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Abstract  

Depending on their type and variety, horticultural products are injured by cold when 

this follows a period of exposure to a range of temperatures above their freezing point. 

These lesions are a result of tissues having been weakened rendering them unable to 

conduct normal metabolic processes. Cold stress produces physiological and 

biochemical alterations and cellular dysfunctions in response to cooling that negatively 

affect their quality and frequently result in products unsuitable for sale. Currently, 

evaluation of cold damage is usually carried out qualitatively by experts. This is not 

particularly accurate and, above all, depends on the observer and is therefore subjective. 

This study developed an application for a smartphone that automates this process and 

applied it to one of the most sensitive vegetables, zucchini or courgette. The results 

provide qualitative values and avoid all subjectivity. To demonstrate their validity, the 

results were compared to those of the standard method. They were also compared 

among distinct varieties allowing thresholds of hue and saturation settings to be adapted 

to these different varieties. These settings allow users to calculate damage in a more 

reliable manner depending on the specific variety analysed. This application allows for 

new perspectives in the field of evaluation of cold damage to fruits and vegetables in 

general and in particular zucchini. 
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1. Introduction 

Cold storage of fruits and vegetables is the primary tool to maintain the quality of 

harvested horticultural crops over time (Aghdam and Bodbodak, 2014, Belay et al., 

2018). A low temperature reduces the rate of many metabolic processes responsible for 

the deterioration and loss of quality for vegetables and fruits (Bentini et al., 2009,Rao, 

2015). However, low non-freezing storage temperatures can shorten post-harvest life 

and cause damage leading to loss of quality and preferred appearance. For certain 

horticultural products, being subject to low temperatures or a long period of cold 

storage implies that they are damaged owing to their susceptibility to a syndrome 

known as chilling injury (Sevillano et al., 2009). 

 

Chilling injury refers to a syndrome that involves the expression of a series of 

physiological events that result in a series of characteristic and recognisable symptoms 

that are difficult to accurately assess. The exact type and extent of the syndrome varies 

with the species, cultivar, cold storage conditions, and other factors including cropping 

conditions; thus, it is difficult to identify a single definition that encompasses all 

damage and all products. Some of these changes occur at the cellular level such as 

changes in membrane structure, plasmolysis of cells, and increased rate of leakage 

(Fernández-Trujillo and Martínez, 2012, Kratsch and Wise, 2000). ther changes imply 

an altered metabolism such as abnormal increases in ethylene production, high levels of 

compounds resulting from anaerobic respiration, and other abnormal metabolites 

(Megías et al., 2015). As result of oxidative damage that is an early response to cold 

exposure, some of these result in an accumulation of reactive oxygen species as malonyl 

dialdehyde (Megías et al., 2016). Damage to the fruit surface is among the most notable 

changes affecting the external appearance of the fruit. This external damage includes 

pitting, large sunken areas, discolouration, translucent water-soaked spots, and water-

soaked areas and deep wounds that can reach sub-epidermic tissues (Fernández-Trujillo 

and Martínez, 2012). These macroscopic changes are commonly used to assess the 

extent of damage. However, evaluation is completed visually, with consequent 

subjectivity that implies errors in the assessment. In nearly all post-harvest studies 

where cold damage must be assessed, it is evaluated by estimating the affected fruit 

surface subject to pitting (Simón et al., 2012; Fernández-Trujillo and Martínez, 2012; 

Megías et al., 2015). The study of cold damage is important to valorise the species of 

https://www.sciencedirect.com/science/article/pii/S1537511019301096#bib4
https://www.sciencedirect.com/science/article/pii/S1537511019301096#bib4
https://www.sciencedirect.com/science/article/pii/S1537511019301096#bib5
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fruits and vegetables that are the most resistant to damage, which has commercial 

implications. Since it depends on the value of the product that this can be stored (alone 

or jointly with others) while maintaining a temperature of commitment between the 

ranges of all varieties stored (Table 1) and always above the freezing temperature. 

