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Abstract

Energy meters provide valuable information that can be used to determine important features such as energy

consumption of electrical devices and consumption habits in corporate, residential or public institutions. This

information is crucial to establish energy saving strategies. With this aim, different approaches have been

proposed in the literature, including non-intrusive load monitoring techniques, which enable the energy

disaggregation of appliances and devices through a centralized measurement taken at panel level using

a metering infrastructure. Generally, the accuracy of these techniques increases as more information is

available on the analyzed signals or through subsequent post-computed values. Active power, reactive power,

or even current harmonics measurements can be used for this task. However, the use of these and other

recently proposed power and current features increases the dimensionality and, therefore, the complexity of

the algorithms involved in the disaggregation process. Therefore, it is necessary to apply advanced techniques

to reduce the dimensionality of the data, as well as the possible linear dependence between variables. This

paper compares the performance of 8 data pretreatment methods and 6 dimensionality reduction techniques

to data retrieved by an advanced metering infrastructure in a real environment consisting of 10 different

home appliances. Results obtained from the comparative analysis show that the information provided by raw

data can be enhanced by using pretreatment techniques and dimensionality reduction methods, especially

when a custom combination of active power and current harmonics measures is considered.
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1. Introduction

The efficient use of energy is one of the most crucial and challenging issues according to the UN Sus-

tainable Development Goals (SDG) [1, 2]. Energy efficiency strategies are focused from generation and

consumption viewpoints. Thus, renewable energy systems are being incorporated into the grid to reduce

dependency on fossil fuels, while energy saving strategies are being promoted to reduce the consumption of

energy and, therefore, the volume of electricity that should be generated. The synergy of these actions will

have a global impact in terms of reduction of emission of polluting gases. Recent studies have highlighted

the possibilities of Internet of Things (IoT) and advanced big data analytics for improving energy efficiency

of smart home appliances [3]. Energy big data is characterized by the need of processing large volumes of

continuous stream of data from a large variety of sources [4]. Some challenges in the field of big data in mi-

crogrids have also been identified, including the need of developing advanced sensors technologies that allow

to operate with the streaming data, efficient techniques for data storage, data security, data visualization,

etc. [5].

As far as energy efficiency strategies are concerned, their application would be reflected in a reduction of

the monthly energy bill for businesses, public institutions and families. For example, energy efficiency can

be achieved by using electrical appliances in certain (reduced-price) time slots or deactivating appliances

when they are not needed. Furthermore, unplugging devices when not in use is an important issue, which

is why some researchers have analyzed how to determine occupancy profiles on basis to the appliance usage

[6, 7]. But these and other energy saving strategies require considering efficient procedures for monitoring

electrical appliances. The most evident way to perform this task is to implement Intrusive Load Monitoring

(ILM) techniques [8], which are based on the use of low-end electricity meter devices directly measuring each

appliance or device. An alternative option is to apply Non-Intrusive Load Monitoring (NILM) techniques

[9], sometimes referred to as load disaggregation, which is attracting an increasing interest due to the

roll-out of metering technology around the world [10, 11]. The aim of NILM techniques is to identify the

different loads connected simultaneously to a power source, estimate the current status and report a detailed

disaggregated power consumption using a single energy meter installed in the main electric panel. But in

addition to applying NILM for energy saving purposes, the activity monitoring applications through NILM

is recently receiving much interest [11]. The main differences between the two techniques lie in the cost of

the solution, its deployment, and maintenance. In fact, ILM adds complexity to the acquisition stage and is

more expensive, while NILM method is more scalable at the cost of a higher computational effort and the

need of a high-precision measuring device.
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An important barrier to apply ILM and NILM at large scale is the high-price of commercial energy

meters. This is the reason why some researchers are proposing low-cost and high-precision energy meters

[12]. In addition to the large volume of data, the application of NILM techniques requires the development

of new methods that can effectively decrease the additional dimensionality introduced by the new variables

and, therefore, to reduce the computation time and the possibility of overfitting. Visualizing high dimen-

sional data is a common problem between many research domains, such as hyperspectral imaging [13] or

audio unmixing [14]. Dimensionality Reduction (DR) techniques [15] allows to transform data from a high-

dimensional space into a low-dimensional space so that the latter retains some relevant properties of the

original data. This characteristic is used in our investigation to explore the separability between appliances

and, particularly, their data structure. It should be noted that dimensionality reduction methods have been

successfully applied in the past to analyze electricity consumption profiles [16, 17].

The aim of our investigation is to determine the advantages and disadvantages of different linear and

nonlinear dimensionality reduction (DR) methods and pretreatment techniques to manage three electri-

cal harmonic feature sets (current harmonics, power harmonics and a customized combination of them)

considering real data of home appliances. The contributions of this paper can be summarized as follows:

• It proposes the use of complex harmonic features as input variables for NILM methods. The use

of harmonics for NILM purposes is a promising strategy that is attracting attention in recent years

[11, 18, 19, 20, 21]. In [20], the researchers use harmonic features, in particular the 3rd, 7th and 11th

current harmonics in combination with Principal Components Analysis (PCA). In our study, however,

the current and voltage signals sampled at high frequency are computed to obtain the harmonic

characteristics of both up to order 50. In addition, power harmonics and the cos(ϕ) up to order 50

are also obtained. For this purpose, the FFT algorithm implemented in the metering infrastructure

(openZmeter, oZm [22]) has been used. Through the built-in API, it is possible to get the data

in order to obtain the magnitude and phase angle for each of the complex harmonics. In addition,

the active power levels of each harmonic have also been measured, thus providing another subset of

measurements related to the harmonic distribution of the signal. Finally, a comparison between two

different harmonic feature sets and a customized combination of them is presented.

• It includes a comparative analysis of the effect of data pretreatment techniques applied to feature

sets. Eight data pretreatment techniques (Centering, Autoscaling, Range scaling, Pareto scaling,

Vast scaling, Level scaling, Log transformation and Power transformation) often used in previous

investigations [23] are considered in our study. The aim is to find the most appropriate technique
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to obtain the best regularization results in the data fed to the subsequent dimensional reduction

algorithms.

