsection is devoted to establishing some local estimates on λu that we will need in the 
proof of Theorem 1.1.

The following result is essentially proved in [31] (see also [28]). However, since we need an 
estimate showing an explicit dependence on λ, we include the proof for the sake of clarity.
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Proposition 3.4. Let 1 < q ≤ 2 and 0 � f ∈ L1(�). Assume that μ ∈ L∞(�) and infω(μ) > 0
for every open set ω ⊂⊂ �. Then, for every m ∈ [1, (N + 1)/(N − 1)), there exists C > 0 such 
that

λ

⎛
⎝∫

�

umϕ1

⎞
⎠

1
m

≤ C

for every u ∈ H 1
0 (�) ∩ L∞(�) solution to (Pλ) with λ ∈ (0, λ1).

Proof. First of all we claim that, for every open set ω ⊂⊂ �, there exists cω > 0 such that

λ

∫
ω

u ≤ cω, (3.13)

for every solution u ∈ H 1
0 (�) ∩ L∞(�) to (Pλ) with λ ∈ (0, λ1). Recall that u > 0 in �.

Indeed, let φ ∈ C1
c (�) be such that ω ⊂⊂ supp(φ), 0 ≤ φ ≤ 1 in � and φ = 1 in ω. Let us 

denote K = supp(φ). Multiplying the equation in (Pλ) by φβ for some β > 1, integrating by parts 
and using Young inequality, we deduce

∫
�

(λu + μ(x)|∇u|q + f (x))φβ = β

∫
�

φβ−1∇u∇φ

≤ infK(μ)

2

∫
�

|∇u|qφβ + C

∫
�

|∇φ| q
q−1 φ

β− q
q−1 ,

for some constant C > 0 depending on infK(μ) and q . We now choose β = q/(q − 1) so that the 
last integral in the previous inequality is finite. At this point, (3.13) easily follows.

Next, Lemma 3.2 in [8] (see also Lemma 3.9 in [28]) implies that there exists C > 0 such that

u ≥ Cϕ1

∫
�

(−�u)ϕ1dx, (3.14)

for every solution u ∈ H 1
0 (�) ∩ L∞(�) to (Pλ) with λ ∈ (0, λ1). Multiplying (3.14) by λ, inte-

grating over ω and taking (3.13) into account, we derive

∫
�

(−�(λu))ϕ1dx ≤ C.

Finally, applying Proposition 2.2 in [18], the result follows. �
Combining Proposition 3.4 and Corollary 3.3 in a bootstrap argument, we are able to prove 

the following result.
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Corollary 3.5. Assume that (H0) and (H1) are satisfied. Then, for every ω ⊂⊂ �, there exists 
Cω > 0 such that

λ‖u‖W 2,p(ω) ≤ Cω, (3.15)

for every u ∈ H 1
0 (�) ∩ L∞(�) solution to (Pλ) with λ ∈ (0, λ1).

Proof. For every n, let λn ∈ (0, λ1) and let un ∈ H 1
0 (�) ∩ L∞(�) be a solution to (Pλn). Recall 

that un > 0 in � and un ∈ C1
0(�) by Proposition 2.3. Consider an open set ω ⊂⊂ �. By virtue of 

Corollary 3.3 and Proposition 3.4, we immediately deduce that {λnun} is bounded in W 1,m(ω)

and {−�un} is bounded in Lm(ω) for some m > 1 (in particular, {−�(λnun)} is bounded in 
Lm(ω)). Then, elliptic regularity (see for instance Problem 3.3, p. 202 in [32]) implies that {λnun}
is bounded in W 2,m(ω1) for any ω1 ⊂⊂ ω. If m ≥ p, then the proof is finished. Otherwise, from 
the Sobolev embeddings, it follows that {λnun} is bounded in W 1,m1(ω1), where m1 = m∗. We 
may repeat the arguments and conclude that {λnun} is bounded in W 2,m2(ω2) for any ω2 ⊂⊂ ω1, 
where m2 = m∗

1. In a finite number of steps, we arrive at some mi ≥ p, so that {λnun} is bounded 
in W 2,p(ωi) for every ωi ⊂⊂ ωi−1. Since ω was arbitrary, we have proved (3.15). �
3.3. Boundary estimate: the moving plane method

Now, we deduce an L∞ estimate of u near the boundary of � using the moving plane method.
We will use the following version of Lemma 2.2 in [19].