Moreover, knowledge of temperature limits allows transport costs to be saved since the 

most expensive and most cold-resistant products can share cooler storage temperature 

areas with other less valuable products. Tomatoes, for example, need storage 

temperatures lower than those of zucchini and tomatoes are more expensive than 

zucchinis. Thus joint transport of these two products, it is usually prioritised towards the 

temperature conditions of the tomato, but all have a requirement to arrive at their 

destination with optimal quality for sale and consumption. 

 

Tabla 1. Chilling injury of fruits and vegetable with temperature (Gross, Wang, & 

Saltveit, 2009) (Cantwell, 2001). 
Fruit and 

Vegetable 

Highest 

Freezing 

Temp. 

(°C) 

Critical 

Temp. 

(°C) 

Range for 

optimum 

storage 

conditions 

(ºC) 

Chilling injury 

Asparagus −0.6 −0.5 0 to 2 Loss of sheen and glossiness and greying of 

tips are among the symptoms. 

Avocados −0.9 to 

−0.6 

according 

to variety 

4.5 to 13 5 to 12 Greyish-brown discolouration of flesh is an 

internal chilling injury. Irregular patches 

blackening the skin (<3 °C) are considered 

as external chilling injury. 

Bananas −0.8 11.5 to 

13 

13 to 14 Cultivar, maturity, condition of the fruit, 

temperature, and duration of exposure. 

Affect the chilling injury for <13 °C. 

Subepidermal discolouration seen as brown 

or black streaks in a longitudinal cut, a dull 

or greyish (smokey) hue on ripe fruit, and 

failure to ripen are among the symptoms. 

Beans −0.6 to 

−0.7 

according 

to variety 

7 5 to 7.5 The entire bean is discoloured (opaque) at 

<5 °C. Pitting on the surface and increased 

water loss are fewer common symptoms. At 

5–7.5 °C, there is apparition of some 

discrete rusty brown spots. 

Carrot −1.4 0 0 to 1 No sensitivity of chilling and necessity of 

storage in as much possible of cold without 

freezing. 

Cucumbers −0.5 7 10 to 12.5 Duration of exposure, temperature, cultivar, 

growing conditions, and storage 

environment affect sensitivity. Chilling 

injury are pitting, water-soaked spots, decay. 

Eggplant −0.8 7 10 to 12 Storage for 6–8 days at 5 °C cause chilling 

injury. External symptoms such as surface 

pitting and scald take place. 

Kiwifruit −0.9 0 0 Symptoms such as apparition of a ring or 

zone of granular, water-soaked tissue in the 

outer pericarp at the style end of the fruit 

accompany chilling of kiwifruits at 

https://www.sciencedirect.com/science/article/pii/S1537511019301096#bib15
https://www.sciencedirect.com/science/article/pii/S1537511019301096#bib15
https://www.sciencedirect.com/science/article/pii/S1537511019301096#bib7
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Fruit and 

Vegetable 

Highest 

Freezing 

Temp. 

(°C) 

Critical 

Temp. 

(°C) 

Range for 

optimum 

storage 

conditions 

(ºC) 

Chilling injury 

temperatures near 0 °C. Development of 

diffuse pitting and a dark and scald like 

appearance on the skin are other symptoms. 

Curing alleviated symptoms of chilling 

Injury. 

Onion   0 Freezing injury is caused at storage at <−4 

°C. 
- Mature 

bulbs, dry 

-0.8   

- Green 

onions 

-0.9   

Pepper -0.7   Surface pitting, water-soaked areas, decay, 

and discolouration of the seed cavity are 

among the symptoms. 

- Green   8 to 10 

- Red   5 to 7 

Potatoes 

 

−0.8 3  

 

At 1–2 °C, there is a possibility of internal 

mahogany browning. At 3–4 °C, there is 

typically an increase of reducing sugar 

levels that are not reversible with 

reconditioning. 

Mahogany browning, sweetening. 

- early crop   10 to 15 

- late crop   4 to 8 

Tomatoes −0.5  

 

 

 

Chilling injury including pitting, non-

uniform ripening, and storage decays are 

visual symptoms. 

With ripeness appear water soaking and 

softening, decay, poor colour and Alternaria 

rot. 

