
Quantum Information and Computation, Vol. 0, No. 0 (2003) 000–000
c© Rinton Press

EFFICIENT REVERSIBLE QUANTUM DESIGN OF

SIGN-MAGNITUDE TO TWO’S COMPLEMENT CONVERTERS

F. ORTS, G. ORTEGA, E.M. GARZÓN
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Despite the great interest that the scientific community has in quantum computing, the

scarcity and high cost of resources prevent to advance in this field. Specifically, qubits are

very expensive to build, causing the few available quantum computers are tremendously
limited in their number of qubits and delaying their progress. This work presents new

reversible circuits that optimize the necessary resources for the conversion of a sign binary

number into two’s complement of N digits. The benefits of our work are two: on the
one hand, the proposed two’s complement converters are fault tolerant circuits and also

are more efficient in terms of resources (essentially, quantum cost, number of qubits, and

T-count) than the described in the literature. On the other hand, valuable information
about available converters and, what is more, quantum adders, is summarized in tables

for interested researchers. The converters have been measured using robust metrics and

have been compared with the state-of-the-art circuits. The code to build them in a real
quantum computer is given.
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1 Introduction

Quantum computing uses the principles of quantum mechanics to define a new paradigm

of computing that allows reaching goals that cannot be achieved by those already known

algorithms or classical computing. There is a great interest in the scientific community for

quantum computing [1]. Specifically, efforts must be made to determine what kind of problems

can be solved more efficiently by quantum computing than by traditional computation. In

any case, there are problems that can be solved using quantum computing more efficiently.

Grover’s and Shor’s algorithms are the best examples of such problems [2, 3].

The most remarkable difference between both paradigms, quantum computing and classi-

cal computing, is the basic unit of each one. In the case of classical computing, the bit is the

fundamental unit. A bit has only two possibilities, 0 and 1. Despite the simplicity of the bit,

current computers can perform any type of operation if they have enough number of bits. On

the other hand, quantum computers define their own unit, the quantum bit (qubit). These

qubits can also be in states 0 or 1 and, what is more, because of the properties of quantum

mechanics they can be simultaneously in both states. This property is called superposition.

aCorresponding author: F. Orts. e-mail: francisco.orts@ual.es.
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2 Efficient reversible quantum design of sig-magnitude to two’s complement converters

Thanks to the superposition, a qubit can easily and completely imitate the behavior of, for

example, an atom. For this reason among others, quantum computing is interesting in many

research fields such as chemistry [4], image processing [5] or mathematics [6].

Nowadays, quantum computing is focused on making possible the implementation of the

aforementioned Shor’s algorithm. This algorithm allows a number N to be decomposed into

factors. It is faster than any similar algorithm in classical computation [3]. The problem of

computing Shor’s algorithm does not come from the algorithm itself, but from the current

quantum computers since they have only a few qubits [1]. However, companies like Google,

IBM or Intel are currently working on getting larger quantum computers, that is, with more

qubits. Meanwhile, to accelerate the achievements of the computation of Shor’s algorithm,

current works are focusing on optimizing the necessary resources for its computation.

Following the line of optimizing resources, it is especially important to optimize basic

arithmetic operations. There are current works that present optimized versions to perform

addition [7, 8], subtraction [9, 10, 11], multiplication [12, 13], and division [14, 15] in quantum

computers. Very relevant is the addition, which has a fundamental role in Shor’s algorithm.

However, the optimization of the involved operations is not the only possibility to achieve the

effective computation of Shor’s algorithm and the advance of quantum computing in general.

For example, another possibility is to take an appropriate numeric representation and to pro-

vide tools for its use. In classical computing, the use of the two’s complement representation is

common. Among other improvements, the two’s complement allows the addition of negative

numbers to be computed more efficiently [16]. Working in two’s complement can be beneficial

for the optimal use of the available resources in quantum computing, and for the acceleration

of several operations [17, 18, 19, 20, 21, 22, 23, 24, 25].

Quantum circuits have several parameters such as the number of required qubits or the

quantum cost (the number of used logical gates). This work proposes sign-magnitude to two’s

complement converters which are focused on optimizing resources to make their implementa-

tion as simple and inexpensive as possible. Circuits that involve a small amount of resources

are really appreciated in quantum computation. They are relevant even when they do not

achieve quantum advantages since they may be a useful part in bigger circuits and algorithms

[26]. To achieve this, a study of the state-of-the-art circuits that allow the conversion of sign-

magnitude to two’s complement has been carried out. This study has analyzed the benefits

of each circuit to be able to implement new ones reducing their quantum cost, the number

of involved qubits, the number of T gates, and other interesting parameters in an effort to

minimize the use of resources. A solid metric has been defined to evaluate these parameters

in both the proposed converters and the state-of-the-art circuits.