• It includes a comparative analysis of the performance of dimensionality reduction (DR) methods. The

pretreated data is fed to six linear and nonlinear DR approaches (Principal Components Analysis, Lin-

ear Discriminant Analysis, Fast Independent Component Analysis, Partial Least Squares Regression,

t-Distributed Stochastic Neighbor and Uniform Manifold Approximation and Projection). It is worth

mentioning that the authors of [20] propose, as future work, to compare PCA with comparison of other

dimension reduction algorithms such Linear Discriminant Analysis (LDA), aspect that is covered in

the present study.

• It includes an empirical study in a real-life environment involving a wide range of modern appliances,

from basic loads to time/state adjustable loads. Furthermore, it is shown that the analysed methods

can also be successfully applied to existing data in other public databases.

The rest of the paper is organized as follows. Section 2 gives an overview of the latest advances on

engineering optimization algorithms related to electricity consumption disaggregation of appliances. Section

3 describes the materials that have been used to acquire the harmonic feature sets from different home

appliances and how pretreatment techniques and DR methods have been computed. Section 4 presents the

results obtained in the experimental study and a detailed comparison of numerical and graphical results of

the performance of these pretreatment methods and DR techniques applied to a set of household appliances.

Finally, Section 5 presents a discussion about the implications and findings for NILM, as well as the main

conclusions, limitations and future investigations derived from this study.

2. Related work

Engineering applications of NILM have attracted the attention of many researchers in the last years [24].

In particular, there has been a surge in interest in developing novel computational approaches in the field

of sensors technologies focused to NILM [25]. Device-level consumption footprints inferred by NILM can

provide statistics with personalized consumption of each appliance through exploiting the aggregated power

signal and help to promote energy saving actions [26]. NILM [9, 27] is often divided into four phases [28]:

• Data acquisition: In this phase, the electrical signal is analyzed in order to calculate the electrical

quantities. This requires installing a metering device in the electrical panel of a home or business to

collect data on voltage, current, active power, reactive power, power factor, etc.
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• Feature extraction: The objective of this phase is to extract those features necessary for identifying

the state (switched-on or switched-off) of the loads or the detection of events, such as state transitions

of household appliances. Feature extraction often requires the analysis of time series [29, 30] and the

application of dimensional reduction techniques to transform a large number of features to a lower

dimensionality space [20, 31, 32].

• Inference and learning: Once the necessary characteristics have been extracted, the objective is to

use them to identify the appliances that are currently operating. This requires to apply disaggregation

algorithms in order to categorize the appliances that are currently in use.

• Appliance classification and load disaggregation: This phase, also known as load identification,

aims to determine the operating state of the appliances. It often requires dividing the total consumption

among the identified loads is required [28].

Some authors have analyzed in detail the challenges of NILM in practical applications [33]. On the one

hand, it is required to use an accurate metering infrastructure with high sampling rates for data acquisition

and feature extraction, capable of processing the aggregate signal containing data of all the appliances

connected to the network [34]. In fact, some authors have highlighted that neither the reactive power nor

the high-sampling measurement is the standard feature of the currently available smart meters [35]. An

important contribution of this paper is to use a high-precision and reliable power and electric energy meter

to acquire and process data.

On the other hand, the efficiency of non-intrusive appliance load identification methods [36, 37, 38] is

highly dependent on the selected features. Almost all approaches found in the literature apply electricity

consumption disaggregation, such that the feature space is partitioned according to the appliance level of

active or reactive power consumption from aggregate measurements of voltage and current obtained at a

centralized location in the electrical panels [39], in some cases adding individual devices in the appliances

(for example, in [40] it is used a electromagnetic field (EMF) sensor to measure the magnetic and the

electrical fields nearby each appliance in order to detect its operational state). A typical approach is to

apply optimization or pattern recognition-based approaches [41] to determine the best combination of the

appliance load to estimate the total power consumption [42]. Despite the above, the disaggregation of energy

consumption to identify loads presents some problems, particularly the difficulty of differentiating between

devices that have a similar level of consumption. Other alternatives to power-based frameworks are voltage

and current-based criteria [43]. However, an open research question is to determine whether or not other
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power quality variables could be sucessfully used for this purpose with real home appliances. A few studies

have determined that harmonics can be useful to track the power consumption of the variable load and, in

turn, to disaggregate this variable load from the power consumption [44]. An important contribution of this

paper is the application of FFT to current and voltage signals sampled at high frequency and the use of the

features derived from the harmonic characteristics obtained. In particular, current harmonics and active

power harmonics of the two signals are considered.

Finally, it is also important to remark that a significant number of synthetic or real datasets have been

proposed in the past for NILM purposes. For example, the Reference Energy Disaggregation Data Set

(REDD) [45] is a public data set containing detailed power consumption from six real homes, for the whole

house as well as for each individual circuit in the house. Other repository is UK-DALE [46], an open-access

data set that provides the power demand from five houses, such that the both, the whole-house mains

and individual appliances power demand, are recorded every six seconds. Other open-access dataset is

provided by the Indian Dataset for Ambient Water and Energy (iAWE) [47], which contains the aggregated

and sub-metered electricity measurements (one-second resolution) retrieved from a house during more than

two months. Additional information about datasets used for electricity consumption disaggregation can be

found in [48, 49, 33]. However, only a few datasets provide pre-computed harmonic content. One example

is EMBED dataset [50]. EMBED provides data in their aggregated form, which do not allow to use them

for studying data pre-processing techniques and defining the footprint of an individual appliance. EMBED

offers plug load data, but the 1-2Hz sampling frequency does not allow harmonic extraction according to

the Nyquist theorem. Other datasets offer disaggregated data from individual devices recorded at high

frequencies, which allows the harmonics to be extracted. In some datasets, different switch-on scenarios

have been included. A drawback of some datasets is that the duration of the recordings is only a few

seconds, and it is not possible to extract statistical data on the extended operation of the device.

3. Materials and methods

3.1. Materials

This study focuses on the analysis of a set of home appliances commonly used in households. A group of

appliances with resistive features, such as the oven, oil heater, grill and toaster are considered, while other

group of non-resistive appliances with inductive characteristics are also considered, including vacuum cleaner

and kitchen hood, as well as other whose main load is a compressor (electric motor load) such as freezers

and refrigerators. Finally, two devices that rely on power electronics (a television and a laptop charger) are
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also analyzed. The full list of appliances with brand, model, nominal active power and the tag used within

the code can be found in Table 1.

