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Quantum circuits performing arithmetic operations are critical in quantum computing because
of the need for such operations in proven quantum algorithms. Although quantum computers are
becoming increasingly resourceful, the number of qubits currently available is still limited. Fur-
thermore, these qubits are heavily affected by internal and external noise. It has been proven that
quantum circuits built using Clifford+T gates can be made fault-tolerant. However, the use of the T
gates comes at a very high cost. If the number of T gates used in a circuit is not optimized, the cost
of the circuit will be increased excessively. As a consequence, it is essential to optimize the circuits
so that they are as resource-efficient as possible and also to be noise tolerant. This paper presents
the design of a circuit to perform the multiplication of two integers. The circuit is built using only
Clifford+T gates for compatibility with error detection and correction codes. It outperforms the
circuits in the state-of-the-art in terms of T-count and T-depth.

I. INTRODUCTION

Quantum computing has demonstrated its ability to
solve specific problems more efficiently than classical
computers [1–3]. The most common way of physically
implementing the algorithms that make it possible to ex-
ploit the properties of quantum computing is by employ-
ing circuits. In particular, arithmetic circuits are neces-
sary to implement such algorithms. This is the case of
Shor’s famous algorithm, as well as other quantum algo-
rithms applied to fields as diverse as search and quantum
mechanical simulation [1, 4].

Although quantum circuits have certain similarities
with classical circuits, they have several characteristics
of their own [5]. One of these characteristics is that they
must be reversible. This implies that given an output of
the circuit, the input can always be determined. As a
consequence of this reversibility, it is also true that the
number of inputs and outputs is always the same. The
concept is very simple: if given an output, it must be
possible to recover the input, then each input must nec-
essarily correspond to a unique output. In general, this
implies that quantum circuits need more resources than
classical circuits to maintain reversibility. This, coupled
with the fact that current quantum computers have a
limited amount of resources [6], makes it necessary for
circuits to use these resources in the most optimized way
possible.

The necessity of extra operations to maintain re-
versibility and the scarcity of resources are not the only
difficulties of today’s quantum computers. Current im-
plementations of such computers are heavily affected by
noise problems that affect the goodness of the results of
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the circuits [7]. In this sense, there is a group of quantum
gates (called Clifford+T) that is used in a wide variety
of research works because any circuit built exclusively
using these gates is compatible with the use of error de-
tection and correction codes [4, 8–11]. Moreover, the
Clifford+T group is a universal set of gates in quantum
computing since it allows any operation to be approxi-
mated [5]. However, among the gates belonging to this
group, there is one that stands out for its high cost: the T
gate [8, 12, 13]. Although recent results show that its cost
is not as prohibitive as indicated in previous work [14], it
is still more expensive than the other gates in the group.
It is therefore advisable to reduce the number of T gates
in order not to increase the total cost of the circuit. For
this reason, it is common in the literature to find that
works measure the cost of a circuit in terms of the num-
ber of T gates required for its implementation [4, 15, 16].
This number is called T-count. A second associated met-
ric, called T-depth, is used to give an estimation of the
speed of the circuit and consists of the number of T gates
that are part of the critical path of the circuit.

This paper presents a circuit to perform a multiplica-
tion between binary numbers of any size (as well as super-
positions of binary values). For this purpose, an analysis
(and subsequent comparison) of the available multipliers
has been previously carried out, including the implemen-
tation of such circuits to check their correct operation.
The proposed circuit is built exclusively using Clifford+T
gates, and its main goal is to minimize the T-count and
the T-depth for the reasons stated above. The product
of integers is a crucial operation needed for quantum al-
gorithms used in, for example, image processing [17, 18],
financial modelling [19], or renewable energy [20]. Better
implementations of multiplier circuits will reduce the cost
of such algorithms, extend their applicability to larger
problems, and make them more resistant to noise prob-
lems [21, 22].
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The main contributions of this work are:

• Two multiplier designs are offered: one with
garbage outputs but with lower cost, and one with-
out garbage outputs but with a corresponding in-
crease in cost.

• The circuits are the best Wallace tree integer mul-
tipliers in terms of T-count, T-depth, and number
of ancilla qubits.

