Structural Learning of Bayesian Networks with Mixtures of
Truncated Exponentials

Vanessa Romero, Rafael Rumi and Antonio Salmerén
Departament of Statistics and Applied Mathematics
University of Almeria, Spain
{avrofe,rrumi,Antonio.Salmeron } @Qual.es

Abstract

In this paper we introduce a hill-climbing algorithm for structural learning of Bayesian
networks from databases with discrete and continuous variables. The process is based on
the optimisation of a metric that measures the accuracy of a network penalised by its
complexity. The result of the algorithm is a network where the conditional distribution
for each variable is a mixture of truncated exponentials (MTE), so that no restrictions
on the network topology are imposed. The performance of the proposed method is tested

using artificial and real world data.

1 Introduction

Mixtures of truncated exponentials, abbrevi-
ated as MTE, were introduced as a model for
dealing with discrete and continuous variables
simultaneously in Bayesian networks without
imposing any restriction on the network topol-
ogy and avoiding the rough approximations of
methods based on the discretisation of the con-
tinuous variables (Moral et al., 2001). The abil-
ity of MTEs for fitting several common proba-
bility models has been widely studied in the last
two years (Cobb and Shenoy, 2003; Cobb et al.,
2004).

The problem of learning Bayesian networks
with MTEs can be structured into three tasks:
learning the structure of the network, estimat-
ing the marginal distributions for the root nodes
(univariate MTEs) and obtaining the condi-
tional distributions for non-root nodes (condi-
tional MTEs). There are methods for learning
univariate (Moral et al., 2002) and conditional
MTEs (Moral et al., 2003), but the structural
learning has not been solved so far.

The paper is organised as follows. The neces-
sary concepts relative to the MTE distribution
are reviewed in section 2. Section 3 is devoted
to introduce the proposed algorithm for struc-
tural learning. The performance of the method

is experimentally tested as reported in section 4
and the paper ends with conclusions in section

5.
2 The MTE model

Throughout this paper, random variables will
be denoted by capital letters, and their values
by lowercase letters. Boldfaced characters will
be used for random vectors. The domain of the
vector X is denoted by Qx. The MTE model is
defined by its corresponding potential and den-
sity as follows (Moral et al., 2001):

Definition 1 (MTE potential) Let X be a
mixzed n-dimensional random vector. We say
that a function f : Qx +— Rg i$ a mixture of
truncated exponentials potential (MTE poten-
tial) if one of the next two conditions holds:

i. f can be written as

n
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f(x)=ao+ > aiexp
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for all x € Qx, where a;, i1 =0,...,m and
bl(.]), i =1,....,m, 7 = 1,...,n are real
numbers.
ii. There is a partition Qq,...,Q of Qx ver-

ifying that the domain of the continuous



variables in X is divided into hypercubes
and such that f is defined as

fx) = filx) if xeQ;,
where each f;, i = 1,...,k can be written
in the form of equation (1).

Definition 2 (MTE density) An MTE poten-
tial f is an MTE density if

f(y,Z)dZ =1, (2)
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where Y and 7 are the discrete and continuous
coordinates of X respectively.

In a Bayesian network, we find two types of
densities:

1. For each variable X which is a root of the
network, a density f(x) is given.

2. For each variable X with parents Y, a con-
ditional density f(x|y) is given.

A conditional MTE density f(x|y) is an MTE
potential f(z,y) such that fixing y to each of
its possible values, the resulting function is a
density for X.

In (Moral et al., 2001) a data structure was
proposed to represent MTE potentials, called
mixed probability trees or mixed trees for short.
Mixed trees can represent MTE potentials de-
fined by parts. Each entire branch in the tree
determines one sub-region of the space where
the potential is defined, and the function stored
in the leaf of a branch is the definition of the
potential in the corresponding sub-region. An
example of an MTE potential represented as a
mixed tree can be seen in figure 1.

The operations required for probability prop-
agation (restriction,
marginalisation and combination) can be car-
ried out by means of algorithms very similar
to those described for discrete probability trees
in (Kozlov and Koller, 1997; Salmerén et al.,
2000).

in Bayesian networks

3 Structural learning algorithm

Given a mixed random vector X =
{Xy,...,X,}, and a sample of X,

D= {X(l),...,X(m)} ,

our aim is to design a method for obtaining a
Bayesian network with variables X, that agrees
with the data D.