This paper is organized as follows. Section 2 presents background information on quantum

gates, defines the metrics in terms of quantum computing, explains the two’s complement

methodology and finally explores the state-of-the-art circuits which can compute a conversion

from sign-magnitude to two’s complement and their methodology. In Section 3 the designs of

the proposed sign-magnitude to two’s complement converters are presented and discussed in

detail. Finally, the conclusions are exposed in Section 4.

The circuits have been tested in the real quantum computer ibmq ourense. Our im-

plemented circuits are freely available through the following website: https://github.com/

2forts/QuantumConversor. The code is ready to be used in the IBM Quantum Experience
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Name Pauli-X V V+ CNOT Controlled-V Controlled-V+

Symbol

Matrix
Form

VA X

0 1

1 0

1+i 1-i

1-i 1+i

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

A X V+A X

1-i 1+i

1+i 1-i

B Y

A X

1 0 0 0
0 1 0 0
0 0 1+i 1-i

0 0 1-i 1+i

1 0 0 0
0 1 0 0
0 0 1-i 1+i

0 0 1+i 1-i

B Y

A X

B Y

A X

V+V

Fig. 1: Information of the basic reversible gates used in quantum circuits. (a) Pauli-X gate,
(b) V gate, (c) V+ gate, (d) CNOT gate, (e) controlled-V gate, and (f) controlled-V+ gate.

platform, which includes quantum simulators and real quantum computers [27]. Due to the

topology of each platform, several switch operations could be necessary. Luckily, the IBM

Quantum Experience platform is able to perform them automatically.

2 Background

2.1 Measures in quantum circuits

This work has considered the metrics described in [28] to measure quantum circuits. Such

metrics define five essential factors:

• Quantum cost: The quantum cost of a circuit defines the number of basic gates inte-

grated into the circuit. This parameter is the most important when optimization of

resources is mandatory [11].

• Delay: The delay of a circuit is its speed. A circuit is faster than other if its delay is

lower.

• Normal inputs: inputs whose value is given by the user.

• Ancilla inputs: extra qubits used to compute auxiliary operations. Qubits remain a

scarce resource, so the number of required qubits should be reduced whenever possible.

• Garbage outputs: outputs that are not part of the solution and whose value are un-

known. For instance, an ancilla input whose value has not been uncomputed. All the

outputs which are not part of the solution must be restored to its initial values or they

will not be available to be entangled with other inputs of circuits since this operation

will generate anomalous results [1].

In [28], authors set an important rule for measuring: the quantum cost of 1× 1 and 2× 2

gates is 1. Progressively, the quantum cost of an N ×N gate consists of its number of 1× 1

and 2× 2 gates. The quantum cost of a circuit can be easily calculated adding the quantum

cost of all its gates. Moreover, [28] defines the delay of 1 × 1 and 2 × 2 gates (that is, gates
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Name Peres Toffoli

Symbol

Matrix
Form

A X

B Y
C Z

A X

B Y
C Z

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

Fig. 2: Information of the basic reversible gates used in quantum circuits. (a) Peres gate and
(b) Toffoli gate.

with quantum cost 1) as 14. In the same way, the delay of an N×N gate is its depth when it

is built using 1×1 and 2×2 gates. In this work, all the measures of circuits have been carried

out using these terms so that the comparisons were coherent. Therefore, the gates shown in

Fig. 1 have a quantum cost of 1 and a delay of 14. The Peres gate has a quantum cost of 4

and a delay of 44, and the Toffoli gate a quantum cost and delay of 5 and 54 respectively.

Both gates are shown in Fig. 2.

Apart from the mentioned factors, because of quantum computers are extremely vulnerable

to noise errors, other factors can be considered to include fault tolerance and palliate noise

problems [29]. The T gates are used to make possible the use of error-correcting codes to

ensure fault-tolerance in quantum circuits. But their drawback is that they are more expensive

than the rest in terms of space and time cost due to their increased tolerance to noise errors

[29, 30]. Therefore, there are two important factors to minimize the cost when using such

gates: the T-count, that is, the number of T gates; and the T-depth, that is, the number of

T gates which must be computed sequentially. Two or more T gates computed in parallel are

in the same level and they only increase the T-depth in 1 unit. Therefore, the T-count and

the T-depth of the circuits are also considered in this work.

2.2 Two’s complement

Two’s complement is a binary numeric representation. Its main advantage is that the rep-

resentation of an integer is easily manipulated by the hardware. For instance, negating a

number can be done inverting all its digits and also adding one to the whole number. Nega-

tion in sign-magnitude representation involves more operations because it is necessary to

handle the sign of the number as a special digit. Other examples are the addition and sub-

traction. Adding negative numbers is identical to adding positive numbers. Therefore, it is

not necessary additional logic to handle the negative case.

The representation of an N -digit number in two’s complement consists of its complement

with respect to 2N . The numeric range of notation, for the N -digit case, is −2N−1 ≤ X ≤
(−2N−1 − 1) [31]. As an example, the case N = 4 is shown in Table 1. Converting a number

A from signed binary to two’s complement is as follows. If A >= 0, no conversion is necessary

as both representations are equal, that is, A has the same representation in signed binary

as in two’s complement. However, in the case of A < 0, the conversion is necessary. Such a
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conversion can be computed as the inversion of all the digits of A and then A + 1.