• The circuits are the best multipliers for quantum
computing currently available in terms of T-depth.
It has a value four times lower than the second best
circuit in the literature in terms of T-depth.

• The circuits are also the best in terms of T-count
for working with numbers of less than 20 digits.

The rest of the paper is organized as follows. Sec-
tion II presents the quantum gates and operations needed
to build the circuit, and also justifies the importance
of counteracting noise when performing such operations.
Section III describes the methodology used to build the
proposed circuit. Section IV introduces the proposed de-
sign and the necessary steps to reproduce the circuit.
In Section V the proposed circuit is analysed and com-
pared with the most important multipliers available in
the state-of-the-art. Finally, conclusions are presented in
Section VI.

II. BACKGROUND

A. Quantum gates

There are several paradigms of programming a quan-
tum computer, and the most common is the use of cir-
cuits. A quantum circuit is made up of quantum gates.
Since a qubit can have infinite values, there are in-
finitely many operations that can be performed on it
and, therefore, there are infinitely many possible quan-
tum gates [23]. However, all the necessary operations to
implement the circuit proposed in this paper can be ex-
pressed by using only six basic gates: the H gate, the T
gate, the conjugate transpose of the T gate, the S gate,
the Z gate, and the CNOT gate:

• H gate: This gate allows a qubit to be placed in
superposition. It performs operation 1√
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[
1 1
1 −1

]
on

a single qubit.

• T and T ′ gates: The T gate performs the operation[ 1 0

0 ei
π
4

]
on a single-qubit. The conjugate transpose

of the T gate, named as T ′ in this manuscript, per-
forms the operation

[ 1 0

0 e−i π
4

]
.

• S gate: It is also a single-qubit operation and it
performs the operation

[
1 0
0 i

]
. It produces the same

effect as two consecutive T gates.

• Z gate: It is the equivalent to the Pauli-Z matrix,
that is,

[
1 0
0 −1

]
.

• CNOT gate: This gate acts on two qubits, carrying

out the operation

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
.

Fig. 1 shows the symbols of the basic gates used in this
work. Two extra gates are also considered: the Toffoli
gate and the temporary logical-AND gate. These gates
are built by combining the previous gates, and their de-
scription is detailed in Subsection IIC.

B. Fault-tolerance

In the introduction, it was mentioned that current
quantum computers are highly sensitive to internal and
external noise, to the extent that this causes frequent er-
rors in the computation performed by such computers [5].
One of the major goals of quantum computing today is to
eliminate (or at least to reduce) the effects of noise. The
current Noisy Intermediate-Scale Quantum (NISQ) com-
puters try to be reliable enough to run some quantum al-
gorithms by reducing the coherence times and gate error
probabilities. Such achievements, together with method-
ologies adapted to the NISQ computers, allow a consid-
erable reduction of errors [24].
There are several strategies to counteract this noise.

Some techniques are related to the circuit definition it-
self. For instance, the faster (here, faster means shallower
depth) a circuit is, the less time it is exposed to noise,
and therefore fewer negative effects such noise can cause.
The same can be said for the number of operations: the
fewer operations a circuit has, the lower the probability
of error. Other techniques are linked to the quantum ma-
chine. For example, on IBM machines, the error can be
significantly reduced by choosing a measurement strat-
egy adapted to these machines [25]. On the other hand,
current quantum devices must be constantly calibrated
to reduce the error in communication between qubits.
This error thus depends on the current calibration and
is different between each pair of adjacent qubits. Prop-
erly choosing which physical qubits to use based on the
current calibration will have a positive impact on the
performance of the circuit. Also, adapting the circuit to
the topology of the computer will reduce the number of
SWAP operations (these operations exchange the value of
two qubits) required for its execution, making the circuit
faster and contain fewer operations [26, 27].
A technique widely used in the literature about quan-

tum circuits is to build such circuits using only Clif-
ford+T gates [4, 28, 29]. A circuit composed of only this
type of gates can benefit from the use of error-correcting
codes [30–32]. It is not possible to implement any ar-
bitrary function only with the Clifford gates (without
the T gate), something that can be achieved (or at least
improved) by including the T gate [23]. However, the
problem with the T gate is its high cost. It is essential
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to keep the use of the T gate to a minimum in order not
to unnecessarily increase the total cost of the circuit. As
a consequence, circuits are usually measured in terms of
T-count and T-depth.