Some authors have revised the literature of machine learning methods applied to smart-building applica-

tions [51], where energy devices (including appliances and sensors) are analyzed from different perspectives,

including: (i) the energy profiling and demand estimation; and (ii) appliances profiling and fault detection.

Appliance Tag Brand Model Power (W)

Kitchen hood kitchen hood Teka c-620 350
Vacuum cleaner vacuum cleaner Tristar SZ-2174 800
Laptop charger laptop Lenovo ADL65YCC3A 65
Television tv Toshiba 26AV615DG 120
Refrigerator fridge Brandt BFD6425BW 75
Freezer freezer Hisense FT124D4HW1 168
Oven oven Zanussi ZOB20311XU 1875
Grill grill Corberó CPA-4700 2000
Toaster toaster Almison ALMTOS25C 2400
Oil radiator oil heater Haeger Zen XI OH-011.002A 2500

Table 1: List of domestic appliances used for the experiments.

The harmonic feature sets related to the operation of the home appliances is retrieved using the openZme-

ter (oZm) [22]. oZm is an open-source and open-hardware single-phase electrical energy meter and power

quality analyzer with IoT capabilities that allows measuring a wide range of electrical variables such as RMS

voltage and current, active, reactive and apparent power, current and voltage harmonics up to order 50,

Total Harmonic Distortion (THD), power factor, etc. The data retrieved by oZm can be accessed through a

simple web interface or through a specific Application Programming Interface (API). It is capable of sam-

pling the voltage and current waveform at a frequency of up to 15625Hz and compute parameters according

to IEC61000-4-30 and EN-50160 regulations. It is noticed that oZm collected independent measurements for

each home appliance during 10 minutes. Different time span aggregations of 200 ms, 3 seconds, 1 minute,

10 minutes, 15 minutes and 1 hour are generated automatically and gathered by oZm (200ms is the interval

used in this study). Python [52] and Scikit-learn [53] (along with many other libraries) are used to perform

data acquisition, pretreatment, application of dimensionality reduction methods and finally result evaluation

of the available data.

3.2. Methods

Overall workflow of the data throughout the experiment can be observed in Figure 1. The process

starts with the data acquisition stage using the oZm meter where mainly harmonic content is gathered
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and pre-processed using custom developed scripts. Additionally, the measurements are then applied to the

pretreatment functions. Finally, several dimensionality reduction methods (2D) are applied afterwards to

compare the results using the evaluation metrics.

Figure 1: Experiment data workflow summary. Data passes through five stages, starting with the acquisition, followed by its
preprocessing and pretreatment, to then apply DR methods and evaluate the result.

Figure 2: Detailed description of the data pretreatment.

As described in Figure 2, the data is acquired and preprocessed for each appliance listed in Table 1 and

then passes to the data pretreatment stage. By aggregating the data of electrical appliances, three datasets of

harmonic features (ch, ph, cus) are created in different steps: I) For each appliance, three groups of harmonic

8



features (see Table 2) are obtained [xich, xiph, xicus]; II.a) Statistical measures for each appliance harmonic

feature set are computed; II.b) The appliance harmonic features are appended according to harmonic feature

type (ch, ph, cus); III) Pretreatment functions described in section 3.2.3 are applied to each dataset. Once

the data has been preprocessed and pretreated, dimensional reduction methods described in Section 3.2.4 are

applied to the datasets. Finally, after applying dimensionality reduction methods, the clustering evaluation

metric Silhouette Score [54] is applied. The next subsections will go over each of the stages in further detail.

3.2.1. Data acquisition

Figure 3 shows the measurement scheme. As it is shown, a single oZm device measures the energy

and power quality variables. The information acquired and processed by oZm is submitted via Wi-Fi to a

computer, which is in charge of applying preprocessing, pretreatment, dimensionality reduction methods to

these data. In this experiment, independent measurements are applied to the 10 home appliances, i.e., when

one appliance is measured, the rest are switched off.

The model presented here makes use of data from recording several minutes of operation of the appliances

listed in Table 1 using the oZm API, which collects complex harmonic values for voltage and current up

to order 50. Most papers found in the literature consider active and reactive power as features to model

load behavior [55]. Some authors have also proposed the use of distortion power in addition to the active

and reactive power to obtain models of appliance classes using dimensionality reduction techniques [11, 40].

Nonetheless, data related to the total active or reactive power is not considered here since one of the aims of

the paper is to show that harmonics can provide sufficient information to reach our goals. The data for each

electrical appliance shown in Table 1 is gathered from the oZm device in a manner that each i-th appliance

has a separate dataset of n measurements, Xi = {xi1, xi2, . . . , xin}. Then, the data is filtered by applying

a fixed threshold value to the total RMS current to discard the idle state of these appliances. Afterwards,

for each appliance dataset Xi, three sets of harmonic features are extracted for the experiment, i.e., current

harmonics (ch), active power harmonics (ph) and a custom combination (cus) of both features.
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Figure 3: Physical measurement scheme.

In order to obtain a set of structured data for a given time interval, a post request is performed to the oZm

API. The request includes the time interval in timestamp format with millisecond precision, identification

number of the analyzer, cookie and the list of features to be analyzed, as in the following example:

curl --location --request POST 'http://192.168.5.51/getSeries' \

--header 'Accept: application/json' \

--header 'Content-Type: application/json' \

--header 'Cookie: SESSION=8FE265C5-8BB8-47FD-B7E4-12F6AE9858AA' \

--data-raw '{ "Aggreg":"200MS",

"Analyzer":"F10012009034E42413032302_CH1_1P",

"From":1620057540000,

"To":1620057600000,

"Series": ["Frequency", "Unbalance",

"Flag", "Voltage", "Current", "Active_Power",

"Reactive_Power", "Power_Factor", "Phi",

"Voltage_Harmonics_Complex",

"Current_Harmonics_Complex",

"Power_Harmonics"]}'

Listing 1: oZm post request example to retrieve 60s of data in aggregations of 200ms.