Lemma 3.6. Assume that � is a convex set and that conditions (H0) and (H2) are satisfied. Let 
u ∈ H 1

0 (�) ∩ L∞(�) be a solution to (Pλ) for some λ ∈ (0, λ1) such that, for some x0 ∈ ∂� and 
some η ∈ [η0 − δ0/2, η0), it is satisfied that

∂u

∂ν
(x) ≤ 0, and u(x) ≤ u(xν,η), u(x) �≡ u(xν,η), x ∈ �ν,η,

where ν = ν(x0) denotes the exterior normal vector at x0. Then, u(x) < u(xν,η) for every 
x ∈ �ν,η and ∂u

∂ν
(x) < 0 for every x ∈ � ∩ ∂�ν,η .

Proof. The proof is standard and we only illustrate how we use hypothesis (H2). We write �′
ν,η

to denote the reflection of �ν,η along the hyperplane x · ν(x0) = η. Observe that v(x) = u(xν,η)

satisfies in �′
ν,η

−�v = λv + μ(xν,η)|∇v|q + f (xν,η).

In particular, using (H2) and the convexity of ξ → |ξ |q for q > 1, we have

−�(u − v) =λ(u − v) + μ(x)|∇u|q − μ(xν,η)|∇v|q + f (x) − f (xν,η)

≥λ(u − v) + μ(x)
(|∇u|q − |∇v|q)

≥λ(u − v) − B(x) · ∇(u − v),

where B(x) = −qμ(x)|∇v(x)|q−2∇v(x) ∈ L∞(�′ )N . Thus, the proof follows as in [19]. �
ν,η
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Finally, the local estimates in the previous subsection and Lemma 3.6 allow to deal with the 
usual moving plane method to deduce that the solutions to (Pλ) attain their maximum at a point 
at distance to the boundary at least δ0/2. The proof is standard (see [15]), so we only show a 
sketch of the proof.

Theorem 3.7. Assume that � is convex and that (H0) and (H2) are satisfied. Let u ∈ C1
0(�) be a 

solution to (Pλ) for any λ ∈ (0, λ1). Then

max
�

u = max
�\�δ0/2

u.

Sketch of the proof. First we observe that given x0 ∈ ∂�, for some small ε ∈ (0, δ0/2) and 
every η ∈ [η0 − ε, η0), it is satisfied that

∂u

∂ν(x0)
(x) < 0, and u(x) < u(xν,η), x ∈ �ν(x0),η.

Using Lemma 3.6 we can argue as in the proof of Theorem 2.1 in [19] to deduce that the supre-
mum of the values of ε ∈ (0, δ0/2) satisfying this property is always δ0/2 (otherwise Lemma 3.6
leads to a contradiction). In particular, we deduce that

u(x) ≤ u(xν(x0),η), x ∈ �ν(x0),η, η ∈ (η0 − δ0/2, η0).

Thus, for every x ∈ �δ0/2, there exists �ν(x0),η such that x ∈ �ν(x0),η, xν(x0),η /∈ �δ0/2 and 
u(x) ≤ u(xν(x0),η) which implies that

max
�δ0/2

u ≤ max
�\�δ0/2

u,

and this completes the proof. �
4. Proof of the main results

Proof of Theorem 1.1. Let λ ∈ (0, λ1) and let u ∈ H 1
0 (�) ∩ L∞(�) be a solution to (Pλ). First 

of all, Theorem 3.7 implies that ‖u‖L∞(�) = ‖u‖L∞(�′), where �′ = � \ �δ0/2. On the other 
hand, from Corollary 3.5 and the Sobolev embeddings it follows that λ‖u‖L∞(�′) ≤ C for some 
C > 0 independent of u and λ. Therefore, (1.4) holds. �
Proof of Theorem 1.2. It is a consequence of Theorem 2.1 and Theorem 1.1. The proof is stan-
dard, see [4]. �
Proof of Theorem 1.3. We divide the proof in four steps, in the first one we prove the singular 
behavior of unbounded sequences of bounded solutions. The second step describes the behavior 
of solutions to (1.6) near the boundary. The third step deals with the uniqueness of the ergodic 
constant and in the fourth step we prove the uniqueness up to addition of constants of solution to 
(1.6).
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Step 1: Singular behavior. Let ω ⊂⊂ �. Bearing (3.15) in mind, there exists u ∈ W 1,∞(ω)

such that, passing to a subsequence, λnun → u in W 1,∞(ω). On the other hand, from Theo-
rem 3.1, we deduce that

λn|∇un| → 0 in Lr(ω), for every r ∈ [1,∞).

