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ABSTRACT

Development of applications related to closed-loop control requires either testing on the field or on
a realistic simulator, with the latter being more convenient. To ease that need, this work introduces
MVSim, a simulator for multiple vehicles or robots capable of running in real time dozens of agents
in simple scenarios, or a handful of them in complex scenarios. MVSim employs realistic physics-
grounded friction models for tire-ground interaction, and aims at accurate and GPU-accelerated
simulation of most common modern sensors employed in mobile robotics and autonomous vehicle
research, such as depth and RGB cameras, or 2D and 3D LiDAR scanners. All depth-related sensors
are able to accurately measure distances to 3D models provided by the user to define custom world
elements. Efficient simulation is achieved by means of focusing on ground vehicles, which allows the
use of a simplified 2D physics engine for body collisions while solving wheel-ground interaction forces
separately. The core parts of the system are written in C++ for maximum efficiency, while Python,
ROS 1, and ROS 2 wrappers are also offered. A custom publish/subscribe protocol based on ZeroMQ
(ZMQ) is defined to allow for multiprocess applications to access or modify a running simulation.
This simulator enables and makes easier to do research and development on vehicular dynamics,
autonomous navigation algorithms, and simultaneous localization and mapping (SLAM) methods. An
experimental performance benchmarking is provided against other state-of-the-art simulators showing
significant less CPU usage. The project source code is freely available online under the BSD 3-clause

license in https://github.com/MRPT/mvsim.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Motivation and significance

Research and development in mobile robotics or autonomous
vehicles have final goals related to physical prototypes, which
leads to expensive and laborious field experiments to tune and
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Fig. 1. Screenshot of the simulator running the warehouse example world. Refer
to discussion in Section 3.
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Fig. 2. Overview of the modules provided by MVSIM: (a) The communications
(messages transport) module, (b) the messages definitions module, and (c) the
simulation module.

debug new implementations. In the industry, this turns out into
long development cycles, increasing the time-to-market of new
products or services. In particular, the present work has a great
potential in addressing three scientific problems: (i) simultane-
ous localization and mapping (SLAM), (ii) autonomous naviga-
tion, and (iii) steering control. SLAM is the problem of a mobile
agent equipped with exteroceptive sensors to incrementally build
a map of its environment as it moves around, autonomously
or teleoperated [1,2]. Autonomous navigation is the problem of
safely moving a vehicle or robot in its environment, typically from
an initial pose to a final one. Typically, this large research field
distinguishes between global path planners (find a path given
a map) and local planners (trying to follow a predefined path,
avoiding unexpected and dynamic obstacles) [3]. Finally, steering
control and modeling of ground vehicles [4] address the issue of
finding accurate mathematical models for the dynamics and kine-
matics of steering in such vehicles, and all related applications as
state-observers [5] or control [6].
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Table 1
Qualitative comparison of MVSim with other state-of-the-art simulators.

Gazebo Webots MVSim

Creation 2011 1996 2014

Physics engine DART ODE Hybrid*

3D engine OGRE Custom MRPT

Interfaces C++ Python C++ Python C++ Python
ROS ROS MATLAB ROS

Java

World files SDF VRML XML

Robotics Yes (plugins) Yes Yes

Sensors

Ground Yes Yes Yes

vehicles

UAVs Yes Yes Not yet

Custom No No Yes

tire-ground

force models

Approximated No No Yes

fast 2D lidar

License Apache-2.0 Apache-2.0 BSD-3

4Box2D plus custom physics solvers.

Users can use MVSim in all major operating systems
(GNU/Linux, 0SX, Windows). The standalone executable mvsim-
cli is provided as a central hub to most common operations,
such as launching a simulation, or listing and inspecting pub-
lished topics. A python library is also provided to allow users to
easily communicate with a running simulation, from the same
or a different machine. Finally, a node for ROS 1 and ROS 2 is
provided to act as an intermediary between an MVSim simulation
and other ROS nodes, using standardized APIs and conventions as
tf frames [7] or sensor message types [8].

There exist other software projects with similarities to MVSim.
The most notorious are: Player/Stage, Gazebo, and Webots.
Player/Stage [9] is an open-source project consisting of a set of
software tools used for multi-robot systems (MRS) control. Two
main parts are considered: Player and Stage. Player is a device
server providing a transparent access to the robot, and Stage is
the simulator for moving and sensing multiple robots in a 2D
indoor environment. Gazebo [10], developed to tackle complex
environments, is an open-source and freely available MRS simula-
tion backend as Stage, but operating in a 3D world and simulating
physical interactions between objects. However, it lacks flexibility
in the selection of friction models between vehicle tires and the
ground, which may be specially important depending on the type
of robot and world simulated. Webots [11], as Gazebo, is an open-
source robot simulator capable of working with all kind of robots
(UGV, automobiles, UAV, bipeds, manipulators...), and MRS, in
indoor and outdoor environments, and incorporating physics for
each component of the world. A brief comparison of the main
actively-maintained robotics simulators is provided in Table 1.