After this request execution, oZm returns a response in a JSON array form. The first position in the

array contains the header of the subsequent entries. As it can be observed below, the first position contains
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the timestamp for the current entry:

[

["Time", "Frequency", "Unbalance", "Flag", "Voltage", "Current", "Active_Power",

"Reactive_Power", "Power_Factor", "Phi",

"Voltage_Harmonics_Complex",

"Current_Harmonics_Complex",

"Power_Harmonics"],

[1620057540076, 50.0438, 0, false, [242.478], [0.017807], [-0.094611],

[1.92934], [-0.021912], [-92.8224],

[[-3.72777,242.393], [0.004717,0.043773], [-1.93943,-0.325571], ...],

[[0.007964,-0.00027], [-9.2e-05,0.000262],[0.000231,0.000135], ...],

[-0.095116, 1.1e-05, -0.000491, ...]

], [...], [...]

]

Listing 2: oZm returns a response in a JSON array form. The first element is the data header and the
following subarrays contain the data sorted according to the header.

3.2.2. Data preprocessing

The raw data obtained requires some preprocessing before applying pretreatment methods. At a first

glance, the preprocessing and pretreatment process may seem similar as both prepare the data to apply fur-

ther actions. However, preprocessing handles the extraction of harmonic features, filtering and preparing the

datasets that will be used further for the experiment, while pretreatment only applies the data enhancement

functions.

During the preprocessing stage, the following tasks were carried out:

1. Idle threshold. Electric devices have idle states when the main component is turned off. It occurs,

for example, when a certain setpoint of the temperature of the oven is established. To filter out this

kind of data, a fixed threshold of 0.2A is set to consider only current measurements above this value.

2. Data Homogeneity. The number of records in each dataset can vary for each electrical appliance

depending on the elapsed measurement time span. To avoid conflicts in the data management, a fixed

number of records is established for all datasets in order to create homogeneous 2D plots.

3. Harmonic Preprocessing. oZm computes complex harmonic values in Cartesian’s real and imagi-

nary form using the FFT algorithm, that is, ik = iak + jirk, where iak denotes the real part and irk

the imaginary part of a complex number ik for the k-th harmonic. However, since the management of
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absolute values and phase angles is more suitable, the calculation used instead is:

ik‖ =
√
i2ak + i2rk ; ϕk = arctan

irk
iak

(1)

One of the goals of this paper is to compare the different combinations of harmonic features. To

achieve this task, three different groups of harmonic features are considered (see Table 2):

• Current Harmonics (CH): Harmonics that represent the distortion of the current due to

nonlinear loads. The API of oZm provides the data with a timestamp and an array of 50 complex

values, each containing the real and the imaginary part.

• Active Power Harmonics (PH): The active power of each harmonic computed by the oZm.

It is obtained in array form, but contrary to the current harmonics, this array is composed

exclusively of real numbers using the expression Pk = VkIkcosϕk where Pk is the harmonic active

power, Vk the harmonic RMS voltage, Ik the harmonic RMS current and ϕk is the phase angle

between voltage and current of the k-th harmonic.

• Custom Harmonics Combination (CUS) A combination of three significant electric features

related to the k-th harmonic order was computed, resulting in an array of a total of 150 variables.

The three features [Ik, ϕk, Pk] are the current harmonic, phase angle between the current and

voltage waveforms and the active power harmonic of order k, respectively.

Type of Data Tag Description

Current harmonics ch Value of the first 50 current harmonics
Power harmonics ph Active power for the first 50 power harmonics
Custom harmonics
combination cus Combination of first 50 active power and current harmonics

Table 2: Combinations of features used in the model (the first 50 harmonics have been considered).

Linear loads are those that have a linear relationship between voltage and current. This means that

current and voltage share the same harmonic content for a given time span. Electric heaters and

incandescent light bulbs are an example of such loads. They normally produce a current waveform

that mimics the spectral content of the voltage. Under ideal conditions (perfect sinusoidal voltage), the

current does not include harmonic content. On the contrary, nonlinear loads change their impedance

with time which means that the generated current does not have a sinusoidal form. This implies

the presence of harmonic components in the current and, depending on the grid, also on the voltage
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supply waveform. Examples of nonlinear loads are laptops or smartphone chargers, which contain

voltage rectifiers to transform AC to DC voltage.

Although harmonics are the cause of power quality problems in the power grid, they also contain rich

information about the electrical signature of the appliances. In this sense, the oZm applies a Fourier

Transform to the voltage and current time series in order to analyze them in the frequency domain.

3.2.3. Data pretreatment

An important issue of this investigation is to compare different pretreatment functions to the data

acquired by oZm. This analysis requires involves a series of stages:

1. Group appliance by harmonic features: Extension of Harmonic Preprocessing step to highlight

that statistical measures will be computed over individual appliance feature sets (three feature sets for

each appliance).

2. Compute statistical measures: Several statistical measures (minimum, maximum, mean and stan-

dard deviation) are obtained from the pretreatment functions described in Table 2. These statistical

measures are computed for each appliance feature set separately, such that one statistical measure set

[ximin
, ximax

, x̄i, si] is obtained for each appliance feature set, and one additional set is generated for

the combined dataset.

3. Join appliance data by feature set: From this point, data of individual appliances will no longer

be required, but rather their aggregated measure. Therefore, three datasets with the features from

Table 2, ”cus”, ”ch” and ”ph” will be considered.

4. Compute pretreatment functions: Centering, scaling and transformation functions [23, 56] are a

set of pretreatment techniques [57] that use statistical and multi-variant methods for information ex-

traction and data interpretation. Besides the application of the pretreatment functions, the mean (x̄i),

standard deviation (si), minimum and maximum are transformed, such that the statistical measures

of one appliance are applied to the entire features dataset composed of combined appliance harmonic

features. The transformation process of the statistical measures consists in taking each appliance (one

by one) from the combined dataset and to apply the pretreatment function using its [ximin
, ximax

, x̄i,

si] values. Table 3 shows the transformation (pretreatment) functions considered in this study, where

x̃ and x̂ are the data after applying these pretreatment steps:
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Method Tag Formula

Raw raw xij
Centering scale center x̃ij = xij − x̄i
Autoscaling scale auto x̃ij =

xij−x̄i

si

Range scaling scale range / scale range ms x̃ij =
xij−x̄i

(ximax−ximin)
Pareto scaling scale pareto x̃ij =

xij−x̄i√
si

Vast scaling scale vast x̃ij =
(xij−x̄i)

si
· x̄i

si

Level scaling scale level x̃ij =
xij−x̄i

x̄i

Log transformation scale log x̂ij = log10 (xij)

x̃ij = x̂ij − x̂i
Power transformation scale power x̂ij =

√
xij

x̃ij = x̂ij − x̂i

Table 3: Transformation functions based on statistical parameters mean (x̄i), standard deviation (si), min (xmin) and max
(xmax). The original value xij (raw data) is transformed to x̃ij . Variable x can refer to current amplitude I, phase angle ϕ or
active harmonic power Pi.