Table 1: Decimal, Sign-magnitude and Two’s complement representation of binary numbers
with N = 4.

Sign-magnitude Two’s complement Decimal
0111 0111 7
0110 0110 6
0101 0101 5
0100 0100 4
0011 0011 3
0010 0010 2
0001 0001 1
0000 0000 +0
1000 − −0
1001 1111 −1
1010 1110 −2
1011 1101 −3
1100 1100 −4
1101 1011 −5
1110 1010 −6
1111 1001 −7
− 1000 −8

The conversion from sign-magnitude to two’s complement can be done in two ways;

◦ Designing a specific circuit which computes the conversion described in Table 1.

◦ Using an addition circuit.

Instead of using a specific converter, the conversion of a number A can be computed

inverting its digits and then computing A + 1. Therefore, the conversion can be done with

N Pauli-X gates and an existing addition circuit. In the next subsection, the state-of-the-art

converters and adders are reviewed.

2.3 Related work

Only a few works can be found in the literature related to the specific implementation of

sign-magnitude to two’s complement converters without using adders. And worse, none of

these works is based on fault-tolerant Clifford + T gates. [33] presented the mathematical

design (but not a circuit design) of a gate called SSMT which computes the conversion of

a 4-digit number. [34] proposed a gate called TCG. This gate is only valid for the 4-digit

case like the previous converter but, in this case, the logic design was presented. TCG was

optimized in [32]. This design has a quantum cost of 25 for the case N = 4, being the best

converter in terms of quantum cost. Although these converters have a good quantum cost,

they are not able to compute numbers with more than 4 digits. They do not have carry input

nor carry output, so several converters cannot be joined to compute numbers with more than

4 digits. In [35], a novel converter valid for any N -digit number was presented. It is based

on a reversible out-of-place carry look-ahead adder presented in [8], adapted to compute the
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Fig. 3: Ripple-carry sign-magnitude to two’s complement converter. It is based on the circuit
presented in [32], adding it carry-in (Y ) and carry-out (I). It accepts a number or a piece of
the number of 3 digits (A,B,C), giving its conversion to two’s complement (P,Q,R). It has
two auxiliary inputs and two garbage outputs. Moreover, in the Figure can be observed the
quantum cost of every step.

conversion specifically. Its delay improves the delay of the rest of converters and adders that

are able to compute the conversion.

The sign-magnitude to two’s complement converter of [32] has the lowest quantum cost, 35.

However, as it has been mentioned, it is only valid for the case N = 4 as it does not support

carry output nor carry input of any type. We have modified this gate with the objective to

make it available for the general N -digit case, converting it in a ripple-carry converter. This

circuit is shown in Fig. 3. Nevertheless, the cost of adding this extra feature is expensive

because three qubits of the original gate need to be dedicated to the carry: on the one hand,

it is necessary to add one new qubit to accept and compute the carry-in (Y in Fig. 3). We

have replaced an original input qubit of the circuit of [32] by Y , so the circuit can compute

a number (or a piece of the number) of N = 3. If Y = 0, the circuit acts like in [32] (Fig. 3,

Section 1), but if Y = 1, the values of the inputs A,B and C are inverted (Fig. 3, Section

2). On the other hand, there are extra costs to generate the carry out (Fig. 3, Section 3).

Two auxiliary qubits are needed. The first one is the target qubit of a multiple Toffoli gate

(MTG, quantum cost of 20 [36, 37]), which is set to 1 for the case which generates carry-out,

it means A B C Y . The second one is used to change the value of Y to I when necessary.

The total quantum cost is 51, and the delay is also 514. The quantum cost of each gate of

the circuit is shown in Fig. 3. However, the two garbage outputs have not been uncomputed,

so the quantum cost and delay are assumed to be bigger than 51. For instance, following the

Bennett’s garbage removal scheme [38], it would be necessary four extra qubits to save the

results, four extra CNOT gates to translate the result into these qubits, and also to apply the

logical reverse of the entire circuit (except for the part which involves the new four qubits).

As it has been mentioned, the conversion of a number A can be done computing A + 1.

For this, it is necessary to invert the digits of A using Pauli-X gates (one gate per digit)

and to use an adder circuit to compute A + 1. This is the most usual way to compute

the two’s complement since there are lots of quantum addition circuits in the state-of-the-

art [7, 8, 11, 39, 40, 41, 42, 43, 44, 45], contrary to what happens with specific converters.

Moreover, there are several fault tolerant adders [46, 47]. We have summarized the information

of the most relevant adders in Table 2, but without including fault tolerant adders in this
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first comparison since they have a higher quantum cost due to their tolerance to noise errors.