C. AND operation

In this work, the AND operation is of great impor-
tance. In Boolean logic, the AND operation accepts two
or more inputs, and returns an output that will be 1 only
if all inputs have the value of 1, and 0 otherwise. In quan-
tum terms, the AND operation is infeasible since it is not
reversible. On the other hand, neither fan-in nor fan-out
is possible in quantum computing. Therefore, the num-
ber of inputs and outputs must be always the same [5].
This is not what happens in the AND operation since it
has an input-output ratio of N : 1, where N is the num-
ber of inputs (and 1 is always the number of outputs).
Moreover, applying an AND operation on two quantum
states does not seem trivial.

There are quantum gates that allow an AND opera-
tion to be performed reversibly. However, it is important
to point out the differences between a classical AND gate
and such “quantum AND” gates. First of all, a quan-
tum computer does not use bits but qubits. Therefore,
an AND operation only makes sense if we interpret two
quantum states chosen as classical values 0 and 1. Sec-
ondly, its applicability (of the supposed quantum AND
gate) must be limited to such interpretations. This is
not a problem, since in this work, an arithmetic circuit
is proposed, destined exclusively to work with the base
states that are precisely interpreted as 0 and 1. Bearing
these premises in mind, the Toffoli gate allows the opera-
tion ABC ⊕AB, being A, B, and C any three quantum
states. By restricting the values of A and B to the stan-
dard bases, and setting C = 0, a quantum reproduction
of the classical AND gate can be obtained, as shown in
Table I. Limiting the usefulness of the Toffoli gate to sim-
ulating the classical AND operation would be a mistake,
but for this work, it is not necessary to further detail its
applicability.

TABLE I. Truth table of the Toffoli gate used over a target
qubit (C) in the state 0. The result is similar to a classical
AND gate.

Inputs Outputs
A B C A B C
0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 1

There are several designs for the Toffoli gate in the

literature [8, 9, 16]. Among these designs, the most op-
timized in terms of quantum cost and delay is the one
proposed by Amy et al. [8], shown in Fig. 2. This imple-
mentation involves 2 control qubits, and 1 target qubit,
which depending on the needs of the circuit can be a
qubit previously in use or a new qubit reserved for this
operation. The Amy et al. design has a T-count of 7,
that is, it needs 7 T gates. This implementation of the
Toffoli gate is the most widely used in the quantum cir-
cuits literature [10, 33, 34].
In order to reduce the T-count of the implementation

proposed by Amy et al., Jones [9] proposed a new de-
sign for the Toffoli gate. Later, Gidney [16] proposed to
compute the AND operation using two new gates based
on the work by Jones. These gates allow the T-count to
be reduced to 4. These two new gates are the tempo-
rary logical-AND and its uncomputation gate (Fig. 3).
The first gate is the one that performs the AND opera-
tion, while the second one allows reversing the operations
performed, thus avoiding garbage outputs. The second
gate does not perform the uncomputation of the origi-
nal circuit by reversing it, but uses a measure-and-fixup
approach (that was also proposed by Jones [9]). To re-
verse the Toffoli gate proposed by Amy et al. [8], it is
necessary to apply another Toffoli gate. Therefore, the
actual T-count is 14 in the case of using the Toffoli gate
proposed by Amy et al., and only 4 in the case of using
the temporary logical-AND and its uncomputation gate
(since the latter has a T-count of 0).
The use of Gidney’s implementation can allow a con-

siderable reduction of the T-count. However, the tem-
porary logical-AND gate cannot be applied on a qubit
C already in use to perform the C ⊕ AB operation. It
must be applied on an ancilla qubit prepared in state
1√
2
(0 + e

iπ
4 1). Therefore, the use of the gates proposed

by Gidney is not a mere replacement for the Toffoli gate,
but their application must be considered in the circuit
design itself.