- Ripe   19 to 21 

- Mature  8–10 13 to 21 

- green  10–13  

Zucchini  0 5 to 10 At 0 °C, development of water-soaked areas 

in sliced zucchini (chilling injury). 

At 5–10 °C to 50 °F, there is brown 

discolouration which increases with storage 

duration 

 

Recently, there has been widespread transportation of fruits and vegetables throughout 

the world and with the increase in globalisation, fresh edible products of limited 

duration are being exported and consumers appreciate both the quality and the price. 

 

The worldwide production of zucchini has recently increased. It increased by 9 % in 5 

years from 2012 to 2017, stabilising in 2018 at 27 million tonnes. China is the world's 

largest producer, but China it does not export fresh zucchini, as northern China supplies 

the zucchini market in summer, while in winter supply comes from the south of the 

country. Spain and Italy produce 66 % of the zucchini in the whole of the European 

Union (EU), almost all produced in greenhouses (Márquez et al., 2011). For Spain, 

annual production is estimated at 530 million kg, the major part of which is for export 

using cold stores. The recommendations of temperature for zucchini range between 5 

and 10 °C (Gross et al., 2009); however, developed tests showed that a temperature of 8 
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°C can cause considerable damage depending on the variety (Megías et al., 2016). 

Zucchini chilling injury assessment generally is performed using a visual ranking from 

0 to 5, where the scale increases as the severity of the damage increases. Thus, zero 

denotes no pitting, whilst 5 (or the highest value in the scale) denotes a level of damage 

so severe that the fruit has already lost all its commercial value. In general, most studies 

use a scale for the damaged surface. This scale is typically applied to several fruits and 

an average is calculated, thus obtaining a chilling injury assessment for a lot (Crisosto, 

Valero, & Slaughter, 2007). Although this method is widespread, it presents serious 

limitations because it depends on the ability of the observer, and therefore it is subject 

to an inevitable bias. 

 

Potential injury imposes a limit on minimum temperatures and duration of cold storage. 

While considerable information regarding the symptom development and prevention, 

most sensitive commodities, and influence of genetic conditions is available, a rapid, 

accurate, and objective assessment method is at present not available. Moreover, the 

available realised studies are also based on visual valuations of an expert and 

accordingly are also subjective and observer dependent. 

  

The use of artificial visual systems has proved its validity as technical smart support for 

the detection of damage in fruits and vegetables post-harvest (Sun, Tang, He, Zou, & 

Xiong, 2016). Images are an important source of data and information in agriculture 

science as they provide technical support in different applications such as the inspection 

of quality in form, size (Clement et al., 2012, Clement et al., 2013), and state of 

maturity (Mhaski, Chopade, & Dale, 2015). Damage and defects occurring during the 

transportation and storage of agricultural products have been detected as well (Wang, 

Tian, Li, & Li, 2014). Some attempts have been made to avoid subjectivity in chilling 

injury assessment using image analysis, but thus far, these methods are either slow or 

too complex and also require equipment not readily available. Simón et al. (2012) 

showed that an image processing software for calculating the percentage of damage in 

surface of vegetable was a useful and precise tool for chilling injury assessment 

(WinDias - http://www.plant-image-analysis.org/software/windias), but it requires 

previously damaged areas to be marked on the image and this takes considerable time. 

At present, hyperspectral imaging has been widely researched in food and agricultural 

products as a tool for quality evaluation or defect and disease detection. El-Masry, 
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Wang, and Vigneault (2009) successfully distinguished between chilling-injured apples 

and normal apples using hyperspectral imaging and neural networks, though this is a 

complex methodology. In addition, a relevant study demonstrated the potential of a 

hyperspectral imaging technique combined with feature selection methods and 

supervised classification algorithms for online detection of chilling injury in cucumbers 

(Cen, Lu, Zhu, & Mendoza, 2016). 