Adders with garbage outputs have not been included, for the reasons explained in subsection

2.1 about garbage outputs. Table 2 shows that the two most efficient addition circuits in terms

of delay are [7, 8], with a delay of O(log N) (they are the only carry-lookahead adders in the

table). However, they are expensive in terms of quantum cost. Ripple-carry adders improve

them in terms of quantum cost. In general, ripple-carry adders are more optimized in terms

of quantum cost, and carry look-ahead adder are better than them in terms of delay [48]. On

the other hand, the ripple-carry adder which can be built using the full adder presented in

[11] is the adder with the best quantum cost. They are adders with better quantum cost or

delay, but they have garbage outputs [49, 50].

Table 2: Comparison of adders for N -digit numbers. The comparison only includes the ripple-
carry and carry-lookahead adders which do not have garbage outputs and without the use of
the fault-tolerant T gates.

Circuit Quantum Delay Ancilla Garbage
cost 4 inputs outputs

[7] 28N − 15W (N)− 15log(N)− 6 logN + logN/3 + 7 5N/5 0
[8] 26N − 15W (N)− 15log(N − 4) logN + logN/3 + 2 5N/4 0
[41] 26N − 29 24N − 27 0 0
[39] 17N − 12 10N 1 0
[51] 15N 15N 3N 0
[52] 15N 10N N 0
[43] 15N − 9 13N − 7 0 0
[53] 15N − 6 9N + 5 0 0
[54] 13N − 8 11N − 4 0 0
[55] 12N 12N 3N 0
[56] 12N 12N N 0
[56] 12N 10N 4N 0
[44] 10N 8N N 0
[11] 6N 4N N 0

The proposed circuits in this work are focused on optimizing the necessary resources of

the current converters and adders acting as converters. Their details are presented in the next

section.

3 Design of the new sign-magnitude to two’s complement converters

We have developed three converters focused on minimizing the metrics of [28]. We propose

three models:

• A first one focused on quantum simulators, which do not have noise problems. Its

priorities are optimizing the quantum cost and the number of qubits.

• A second one focused on real quantum computes. Its priorities are achieving a balance

between quantum cost, T-count and number of necessary qubits.

• A third one also focused on real quantum computes, but prioritizing T-count and number

of necessary qubits.
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𝑉 𝑉 𝑉+

𝐶𝑖𝑛

𝐴

0
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Fig. 4: Proposed sign-magnitude to two’s complement converter. Cin is the input carry, A
is the input, P is the output and Cout is the output carry. It has 1 auxiliary input and no
garbage outputs. Its quantum cost is 6 and it has a delay of 44.

3.1 First design: optimal quantum cost converter

We have developed a first sign-magnitude to two’s complement converter focusing on the

reduction of the quantum cost and the ancilla inputs. Neither the T-count nor the T-depth

are taken into account since this design is focused on its use in simulators. This converter has

two inputs: the digit to be converted (A) and the carry input (Cin). In the same way, it has

two outputs: the converted digit (P ) and the carry out (Cout). The idea behind this converter

is that a sign-magnitude to two’s complement conversion consists of negating a number and

adding 1. That is, A + 1. Focusing on this specific addition, the conversion can be done digit

by digit, taking into account that there is a carry which must be propagated. Since a digit

only has two possibilities (0 or 1), its conversion depends on whether there is carry-in or not.

Likewise, the conversion of such digit may generate carry-out or not. As there are only four

possibilities (considering A and Cin), this can be expressed in a simple truth table as it is

shown in Table 3.

Table 3: Truth table of the proposed converter.

Cin A P Cout

0 0 1 0
0 1 0 0
1 0 0 1
1 1 1 0

Cin is the input carry, A is the input, P is the output and Cout is the output carry.

The proposed converter to compute the function of Table 3 has been built using Controlled-

V , Controlled-V +, CNOT and Pauli-X gates. The circuit is shown in Fig. 4. It has 1

auxiliary input and no garbage outputs. It has been implemented using the properties of the

Controlled-V and Controlled-V + gates described in Subsection 2.1. As the circuit has 1 V +

gate and 2 V gates, the quantum cost of these gates is 3. It also uses a CNOT gate, which

has a quantum cost of 1, and two Pauli-X gates which also have a quantum cost of 1 each

one. In conclusion, the circuit has a quantum cost of 6 and a delay of 44. From Table 3

can be deduced that P = Cin A + CinA and Cout = CinA. On the one hand, CinA can be

computed using the properties of the Controlled-V + and Controlled-V gates. On the other

hand, Cin A+CinA can be easily computed using a CNOT gate. Although the CNOT gate

calculates the result inverted, the desired result can be achieved inverting A at the beginning

with a Pauli-X gate. A is reverted at the end to avoid a garbage output.