D. Addition

Addition is another operation used recurrently in the
proposed multiplier, as will be explained in next sections.
Specifically, the multiplier involves two types of adders,
called half and full adders, respectively. Half-adders com-
pute the addition of two bits A and B. They return the
sum of both bits, S = A ⊕ B, as well as the generated
carry, Cout = AB. Full adders add three bits, A, B, and
the input carry Cin. Therefore, a full adder will return
the sum of such bits, S = A ⊕ B ⊕ Cin, and the carry
Cout = AB + ACin + BCin. There are other types of
adders, but they are not used in this work.
There is a wide variety of adders for quantum comput-

ing in the literature. In 2020, Orts et al. reviewed on
quantum adders [35], in which existing half-adders and
full adders in the state-of-the-art (among other adders)
are compared. Subsequent to this work, several adders
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have emerged [4, 15]. However, none of these new circuits
has improved on the existing half or full adder circuits.
Therefore, the work of Orts et al. can be used to choose
the circuits with the best T-count and number of ancilla
qubits.

The best half-adder in terms of T-count and number
of ancilla qubits available in the literature is the one de-
scribed by Nielsen and Chuang [5]. This circuit is repro-
duced in Fig. 4(a). This half-adder has a T-count of 7,
and needs only 1 auxiliary qubit. An improvement to
this circuit, in terms of T-count, can be done by using
a temporary logical-AND gate instead of the Toffoli gate
(Fig. 4(b)). Then, the circuit will have a T-count of 4,
keeping only one auxiliary qubit. If it were necessary
to reverse the operation performed by the half-adders in
Figs. 4(a) and (b), the total T-count would be 14 and 4,
respectively.

If we focus on full adders, the best available circuit (in
terms of T-count) is the one proposed by Wang et al. in
2016 [36] (Fig. 5(a)). Such a circuit has a T-count of 7,
and needs only 1 auxiliary qubit. For the sake of clarity:
a full adder was published in 2021 that also has this same
T-count (Fig. 5(b)) [37]. However, this new circuit does
not improve on the Wang et al. circuit in any way, so
the circuit introduced in [36] will be used to build the
multiplier.

III. THEORETICAL APPROACH

In this work, a quantum circuit using the Wallace tree
technique [38] to compute the product of two integers is
presented. Let X = xN−1...x0 and Y = yN−1...y0 be two
integers withN digits whose product P needs to be calcu-
lated. The Wallace tree technique consists of calculating
the partial products {pi,j = xiyj : i ∈ (0, ..., N − 1), j ∈
(0, ..., N − 1)}. Once these partial products have been
calculated, they are added to obtain P . Fig. 6 shows the
correct scheme for the general N -digit case.

The proposed circuit works with the standard bases,
so that 0 is represented by the 0 state and 1 by the 1
state. One qubit is used to represent each digit of X
and Y , so assuming that both numbers have N digits,
it is trivial to note that 2N qubits are required to rep-
resent them. The result P , which is also returned using
the same representation, will need a total of M qubits,
P = PM−1....P1P0. M is the maximum number of digits
needed to contain the result of the product of two binary
integers of N digits, where N ≤ M ≤ 2N [39].

Instead of directly adding the obtained N rows of par-
tial products, as done in the original algorithm (Fig. 6),
the proposed circuit performs this addition by decompos-
ing it into smaller sums. It performs the sum of partial
products using only half-adders and full adders. This
sum decomposition has already been successfully used
in state-of-the-art multipliers to reduce the required re-
sources [40]. A graphical diagram of this idea, for the case
N = 4, is reproduced in Fig. 7. In this figure, the boxes

containing two values indicate sums to be performed us-
ing half-adders, while the boxes containing three values
indicate sums to be performed using full adders.

IV. PROPOSED INTEGER MULTIPLIER
CIRCUIT DESIGN

Our proposed circuit is based on the described method-
ology, but it is optimized to reduce the number of re-
quired qubits, the T-count, and the T-depth. To do so,
it focuses on the following aspects:

• Finding optimized ways to implement the low-level
operations, primarily the reversible AND opera-
tion.

• Defining an algorithm to build the proposed circuit
for any digit size.

• Achieving a circuit free of garbage outputs.