2. Software description

Next, the overall architecture of the software is exposed in
Section 2.1 together with some implementation details regarding
the physics simulation. Later on, Section 2.3 provides a summary
of the functionality offered by the proposal.
2.1. Software architecture

The project comprises (C++ and Pyhton) libraries and executa-
bles, with the formers split into three modules as shown in Fig. 2.
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Fig. 3. High-level diagram of potential connections between different processes using MVSIM.

The mvsim-comms module is responsible of providing top-level
client-server functionality for publish-subscribe and remote ser-
vice invocation. Data transport is implemented by means of Ze-
roMQ sockets for their portability, robustness, and efficiency [12].
Data interchange is done by means of messages, defined in the
mvsim-msgs module by an interface definition language (IDL),
in particular, Google Protobuf. IDL definitions are compiled into
C++ and a Python libraries. Finally, the mvsim-simulator mod-
ule holds the main functionalities of the software: loading and
parsing world definition files, running simulations, exposing a
graphical interface to the user, and simulating and publishing
Sensors.

These libraries can then be used in different ways, as illus-
trated in Fig. 3. Firstly, the mvsim-cli program is provided as a
central hub to most non programming-related functionality, such
as: launching a simulation for a particular world definition file
and exploring it via a GUI, listing and getting details on connected
communication clients and advertised topics, or analyzing the
rate at which a topic is being published. Note that invoking
the ‘ ‘mvsim-cli launch’’ subcommand spans a communica-
tion server, to which the client within mvsim: :World connects
to. Another way to run a simulation (and spanning a server)
is launching the provided ROS node. Note that, in that case,
the MVSim simulation is accessible simultaneously via our cus-
tom Python library, and the standard ROS Pub/Sub mechanism.
Headless execution of the simulation is also possible (including
GPU-accelerated sensor simulation), enabling the usage of MVSim
within containerized Continuous Integration (CI) pipelines.

Regarding physics simulation, efficiency is achieved through a
hierarchical approach: on a first higher level, rigid objects (named
“blocks” in MVSim and which may represent fixed or mobile
obstacles) and vehicles (which include wheels as their unique
mobile parts) are modeled as 2D entities using the Box2D C++ li-
brary [ 13]. For vehicles or objects with custom 3D meshes, MVSim
evaluates their equivalent 2D collision polygon. The Box2D en-
gine then provides collision detection and runs physics simu-
lation on the basis of forces and torques applied to each rigid
body, whose calculation is described below. Simulation runs for-
ward in time by numerical integration on the state vector of
all mobile objects with a fixed time step. Before running each
such step, the Algorithm 1 is applied to account for the sec-
ond (lower) layer of the hierarchical physics simulation. Next
we provide details on the most relevant parts of this algorithm
to explain the underlying mechanical model. Kinematics (Ack-
ermann vs. differential-driven vehicles) and PID controllers to
achieve closed-loop control of wheels velocity are already han-
dled in invoke_motor_controllers() in Algorithm 1. Note
that closed-loop velocity control is achieved taking simulated
odometry readings as the controller input, thus wheels slippage
will lead to wrong odometry estimations, accurately replicating
the consequences of slippage on real vehicles.

2.2. Dynamics model

Each vehicle or robot (V') is modeled as a rigid body (“chassis”)
with a given mass and inertia tensor, whose SE(3) pose [14,15]
with respect to a global world origin O can be defined as an ho-
mogeneous transformation matrix °Ty, comprising a translation
vector °ty and a 3 x 3 rotation matrix °Ry. Note the use of
3D coordinates and orientation, SE(3), instead of the equivalent
planar SE(2) poses, despite the use of an underlying 2D physics
engine. That is because MVSim can provide certain degrees of
freedom for vehicles to move up and down and tilt as they
transverse digital terrain elevation models, for example.