For a better understanding of the circuit, all possible combinations and the obtained
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Fig. 5: For the sake of clarity, all the possible states of the proposed circuit are checked in
detail, verifying that the obtained results are equal to those of Table 3. In (a), the circuit is
tested for the case Cin = 0, A = 0. In (b), the circuit is tested for the case Cin = 0, A = 1.
(c) shows the results of Cin = 1, A = 0. In (d), it is verified that the circuit also responds
adequately for Cin = 1, A = 1.

results are shown in Fig. 5. They coincide with the results of Table 3, verifying that the

circuit works properly:

• Fig. 5(a) shows the case Cin = 0, A = 0. The second Controlled-V gate and the

Controlled-V + are activated. V (A)× V +(A) = V +(A)× V (A) = A, so Cout maintains

the initial value (0). The CNOT gate is activated, so P is inverted to 1.

• Fig. 5(b) shows the case Cin = 0, A = 1. Neither gates Controlled-V nor Controlled-V +

are activated, so Cout maintains the initial value (0). The CNOT gate is not activated,

so P maintains its value.

• Fig. 5(c) shows the case Cin = 1, A = 0. The two Controlled-V gates are activated, so

Cout inverts the initial value to 1. The CNOT gate is activated, so P is inverted to 0.

• Fig. 5(d) shows the case Cin = 1, A = 1. The first Controlled-V gate and the

Controlled-V + are activated. As V (A) × V +(A) = V +(A) × V (A) = A, Cout main-

tains the initial value (0). The CNOT gate is not activated, so P maintains its value.

The real utility of the converter is its scalability, that is, the possibility of connecting

it in cascade with other converters of the same type, to convert numbers of any size. A
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P
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Fig. 6: Ripple-carry sign-magnitude to two’s complement converters computing the conversion
of an N -digit number.

ripple-carry sign-magnitude to two’s complement converter can be constructed with several

converters in cascade, with the carry output from each converter connected to the carry input

of the next one in the chain. In the general case, N converters can compute the conversion of

an N -digit number (i.e. A), as it is shown in Fig. 6. In the figure, Converter 0 computes the

least significant digit of A, it means A0, and Converter N − 1 computes the most significant

digit of A (AN−1). It is important to always start the process setting the initial carry input

to 1. As an example, we explain how to convert the number −5 (1101 in sign-magnitude

representation). The most significant digit is 1, so the value represented is negative. The

number to be converted is 1101. Therefore, Cin0 = 1 and A = 101 (A2 = 1, A1 = 0, A0 = 1).

Given that the number to be converted has 3 digits, the ripple-carry converter will consist of

3 converters:

• The inputs of the Converter 0 are Cin0 = 1 and A0 = 1. According to Fig. 5(d), the

results of this case are P0 = 1 and Cout0 = 0.

• The inputs of the Converter 1 are Cin1 = 0 and A1 = 0. According to Fig. 5(a), the

results of this case are P1 = 1 and Cout1 = 0.

• The inputs of the Converter 2 are Cin2 = 0 and A2 = 1. According to Fig. 5(b), the

results of this case are P2 = 0 and Cout2 = 0.

The result is given by P , that is, (1)011.

3.2 Second design: balance between quantum cost and T-count

A second circuit can be obtained from the circuit described in the previous subsection replacing

its non-Clifford + T gates and optimizing the use of the T gates. It has the same number

of qubits than the previous proposed converter and also no garbage outputs. The first step

consists on achieving a circuit with only Clifford + T gates. In [58], a heuristic called “Initial

expansion algorithm” is presented. This heuristic, which is very easy to be applied, is focused

on transform a circuit into another circuit which only has Clifford + T gates. We have chosen

the definition of the Controlled-V and V + in terms of Clifford + T gates proposed in [57] to
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Fig. 7: Second proposed converter. (a) Resulting circuit of expanding the Controlled-V and
V + gates in the circuit of Fig. 4 as shown in [57] using the “Initial expansion algorithm”
proposed in [58]. (b) Removing some redundant Hadamard gates from the previous circuit.
(c) Minimization and parallelization of the T gates according to the method described in [59].

expand these gates. The result is shown in Fig. 7a. Moreover, several Hadamard gates can

be removed since they are applied consecutive, reducing the quantum cost of the circuit (Fig.

7b). Until now, we have limited ourselves to convert the original design to another one that

uses only Clifford-T gates.

Finally, it is mandatory to optimize the T-count and the T-depth. The circuit can be

optimized in these terms using a heuristic for the parallelization of the T gates [59]. Two

T gates can be sequentially computed after several transforms, so they can be replaced by a

Phase gate, reducing the T-count in one gate. At the end of the heuristic, the final circuit

has a T-count of 8 and a T-depth of 4. The final circuit is shown in Fig. 7c. The quantum

cost and delay of this new proposed circuit is bigger than the best ones presented in Table 5.

However, to compare these circuits with the proposed one in this section in terms of quantum

cost and delay is not coherent since the proposed circuit is the only one with fault tolerant

capabilities.