The uniqueness of the limits implies that u ≡ c0 for some constant c0 ≥ 0.
Let us denote vn = un − ‖un‖L∞(�) and let xn ∈ � be such that un(xn) = ‖un‖L∞(�). We 

claim that {vn} is bounded in Ls(ω) for every s ∈ (1, ∞). Indeed, Theorem 3.7 implies that 
xn ∈ �′ for every n, where �′ = � \ �δ0/2. Since � is convex, there exists an open convex set 
ω′ such that �′ ∪ ω ⊂⊂ ω′ ⊂⊂ �. Hence, for every x ∈ ω′ we have

vn(x) = un(x) − un(xn) =
1∫

0

d

dt
un (tx + (1 − t)xn) dt

=
1∫

0

(x − xn) · ∇un (tx + (1 − t)xn) dt.

In particular, using Hölder inequality,

|vn(x)|s ≤ |x − xn|s
1∫

0

|∇un (tx + (1 − t)xn) |sdt.

Now we take R > 0 large enough, independent of n, such that ω′ ⊂ BR(xn) for every n ∈N and 
we extend by zero the function ∇un outside ω′. Thus,

∫
ω

|vn(x)|sdx ≤
∫
ω′

|vn(x)|sdx

≤
∫
ω′

|x − xn|s
⎛
⎝ 1∫

0

|∇un (tx + (1 − t)xn) |sdt

⎞
⎠dx

≤
∫

BR(xn)

|x − xn|s
⎛
⎝ 1∫

0

|∇un (tx + (1 − t)xn) |sdt

⎞
⎠dx

=
1∫

0

⎛
⎜⎝ ∫

BR(xn)

|x − xn|s |∇un (tx + (1 − t)xn) |sdx

⎞
⎟⎠dt.

We perform now the change of variable z = tx + (1 − t)xn in the last integral and we reach
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∫
ω

|vn(x)|sdx ≤
1∫

0

⎛
⎜⎝ ∫

BtR(xn)

|z − xn|s
t s

|∇un(z)|s 1

tN
dz

⎞
⎟⎠dt

=
1∫

0

⎛
⎜⎝

tR∫
0

1

tN+s

⎛
⎜⎝ ∫

|z−xn|=r

rs |∇un(z)|sdσ

⎞
⎟⎠dr

⎞
⎟⎠dt

=
R∫

0

⎛
⎜⎝

1∫
r/R

1

tN+s

⎛
⎜⎝ ∫

|z−xn|=r

rs |∇un(z)|sdσ

⎞
⎟⎠dt

⎞
⎟⎠dr

= 1

N + s − 1

R∫
0

(
RN+s−1

rN+s−1 − 1

)⎛
⎜⎝ ∫

|z−xn|=r

rs |∇un(z)|sdσ

⎞
⎟⎠dr

= 1

N + s − 1

∫
BR(xn)

(
RN+s−1 − |z − xn|N+s−1

|z − xn|N−1

)
|∇un(z)|sdz.

Now we use Hölder inequality for some 1 < α < 1 + 1
N−1 and, taking into account the fact that 

RN+s−1−|y|N+s−1

|y|N−1 ∈ Lα(BR(0)) we deduce that

∫
ω

|vn(x)|sdx ≤ 1

N + s − 1

⎛
⎜⎝ ∫

BR(xn)

(
RN+s−1 − |z − xn|N+s−1

|z − xn|N−1

)α

dz

⎞
⎟⎠

1
α

·

·
⎛
⎜⎝ ∫

BR(xn)

|∇un(z)| sα
α−1 dz

⎞
⎟⎠

1− 1
α

= 1

N + s − 1

⎛
⎜⎝ ∫

BR(0)

(
RN+s−1 − |y|N+s−1

|y|N−1

)α

dy

⎞
⎟⎠

1
α

·

·
⎛
⎜⎝ ∫

BR(xn)

|∇un(z)| sα
α−1 dz

⎞
⎟⎠

1− 1
α

=C

⎛
⎜⎝ ∫

BR(xn)

|∇un(z)| sα
α−1 dz

⎞
⎟⎠

1− 1
α

= C

⎛
⎝∫

ω′
|∇un(z)| sα

α−1 dz

⎞
⎠

1− 1
α

.