(i) Raw data serve as a reference to compare results and determine if pretreatment has resulted in

any improvement.

(ii) Centering strategy consists of subtracting the mean value after which the data is centered at

the origin. It is focused on differences.

(iii) Autoscaling strategy is an extension of the previous method that additionally normalizes the

standard deviation of data to 1. It compares harmonics based on correlation, although as a side

effect, it produces inflation of measurement errors.

(iv) Range scaling strategy divides the values by the difference between the maximum and minimum

value. These additional range parameters, min and max, can also be substituted. Therefore, two

variants of range scaling function can be considered: ”scale range”, in which [ximin , ximax , x̄i, si]

are substituted, and ”scale range ms” which substitutes [x̄i, si] and uses the range values [ximin
,

ximax ] of the xij-th appliance.

(v) Pareto scaling strategy is similar to autoscaling, and reduces the relative importance of large

values, while the data structure is partially preserved. It is sensitive to large harmonic value

changes.

(vi) VAST scaling strategy is based on the Variable Stability procedure [58], which is focused to

harmonics with little fluctuations.

(vii) Level scaling strategy is similar to centering but it divides the values by the average value. It

is focused on relative response and increases measurement errors.
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(viii) Log transformation strategy, widely used to deal with skewed data [59], subtracts the mean

value from the data, similarly to the centering function to focus on the differences. Data for these

two function required mapping. The values of the variables related to the angle between voltage

and current of the CUS dataset were not mapped and the transformation was not applied due to

the homogeneity of the values which are well defined in the interval [−π, π]. Since this transforma-

tion suffers problems with zero and negative values, an affine transformation [60] was performed

over the rest of CUS features, in which values were mapped in a range from [minall values, 0] to

[0.01 ∗minpositive values,minpositive values].

(ix) Power transformation strategy has a similar effect to that of scaling-based transformation.

It brings the scale closer together by reducing the differences between the dataset values, such

that the large values become smaller in a larger scale compared to smaller values. As it presents

similar problems to log transformation, same range transformation solution was applied.

3.2.4. Dimensionality reduction methods

Before applying dimensionality reduction techniques, it is important to remark that there are 50 variables

for the datasets of current harmonic and power harmonic features, while there are 150 variables for the custom

combination of harmonic features. In the pursuit to comprehend the behavior of appliance harmonics data

and the pretreatment impact, the dimensionality is reduced to two dimensions (2D). Table 4 describes the

DR methods used our investigation:

• Principal Components Analysis (PCA) [61] is a multivariate technique for reducing the dimen-

sionality of large datasets that produces linear transformations of correlated variables by solving the

eigenvector/eigenvalue problem. The resulting variables are called principal components. Some au-

thors have used PCA as a preprocessing step before to apply machine learning methods [62], while in

other cases PCA is used to reduce the dimension of power features [20].

• Linear Discriminant Analysis (LDA) [63] is a dimensionality reduction method which finds an

optimal linear transformation that maximizes the class separability. The aim is to maximize the

between-class scatter and minimize the within-class scatter. The number of data items must be higher

than its original dimensionality.

• Fast Independent Component Analysis (FICA) [64] aims to find a linear representation of non-

Gaussian data so that the components are statistically independent, or as independent as possible.
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Such a representation seems to capture the essential structure of the data in many applications,

including feature extraction and signal separation.

• Partial Least Squares Regression (PLSR) [65] combines some ideas of principal component

analysis (PCA) and multiple linear regression strategies. Its objective is to derive a set of dependent

variables from a collection of independent variables (predictors), such that this prediction is performed

by extracting a collection of orthogonal components termed latent variables from the predictors that

have the highest predictive ability.

• t-Distributed Stochastic Neighbor (tSNE) [66] visualizes high-dimensional data by giving each

datapoint a location in a two- or three-dimensional map. The technique is a variation of Stochastic

Neighbor Embedding [67] that produces significantly better visualizations by reducing the tendency

to crowd points together in the center of the map.

• Uniform Manifold Approximation and Projection (UMAP) [68] is a novel manifold learning

technique for dimensionality reduction. UMAP is constructed from a theoretical framework based on

Riemannian geometry and algebraic topology. The UMAP algorithm is competitive with t-SNE for

visualization quality and arguably preserves more of the global structure with higher runtime perfor-

mance. Furthermore, UMAP has no computational restrictions on embedding dimensions, making it

viable as a general-purpose dimension reduction technique for machine learning.

Dimensionality Reduction Method Acronym TAG

Principal Components Analysis PCA pca
Linear Discriminant Analysis LDA lda
Fast Independent Component Analysis FICA fica
Partial Least Squares Regression PLSR plsr
Uniform Manifold Approximation and Projection UMAP umap
t-Distributed Stochastic Neighbor tSNE tsne

Table 4: Dimensionality Reductions Methods and tag used in figures and cluster plots.

3.2.5. Evaluation metrics

In order to quantify and compare the pretreatment methods described above, a clustering validity met-

ric will be applied to the results obtained from the dimensionality reduction methods. More specifically,

Silhouette Score [54] is a normalized validity index which computes the result based on the intra-cluster

and the inter-cluster distance, such that the score is bounded to a range [-1, 1]. Equation 2 describes how

Silhouette Score is calculated, being a the intra-cluster distance (the mean distance to all other points within
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the same cluster) and b the the inter-cluster distance (the mean distance to all other points in the nearest

cluster). Scores equal or below 0 indicate overlapping clusters, being −1 the worst score and 1 the best

one (non-overlapping). In fact, some studies have shown that this metric obtained the best results in a

comparison involving 30 different Cluster Validity Indexes [69].