 

The use of image processing on mobile devices has proven useful in many agricultural 

related applications (Aquino et al., 2017, Aquino et al., 2018, Cubero et al., 2018, 

Massah and Vakilian, 2019). However, a method that is inexpensive and readily 

implemented is needed for the problem under consideration here because to date 

classification has been completed only by an expert. Therefore, the objective of the 

work reported here was to develop an application embedded in a mobile Android 

smartphone to determine the extent of cold-chilling injuries in zucchini to limit the 

subjectivity of the method based on visual valuation. 

 

2. Methodology 

To automate the study of injuries on the surfaces of fruits and vegetables, it was 

necessary to undertake an image acquisition process, largely customised, through a 

charge-coupled device (CCD) sensor such as that typically installed in commercial 

smartphones. Figure 1 shows a block diagram of the methodology, and Fig. 2 shows 

this customised and optimised procedure to analyse a specific variety with images. 
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Fig. 1. Block diagram of the methodology to calculate damages. 

 

Fig. 2. Methodology for calculating chilling injuries. 
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The smartphone used in this work was a Samsung Galaxy S5 G900F. The built-in 

camera was a 16 MP (f/2.2, 31 mm, 1/2.6″, 1,12 μmm). When used to extract frames 

from the video capture, the resolution used was 720 p at 30 fps. The format of the stored 

images was PNG and the format of the video was mp4. Decoding the frame into a Java 

ByteBuffer with the Open GL command glReadPixels took less than 8 ms on the 

smartphone. 

 

2.1.  Stage 1: adjustment according to variety  

Depending on the zucchini variety an adjustment of the hue and saturation parameters is 

needed (see Fig. 2). A threshold is selected to highlight the parts of the image that are 

required for the following analysis, that used for apple sorting (Mizushima & Lu, 2013) 

or in vegetation detection in herbaceous crops (Torres-Sánchez, López-Granados, & 

Peña, 2015). Fig. 2(b) shows the interface of the APP with an example of a selection of 

hue and saturation of the analysed samples. As the green hue depends on the specific 

variety of zucchini, this selection allows one to adapt the application to a specific 

variety. Once the threshold is obtained, the image is ready for analysis. 

 

2.2.  Stage 2: calculation 

The calculation stage determines the area damaged by chilling injuries, see Fig. 2(c). 

This allows to calculate the percentage of injury directly. The analysis is completed by 

means of points of interest (grouping of pixels with potential injuries) and by detecting 

regions of damage. 

 

2.2.1. Analysis of edges 

This part of the computation is based on the Canny edge detection algorithm 

(McIlhagga, 2011) to define areas of interest that may point to damaged surfaces (Fig. 

3). According to the Xin, Ke, and Xiaoguang (2012) efficient edge detection operations 

can be achieved by means of the following: 

 

a. Noise reduction. Edge detection in images is susceptible to noise thus Gaussian 

filters are used. 

b. Identifying the intensity gradient of the image. A filter with a Sobel kernel is applied 

to the image obtained from the previous stage. 

https://www.sciencedirect.com/science/article/pii/S1537511019301096#fig2
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c. Non-maximal suppression. Once the gradient of the magnitude and direction is 

obtained, an exploration of the whole image is necessary to eliminate non-desired 

pixels that do not correspond to the edge. The procedure is checked pixel-by-pixel to 

obtain a local maximum in its neighbourhood in the direction of the gradient. 

Following this process, a binary image with ‘thin edges' is obtained. 

d. Hysteresis thresholding. This step allows for the identification of pixels that 

corresponded to edges and those that do not. 

 

Fig. 3. Analysis of the region of interest on which the analysis of points of interest is later applied. 

 

2.2.2. Points of interest analysis 

The points of interest analysis is based on the Hessian Affine algorithm (Mikolajczyk & 

Schmid, 2004). The points marked in the image are visible to the user as shown 

in Fig. 4 (each spotted area corresponds to five pixels, a decision based on previous 

experience). With the resulting points, the percentage of the damaged surface is 

calculated. Figure 4 shows the points marked as of interest from the analysed surface of 

a zucchini. The points marked in red spots denote injury; the region detection described 

in the previous section avoids computation of possible spots that fall out of bounds. 

 

Fig. 4. Image obtained after calculating the points of interest and area of the example image. 