A. Optimization of low-level operations

Regarding the optimization of low-level operations, all
Toffoli gates implementing the CCNOT array (this label
will be used to refer to the set of all partial products) can
be replaced by temporary logical-AND gates to achieve
a drastic reduction of the T-count, as explained in Sub-
section IIC. The temporary logical-AND gate needs an
extra qubit to contain the result. However, the products
of the CCNOT array must be stored in an extra qubit
anyway, so the replacement of gates results in a decrease
in the T-count but not in an increase in the number of in-
volved qubits. A CCNOT array built using Toffoli gates
has a T-count of 7N2, whereas the proposed implemen-
tation has a T-count of only 4N2.
This substitution can also be carried out in the rest

of the Toffoli gates that operate directly on an auxiliary
qubit that does not contain a previous value (i.e., in those
cases in which the operation 0⊕AB is performed for any
pair of qubits containing the states A and B). In partic-
ular, the half-adder we have proposed in Subsection IID
(Fig. 4(b)) can be used.
Toffoli gates operating on a qubit that contains a non-

constant prior value are maintained so as not to concur in
an increase in the number of auxiliary qubits. Therefore,
to perform full additions, the most suitable circuit is the
one proposed by Wang et al. (Fig. 5(a)).

B. A circuit of any size

Since the methodology described in Section 3 is per-
fectly valid for any data size, we have proposed an al-
gorithm to build a circuit for any size. Once the partial
products are performed, their addition is divided into
N − 1 levels. An initial level, N − 3 middle levels, and a
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final level. The first level involves 2 half adders and N−2
full adders. The N − 3 middle levels and the final level
need (each one) 1 half-adder andN−1 full adders. There-
fore, a total of N half-adders and N2−2N full adders are
required. It can also be noted that all adders of the same
level can be performed in parallel. The exception is the
last level, whose operations must be performed sequen-
tially. A new level could be created in which to add the
last carries and thus allow parallelizing such operations,
but it would involve the use of N − 1 extra half-adders
(and replacing the last N−1 full adders with other N−1
half-adders), with a consequent increase in T-count and
ancilla qubits.

The algorithm to compute the quantum product of in-
tegers of any size N can be defined as follows:

1. To prepare N qubits to represent X.

2. To prepare N qubits to represent Y .

3. To prepare N2 ancilla qubits for the CCNOT array.
Moreover, it should be noted that each involved
adder will require an additional extra qubit.

4. For i = 0 to N − 1:

(a) For j = 0 to N − 1, a temporary logical-
AND gate is applied to perform the operation
xiyj . The result of the operation is temporar-
ily stored in an ancilla qubit pi,j .

5. A half-adder is applied to compute p0,1+p1,0. Label
this adder as a0,0.

6. For j = 2 to N − 1, full adders are applied to com-
pute p0,i + p1,i−1 + p2,i−2. Label these adders as
a0,j−1.

7. A half-adder is applied to compute p1,N−1+p2,N−2.
Label this adder as a0,N−1.

8. For i = 1 to N − 3:

(a) A half-adder is applied to compute si−1,1 +
ci−1,0, where su,v and cu,v are the sum and
carry out of the au,v operation. Label this
adder as ai,0. si−1,1 will be Pi.

(b) For j = 2 to N − 1, full-adders are applied
to compute si−1,j + ci−1,j−1+ pi+2,j−2. Label
these adders as ai,j−1.

(c) A full adder is applied to compute pi+1,N−1+
ci−1,N−1 + pi+2,i+1. Label this adder as
ai,N−1.

9. A half-adder is applied to compute sN−3,1+cN−3,0.
Label this adder as aN−2,0. sN−2,0 will be added
to the left of the result P .

10. For j = 2 to N − 1, full-adders are applied to com-
pute sN−3,j + cN−3,j−1 + cN−2,j−2. Label these
adder as aj,j−1. sj,j−1 will be added to the left of
the result P .

11. A full adder is applied to compute pN−1,N−1 +
cN−3,N−1 + pN−2,N−2. The carry and the sum of
the last operation, in this order, will be the most
significant digits of P .

