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Abstract

We consider a general Sobolev–type inner product involving the Hahn difference operator, so
this includes the well–known difference operators Dq and ∆ and, as a limit case, the derivative
operator. The objective is to construct the ladder operators for the corresponding nonstandard
orthogonal polynomials and deduce the second–order differential–difference equation satisfied by
these polynomials. Moreover, we will show that all the functions involved in these constructions
can be computed explicitly.

Keywords: Sobolev orthogonal polynomials; Hahn difference operator; Ladder operators; Differ-
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1 Introduction

The literature about Sobolev orthogonal polynomials is very extensive, dating back to the sixties of
the last century although the seminal paper on this topic is due to Lewis in 1947. End of the eighties
and the nineties saw a burst of papers about Sobolev–type orthogonal polynomials. A general and
historic vision until 2015 is given in the survey [32] where the authors rename these nonstandard
orthogonal polynomials as Sobolev orthogonal polynomials of the second type, although the most
frequently used names are Sobolev–type orthogonal polynomials and discrete Sobolev orthogonal
polynomials. In some of those papers the Sobolev–type inner product

(f, g)S =

∫
R
f(x)g(x)ϱ(x)dx+Mf (j)(c)g(j)(c), M > 0, j ∈ N,

was considered, where ϱ(x) is a weight function with support on the real line and c is located on
the real axis. The authors of those papers studied extensively algebraic, differential and asymptotic

1



properties of the corresponding Sobolev orthogonal polynomials (SOP), including generalizations of
the inner product or even the varying case, where the constant M is changed by a general sequence
depending on n (see [30] for the varying case). Notice if we allow j = 0, then the inner product
will be standard and, therefore, we have all the advantages of the standard polynomials such as the
three–term recurrence relation, Christoffel–Darboux formula, etc. Thus, to use the word Sobolev
properly we should take j as a positive integer, i.e. j ∈ N.

Recently, there has been a growing interest in considering nonstandard inner products with
noncontinuous weights, i.e. weights supported on some lattices. According to the weight, the
differential operator is substituted either by the difference operator ∆ or by the q–difference operator
Dq. This leads to ∆–SOP or q–SOP. In many papers (e.g. [1, 3, 7, 8, 9, 10, 11, 12, 19, 27, 28, 33, 34])
these SOP were studied by considering particular weights or by taking one of these two difference
operators. However, in other papers (e.g. [2, 4, 20]) these three operators were treated in a unified
way via the Hahn difference operator.

Ladder operators for orthogonal polynomials have been extensively studied in the literature,
see [13, 14, 15, 16, 17, 26, 36] among other references. One reason for this, but not the only one,
is that they are a nice and useful tool to construct differential (or difference) equations satisfied by
orthogonal polynomials.

Thus, the main goal of this paper is the study of the ladder operators for a wide class of
Sobolev–type orthogonal polynomials using the Hahn difference operator as a powerful tool and,
as a consequence, to provide the second–order differential–difference equation satisfied by these
nonstandard polynomials. In addition, we generalize some results of other contributions to this
topic where the authors considered particular cases, e.g., [6, 21, 22, 25].

In this paper, we consider the Sobolev–type inner product

(f, g)S =

∫
R
f(x)g(x)ϱ(x)dx+MD (j)

q,ωf(c)D
(j)
q,ωg(c), (1)

where ϱ(x) is a weight function with support on the real line, c is located on the real axis, M > 0,
j is a non–negative integer and Dq,ω is the operator introduced by Hahn in [24, Eq. (1.3)] (see also
[29, Eq. (2.1.1)]) defined by

Dq,ωf(x) =


f(qx+ ω)− f(x)

(q − 1)x+ ω
, if x ̸= ω0,

f ′(ω0), if x = ω0,
(2)

where 0 < q < 1, ω ≥ 0, ω0 =
ω

1−q , and following the notation given in [5], we define

D (0)
q,ωf := f and D (j)

q,ωf := Dq,ωD (j−1)
q,ω f, j ∈ N.

Thus, D
(j)
q,ωf(c) in (1) means

D (j)
q,ωf(c) = D (j)

q,ωf(x)
∣∣∣
x=c

. (3)

2



To simplify the notation we will write D
(j)
q,ωf(c) instead of D

(j)
q,ωf(x)

∣∣∣
x=c

when no confusion arises.

Notice when ϱ(x) is a discrete weight, then the integral in (1) must be considered adequately,
so that according to the case, it could be the Jackson–Nörlund integral (see [5]) or the Jackson
integral.

The class of operators given by (2) includes the q-difference operator Dq introduced by Jackson
when ω = 0, the forward difference operator ∆ when q = 1 and ω = 1, and the derivative operator
d
dx as the limiting case when ω = 0 and q → 1.