Let vy be the velocity vector of the vehicle V reference point
(which may or may not coincide with the center of mass), and
wy the vehicle angular velocity, as illustrated in Fig. 4(a). Then,
rigid body kinematics leads to the following expression for the
velocity vector of a wheel (W) center point, expressed in global
coordinates (0):

Vw =V + oy x 'ty (N

with x the cross product and "ty the translational part of the
relative pose Ty of the wheel W with respect to the vehicle
reference frame V. For planar motion, the cross product has the
optimized form shown in line 8 of Algorithm 1. To evaluate
the tire-ground friction model the relevant components of the
velocity vector of the wheel center point are those in local coor-
dinates with respect to the wheel, i.e. with the local x axis always
pointing forward along the longitudinal wheel axis. Let 6 be the
rotation of the wheel with respect to the vehicle longitudinal
axis, as in Fig. 4(a). Then, the velocity vector in the wheel frame
W is related to the velocity in global coordinates from Eq. (1)
by Yviw = R,(8) vy (line 9 of Algorithm 1) with R,(-) the
rotation matrix for rotations around the z axis. Once we know
the chassis weight W loaded on each wheel axis, the motor
torque t,, exerted at each such axis, and the instantaneous local
velocity vector (vx, vy) of the wheel center point, we can apply
a friction model to determine the resulting longitudinal (Fy) and
lateral (F) forces that the wheel is exerting on the vehicle chassis,
effectively driving the vehicle motion. Different friction models
are implemented in MVSim, but at present all of them rely on
the mechanical model depicted in Fig. 4(b). Note that C denotes
here an optional damping factor, modeling velocity-proportional
losses in the applied torque, w is the instantaneous wheel spin-
ning angular velocity, and Fy is the longitudinal friction force
(essential to prevent wheel slippage). In friction-related mechan-
ical problems we have upper bounds for the absolute value of
friction forces, but determining whether those limits are hit or not
requires two-steps: (i) to solve equilibrium equations assuming
friction is large enough to fulfill the no-slippage condition, then
(ii) clamp the friction force if needed and solve again if slippage
do happen. Note that static equilibrium equations can be split into
three separable axis. Firstly, vertical forces equilibrium reveals
that F, = W, with W here the sum of the partial chassis weight
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Fig. 4. (a) Kinematics model of a wheel W on a vehicle V. (b) Free body
diagram of the mechanical problem involved in determining reaction forces at
the wheel-ground contact point. Here, x is always the wheel local forward-
facing direction and z points up, @ is the instantaneous angular acceleration of
the wheel spinning motion, and I, the inertia tensor component related to axial
(y) rotation.

Algorithm 1 pre_timestep() algorithm

1: for all v in vehicles do

2 # Evaluate chassis weight W on each wheel:
3: W[] <« v.weight_on_wheels()

4: # Evaluate motor torques T:

5: T[] <« v.invoke_motor_controllers()

6 for all i,w in enumerate(v.wheels) do

7 # Wheel center point velocity vector:

8

: Vy < Vg +(—o*xw.y, * w.X) > See Eq. (1)
9: Viocal < Totate_z(v,,, 6;)
10: {Fx, )} < v friction_model(Viocq1, T[i], WIi])
11: # Apply force to vehicle chassis at wheel center:
12: v.apply_force({Fx, F,}, tw)
13: end for
14: end for

and the wheel weight itself. Therefore, the maximum friction
force using a simple dry-friction model with friction coefficient w
is Fgx = wW. Secondly, lateral equilibrium requires determining
the friction force F, required to avoid lateral slippage induced by
the velocity component vy: the lateral acceleration required to
reduce vy to zero for a simulation time step dt is a, = —vy/dt,
thus given Newton’s second law of motion the required force is
F, = —%% with g the gravity acceleration. This force is clamped
to the range [—Fpqx, Fmax], leading to lateral wheel slippage when
the bounds are hit. Thirdly, equilibrium of longitudinal forces
and moment on the local axis y finally gives us the value for
F. In this case, the kinematic constraint (rolling without sliding)
would imply changing the wheel angular speed from w to w* =
vy/R with R the wheel effective radius, hence imposing a desired
angular acceleration of w* = (w* — w)/dt. Taking moments from
the wheel axis in Fig. 4(b) leads to the equilibrium equation:

T — @l + RFg — RF, = 0 (2)

where Fy is an optional rolling friction (e.g. MVSim implements
the realistic Ward-lagnemma model in [16]). Once the friction
force F, is determined, if saturation happens due to the existence
of the upper bound Fpq, Eq. (2) is evaluated again with F, =
+Fnqx to determine the actual spinning angular acceleration @
given that longitudinal slippage was unavoidable.

Finally, MVSim supports vehicles or robots with 3 or more
wheels to move on terrain models defined by elevation maps.
This is accomplished by determining the elevation of each wheel-
ground contact point with respect to the reference level, then ap-
plying the quaternion Horn method [17] to solve for the optimal
vehicle attitude.