An example for the case N = 4 is shown in Fig. 8.
For clarity, this figure shows the levels described in the
algorithm, as well as all the pi,j , si,j , and ci,j values
generated throughout the circuit. It can be seen that
the operations are as described in Fig. 7: two half-adders
and two full adders at level 1, one half-adder and three
full adders at level 2, and one half-adder and three full
adders at level 3.

C. Garbage outputs

The circuit shown in Fig. 8 contains garbage outputs.
Using the metrics given by Mohammadi et al. [45, 46], we
consider a garbage output to be any qubit that contains
a value that is neither the target output of the circuit
(in this case, the output is P ) nor the same value it had
at the input of the circuit. Garbage outputs are thus
qubits that contain an unknown and unnecessary value,
and cannot be used to perform new operations. Following
this definition, in the circuits of Fig. 8 can be considered
as qubits with garbage output all those marked with a.
To remove the garbage outputs, we resort to the Ben-

net’s removal scheme [47] but considering the uncompu-
tation gate of the temporary logical-AND as explained
in Subsection IIC. This means that the inverse circuit
must be applied. There are two ways to perform the
uncomputation of the garbage outputs:

• It is not necessary to save P : after using P , the
inverse circuit is applied. No new auxiliary qubits
are needed.

• It is necessary to save P : M−2 new auxiliary qubits
are needed. The values of the result are copied to
such auxiliary qubits, and the inverse circuit is then
applied. It is not necessary to perform this copy for
P0 and P1 values, as they can stay in their original
qubits (which will not have to be reversed).

We would like to clarify that it is impossible to copy
quantum states in quantum computing. However, it is
possible to copy 0 and 1 values into prepared auxiliary
qubits by means of a simple CNOT gate [5]. Also, for
the sake of clarity, we mention that given a circuit Z,
its inverse circuit consists of applying the same quantum
gates as in Z but in reverse. The exception is the tem-
porary logical-AND gate, which in the inverse circuit is
replaced by its uncomputation gate (Fig. 3(b)).

Our proposed circuit requires N2 temporary logical-
AND gates for the CCNOT array, N half-adders, and
N2 − 2N full adders. In the circuit, only the temporary
logical-AND and Toffoli gates have T-count, so in such
terms the circuit consist of N2 temporary-logical AND



6

gates (CCNOT array), N temporary logical-AND gates
(half-adders), and N2 − 2N Toffoli gates (full adders).
Then, the inverse circuit consists of N2 − 2N Toffoli
gates and N2 + N uncomputation gates of the tempo-
rary logical-AND gate.

V. ANALYSIS AND COMPARISON

The proposed design has been reproduced in Python
using ProjectQ simulator [48]. The circuit has been
checked to ensure that it produces the correct output
value in terms of P . In addition, the measurements
shown in this section have been done using the method-
ology described in Orts et al. [35]. The proposed circuit
has a T-count of 11N2 − 10N , a T-depth of 8N − 7, it
requires 2N2 − N ancilla qubits, and it has 2N2 − 3N
garbage outputs. A second version of this circuit with
0 garbage outputs can be obtained as explained in Sub-
section IVC. It has been said in the previous section
that the inverse circuit has N2 − 2N Toffoli gates and
N2 + N uncomputation gates of the temporary logical-
AND gate. Of these two gates, only the Toffoli gate has
T-count, so the total T-count of the inverse circuit will be
7(N2−2N) = 7N2−14N . Therefore, this second version
has a T-count of 18N2−24N , a T-depth of 14N−14, and
2N2 −N + (M − 2) ancilla qubits (being M the number
of digits of the result).

Table II shows a comparison between several integer
multipliers available in the state-of-the-art and the pro-
posed circuit. First, it is important to note that several
circuits have garbage outputs. These outputs can be re-
versed, in which case the T-count values (and possibly
the number of ancilla qubits) would be increased. On the
other hand, some of the circuits have garbage outputs in
their original work. However, Muñoz-Coreas et al. [33]
conducted a study to obtain the garbage-free versions of
these circuits. This conversion involved an increase in the
rest of the metrics, but it made the circuits more useful
and, above all, this comparison more accurate (see Sub-
section IVC). For the sake of clarity, the circuit that has
been uncomputed by Muñoz-Coreas et al. are marked
with an asterisk (*) in Table II. We have subjected to
the same procedure those circuits subsequent to the work
of Muñoz-Coreas et al. Such circuits are marked with two
asterisks (**) in the table. We would also like to point
out that the circuits included in this comparison have also
been reproduced and tested in the ProjectQ simulator.