Therefore, the claim follows by virtue of Theorem 3.1.
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Next, since |∇vn| = |∇un| and �vn = �un = −λnun − μ(x)|∇un|q − f (x), we have by 
Corollary 3.5 that {vn} is bounded in W 2,p

loc (�). Then, there exists a function v ∈ W 1,∞
loc (�) such 

that vn → v in W 1,∞
loc (�). Moreover, since maxx∈� vn(x) = 0 we have that maxx∈� v(x) = 0. It 

is now straightforward to pass to the limit (locally) in the equation for vn.
We will next justify that (1.5) holds. More precisely, we will prove that

lim
n→∞

∫
�

μ(x)|∇un|qϕ1 = ∞. (4.1)

If this is true, by Brezis-Cabré lemma [8] (see also [28]) we have

un ≥ Cϕ1

∫
�

(λnun + μ(x)|∇un|q + f (x))ϕ1dx in �,

and (1.5) follows directly. Let us prove now that (4.1) holds. Otherwise, and bearing in mind 
Proposition 3.4, we deduce that {(−�un)ϕ1} is bounded in L1(�), taking possibly a subse-
quence. Therefore, Proposition 2.2 in [18] implies that {un} is bounded in Lr

loc(�) for some r > 1. 
This contradicts the fact that {un} diverges locally uniformly (observe that un = vn +‖un‖L∞(�)

and vn is locally bounded).
Let us finally show that v → −∞ as x → ∂�. To this aim, observe first that

−�vn ≤ a|∇vn|q + b, x ∈ �δ0, (4.2)

where

a = ‖μ‖L∞(�), b = sup
n∈N

λn‖un‖L∞(�) + sup
x∈�δ0

f (x).

We claim that there exists a function that blows up near ∂� and satisfies the reverse inequality 
(4.2) in some �δ ⊂ �δ0 , in such a way that this function lies above vn. In order to prove the 
claim, we argue as in [29]. First, we take δ0 > 0 in (H2) to be small enough so that

d ∈ C2(�δ0), |∇d| = 1 in �δ0, (4.3)

where, recall, d(x) = dist(x, ∂�). This can be done thanks to the C2 regularity of ∂� (see 
Lemma 14.16 in [20], for instance). Now we distinguish between the two cases q < 2 and q = 2. 
Assuming in the first place that q < 2, let us consider the function

ψn(x) = Mn − σ

(
d(x) + 1

m

)−α

defined in �δ0 , where

α = 2 − q
, Mn = σ

(
δ + 1

)−α

+ max vn(x),

q − 1 m d(x)=δ
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and m, σ, δ > 0 are constants to be chosen suitably but independently of n. Direct calculations 
show that, in �δ0 , the following is satisfied

�ψn + a|∇ψn|q + b (4.4)

= −ασ

(
d(x) + 1

m

)−(α+2) (
α + 1 − a(ασ)q−1 −

(
d(x) + 1

m

)
�d(x)

)
+ b,

where we have used (4.3) and the fact that α +2 = q(α +1). Now, recalling that �d ∈ L∞(�δ0), 
we choose σ , δ and 1/m small enough so that

α + 1 − a(ασ)q−1 −
(

d(x) + 1

m

)
�d(x) > 0, x ∈ �δ.

Combining this last inequality with (4.4) and taking δ and 1/m even smaller if necessary, we 
arrive at

−�ψn ≥ a|∇ψn|q + b, x ∈ �δ.

Moreover, using that maxd(x)=δ un(x) tends to infinity as n tends to infinity, it is easy to see 
that ψn ≥ vn on ∂�δ . Thus, Theorem 2.2 implies that ψn ≥ vn in �δ . Since {Mn} is bounded 
(as a consequence of the uniform local boundedness of {vn}), there exists a constant C ∈ R, 
independent of n, such that

vn ≤ C − σ

(
d(x) + 1

m

)−α

, x ∈ �δ.