 

2.2.3. Stage 3: measurement 

Finally, a combined processing is applied where the previous analysis was now treated 

jointly to obtain a resulting output such as that shown in Fig. 4. The percentage of 

damage on a zucchini is calculated computing the number of pixels spotted in red and 

that are located inside the region of interest marked by the edge detector. 

 

https://www.sciencedirect.com/science/article/pii/S1537511019301096#bib25
https://www.sciencedirect.com/science/article/pii/S1537511019301096#bib25
https://www.sciencedirect.com/science/article/pii/S1537511019301096#fig4
https://www.sciencedirect.com/science/article/pii/S1537511019301096#fig4
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The analysis of the damages from which suffer the Zucchini is calculated for the total 

area as shown in Fig. 8. The damaged regions are localised using the edge detection 

algorithms for the processed image (to eliminate the background part which does not 

correspond to Zucchini). The image is analysed and the pixels with other than black 

colour are obtained knowing that the total pixels contained in the Zucchini are counted 

without including the obtained points. When the points of interest (red points in Fig. 7) 

are obtained, the 5 pixels of known radius (5) and area (PI × 52) form a circle for which 

the area can be calculated. When the regions injured by cold, a counting analysis of 

injuries per colour is applied within these regions (where red points appear). The total 

area obtained is calculated and the percentage of the area holding the circles. Fig. 5 

shows a block diagram of the methodology to calculate the percentage of injuries as 

summary. 

 
Fig. 5. Block diagram of the methodology to calculate the percentage of injuries. 
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Fig. 6. Android APP architecture. 

 

 

Fig. 7. Images of the reconstruction of the surface surrounding the zucchini. 
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Fig. 8. Graphical result examples obtained from the APP (all the photos correspond to the same sample- 

Sinatra 1). 

 

2.2.4. Homography 

The computation of damage is completed using a set of stacked pictures or a sequence 

of frames (if the video function is selected to acquire the data). The application 

composes the homography or stitch and analyses it. Brown and Lowe (2007) described 

image stitching or homography as a problem that has been solved in different manners. 

Image stitching is defined as the task of combining overlapping images to form a single 

large image (Wang, Reimeier, & Wolter, 2016). Image stitching methods are divided 

mainly into two types; a direct method that uses image data and minimises pixel-to-

pixel similarities or a feature-based method that attempts to match extracted features 

from the images. For the feature-based method, the overlapping parts can be 

automatically detected from the correlation of images. The next section describes how 

homography was efficiently implemented in the smartphone APP. 

 

The transformation of the homography is based on the following equations: 

11 ++

++
=

++

++
=

hygx

feydx
Y

hygx

cbyax
X  (1) 
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Where X and Y are the coordinates to be calculated in the second system of references, 

given the coordinated x,y of the first system of references in function of 8 

transformation parameters a, b, c, d, e, f, g, h. Moreover, having these 8 unknowns, 4 

points are required on minimum for each system. Equation (1) is transformed to a 

matrix (Eq. (2)) allowing the calculation of all the transformation parameters:  
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   (8) 

 

Where : 

a: the fix scale factor in the direction X with Y scales without changes. 

b: the factor of scale in direction X proportional to Y in distance from the origin.  

c: the translation of the origen in the direction of  X. 

d: the scale factor in direction Y proporcionally to X in distance from the origin. 

e: the fix scale factor in the direction Y with scale X without changes. 

f: the translation of the origin in the direction of  Y. 

g: correponds to the proportional factors of scale X and Y in fucntion of X. 

h: correponds to the proportional factors of scale X and Y in fucntion of Y. 

Once calculated, these 8 parameters can be easily used to transform any point from the 

first system to the second one. 

 

3. Android application architecture 

Computation of damage is completed using a set of stacked pictures or a sequence of 

frames (again, if the function video is selected to acquire the data). Image stitching is 

defined as the task of combining overlapping images to form a single large image 

(Wang et al., 2016). Image stitching methods are divided mainly into two types; a direct 

method that uses image data and minimises pixel-to-pixel similarities or a feature-based 

method that attempts to match extracted features from the images. For the feature-based 
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method, the overlapping parts can be automatically detected from the correlation of 

images. This section describes how the method was implemented in the smartphone 

application (APP) and is devoted to a complete description of the video acquisition step. 