SS(i) =
b− a

max(a, b)
(2)

It is important to note that the original range of values that Silhouette Score can take are in the range

[-1,1]. However, the initial score range [-1, 1] is normalised to [0, 100] in order to avoid negative numbers

and to prevent representation difficulties that could arise in charts such as box plots. This is why the legend

Silhouette Score is used with an asterisk (Silhouette Score*).

4. Results

This section presents the numerical and graphical results considering the methodology described above.

Numerical results are presented in table format, where rows (records) indicate the reduction method

and the pretreatment function, while columns (attributes) indicate the feature set and the appliance name

considered in each record. For example, Figure 4 presents the results obtained by LDA when it is applied

in combination with the pretreatment methods (from ”scale center” to ”scale powertransform”) consider-

ing current harmonics and using statistical measures according to the column header. In reference to the

columns, those corresponding to home appliances (from kitchen hood to oil heater) indicate that the pre-

treatment function used is applied taking as reference the statistical values of the corresponding appliance

of each column. Column labeled with ”self” indicate that each appliance within a dataset considers its own

statistical values during pretreatment and not a fixed values of one appliance, as in the case of columns from

”kitchen hood” to ”oil heater”. The statistical measures of datasets labeled ”global” are calculated for the

whole dataset and not for each appliance.
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Figure 4: LDA 2D reduction method applied to CH features set to which pretreatment functions and substitution of statistical
measures are applied.

Figure 5 shows all the numerical results obtained in our experiments. In order to facilitate the interpre-

tation of the results, a custom heat map is used, in which only the scores greater than the raw results are

highlighted. The orange color highlights the best global solution included in the results, green highlights

the best value per column, and blue highlights scores that improve the score from ”raw” row within 2D

reduction method and feature set selection. The colors blue and green are based on a palette of 10 shades,

with darker shades being used to represent higher values of Silhouette Score metric.

4.1. Impact of pretreatment functions on 2D dimensionality reduction methods

The application of pretreatment functions described in Table 3 yield better results compared to raw

data, as it can be observed in the box and whiskers diagram shown in Figure 6, where only the functions

outperforming the raw data results are displayed. The ”range ms” version of the Scale Range function is

the best for linear DR methods, while ”logtransform” performs well with nonlinear UMAP and tSNE.

Figure 7 is a modification of Figure 6 that shows the mean values for each pretreament function and

dimensionality reduction method. Overall, linear methods (LDA, PCA, FICA and PLSR) outperform the

results obtained by non-linear approaches (UMAP and tSNE). Figure 8 shows the average effect of the

pretreatment function in the interval [0,100], where 70.2 is the average score obtained for all the methods.

It is clear that the ”range ms” version of the Scale Range function outperforms to the other pretreatment

functions.
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Figure 5: Results that improve the raw score in terms of Silhouette Score*.
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Figure 6: Silhouette Score* obtained using different pretreatment functions and dimensionality reduction methods.

Figure 7: Average Silhouette Score* of pretreatment functions on dimensionality reduction methods.
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Figure 8: Global performance of pretreatment functions.

4.2. Impact of statistical measures

This section analyzes the relationship between appliance statistical measures and feature sets as well as

their joint influence on dimensional reduction methods. Figure 9 denotes that the reference measure ”global”

obtains good results, but not the best values, which means that this statistical measure improves the overall

results. However, the performance of ”self” is poor. By calculating the mean values to the previous data,

Figure 10 is obtained, which shows how ”CUS” feature set obtains higher results than ”PH” and ”CH”,

which is also the case when ”self” and ”global” statistical measures are utilized.

Figure 11 compares the average performance of dimensional reduction methods after applying statistical

measures substitution. In general terms, it is observed that the DR methods often show a clear decline

of results for the reference statistical measures ”self” and ”global”, although in the case of UMAP, the

results obtained by using ”global” are better than those obtained by other DR methods. Overall, the best

performance is obtained by LDA, while PCA, PLSR and FICA also obtain acceptable results. On the

contrary non-linear DR methods obtain a poor performance, especially tSNE.
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Figure 9: Effect of statistical measures in each type of feature set.

Figure 10: Impact of average appliance statistical measures substitution on feature set.

22



Figure 11: Impact of the DR method in different home appliances considering average values.

4.3. Impact of the type of feature set on 2D reduction methods

Figure 12 represents the result distribution of feature sets and dimensionality reduction methods. The

LDA method obtains good results for all feature sets with very prominent values for the custom combination

”CUS”. On the opposite side is tSNE, which obtains values crossing the 50 mark, signifying overlapping

clusters.

Figure 12: Impact of harmonic feature set over dimensional reduction methods.

23



A similar pattern is observed in Figure 13, which displays the average feature set performance. In

general, the performance of the three feature sets from best to worst is ”CUS”, ”CH” and ”PH”. It is worth

commenting that the application of FICA provides very similar results using the three feature sets.

Figure 13: Average impact of harmonic feature sets over the reduction methods. Three lines have a similar shape, which
resembles the average performance that offers each harmonic feature set.

4.4. Runtime analysis of dimensionality reduction methods

An important task when comparing different alternatives is to analyze the runtime required to compute

them. Table 5 presents the statistical values of datasets that improved raw results. It should be noted that

the times shown in Table 5 correspond to the times used by the different dimensionality reduction methods

considering the data recorded by oZm during 10-minute recordings. As can be seen, the times required by

the non-linear procedures (UMAP and tSNE) are significantly higher than the linear methods (LDA, PCA,

FICA, PLSR).
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MAX MEAN MIN StDev

CH

LDA 0.25 0.24 0.23 0.01
PCA 0.08 0.06 0.06 0.00
FICA 0.59 0.30 0.22 0.02
PLSR 0.13 0.06 0.05 0.00
UMAP 18.92 16.34 14.79 0.07
tSNE 59.57 52.76 47.56 0.29

CUS

LDA 0.60 0.55 0.53 0.00
PCA 0.31 0.23 0.20 0.00
FICA 1.37 1.05 0.91 0.01
PLSR 0.17 0.14 0.13 0.00
UMAP 18.00 15.95 15.34 0.09
tSNE 60.61 53.98 47.80 0.53

PH

LDA 0.25 0.23 0.18 0.00
PCA 0.11 0.06 0.05 0.00
FICA 0.34 0.27 0.22 0.01
PLSR 0.11 0.05 0.05 0.00
UMAP 29.28 17.09 14.92 0.36
tSNE 64.27 51.97 46.03 0.40

Table 5: DR Method execution time (in seconds) statistics calculated over dataset scores that improved raw results.