3.3 Third design: optimal T-count and number of qubits

As it has been mentioned in Section 1, ripple-carry adders involve lesser resources than carry-

lookahead adders. We can adapt the methodology of a ripple-carry adder, which computes

A + B, to perform the operation A + 1. On the one hand, the resulting converter simplifies

the operations of the original adder since B0 = 1 and Bi = 0 for i > 0. For instance, The

first carry out depends only on A0: if A0, then the carry out will be 0, and 1 otherwise as

A0 + 1 = 10 in this last case. The computation of the remaining carries also depends only of
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Fig. 8: Temporary logical-AND gate and its uncomputation gate [46]. The temporary logical-
AND gate has a T-count of 4 and a T-count of 2. The uncomputation gate does not involves
T gates.

|A0⟩
|A1⟩

|A2⟩

|A3⟩

|P0⟩
|P1⟩

|P2⟩

|P3⟩
|P4⟩

Fig. 9: Example of the third proposed converter, for the 4-digits case.

the digits of A. Therefore, the only difficulty is keeping a constant product of all the digits

of A, which can be expensive if Toffoli gates are employed. On the other hand, all the qubits

used to contain B can be removed, resulting in a significant reduction of necessary resources.

In [46], a new construction called temporary logical-AND gate, which performs the AND

operation of two qubits into an ancilla qubit, is presented. This gate is similar to the Toffoli

gate, but its T-count and T-depth are 4 and 2, respectively (whereas the T-count and T-depth

of the Toffoli gate are 7 and 3, respectively. Moreover, its uncomputation does not need any

T gate (the uncomputation of a Toffoli gate should be done using another Toffoli gate, so

the same T-count and T-depth are required). We reproduce the temporary logical-AND gate

and its uncomputation gate in Fig. 8. Using the reduced T-count and T-depth of this gate,

we can achieve an optimized converter. An example of this converter for the 4-digit case is

shown in Fig. 9. The circuit can be obtained for any N -digit number A following these steps:

1. For i = 0 to i = N − 1, apply a Pauli-X gate at every digit (qubit) Ai.

2. Apply a temporary logical-AND gate at A0, A1 over an ancilla qubit. We call this ancilla

qubit as C1, since its contains the output carry.

3. For i = 2 to i = N − 1, apply a temporary logical-AND gate at Ci−1, Ai over an ancilla

qubit Ci.

4. For i = N − 1 to i = 2, apply a CNOT gate at Ci−1 over Ai. Then, uncompute Ci−1
using the uncomputation gate.

5. Apply a CNOT gate at A0 over A1, and finally a Pauli-X gate over A0.
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3.4 Cost analysis

The first proposed circuit in this work consists of 2 Controlled-V gates, 1 Controlled-V + gate,

1 CNOT gate and 2 Pauli-X gates (quantum cost: 6). In the general case and assuming that

N converters are necessary to compute the conversion of an N -digit number, the quantum

cost is 6N . In terms of delay and following the same metrics of [28], it has a delay of 4N4
since a gate with the quantum cost of 1 has a delay of 14, and the Pauli-X gates can be

computed in parallel with other gates, as it is shown in Fig. 4. Every converter has an

auxiliary input, so the general case needs N auxiliary qubits. There are not garbage outputs

in the proposed circuit. To calculate the T-count and T-depth of the Controlled-V gates we

have considered the values given in [57]. Then, we conclude that the T-count and T-depth of

the circuit are 9N and 6N , respectively.

In this work, we have obtained the circuit directly from the truth table. However, it is

also possible to use a SAT solver to quickly search the minimum quantum cost of a function

with small number of intputs [60]. To assure the quality of our circuit, we have checked it

using such solvers. It can be concluded that the minimum cost of implementing the function

given by the proposed circuit (considering the uncomputation of the garbage outputs) is 6,

so we can affirm that the proposed circuit is optimal in that term. On the other hand, the

number of garbage outputs cannot be improved since it is 0. The number of ancilla inputs

(1) cannot be reduced either due to the maintenance of reversibility.

Focusing now on the second circuit, it has a T-count of 8 and a T-depth of 4, which can

be obtained directly in Fig. 7c using the same metrics than in the previous circuit. The

number of necessary qubits is 3N (the same number of the first circuit). It also has no

garbage outputs. It optimizes the T-count and T-depth of the first circuit into 8N and 4N ,

respectively.

Finally, focusing on the third circuit, only steps 2 and 3 require T gates as they involve

temporary logical-AND gates. According to the T-count and the T-depth of the temporary

logical-AND gate, it can be concluded that this circuit requires 4N − 4 T gates. These gates

are computed sequentially, so the T-depth will be 2N − 1. The circuit requires N normal

inputs (the digits of the number) and N − 1 ancilla inputs, that is, a total of 2N − 1 qubits.

For the rest of the metrics we have proceeded as in the previous cases, obtaining a quantum

cost of 15− 13, a delay of 12N − 10, and 0 garbage outputs.

For the sake of clarity, we show the numbers of our three proposals in Table 4.

Table 4: Comparison of our three proposed converters for N -digit numbers, in terms of the
metrics proposed in [28], but also in terms of T-count and T-depth.