Basically, the problem of learning Bayesian
networks from data can be approached as re-
peating the next three steps until an optimal
network is obtained:

1. Determining a candidate structure G.

2. Estimating the conditional distributions, 6,
for G.

3. Measuring the quality of (G, 6).

Our proposal consists of performing a hill-
climbing algorithm with greedy search in order
to explore the space of possible networks. The
starting point will be a network without arcs.
With respect to the movement operators, we
have considered arc insertion, deletion and re-
versal. After each movement, the conditional
distributions corresponding to the families in-
volved in the change are estimated. The search
process is guided by selecting the operator that
best increases the quality of the current net-
work.

3.1 Estimating the conditional
distributions for a candidate
network

The problem of estimating the parameters of
truncated distributions has been previously
studied (Smith, 1957; Tukey, 1949), as in
the case of the truncated Gamma (Hegde and
Dahiya, 1989; Nath, 1975), but the number of
parameters is usually one, and the maximum
likelihood estimator (that not always exists)
or the UMVUE (Uniformly Minimum Variance
Unbiased Estimator) is obtained by means of
numerical methods (El-Taha and Evans, 1992;
Sathe and Varde, 1969). In the case of the MTE
models, no similar techniques have been applied
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Figure 1: An example of mixed probability tree.

so far, due to the high number of parameters in-
volved in the MTE densities.

Another usual way to compute maximum
likelihood estimates in mixture models is the
EM algorithm (Dempster et al., 1977; Redner
and Walker, 1984). The difficulty to apply this
method to the MTE models lies in the fact that
we may have negative coefficients for some of
the densities we are combining and also in the
computation of the conditional expectations in
each iteration of the algorithm.

Due to the difficulties described above, the
seminal paper on estimating MTEs from data
(Moral et al., 2002), followed an approach based
on regression techniques for the case of uni-
variate densities. Besides the estimation of the
parameters, the construction of an MTE den-
sity involves the determination of the number
of terms and the splits into which its domain is
partitioned. Heuristics to approach these issues
are proposed in (Moral et al., 2002).

This method for constructing estimators for
the parameters of the univariate MTE density
is not valid for the conditional case, since more
restrictions should be imposed over the param-
eters in order to force the MTE potential to
integrate up to 1 for each combination of values

of the conditioning variables, i.e. to force the
MTE potential to actually be a conditional den-
sity. This problem was approached in (Moral
et al., 2003) by partitioning the domain of the
conditioning variables and then fitting a uni-
variate density in each one of the splits using the
method described above. More precisely, the al-
gorithm learns a mixed tree in which the leaves
contain MTE densities that depend only on the
child variable, and that represents the density of
the child variable given aby of the values con-
tained in the region determined by the corre-
sponding branch of the mixed tree. The tree is
learnt in such a way that the leaves discriminate
as much as possible, following a schema similar
to the construction of classification trees (Quin-
lan, 1986).

Here we will follow the procedures introduced
n (Moral et al., 2002; Moral et al., 2003) to
learn the parameters of the candidate networks.

3.2 Measuring the quality of a
candidate network

In order to measure the quality of a Bayesian
network, we propose to use a metric based on
the asymptotic approximation to the classical
Bayesian metric proposed in (Castillo et al.,
1997) for networks with continuous variables.



The idea is to construct a score that takes into
account the likelihood of the data given the can-
didate network but penalising those ones with
complex structure.

We define the following metric:

logm .

Q(G|D, ) = log L(D; G, ) — >—Dim(G), (3)

where L(D; G, ) is the likelihood of the data
given the current network and Dim(G) is the
number of parameters needed to specify the net-
work G. The number of parameters of the con-
ditional density of any variable given its parents
is equal to the sum of the number of parame-
ters in the leaves of the corresponding mixed
tree. Along this paper, for the sake of simplic-
ity, we will assume that all the MTE potentials
that will appear in the learnt network will have
a constant number of parameters, say k, which
means that the potentials will have the form

f(.%') = Qo +a1€b1x + .. +atebtx :

with k =2t + 1.