A schematic diagram of the process whereby the smartphone obtains a stream of images 

from a CCD sensor is shown in Fig. 6. Images are saved one by one as the user operates 

the camera function. All the images are then linked using the well-known technique 

homography or image stitch (Szeliski, 2006) (Mikolajczyk & Schmid, 2002). The 

number of images depends on the speed of the rotation and the time of the exposure. 

The set of images linked using the stitch is the final PNG image used to calculate the 

damages. The images are moved to the HSV colour space with light independency. 

 

The smartphone only applies a stitch to a pair of images with a minimum number of 

common points, so the overlapped parts are avoided. The interesting points of the 

images are tagged using the algorithm of Mikolajczyk and Schmid (2002). E.g. If two 

images have a lot of common key points mean that have a lot of surface in common, so 

the images will be discarded by the algorithm. In a sequence of PNG images, only when 

the common key points are reduced the images are selected by the algorithm, and then 

they will be linked using those key points as reference to “link” the surfaces. Therefore, 

the number of images is not considered by the APP. As Fig. 6 shows, each point of the 

surface of the zucchini can be observed from different perspectives as it is rotated (see 

the perspective projection matrix in Fig. 6 that shows how the coordinates can be 

interpolated). To solve the issue that the cameras used do not provide information 

regarding the depth coordinates of the pixels under study, equations had to be modified 

using planar scenes. 

 

The processing, therefore, works on a given frame F0(x) and it is our aim to find where 

the F1(x) pixels of interest are located and calculate how closely related are these two 

frames. From this we can calculate the overlap area (as expressed in Fig. 6). This 

formula provides the overlapping between two images. In this case, instead of 

processing the whole group of images with the stitch procedure, the APP selects the two 

images that are related sharing the minimum overlap area. 

 

Once the images that provide larger areas of overlap are discarded, the BoofCV library 

(http://boofcv.org/) was used, specifically its implementation to obtain the composed 
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image (https://github.com/lessthanoptimal/BoofCV). The APP is used to compose the 

image (Fig. 6) and a render script was used (Guihot et al., 2012) using a high-

performance library for Android to move computation to the GPU of the device. For the 

APP, the BoofCV code was modified to send the images to the GPU. Once the stitch is 

composed, the APP has the completed image and it can be processed. This surface is 

processed with the cited algorithms (border detection and points of interest) which 

calculate the number of pixels inside of damaged areas due to cold. Then the total 

number of pixels of the surface is computed and the damaged ratio is calculated. Figure 

6 shows the image composition ready to be analysed for computing chilling injuries. As 

depth values cannot be sensed due to the nature of the camera used, the calibration 

matrix K is created using f as the focal distance, the z-buffer is ignored. In Fig. 2 can be 

seen the calibration matrix K where the z-buffer is ignored. 

 

As shown in Fig. 7, there are different steps in the homography procedure. The first (on 

the left) is the pre-processed image to eliminate the background that is not zucchini, as 

the homography combines all the images including the background. The second consists 

of the analysis of region detections, and the third is colour characterisation. The final 

step is that upon which the analysis is applied (it combines all the techniques). Figure 8 

shows the process of several partial views of the same zucchini and their partial 

analysis. 

 

4. Data 

The developed methodology was applied to four varieties of zucchini 

(Sinatra, Atlantis, Musa, and Natura) and for 16 to 20 samples of each according to the 

variety. Thus, 10 fruits are analysed after 7 day-period and another 10 fruits after 14 

day-period. When 16 fruits in a variety are shown instead of 20, it is because 4 fruits 

were discarded in the 14-day period because they had such a high damage that they are 

not worth evaluating. These varieties are shown in Fig. 9. The analysis process was 

completed twice on the samples, after 7 d and after 14 d, but always while maintaining a 

temperature of 9 °C. 