When q = 1 the difference operator Dω acts on general lattices, with ∆ as a particular case.
However, we will only give the explicit formulas in Appendices A, B, C for the three operators: Dq,
∆, and d

dx . We will not include an appendix for the operator Dω, because the above mentioned three
operators are most commonly used in the literature in the framework of the Sobolev orthogonality
(see the survey [32]), but the results hold for any ω ≥ 0.

Let {Qn}n≥0 be the infinite sequence of monic orthogonal polynomials with respect to the inner
product (1). Also, let {Pn}n≥0 be the infinite sequence of monic polynomials orthogonal with
respect to the inner product

(f, g)ϱ =

∫
R
f(x)g(x)ϱ(x)dx. (4)

Thus,

(Pn, Pk)ϱ =

∫
R
Pn(x)Pk(x)ϱ(x)dx = hnδn,k, n, k ∈ N ∪ {0},

where δn,k denotes the Kronecker delta and hn is the square of the norm of these polynomials.
Clearly, we assume that the two previous sequences of polynomials are infinite.

Since the inner product (4) is standard, i.e., the property (xf, g)ϱ = (f, xg)ϱ holds, then the
sequence of monic orthogonal polynomials {Pn}n≥0 satisfies a three-term recurrence relation of the
following form:

xPn(x) = Pn+1(x) + αnPn(x) + βnPn−1(x), n ≥ 0, (5)

with initial conditions P−1(x) = 0 and P0(x) = 1. In addition, βn = hn/hn−1 for n ≥ 1. When the
weight ϱ is symmetric, αn = 0 (see, for example, [18]).

As we have mentioned previously, our objective is to obtain ladder operators and a linear
second–order differential–difference equation for sequence of monic Sobolev orthogonal polynomials
{Qn}n≥0.

We assume the sequence of monic orthogonal polynomials {Pn}n≥0 with respect to (4) satisfies
the following relation:

A(x)Dq,ωPn(x) = Bn(x)Pn(x) + Cn(x)Pn−1(x), n ≥ 1, (6)

where Bn(x) and Cn(x) are certain rational functions and A(x) is a polynomial. Notice relation
(6) is very general. It holds for general standard orthogonal polynomials with respect to inner
products involving any of the three operators Dq, ∆, and d

dx (see [26]).
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Then, we define the lowering operator from (6) as

Ψn := A(x)Dq,ω −Bn(x), n ≥ 1,

hence,
ΨnPn(x) = Cn(x)Pn−1(x), n ≥ 1.

The raising operator is defined as follows:

Ψ̂n := Bn−1(x) +
Cn−1(x)(x− αn−1)

βn−1
−A(x)Dq,ω, n ≥ 2,

hence, using (5), we deduce

Ψ̂nPn−1(x) =
Cn−1(x)

βn−1
Pn(x), n ≥ 2.

Once obtained the suitable properties of these ladder operators, we can find the second–order
differential–difference equation for the polynomials Qn(x).

Our approach is based on obtaining ladder operators for this wide class of Sobolev–type orthog-
onal polynomials and then, as a consequence, to deduce the second–order differential–difference
equation satisfied by these polynomials. In this sense, we follow the steps by Ismail in his book
[26] for standard continuous orthogonal polynomials, firstly obtaining the ladder operators and sec-
ondly the corresponding second–order differential equation. Thus, we have unified this approach by
considering a very general operator Dq,ω which includes, as far as we know, all the operators used
in the literature in the framework of Sobolev–type orthogonality. Furthermore, Appendices A, B,
and C allow us to obtain efficiently, via a symbolic computer program, all the functions involved
both in the ladder operators and in the second–order differential–difference equation.

This paper is structured as follows. In Section 2 we introduce some basic notation and provide
a useful connection formula for the SOP, Qn, in terms of the standard orthogonal polynomials,
Pn. Section 3 is devoted to finding several relationships between these two families of orthogonal
polynomials. The use of the Hahn difference operator and its properties will be essential to deduce
these relationships which will be the key to obtain the main results of this paper. Thus, in Section
4 we obtain the expressions for the ladder operators and the second–order differential–difference
equation satisfied by the SOP, which constitute the goals of this work as we have mentioned
previously. Finally, we provide one appendix for each one of the three operators: Dq, ∆, and d

dx .
In these appendices we give explicitly the expressions of the functions involved in the construction
of the ladder operators as well as in the coefficients of the second–order differential–difference
equations.

2 Connection formula

In this section we provide a connection formula for the orthogonal polynomials with respect to
(1), {Qn}n≥0, in terms of the orthogonal polynomials with respect to (4), {Pn}n≥0. In fact, this
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formula follows from a well–known standard technique which we have modified slightly using the
Hahn operator.