If we denote by |X| the number of values of
X if it is discrete, or the number of splits into
which its domain is divided, if X is continuous,
the dimension of G can be expressed as

Dim(G) =

e I M)+

XeC Yefa(X)

> (1 I v

XeD Yefa(X)

, (4)

where fa(X;) is the family of X;, i.e. X; and
its parents, pa(X;), and C and D are the sets of
continuous and discrete variables in G respec-
tively.

Thus, the metric in equation (3) can be ex-
pressed as

Q(GID,6) = log L(D;G,0)
e
— Z Z log p; (xgz) ]pa(xg-i)))
i=1 j=1
log m
———>_ (& II Wl
XeD \ Yefa(X)
logm
SERS X I v
XeC Yefa(X)

This metric can be decomposed as

Q(GID,6) = Q(X,|D.0)

j=1

where

QX;ID,0) = > logp;(alpa(z!))

i=1

logm

I

Yefa(Xy)

(or replacing k by |X| if X is discrete), which
means that after carrying out a modification
over a network, only the part of the metric cor-
responding to the two variables affected by the
operation has to be re-computed.

4 Experimental evaluation

In order to evaluate the performance of the
proposed algorithm we have implemented it
in Java, and is available in the Elvira system
(Elvira Consortium, 2002). We have carried out
an experimental evaluation using two artificial
base networks. One of them, denoted as netl5
has 21 links, 13 continuous and 2 discrete vari-
ables. The other one, denoted as netl0, contains
12 links, 7 continuous and 3 discrete variables.
The structure of both networks has been gener-
ated as follows:



Sample size | 100 1000 2000 5000
Mean LL. | 1.48 4.69 6.42 9
Std. Dev. | 0.88 1.6 202 23
Mean CL | 0.62 1.16 1.63 2.51
Std. Dev. | 0.71 0.96 1.24 1.75
Mean IL | 0.65 2.45 3.1 4.07
Std. Dev. | 0.73 1.23 1.3 1.6
Mean NL | 0.21 1.07 1.69 2.42
Std. Dev. | 041 0.92 1.3 1.39

Table 1: Results of the experiment for netl0.

Sample size | 100 1000 2000 5000
Mean LL. | 0.98 5.08 82 11.78
Std. Dev. | 0.65 1.73 1.76 2.33
Mean CL | 0.38 2.86 4.78 6.87
Std. Dev. | 0.63 1.59 2.01 2.18
Mean IL | 0.58 2.1 3.14 4.44
Std. Dev. | 049 1.27 1.66 1.52
Mean NL | 0.02 0.12 0.28 0.47
Std. Dev. | 0.14 0.35 045 0.63

Table 2: Results of the experiment for net1b.

e For each variable, the number of parents is or 3 with probability 0.2,0.4 and 0.4
selected according to a Poisson distribution respectively.
with mean 0.8. e The number of exponential terms for
Th lected d each MTE potential is equal to 0, 1
e Lhe parents are selected at random, among or 2 with probability 0.05,0.75 and 0.2
those that do not violate the DAG condi- .
i respectively.
ion.

e The independent term of each MTE
potential is generated from a negative

The experiment consisted of 100 iterations of ) e
exponential distribution with mean

the next procedure:

0.01.
1. For each iteration, the parameters of netl0 e The coefficients of the exponential
and netl5 are generated as follows: terms in the potentials are generated

from a negative exponential distribu-

e The number of values of each discrete . .
tion with mean 1.

variable is selected uniformly at ran-
dom from the set {2,3,4}.

e The values in the probability tables
of the discrete variables are generated
from a negative exponential distribu- 2. A sample is generated from the obtained
tion with mean 0.5, and they are nor- MTE network.
malised afterwards.

e The coefficients of the exponents in the
exponential terms are generated from
a standard normal distribution.

e The number of splits of the domain of 3. Using that sample, a network is learnt us-
each continuous variable is set to 1, 2 ing the proposed algorithm.



CL

liver
abalone
diabetes

0
4
1

IL NL
1 3
4 7
2 4

Table 3: Comparison of the learnt networks vs. K2 for real world data.

4. For the learnt network, we record the num-
ber of links (L), number of coincident links
(CL), number of inverted links (IL) and
number of new links (NL), i.e. those not
coincident nor inverted.