Taking limits as n → ∞, and as m → ∞ afterwards, yields

v ≤ C − σd(x)−α, x ∈ �δ,

which confirms our claim in the case q < 2. Considering now the case q = 2, we define in �δ0

the function

ψn(x) = Mn + σ log

(
d(x) + 1

m

)
,

where

Mn = −σ log

(
δ + 1

m

)
+ max

d(x)=δ
vn(x),

and, again, m, σ, δ > 0 are constants to be chosen suitably but independently of n. As above, 
direct calculations show that, in �δ0 , the following is satisfied

�ψn + a|∇ψn|2 + b

= −σ

(
d(x) + 1

m

)−2 (
1 − aσ −

(
d(x) + 1

m

)
�d(x)

)
+ b.
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It is now clear that the proof of the claim in this case follows analogously to the case q < 2.
Step 2: Behavior near the boundary for the ergodic problem. Before dealing with the 

uniqueness of the ergodic constant c0 and the uniqueness of solution to (1.6) up to additions 
of constants, we start by justifying that every locally Lipschitz solution to (1.6) has the same 
behavior close to ∂�. For that, we follow the arguments of Theorem 2.15 in [25].

We point out that (1.7) is equivalent to the fact that, for any ε > 0, there exists δε ∈ (0, δ0)

such that

(b − ε)d(x)σ < μ(x) < (b + ε)d(x)σ , x ∈ �δε . (4.5)

So let us take ε > 0 and choose

γε = ε + 1 −
(

b

b + ε

) 1
q−1

.

Denote also

α = 2 − q + σ

q − 1
, � = 1

α

(
α + 1

b

) 1
q−1

.

Observe that,

(α�(1 − γε))
q−1(b + ε) = (α + 1)

(
1 −

(
1 + ε

b

) 1
q−1

ε

)q−1

. (4.6)

For every δ ∈ (0, δε), consider the function

wε = Mε − (1 − γε)�

(d(x) + δ)α
,

where Mε is a constant that will be determined. Bearing in mind (4.3), (4.5) and the fact that 
σ = (α + 1)q − (α + 2), one may easily check that, in �δε , the following is satisfied

�wε + c0 + μ(x)|∇wε|q + f (x) ≤ c0 + ‖f ‖L∞(�δ0 )

+ α�(1 − γε)

(d(x) + δ)α+2

(
(α�(1 − γε))

q−1(b + ε) + ‖�d‖L∞(�δ0 )(d(x) + δ) − (α + 1)
)

.

Thus, taking (4.6) into account, we can choose ε and δε small enough so that

−�wε ≥ c0 + μ(x)|∇wε|q + f (x), x ∈ �δε .

If we consider now an arbitrary solution u ∈ W 1,∞
loc (�) to (1.6), and take

Mε = sup
d(x)=δε

u(x) + (1 − γε)�

δα
ε

,

then one easily checks that wε ≥ u on ∂�δε . Thus, Theorem 2.2 implies that
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wε = − (1 − γε)�

(d(x) + δ)α
+ Mε ≥ u, x ∈ �δε .

After taking limits when δ tends to zero, we get

lim sup
d(x)→0

u(x)d(x)α ≤ −(1 − γε)�.

Arguing similarly, but comparing now with the subsolution

− (1 + κε)�

(d(x) − δ)α
+ inf

d(x)=δε

u(x), with κε =
(

b

b − ε

) 1
q−1 − 1 + ε,

one also gets the inequality

lim inf
d(x)→0

u(x)d(x)α ≥ −(1 + κε)�.

Passing to the limit when ε tends to zero yields the following behavior near the boundary for any 
solution u ∈ W 1,∞

loc (�) to (1.6):

lim
d(x)→0

u(x)d(x)α = −�. (4.7)

Step 3: Uniqueness of the ergodic constant. Having (4.7) in hand, the proof of the unique-
ness of c0 assuming f ∈ L∞(�) is classical (see Step 3 of the proof of Theorem VI.1 in [24]). 
In any case, we include the details for completeness.

Arguing by contradiction, let c1 > c2 be constants such that problem (1.6) with c0 = c1 admits 
a solution u1 ∈ W 1,∞

loc (�) and (1.6) with c0 = c2 admits a solution u2 ∈ W 1,∞
loc (�). Let θ ∈ (0, 1). 

Observe that

�(θu1) + μ(x)|∇(θu1)|q + θ(f (x) + c1)

= θ
(
�u1 + μ(x)|∇u1|qθq−1 + f (x) + c1

)
≤ 0, x ∈ �.