In terms of qubits, the best choices is the circuit of Li
et al. [44], with only N + 1 ancilla qubits, followed by
Muñoz-Coreas et al. circuit [33] and the Jayashree et al.
circuit [43], with 2N + 1 ancilla qubits. However, the
Muñoz-Coreas et al. circuit improves the T-count and
T-depth (21N2 − 14 and 9N2 − 6, respectively) over the
Jayashree et al. circuit (28N2 + 7N and 12N2 + 3N ,
respectively). The circuit of PourAliAkbar et al. [40] is
the worst choice in terms of the number of ancilla qubits,
with a total of 3N2 − 3N − 2.

The circuit of Li et al. is also the best in terms of T-
count (16N2 − 14). The second best multiplier in such
terms is our proposed circuit (18N2 − 24). In reality,
our proposed circuit improves on that of Li et al. when
working with numbers of less than 20 digits. For more
than 20 digits, the circuit of Li et al. is clearly dominant.
However, the circuit of Li et al. has a high depth, as
shown by its T-depth of 4N2+4N +4. Our circuit is the
best in these terms, with a T-depth of only 14N − 14. It
has a value four times lower than the second best circuit
in such terms.

As a general result of the analysis and in view of the
data provided by Table II, it can be observed that there
are two marked trends: circuits that are balanced on all
metrics, and circuits that sacrifice one metric (or even
two) in order to optimize another. The decision of which
multiplier to use will therefore depend on the metric
whose optimization is to be prioritised. In the case where
the number of qubits is the most important metric, the
circuits of Li et al. is the most appropriate choice. If the
priority is to minimise the T-count, the most optimized
choice is the circuit proposed in this paper if working with
numbers of less than 20 digits. If the numbers have more
than 20 digits, the best option is again the circuit of Li et
al. In cases where shallow depth is required, the best op-
tion is the proposed circuit. For more customised choices
where a certain trade-off or configuration is sought, Ta-
ble II should be checked to find the most suitable option.

VI. CONCLUSIONS

In this work, a quantum circuit to perform the prod-
uct of two integers using the Wallace tree technique
has been designed and analysed. For this purpose, the
most suitable implementations of the involved reversible
operations have been studied. Then, solid metrics for
the description and measurement of a circuit have been
searched and chosen. Subsequently, a study of the avail-
able circuits in the literature has been carried out, and we
have optimized the implementation of the low-level op-
erations employing different techniques to obtain a new
circuit that improves on those available in the state-of-
the-art. Moreover, the published Wallace-tree multipliers
can only operate with 4-digit numbers, while ours is ca-
pable of working with numbers of any size N . An effort
has also been made to generate a circuit free of garbage
outputs.

A wider comparison has also been made to evaluate the
proposed circuit concerning the most important quantum
multipliers in order to have a global view of the cost
of the multiplier circuits. The comparison shows that
the proposed circuit outperforms the rest of the circuits
in terms of T-count (only for numbers with less than
20 digits) and T-depth. Our proposal is also the best
Wallace-tree multiplier (but not the best global circuit)
in terms of required qubits.

As already mentioned, the Toffoli gates present in the
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circuit have not been replaced by temporary logical-AND
gates so as not to increase the number of qubits required.
However, if the aim is to reduce the T-count and T-depth
at any cost, the 2N2 − 4N Toffoli gates can be replaced.
Of these, N2−2N Toffoli gates will be replaced by tempo-
rary logical-AND gates, and the other N2 − 2N by their
uncomputation gates. Therefore, the T-count of the cir-
cuit obtained will have been reduced by 10N2−20N but
at a cost of extra N2 − 2N ancilla qubits. Nevertheless,
the number of Toffoli gates to be replaced could be cus-
tomized to find values in the range between this extreme
and the values offered by the proposed circuit.
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Z

FIG. 1. Symbols of the basic gates used in this work: (a) H gate, (b) T gate, (c) conjugate transpose of the T gate, (d) S gate,
(e) Z gate, and (d) CNOT gate.