Circuit Quantum Delay Ancilla Total Garbage T-Count T-Depth
Cost Inputs Qubits Outputs

First Proposed Circuit 6N 4N N 3N 0 9N 6N
Second Proposed Circuit 19N 13N N 3N 0 8N 4N
Third Proposed Circuit 15N − 13 12N − 10 N − 1 2N − 1 0 4N − 4 2N − 2
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Table 5: Comparison of converters for N -digit numbers.

Circuit Quantum Delay Normal Ancilla Garbage
cost 4 inputs inputs outputs

[7] 28N − 15w(N)− 15log(N)− 6 logN + logN/3 + 9 2N 5N/4 0
[8] 26N − 15w(N − 15log(N − 4) logN + logN/3 + 4 2N 5N/4 0
[35] 21N − 15w(N)− 15log(N − 4) logN + logN/3 + 1 N 5N/4 + 1 0
[41] 28N − 29 26N − 27 2N 0 0
[39] 19N − 12 10N + 2 2N 1 0
[51] 17N 15N + 2 3N 3N 0
[52] 17N 10N + 2 3N N 0
[43] 17N − 9 13N − 5 2N 0 0
[53] 17N − 6 9N + 7 2N 0 0
[54] 15N − 8 11N − 2 2N 0 0
[55] 14N 12N + 2 2N 3N 0
[56] 14N 12N + 2 2N N 0
[56] 14N 10N + 2 2N 4N 0
[44] 12N 8N + 2 3N N 0
[11] 8N 4N + 2 3N N 0

[32] extended 51(((N − 1)/3) + 1) 51(((N − 1)/3) + 1) 4((N − 1)/3 + 1) N 2N
Proposed Circuit 1 6N 4N 2N N 0

The adders include two extra levels of delay (A level for the initial inversion and another to
restore and avoid garbage outputs) and 2N extra quantum cost to act as a converters.

3.5 Cost comparison

3.5.1 Non Fault tolerant circuits

A comparison between several state-of-the-art converters and our first proposed circuit, in

terms of quantum cost, delay, number of inputs, ancilla inputs and garbage outputs, is shown

in Table 5. The converters presented in [32], [34] and [36] have not been included in the

comparison since they are only valid for the N = 3 or N = 4 cases. We have also not included

fault tolerant adders since these circuits will be compared to our fault tolerant proposals.

Table 5 include all the adders described in Subsection 2.2, but acting as a converter in this

case (this has extra quantum cost and delay derived to compute the inversion of all the digits

of the number to be converted and to restore the number to avoid garbage outputs). [35] is a

specifically designed circuit to compute the sign-magnitude to two’s complement conversion.

Notice that the circuits of Figs. 3 and 4 will hereinafter be referred to as [32] extended and

proposed circuit, respectively.

Focusing on delay on Table 5, circuits [7], [8] and [35] are O(logN), and the remaining

circuits are O(N). So, the fastest circuit of the comparison is [35] with a delay of logN +

logN/3+14. Therefore, [35] is the best choice when speed is the priority. In terms of normal

inputs (qubits which are not auxiliary), [11, 44, 55, 51] have 3N inputs (which are the number

A to be converted), the 1 to be added to A (is 1 in the first digit and 0 in the remaining

digits) and the carries. [32] extended has 4((N − 1)/3 + 1) inputs since it computes three

digits (and the carry-in) at once. [7], [8] and the proposed circuit have 2N inputs. In the rest

of the circuits except [35] and the proposed one, the inputs are A and also the 1 to be added.

In the proposed circuit, the inputs are the digit and the carry-in. Finally, [35] optimizes the

number of inputs since it was specifically designed to compute the conversion, so it only needs

the number to be converted.

In terms of ancilla inputs, [7] and [8] have 5N/4, and [35] has 5N/4 + 1. These circuits

prioritize the delay, using more qubits to achieve the highest speed. The most optimized

circuits of the table have N ancilla qubits (they prioritize the reduction of the number of
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necessary qubits). In terms of garbage outputs, only [32] extended contain uncomputed

outputs. It has been included only to demonstrate that an optimization starting from an

existing specific converter was not possible (or, at least, not trivial). As it has been mentioned,

the cost of adding carry-in and carry-out to the existing converters is expensive.

The quantum cost is the most important factor when the optimization of resources is the

priority, especially considering the current scarcity of resources in quantum computing [1].

In terms of quantum cost, the proposed circuit is the best choice. It improves the quantum

cost in a 33% with respect to [45] (which is not included in the table since it has garbage

outputs) and [11], which are the circuits currently available with the best quantum cost. [44]

has a quantum cost of 12N , so the proposed circuit improves the quantum cost in a 50%.

Circuits [7, 8, 35] have a higher quantum cost than the others since they decrease their delays

at the expense of the quantum cost. Finally, [32] extended has an expensive quantum cost

(51(((N − 1)/3) + 1)), as it has been mentioned. Focused on quantum cost, the proposed

circuit overcomes the other options, therefore is the best option when the optimization of

resources is mandatory.