Fig. 5. Screenshots of shipped demo worlds.

2.3. Software functionalities

MVSim allows running simulations of one or more vehicles
observing collisions, realistic rigid body kinematics and wheel-
ground friction models, as well as sensor simulation. Sensor data
is accessible via either our custom ZMQ-based pub/sub commu-
nication system (C++ and Python interfaces) or via ROS 1 [18]
or ROS 2 [19] standard sensor messages. Simulations can run in
real wall-clock time or at a different rate. For example, faster
than real-time runs can be used in headless instances to sup-
port simulation-based unit tests of mobile robotic software. Im-
plemented sensors at present include pin-hole cameras, RGBD
(depth) cameras, 2D and 3D LiDARs. In all these cases, sensor
simulation exploits GPU acceleration via an OpenGL pipeline to
achieve generation of millions of 3D LiDAR points per second
in real-time. Each vehicle is equipped with a configurable PID
controller to generate the motor torques required to accomplish
the desired vehicle linear and angular speed set-points. Addi-
tionally, vehicles have an optional high-speed logging system to
log all the internal physics details (frictions, forces, torques, etc.)
to CSV files for posterior debug and analysis. World models are
defined by means of XML files whose format is detailed in the on-
line project documentation page.! There is support for including
other XML files within a given file, parsing and replacement
of environment variables, mathematical expression evaluation,
and flow control-like structures such as for loops at the XML
document level.

3. Examples and experimental benchmark

The project repository contains a mvsim_tutorials subdi-
rectory with several example files illustrating the different pos-
sibilities of the simulator and the XML-definition language. As
qualitative example worlds, a warehouse with a Jackal robot is
shown in Fig. 1, a greenhouse with a custom Ackermann-like
vehicle is shown in Fig. 5(a), and a demonstration of how to run
dozens of robots driving autonomously from Python scripts is
shown in Fig. 5(b). We claim that not needing to provide an URDF

1 Example XML world files are provided in https://github.com/MRPT/mvsim/
tree/develop/mvsim_tutorial.
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file for our simulator makes the design of simulations faster and
simpler to learn.

Next we provide a quantitative benchmarking comparing
MVSim to other state-of-the-art robotic simulators. We have
measured CPU usage of Gazebo, Webots, and MVSim while work-
ing within a test ROS 2 application, with and without the simula-
tor native GUL RViz was disabled in the tests to avoid competition
for the GPU. The results, in Fig. 6, shows the CPU usage of
the simulators with an increasing number of identical robots
(differential-driven, equipped with a 2D LIDAR). In all cases, it
is clear how MVSim matches or improves the performance of
state-of-the-art simulators. All runs were measured on an Intel(R)
Core(TM) i7-8700 CPU (3.20 GHz) with an NVIDIA GeForce GT
710 GPU. Measurements include the sum of all CPU usage by all
the processes required to run the simulation itself, publish the
robot data to the ROS 2 subsystem, and, for the study cases with
a GUI, handling and updating the graphical interfaces. Scripts to
reproduce the benchmark are available online for the sake of
reproducibility.

4. Impact

The present simulator has great potential to research on SLAM
with either 2D LiDAR [20,21], 3D LiDAR [22], depth cameras [23,
24], or pure visual SLAM [25], as well as collaborative SLAM ap-
proaches [26] by means of multiple simultaneous robots. Gener-
ation of synthetic datasets with precise ground truth trajectories
are key to train, test, and validate SLAM solutions. Integration of
MVSim with ROS 2 Nav2 [27] autonomous navigation framework
has been also successfully tested (example launch files are pro-
vided online), allowing easy debugging and testing of navigation
algorithms in simulation before moving them to real robots.
Additionally, it allows ground-truth data generation for research
on vehicle dynamics and related topics, where real-world ground
truth data is hard to obtain due to the nature of wheel-ground
interactions [5,28].

5. Conclusions

After analyzing the design and features of the presented sim-
ulator, we defend that it has potential to become one of the new

2 URL: https://github.com/ual-arm/robotic-simulators-benchmark.

tools researchers from different fields might use in their day-to-
day work to ease the generation of synthetic datasets, or test
and validate new algorithms that require closing a loop between
acting and sensing on moving agents. In comparison to existing
simulators, writing an MVSim XML world file to define a world
and a vehicle or robot requires much less training and effort,
lowering the entry barrier to ROS-based simulation to students
and researchers while still obtaining quality simulations.
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