We introduce some notation that will be used throughout the paper. We define the kernel
polynomials in the usual way by

Kn(x, y) :=
n∑

i=0

Pi(x)Pi(y)

hi
. (7)

The kernel polynomials (7) satisfy the Christoffel–Darboux formula (see, for example, [18] or [35])

Kn(x, y) =
1

hn

Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

x− y
. (8)

As usual, we denote

K(k,ℓ)
n (x, y) :=

n∑
i=0

D
(k)
q,ωPi(x) D

(ℓ)
q,ωPi(y)

hi
, k, ℓ ∈ N ∪ {0}. (9)

In order to obtain the connection formula, we use a similar technique to the one used in [30,
Lemma 2] or [31, Section 2]. Since the sequence of orthogonal polynomials {Pn}n≥0 is a basis of
the linear space Pn[x] of polynomials with real coefficients of degree at most n, we write

Qn(x) =
n∑

k=0

an,kPk(x). (10)

The coefficient an,n = 1 since Qn(x) and Pn(x) are monic polynomials. For 0 ≤ k ≤ n − 1, using
the orthogonality of Qn(x) and Pn(x), we immediately obtain

an,k = −MD
(j)
q,ωQn(c)D

(j)
q,ωPk(c)

hk
. (11)

So, considering (7), (10) and (11),

Qn(x) = Pn(x)−MD (j)
q,ωQn(c)K

(0,j)
n−1 (x, c). (12)

To compute the value of D
(j)
q,ωQn(c), we apply the Hahn operator Dq,ω in (12) getting

D (j)
q,ωQn(c) =

D
(j)
q,ωPn(c)

1 +MK
(j,j)
n−1 (c, c)

.

Therefore, the connection formula between both families of orthogonal polynomials is given by

Qn(x) = Pn(x)−
MD

(j)
q,ωPn(c)

1 +MK
(j,j)
n−1 (c, c)

K
(0,j)
n−1 (x, c). (13)
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3 Hahn difference operator and technical relations between fam-
ilies of orthogonal polynomials Qn(x) and Pn(x)

In this section we will obtain different relations between Pn(x) and Qn(x) which will be used to
find the ladder operators for the polynomials Qn(x). First, we need some properties of the Hahn
difference operator collected in the next statement.

Proposition 3.1. The Hahn difference operator has the following properties:

1. Linearity:
Dq,ω (f + g) (x) = Dq,ωf(x) + Dq,ωg(x),

Dq,ω (af) (x) = aDq,ωf(x), a ∈ R.

2. Product rule:
Dq,ω(fg)(x) = g(x)Dq,ωf(x) + f(qx+ ω)Dq,ωg(x). (14)

3. Quotient rule:

Dq,ω

(
f

g

)
(x) =

g(x)Dq,ωf(x)− f(x)Dq,ωg(x)

g(x)g(qx+ ω)
. (15)

4. Leibniz formula:

D (n)
q,ω (fg)(x) =

n∑
k=0

[
n

k

]
q

qk(k−n)D (k)
q,ωg (x)D (n−k)

q,ω f
(
qkx+ ω[k]q

)
, n ≥ 0, (16)

where the q-binomial coefficient is defined by (see, [29, Eq. (1.9.4)])[
n

k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k
, (17)

with (a; q)k being a q-analogue of the Pochhammer symbol (a)k defined by (see, [29, Eq.
(1.8.3)])

(a; q)0 := 1 and (a; q)k :=

k∏
i=1

(
1− aqi−1

)
, k ∈ N, (18)

and for q ̸= 0 and q ̸= 1 the basic q-number is given by (see, [29, Eq. (1.8.1)])

[α]q :=
1− qα

1− q
, α ∈ R. (19)

5. Let α, γ ∈ R. We take f(x) = (β − γx)−1, then

D (n)
q,ωf(x) =

γn(q; q)n
(1− q)n

∏n
i=0(β − γ(qix+ ω[i]q))

. (20)
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Proof. The linearity follows directly from the definition. The product and quotient rules can be
found, for example, in [5, Eq. (16)-(17)].

To establish (16) we need the formula

D (n)
q,ω (fg)(x) =

n∑
k=0

[
n

k

]
q

D (k)
q,ωg (x)

(
D (n−k)

q,ω f
)(

qkx+ ω[k]q

)
,

given in [5, Theorem 3.1]. Then, it is enough to apply [5, Eq. (26)] repeatedly to obtain the result:

D (n)
q,ω (fg)(x) =

n∑
k=0

[
n

k

]
q

D (k)
q,ωg (x)

(
D (n−k)

q,ω f
)(

qkx+ ω[k]q

)
=

n∑
k=0

[
n

k

]
q

D (k)
q,ωg (x) q

−kDq,ω

(
D (n−k−1)

q,ω f
)(

qkx+ ω[k]q

)
=

n∑
k=0

[
n

k

]
q

D (k)
q,ωg (x) q

−2kD (2)
q,ω

(
D (n−k−2)

q,ω f
)(

qkx+ ω[k]q

)
= · · ·

=
n∑

k=0

[
n

k

]
q

qk(k−n)D (k)
q,ωg (x)D (n−k)

q,ω f(qkx+ ω[k]q).