Focusing on our proposal, we have demonstrated that our converter is the best circuit in

terms of quantum cost. Moreover, Table 4 have shown that it outperforms the rest of the

circuits in terms of delay, with the exception of the first three converters. However, these three

circuits have a very expensive quantum cost, being non-viable in current quantum computers

and simulators. In the same way, only the circuit of [35] improves our proposal in terms

of normal inputs, but again at the cost of using three times more quantum gates than our

proposal. In terms of ancilla inputs, several circuits outperform ours, but once again at the

cost of using (at least) two times more gates. Our focus was to achieve a converter optimized

in terms of quantum cost, but without neglecting the relevance of the rest of the metrics.

Table 4 have shown that our proposal is the most balanced converter in all metrics.

3.5.2 Fault tolerant circuits

This comparison is focused on the T-count, T-depth and the number of required qubits

to perform the operation. We mentioned that there is no fault tolerant converters in the

literature. Fortunately, there are several fault tolerant adders. On the one hand, the adder

presented in [46] is the best adder of the state-of-the-art in terms of T-count. On the other

hand, [47] proposes four new adders. Since none of the adders included in [47] outperform

the adder of [46] in terms of T-count, we have selected the best of the four adders in terms of

T-depth. Therefore, Table 6 shows a comparison between our converters and the best adders

in terms of T-count, T-depth and number of qubits. Our third circuit outperforms the rest

of the circuits in terms of T-count, with 4N − 4. The second best circuit in T-count is the

circuit of [46], followed by our second proposal. The worst circuit in terms of T-count is [47],

with a value of 16N − 8w(N)− 8log(N)− 4 (where w(n) = n−
∑∞

i=1( n
2y )).

The circuit of [47] is the best option in terms of T-depth, with 4log(N) + 2log( 2N
3 ) + 3.

The second best circuit is our third proposal, with 2N − 2, followed by [46] with a T-depth

of 2N , and by our second proposal with 4N . Finally, in terms of number of qubits, the best

option is again our third circuit, with only 2N−1. The second best circuit is [46] with 3N−1,

and the third is our second proposal with 3N . The worst is terms of necessary qubits is [47],

which we have already seen that it sacrifices T-count and qubits to improve its T-depth.
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Table 6: Comparison of converters for N -digit numbers, in terms of T-count, T-depth and
number of necessary qubits.

Circuit T-count T-depth Number of qubits
Second Proposed Circuit 8N 4N 3N

[46] 4N 2N 3N − 1
[47] 16N − 8w(N)− 8log(N)− 4 4log(N) + 2log( 2N

3 ) + 3 6N − 2w(N)− 2log(N)
Third Proposed Circuit 4N − 4 2N − 2 2N − 1

To finish, we can conclude with the following classification:

• The best quantum cost: the first proposed circuit, with an improvement of a 33% with

respect to the best current converters.

• The best delay: [35].

• Less number of inputs: [35] and the third proposed circuit.

• No garbage outputs: all the included except [32] extended.

• The best in terms of T-count: the third proposed circuit.

• The best in terms of T-depth: [47].

• Less number of qubits: The third proposed circuit.

4 Conclusion

In this work, we have presented the design of several scalable reversible sign-magnitude to

two’s complement converters. The first one optimizes the quantum cost, being also the most

balanced in the rest of the metrics defined in [28]. Obtained results have shown that the

quantum cost of our first proposed circuit improves a 33% with respect to the state-of-the-art

circuits based on reversible gates and quantum adders. We have also presented a version of

this circuit (the second proposal), achieving a balance between quantum cost and T-count.

Additionally, we have designed an specific version (third proposal) that optimizes ancillary

qubits and T-count. This last version outperforms the best fault tolerant circuits in the state-

of-the-art. An advantage of our proposals is that they do not contain any garbage output,

therefore they could be entangled with any other reversible circuit which needed to operate

with two’s complement. Moreover, we have demonstrated that adding carry-in and carry-out

to the current best converter (in terms of quantum cost), which is limited to the case N = 4, is

not a competitive option. A comparison, using a solid metric, between the proposed circuits

and the best converters has been carried out in terms of quantum cost, delay, number of

inputs, auxiliary qubits, garbage outputs, T-count, T-depth and number of qubits.

Additionally, we have analyzed the state-of-the-art converters and adders, giving valuable

information summarized in tables which will be very useful for interested researchers in order

to select the correct adder to their own applications.

Acknowledgements



F. Orts et al. 17

This work has been partially supported by the Spanish Ministry of Science throughout Project

RTI2018-095993-B-I00 and by the European Regional Development Fund (ERDF). F. Orts

is supported by an FPI Fellowship (attached to Project TIN2015-66680-C2-1-R) from the

Spanish Ministry of Education.

References

1. Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information 10th
edition, 2017.

2. Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, pages 212–219. ACM, 1996.

3. Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM review, 41(2):303–332, 1999.

4. Hans Primas. Chemistry, quantum mechanics and reductionism: perspectives in theoretical chem-
istry, volume 24. Springer Science & Business Media, 2013.
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