In the experiments, the value for k£ in equa-
tion (4) has been set to 5. It means that in each
leaf of the mixed tree corresponding to a con-
ditional distribution, the fitted MTE potential
has 5 parameters:

f(z) = ag + a1e"® + age®® |

Furthermore, the number of splits into which
the domain of the variables is split is set to 3.
The result of the experiment for net10 and net15
can be found in tables 1 and 2 respectively,
where the mean and standard deviation (Std.
Dev.) of the values of L, CL,IL and NL for the
100 iterations of the experiment are displayed.

The results of the experiments suggest that
the algorithm increases its accuracy in terms of
similarity to the original structure, as the sam-
ple size grows. However, the increase is rather
slow. For instance, the number of arcs in both
networks for samples of size 5000 is far away
to the number of links in the original networks.
It means that the risk of including false inde-
pendencies in the learnt model is high. With
respect to the inverted links, some of them may
introduce new independencies, but also, those
ones that do not change the independencies in
the original model can change the distribution
of the learnt model, due to the heuristic nature
of the parametric estimation employed in this
work.

We have also tested the algorithm using three
real-world databases taken from the UCI Ma-
chine Learning Repository (Blake and Merz,
1998). The description of these databases is as
follows:

e liver: Liver-disorders Database with 7 con-
tinuous variables and 345 instances.

abalone: Database for predicting the age
of abalone from physical measurements. It
contains 8 variables (7 continuous and 1
discrete), and 4177 instances.

diabetes: Pima Indians Diabetes Database,
with 8 continuous variables and a binary
class variable. It contains 768 instances.

In this case, there are no original networks
to compare with, so we have tested them ver-
sus the K2 algorithm (Cooper and Herskovits,
1992) with the continuous variables previously
discretised using equal frequency intervals, lim-
iting the number of parents in the learnt net-
work to a maximum of 5. We have found that
the learnt structure in the case of database di-
abetes is a naive Bayes (excluding the discon-
nected parts), in which the class variable has no
parents and the rest of the variables are children
of it, which seems to be sensible. The results of
the comparison of the leant MTE networks vs.
K2 can be found in table 3. The results sug-
gest that for large samples the structures pro-
vided by both methods become more similar.
However, there are big differences in the case of
databases liver and diabetes.

5 Conclusions

We have introduced an algorithm for learning
the structure of Bayesian networks with dis-
crete and continuous variables simultaneously,
in which the MTE model is used. So far, al-
gorithms for estimating marginal and condi-
tional MTE densities existed (Moral et al., 2002;
Moral et al., 2003), but the obtainment of the
network structure remained unsolved.

The method proposed here is rather prelim-
inary, but it is nevertheless useful since the



user can obtain a Bayesian network from any
kind of mixed data, without worrying about
the structural restriction imposed by the Condi-
tional Gaussian model (Lauritzen, 1992), which
requires discrete nodes not to have continuous
parents.

However, still much effort must be invested
in order to reach a satisfactory solution for the
structural MTE learning problem. For instance,
the metric used in this paper is known to have
good properties when the conditional distribu-
tions in the network belong to the curved ex-
ponential family (Haughton, 1988). The MTE
distribution does not belong to this family,
and thus the asymptotic properties of the met-
ric should be studied. Furthermore, we think
that the logarithm of the likelihood of the data
given the candidate network is not the best way
to measure the accuracy in the case of den-
sity functions. The Kullback-Leibler divergence
should be a better choice. At this point, we are
studying a method to compute that divergence
for the MTE model.

Another aspect that influences the perfor-
mance of the structural learning algorithm is
the estimation of the parameters. The method
we have used here is based on regression tech-
niques, which are used to fit a curve expressed
as an MTE potential to the empirical histogram
obtained from the sample. However, the empir-
ical histogram is usually a bad model for the
density of the data. More precisely, it may
have many peaks, specially when the sample
size is small. Besides, the sample size is ac-
tually reduced, since all the points under the
same rectangle of the histogram are assigned
the same density value. We have found that
the estimation of the MTEs can be improved
using smoother empirical densities, as the ones
provided by Kernel methods (see e.g. Simonoff
(1996)). Currently we are implementing the im-
proved estimation procedure using kernels.

With respect to the search scheme, we are
planning to used methods that try to avoid
reaching local optima, such as the stochas-
tic variable neighbourhood search algorithm (de
Campos and Puerta, 2001).
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