 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/musa
https://www.sciencedirect.com/science/article/pii/S1537511019301096#fig9
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Fig. 9. Varieties of zucchini used. 

 

5. Results and discussion 

In general, most studies use a scale as described in Table 2, the standard method, where 

0 denotes 0 % of the surface area is pitted or damaged and 5 denotes that more than 50 

% of the surface is damaged. This scale is typically applied to several fruits and the 

average is calculated, thus, obtaining the chilling injury assessment of a lot (Crisosto et 

al., 2007).  

 

Table 2. Scale for chilling injury evaluation in vegetables (standard method). 

Scale Classification Surface damaged (%) 

0 No pitting or damage 0 

1 Very slight 1-5 

2 Slight 6-15 

3 Moderate 16-25 

4 Severe 26-50 

5 Very severe > 50 

 



17 

 

Our samples were assessed using a visual revision of an expert (standard method, 

previously described) and the APP. Figure 10 shows both results at 7 d for the 40 

samples. Figure 11 shows both results at 14 d for 29 samples (the others were lost, as 

the damage was too severe for evaluation). Table 3 presents only the differences in the 

classification of the samples according to the method used. 

 

 

Fig. 10. Comparison between the APP and classical method of the injury percentage after 7 days of 

conservation in cold (% of chilling injury).  
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Fig. 11. Comparison between the APP and standard method of the injury percentage at 14 d of storage in 

cold (% of chilling injury). 

 

Table 3. Results of the samples with differences in classification. 

Sample day APP Classification Classical Classification 

Sinatra-1 7 15.78 Moderate 10 Slight 

Sinatra-7 7 21.7 Moderate 10 Slight 

Sinatra-8 7 37.41 Severe 15 Slight 

Musa-5 7 17.41 Moderate 15 Slight 

Musa-6 7 17.30 Moderate 10 Slight 

Natura-2 7 50.91 Severe 60 Very Severe 

Natura-5 7 16.13 Moderate 12 Slight 

Sinatra-14 14 50.73 Very Severe 45 Severe 

Atlantis-12  14 16.09 Moderate 15 Slight 

Atlantis-13 14 20.93 Moderate 10 Slight 

Atlantis-14 14 16.75 Moderate 10 Slight 

Atlantis-15 14 48.54 Severe 50 Very Severe 

Musa-15 14 56.30 Very Severe 50 Severe 

Musa-16 14 18.43 Moderate 15 Slight 

Natura-12 14 65.20 Very Severe 35 Severe 

Natura-13 14 74.74 Very Severe 40 Severe 
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It can be seen that, in general, the standard qualitative method underestimates the 

percentage of injuries and has significant variability. However, the quantitative 

developed method values are not considerably different from those of the standard 

method, confirming its validity, with a major difference of 7% in one of the studied 

varieties (see Table 4). It is interesting to note that although the values are not that 

different, in six of the 40 cases there is a change to a category of a more severe state, 

and in one to a less severe state, following the classification of injuries by the rules 

presented in Table 2. For three of the varieties of zucchini, only when the injuries are 

severe is the classification maintained. In fact, for the classification presented in Table 

2, it can be seen that the expert never classified as moderate any zucchini after 7 days of 

conservation. If the data are analysed by variety, it is observed that two varieties, 

Sinatra and Atlantis, would have significant changes in their results according to the 

APP or the standard method, Table 4. So, for an overall assessment of varieties, e.g. for 

genetic studies, the chilling injury of this two varieties assessed would turn out to be 

different. 

 

Table 4. Summary of commercial evaluation of four varieties of zucchini at 9º C and stored up to 7 days: 

APP vs. classical method. 

7 days Sinatra Atlantis Natura Musa 

 APP Classical APP Classical APP Classical APP Classical 

Mean 25.67 18.50 7.37 5.80 11.04 8.50 31.69 32.00 

Difference 7.17 1.57 2.54 -0.31 

Classification Severe Moderate Slight Very slight Slight Slight Severe Severe 

SD 12.02 12.48 3.12 4.05 4.33 4.74 20.60 24.42 

 

When the evaluation of chilling injuries was completed after 14 d, as seen in Table 5 

and Fig. 11, it was found that the APP in general provided results that were more severe 

than those of the standard method, as occurred in eight of the 29 evaluations, and only 

one of less severity, although with a very slight variation. As shown in the classification 

of Table 4, they do not affect the evaluation of commercial quality, the range of the 

category being so wide it is retained in all the cases. 