H T

T

T

T’ T’

T’

T’ H

A
B
C

=

FIG. 2. Symbol and implementation of the Toffoli gate proposed by Amy et al. [8].
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FIG. 3. (a) Symbol and implementation of the temporary logical-AND gate. The state of the target qubit (C) must be prepared

using a Hadamard gate and a T gate to set it into the state 1√
2
(0+ e

iπ
4 1). Therefore, although only three T-gates are shown in

the picture, the total T-count is 4. (b) Symbol and implementation of the uncomputation (gate) of the temporary logical-AND
gate.
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FIG. 4. (a) Half-adder proposed by Nielsen and Chuang [5]. This adder has a T-count of 7, and requires 1 ancilla qubit. (b)
Improved implementation of the half-adder of Nielsen and Chuang using a temporary logical-AND operation. The T-count of
this circuit is only 4, with the same number of ancilla qubits.
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FIG. 5. (a) Full adder proposed by Wang et al. in 2016 [36]. (b) Full adder proposed by Gayathri et al. in 2021 [37]. Both
adders have the same T-count (7) and only 1 ancilla qubit, but the first circuit needs one less CNOT gate than the second one.
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FIG. 6. Diagram of a N×N Wallace tree multiplier. Two distinct parts can be observed: the generation of the partial products,
and the addition of such products. The size of the result P must satisfy N ≤ M ≤ 2N .
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FIG. 7. Dot diagram of a 4× 4 Wallace tree multiplier. Instead of directly adding the four rows obtained after computing the
partial products as it is explained in Fig. 6, the operation is decomposed into small sums of two and three bits. In the interest
of clarity, such small sums are shown in boxes and with an index (in red color), so that Si and Couti are the result of the
i-addition.
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TABLE II. Comparison of N × N integer multipliers in terms of T-count, T-depth, and ancilla qubits. All the circuits are
free of garbage outputs. Circuits marked with * have garbage outputs in their original designs, but Muñoz-Coreas et al.[33]
have reproduced such circuits by removing them. Following the same idea, we have reproduced the circuits marked with ** by
removing the garbage outputs. The metrics shown here for such circuits include the extra costs associated with such a process.

Circuit T-count T-depth Ancilla qubits
Lin et al. [41] 56N2 24N2 3N + 1
Babu* [42] 42N2 − 42N + 48 18N2 − 18N + 18 ≈ 2N
Jayashree et al.* [43] 28N2 + 7N 12N2 + 3N 2N + 1
Muñoz-Coreas et al. [33] 21N2 − 14 9N2 − 6 2N + 1
PourAliAkbar et al.** [40] 38N2 − 15N − 12 54N − 54 3N2 − 3N − 2
Gayathri et al.** [37] ≈ 28N2 − 14N ≈ 20N − 14 ≈ 2N2 −N +M
Li et al.** [44] 16N2 − 14N 4N2 + 4N + 4 N + 1
Proposed circuit 18N2 − 24N 14N − 14 2N2 −N + (M − 2)
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FIG. 8. Proposed implementation, for the N = 4 case. It involves 28 ancilla qubits. xi and yi (for i = 0 to 3) are the digits

of the two numbers to be multiplied. The rest of the qubits are ancilla inputs set to 0 (or 1√
2
(0 + e

iπ
4 1) for the temporary

logical-AND). The output of the multiplication should be contained in the qubits Pj (for j = 0 to 7). Outputs labelled as a
are garbage outputs. As it is described in Fig. 7, level 1 includes additions 0, 1, 2 and 3, level 2 additions 4, 5, 6 and 7, and
level 3 additions 8, 9, 10 and 11. The resulting sums and carries for such additions are labelled as Suv and Cuv, respectively,
being u and v explained in the proposed algorithm. Operations in levels 1 and 2 can be performed in parallel (when they are
in different additions). Operations in level 3 must be computed sequentially.