4.5. Clustering plots

In addition to the previous results, they are presented some interesting figures of the results obtained for

different home appliances, which associated colors are shown in Table 6. Each figure contains six plots, such

that the three images at the top show the three best performing combinations for the given DR method

and the feature sets, while the three images at the bottom of each figure contain the plots without any

pretreatment function applied, that is, the raw data. Feature set type, pretreatment function, appliance tag

and Silhouette Score* are included in these figures.

TAG: kitchen
hood

vacuum
cleaner

laptop tv fridge freezer oven grill toaster oil
heater

COLOR:

Table 6: Appliance color legend used in the plots.

4.5.1. LDA

As described in Figure 5, the best performing pretreatment combination marked in orange color, is

achieved with LDA DR method. Figures 14(d), 14(e), 14(f) show the dimensionally reduced raw data and

present overlapping of the clusters which is partially or completely solved with pretreatment. In particular,

Figure 14(e) shows a good score of 82.20 for untreated data using ”CUS” feature set, but it reaches a

very high score (99.27) after applying the pretreatment function scale range ms, as shown in Figure 14(b),
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which corresponds to the best score achieved. Figure 14(a) has a high score of 97.50, but presents cluster

overlapping between toaster and grill, which could be explained by the great distance of the laptop cluster

which affects the Silhouette Score calculation (Equation 2). Figure 14(c) shows a very similar score (97.40)

but without the overlapping problems observed in Figure 14(a).

(a) CH range ms vacuum cleaner 97.50 (b) CUS range ms kitchen hood 99.27 (c) PH range ms laptop 97.40

(d) CH raw 77.89 (e) CUS raw 82.20 (f) PH raw 73.50

Figure 14: DR Method: LDA. Silhouette score values mapped from [-1,1] to [0,100]. Figure labels contain Feature set, applied
function, statistical measures applied, score. Figures a,b,c are the pretreated version of Figures d,e,f.

4.5.2. PCA

The comparison of Figures 15(d), 15(e), 15(f) denotes that raw data processed using ”CH” feature set

offers a slightly better score (72.23) than the custom harmonic combination (70.52) and power harmonics

scores (66.82). However, after applying pretreatment methods, the scores are highly improved. In fact,

Figure 15(b) shows that ”CUS” scores 98.41, while ”CH” (Figure 15(a)) and ”PH” (Figure 15(c)) score

95.53 and 92.47, respectively. Interestingly, clusters tend to be grouped by the appliance type in the case of

using ”CH” dataset (see Figure 15(a)), since resistive appliances such as electric grill, oven, oil heater and

toaster are close to each other, while appliances with a motor such as kitchen hood and vacuum cleaner are
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close each other as it can be observed in the top left corner of the figure. Similarly, freezer and fridge are

very close.

(a) CH range ms laptop 95.53 (b) CUS range ms kitchen hood 98.41 (c) PH range ms laptop 92.47

(d) CH raw 73.23 (e) CUS raw 70.52 (f) PH raw 66.85

Figure 15: DR Method: PCA. Silhouette score values mapped from [-1,1] to [0,100]. Figure labels contain Feature set, applied
function, statistical measures applied, score. Figures a,b,c are the pretreated version of Figures d,e,f.

4.5.3. FICA

In the case of FICA, it is observed that current harmonic data without pretreatment (Figure 16(d)) scores

76.32, while the application of pretreatment with scale range ms function using vacuum cleaner statistical

measure improved the score to 96.13, although some cluster overlapping is observed in Figure 16(a). Power

harmonics (Figure 16(f)) provide more compact clusters than Current Harmonics using raw data. The

improvement can be noticed in the combined scattered data points of the toaster and other appliances

displayed in Figure 16(c). Laptop statistical measures together with range ms function seem to have a

positive effect on raw data, which scores 93.48 in the case of FICA DR method. The best pretreatment

performance is observed using ”CUS” dataset, such that using range ms function allows the score to increase

from 60.21 when raw data is considered (Figure 16(e)) to 97.98 with compact and well separated clusters as
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Figure 16(b) shows.

(a) CH range ms vacuum cleaner 96.13 (b) CUS range ms tv 97.98 (c) PH range ms laptop 93.48

(d) CH raw 76.32 (e) CUS raw 60.21 (f) PH raw 77.77

Figure 16: DR Method: FICA. Silhouette score values mapped from [-1,1] to [0,100]. Figure labels contain Feature set, applied
function, statistical measures applied, score. Figures a,b,c are the pretreated version of Figures d,e,f

4.5.4. PLSR

PLSR figures of raw data present similar cluster shapes to those of FICA DR method. Current harmonic

raw data scores 73.80 ((Figure 17(d)), while the score is 95.40 when vacuum cleaner statistical measures and

scale range ms are applied (see Figure 17(a)). Custom harmonics (Figure 17(e)) displays clusters with line

shapes and a score of 69.67, after pretreatment compact and separated clusters are obtained, with a score

of 98.08. Figure 17(b) shows the result of applying scale range ms function with kitchen hood statistical

measures. Improvement of power harmonics raw (Figure 17(f)) is made evident by the increase in score from

66.75 to 92.51. Figure 17(c) shows that scale range ms function with laptop statistical measures compacts

and separates data points.
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(a) CH range ms vacuum cleaner 95.40 (b) CUS range ms kitchen hood 98.08 (c) PH range ms laptop 92.51

(d) CH raw 73.80 (e) CUS raw 69.67 (f) PH raw 66.75

Figure 17: DR Method: PLSR. Silhouette score values mapped from [-1,1] to [0,100]. Figure labels contain Feature set, applied
function, statistical measures applied, score. Figures a,b,c are the pretreated version of Figures d,e,f

4.5.5. UMAP

In the case of UMAP, the scores for raw and pretreated data are not as high as for the previous linear

methods. Current harmonics raw score is 68.24 (Figure 18(d)) and provides some overlapping and scattered

clusters, while the application of scale range and a global statistical measure allows a scored of 86.35 to

be obtained. Custom combination raw score is 78.60 (Figure 18(e)), and pretreatment improves the score

(85.37) by applying Pareto function and global measures. The comparison of Figure 18(c) with Figure 18(f)

shows that power harmonics raw data obtains the worst score (53.02), but it is significantly improved by

using range function with global measure, providing a resulting score of 87.45.
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(a) CH range global 86.35 (b) CUS pareto global 85.37 (c) PH range global 87.45

(d) CH raw 68.24 (e) CUS raw 78.60 (f) PH raw 53.02

Figure 18: DR Method: UMAP. Silhouette score values mapped from [-1,1] to [0,100]. Figure labels contain Feature set, applied
function, statistical measures applied, score. Figures a,b,c are the pretreated version of Figures d,e,f

4.5.6. tSNE

TSNE and UMAP are similar methods and the results are very alike for the good and the bad results.