Therefore,

−�(θu1) ≥ μ(x)|∇(θu1)|q + θ(f (x) + c1)

= μ(x)|∇(θu1)|q + f (x) + θc1 − (1 − θ)f (x)

≥ μ(x)|∇(θu1)|q + f (x) + c2 + [θc1 − c2 − (1 − θ)‖f ‖L∞(�)],
x ∈ �.

Now we choose θ close enough to 1 so that

−�(θu1) ≥ μ(x)|∇(θu1)|q + f (x) + c2, x ∈ �.

Thus, θu1 is a supersolution to the equation satisfied by u2. Moreover, taking (4.7) into account, 
we deduce that
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lim
d(x)→0

(θu1(x) − u2(x))d(x)α = �(1 − θ) > 0,

and in consequence,

lim
d(x)→0

(θu1(x) − u2(x)) = +∞.

Then, Theorem 2.2 implies that θu1 ≥ u2 in �. Taking limits as θ tends to 1, we conclude that 
u1 ≥ u2 in �. But this is not possible since, for any k ∈ R, the function u1 + k is also a solution 
to (1.6) with c0 = c1. Thus, following the arguments above, we would have that u1 + k ≥ u2 in 
� for any k ∈ R, a contradiction.

Step 4: Uniqueness of solution. We finish the proof by showing that any two solutions in 
W 1,∞

loc (�) to (1.6) differ by a constant. Again, the proof is essentially contained in [24] (it is the 
Step 4 of the proof of Theorem VI.1) and (4.7) is strongly used once more.

Let u1, u2 ∈ W 1,∞
loc (�) be two solutions to (1.6). Let C ∈ (0, �). Similarly as in Step 2, it can 

be checked that

�

(
− C

d(x)α

)
+ c0 + μ(x)

∣∣∣∣∇
(

− C

d(x)α

)∣∣∣∣
q

+ f (x) ≤ 0, x ∈ �δ,

for every δ ∈ (0, δ0) small enough. Then, by virtue of the convexity of the function ξ �→ |ξ |q , 
one has that the function

ũ1 = θu1 + (1 − θ)

(
− C

d(x)α

)

satisfies

−�ũ1 ≥ c0 + μ(x)|∇ũ1|q + f (x), x ∈ �δ.

Moreover, given ε ∈ (0, δ), it follows that

−�(ũ1 − u2) ≥ μ(x)(|∇ũ1|q − |∇u2|q)

≥ μ(x)q|∇u2|q−2∇u2∇(ũ1 − u2), x ∈ �δ \ �ε.

Since μ(x)q|∇u2|q−2∇u2 ∈ L∞(� \ �ε), the maximum principle implies that

min
�δ\�ε

(ũ1 − u2) = min
∂(�δ\�ε)

(ũ1 − u2). (4.8)

On the other hand, from (4.7) we derive

lim
d(x)→0

(
d(x)α(ũ1 − u2)

)
= lim

d(x)→0

(
θd(x)αu1 − (1 − θ)C − d(x)αu2

) = (� − C)(1 − θ) > 0.

Thus, limd(x)→0(ũ1 − u2) = +∞. Therefore, letting ε tend to zero in (4.8) we get
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min
�δ\∂�

(ũ1 − u2) = min{d(x)=δ}(ũ1 − u2).

Since δ does not depend on θ , we may let θ tend to one in the previous equality, so that

inf
�δ

(u1 − u2) = min{d(x)=δ}(u1 − u2).

Furthermore, again by convexity, one has

−�(u1 − u2) ≥ μ(x)q|∇u2|q−2∇u2∇(u1 − u2), x ∈ �.

Considering the previous inequality in � \ �δ , it follows from the maximum principle that

min
�\�δ

(u1 − u2) = min{d(x)=δ}(u1 − u2).

In conclusion, u1 − u2 reaches a global minimum on {d(x) = δ}. In particular, there exists x0 ∈
� \ �δ/2 such that

u1(x0) − u2(x0) = min
�\�δ/2

(u1 − u2).

The strong maximum principle applied in � \ �δ/2 implies that u1 − u2 must be constant in 
� \ �δ/2. Since δ can be taken arbitrarily small, we conclude that u1 − u2 is constant in �. �
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