 

Table 5. Summary of the commercial evaluation of four varieties of zucchini at 9º C and stored up to 14 

days: APP vs classical method. 

14 days Sinatra Atlantis Natura Musa 

 APP Classical APP Classical APP Classical APP Classical 

Mean 23.53 21.80 24.53 20.83 23.24 19.17 62.87 59.29 

Difference 1.73 3.69 4.07 3.58 
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Classification Moderate Moderate Moderate Moderate Moderate Moderate Severe Severe 

SD 22.68 23.97 14.27 16.25 18.13 16.56 12.24 18.35 

 

Finally, to compare the results of the APP and the standard method, all samples were 

statistically analysed together, without considering variety. After 7 d, in the case of the 

samples observed using the APP, the risk to reject the null hypothesis H0 (the sample 

follows a normal distribution) while it is true is less than 0.58%, and for the standard 

method, the risk to reject the null hypothesis H0 while it is true is less than 0.09%. First, 

it was observed that neither the observations of the APP nor those of the standard 

method follow a normal distribution. Similar results were obtained at 14 d, and with all 

data together. 

 

Moreover, the observations were analysed using the Wilcoxon signed-rank test to 

determine if they follow the same statistical distribution, because the normal 

distribution of samples cannot be assumed. As the computed p-value is less than the 

significance level α = 0.05, one should reject the null hypothesis H0 (the two samples 

follow the same distribution) and accept the alternative hypothesis Ha (the distributions 

of the two samples are different). These same results were obtained for the results after 

14 d, and for a joint analysis of all the data, after 7 and 14 d. 

 

If the histograms of the samples are represented at 7 d as seen Fig. 12, it was observed 

that in general there is a higher concentration of data in the less severe values using the 

standard method. If the data are examined at 14 d, as can be seen in Fig. 13, the same 

pattern is observed. In short, the standard method has more data frequency at less severe 

values.  

 

This, in our opinion, may be a sign of the observer's subjectivity using the standard 

method. For example, when observing zucchini with few cold injuries, it is possible that 

it tends to present a less damaged surface than actually exists, or that even as the expert 

knows that it is evaluating the same variety, it is possible to be influenced by the result 

of the previous evaluation, i.e. comparing the observation of that sample with the result 

of the previous sample without intending to do so. 

 



21 

 

 

Fig. 12. Histograms of data observed using the APP and classical methods at 7 days. 

 

Fig. 13. Histograms of data observed using the APP and classical methods at 14 days. 

 

 

6. Conclusion 

Cold injury must be studied specifically for each product to ensure a condition suitable 

for its market. In particular, zucchini is considered quite sensitive. Thus far, the method 

validated and accepted for assessment has been visual evaluation by an expert who 

classifies the cold-injured surface according to a table of qualitative values, specifically 

six categories, ranging from no pitting or damage (0%) to very severe (>50%) damage. 

An APP developed for a smartphone has been shown to be adequate for this assessment 

as its results vary only slightly in absolute terms from those using the standard method. 

Showing total objectivity, it can adjust the tonality to a specific variety of zucchini 
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which allows for better adaptation to a specific product. Above all, it is an objective 

method. The APP was developed to serve as a quantitative method and has proven to be 

very important in the assessment of chilling injury during the early stages, within 7 d, 

where small variations can influence treatments in the case of marketing or dismissal of 

varieties in studies of plant breeding. Use of the APP via a smartphone allows for easy 

application at low cost, and for standardisation of evaluation of a product without 

relying on a particular expert, as it can compare the results of one variety in different 

geographic areas. In summary, the developed APP allows one to evaluate very 

accurately the surface affected by chilling injuries, and therefore, can be used either in 

breeding or selection studies. 
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