For example, Power harmonics raw data (see Figure 19(f)) provides a poor score of 45.30 (below 0 on the

original Silhouette range), but the application of scale range function with grill statistical measures improved

the DR process and helped in forming clusters with reasonable shapes and a score of 73.41, as Figure 19(c)

shows. Current harmonic raw data (Figure 19(d)) scores 50.79 and contains scattered cluster shapes all over

the plot. In this case, the use of scale range function with laptop measures improves the score to 75.12, but

clusters are not fully connected and compact (Figure 19(a)). Finally, ”CUS” dataset using raw data (Figure

19(e)) scores 65.58 and even though the score increases to 74.31 using pretreated functions, it presents more

point scattering and overlapping between clusters (see Figure19(b)).
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(a) CH range ms laptop 75.12 (b) CUS range global 74.31 (c) PH range grill 73.41

(d) CH raw 50.79 (e) CUS raw 65.58 (f) PH raw 45.30

Figure 19: DR Method: tSNE. Silhouette score values mapped from [-1,1] to [0,100]. Figure labels contain Feature set, applied
function, statistical measures applied, score. Figures a,b,c are the pretreated version of Figures d,e,f

4.6. Explained variance

Explained variance [70] is a metric for gauging the disparity between the output of a given method and

the actual data. Higher percentages of explained variance indicates a greater strength of association. Some

previous studies have used the explained variance to determine the performance of dimensionality reduction

methods. For example, in [71] the cumulative and normalized eigenvalues for PCA are calculated in order

to represent the percentage of explained total variance.

Figure 20 presents the sum of the explained variance considering the two first components for PCA and

LDA. The same heatmap criteria considered in Figure 5 is also used in Figure 20. As it can be observed,

these results show that the use of two components allows us to obtain a high value of explained variance.
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Current Harmonics (CH) Custom Harmonics Combination (CUS) Power Harmonics (PH)
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Figure 20: Explained variance considering PCA and LDA.

4.7. Application on public datasets

As discussed above, no public datasets have been found that provide pre-calculated harmonic content

using a sufficient sampling frequency. However, other datasets provide disaggregated data from appliances

recorded at high frequencies, which allows harmonics to be extracted. In particular, the proposed methods

are applied to the COOLL dataset [72], which contains 42 appliances of 12 types which were measured at

a 100 kHz sampling frequency, covering the whole time-cycle duration of the 50 Hz mains voltage (20 ms).

Each measurement lasts 6 seconds with a pre-trigger duration of 0.5 second (time where the appliance is off

before the turn-on) and a post-stop duration of 1 second (time where the appliance is off after the turn-off).

The data is provided in FLAC format, including voltage and current waveforms in separate files. It has a

configuration file that describes the contents of the track such as brand, model of the appliance, power of

the appliance, etc. It provides scaling factors for the recordings.

The results using COOLL dataset reinforce previous conclusions obtained using our dataset. Thus, Figure

21 shows that, the ”range ms” version of the Scale Range function obtains a good performance in most cases.

Further, on average, linear DR methods outperform the results obtained by non-linear approaches. Figure

22 shows that ”CH” and ”CUS” often outperform the results obtained by ”PH”. Considering that the

objective is to maximise the value of Silhouette Score*, it can be observed that the application of CUS with

LDA (using range ms) obtains a score close to 99. The slight differences found between the results obtained

by pretreatment and DR approaches using our experimental measurements and using the measurements

taken from COOLL could be due to the short duration of the measurements included in the latter dataset.
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Figure 21: Average pretreatment function impact on 2D reduction methods (COOLL dataset).

Figure 22: Impact of harmonic feature set over dimensional reduction methods (COOLL dataset).

5. Discussion and conclusions

This paper analyses the performance of data pretreatment techniques and dimensionality reduction

methods on energy consumption and power quality data measured by an advanced metering infrastructure in
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a real environment composed of different household appliances. Specifically, 8 data pretreatment techniques

and 6 dimensionality reduction methods have been implemented and compared on energy consumption

and power quality data measured by an advanced metering infrastructure considering the operation of

10 different household appliances. The data has been obtained considering long-term (10 minutes) data

recording strategy of set of household appliances. In addition, the procedure presented here has been

successfully applied with public databases containing power consumption profiles of a wide variety of devices.

The results obtained clearly show that the information provided by the raw data can be improved by using

pretreatment techniques and dimensionality reduction methods. In particular, the results obtained by the

range ms function obtains the best results among the eight pretreatment methods considered here. As for

the dimensionality reduction methods, it is observed that linear approaches outperform non-linear ones,

with Linear Discriminant Analysis (LDA) obtaining the best overall result.

The methodology presented in this article, as well as the results obtained with real data from different

household appliances, have important implications for the purposes of NILM. In particular, this research

contributes to the analysis and development of advanced dimensionality reduction techniques and to the

detection of possible linear dependencies between variables. A contribution of great interest is the analysis of

current and active power harmonics to carry out the process, such that it has been shown that the customised

combination of active power and current harmonics can be successfully employed to obtain improvements in

the quality of the solutions found. The results obtained can be quite useful for any researcher interested in

disaggregating information contained in voltage and current signals of household appliances or any other load

consuming electricity. Moreover, when evaluated on well-known datasets, the suggested strategy performs

well in terms of standard measures and time complexity and may be utilized with any NILM classification

algorithm. An important limitation of this study lies in the fact that some appliances include several internal

loads (e.g. washing machines include water drainage pumps, heating elements, motors, etc.), reason why in

the future it is planned to study these type of appliances.
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