Finally, to prove (20), we use mathematical induction on n. For f(x) = (β − γx)−1 and n = 1,
we have

Dq,ωf(x) =
(β − γ(qx+ ω))−1 − (β − γx)−1

(qx+ ω)− x
=

γ

(β − γx)(β − γ(qx+ ω))
.

Since (q; q)1 = 1− q, (20) holds for n = 1.
Assuming the identity (20) holds for some n ≥ 2, we will prove it for n + 1. To do this, the

following relations will be useful:

n∏
k=1

[k]q =

n−1∏
k=0

[1 + k]q = (1− q)−n(q; q)n, (21)

which can be deduced from [23, Eq. (1.2.45)] and [23, Eq. (1.2.47)]). Then, by (21), establishing
(20) is equivalent to proving

D (n)
q,ωf(x) =

γn(1− q)−n(q; q)n∏n
i=0(β − γ(qix+ ω[i]q))

.

We denote

fn(x) :=
γn(1− q)−n(q; q)n∏n

i=0(β − γ(qix+ ω[i]q))
.
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Then, using the induction hypothesis and after some calculations, we find

D (n+1)
q,ω f(x) = Dq,ωD (n)

q,ωf(x) = Dq,ωfn(x) =
fn(qx+ ω)− fn(x)

(q − 1)x+ ω

=γn(1− q)−n(q; q)n

(∏n
i=0(β − γ(qi(qx+ ω) + ω[i]q))

)−1 −
(∏n

i=0(β − γ(qix+ ω[i]q))
)−1

(q − 1)x+ ω

=
γn+1(1− q)−n−1(q; q)n+1∏n+1

i=0 (β − γ(qix+ ω[i]q))
,

and this completes the proof.

The following five lemmas are essential to obtain our main results in Section 4.

Lemma 3.1. Let {Qn(x)}n≥0 and {Pn(x)}n≥0 be the sequences of monic orthogonal polynomials
with respect to (1) and (4), respectively. Then,

rc(x)Qn(x) = f1,c,n(x)Pn(x) + g1,c,n(x)Pn−1(x), n ≥ 1, (22)

where

rc(x) =

j∏
k=0

(x− qkc− ω[k]q), (23)

f1,c,n(x) = rc(x)−
Mρn,j,c
hn−1

(
j∑

i=0

(q; q)jD
(i)
q,ωPn−1 (c)

∏i−1
k=0(x− qkc− ω[k]q)

(q; q)i(1− q)j−i

)
, (24)

g1,c,n(x) =
Mρn,j,c
hn−1

(
j∑

i=0

(q; q)jD
(i)
q,ωPn (c)

∏i−1
k=0(x− qkc− ω[k]q)

(q; q)i(1− q)j−i

)
, (25)

with ρn,j,c := D
(j)
q,ωQn(c) =

D
(j)
q,ωPn(c)

1 +MK
(j,j)
n−1 (c, c)

.
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Proof. Using (8), (9), and applying (16)-(20), we deduce

K
(0,j)
n−1 (x, y)

=
1

hn−1

(
Pn(x)D

(j)
q,ω

Pn−1(y)

x− y
− Pn−1(x)D

(j)
q,ω

Pn(y)

x− y

)
=

1

hn−1

(
Pn(x)

j∑
i=0

[
j

i

]
q

qi(i−j)D (i)
q,ωPn−1 (y)D (j−i)

q,ω (x− (qiy + ω[i]q))
−1

−Pn−1(x)

j∑
i=0

[
j

i

]
q

qi(i−j)D (i)
q,ωPn (y)D (j−i)

q,ω (x− (qiy + ω[i]q))
−1

)

=
1

hn−1

(
Pn(x)

j∑
i=0

(q; q)j
(q; q)i

D (i)
q,ωPn−1 (y)

1

(1− q)j−i
∏j−i

k=0(x− qk+iy − ω[k + i]q)

−Pn−1(x)

j∑
i=0

(q; q)j
(q; q)i

D (i)
q,ωPn (y)

1

(1− q)j−i
∏j−i

k=0(x− qk+iy − ω[k + i]q)

)
.

So, evaluating the variable y at point c, and substituting it into relation (13) we obtain

Qn(x) =Pn(x)−Mρn,j,cK
(0,j)
n−1 (x, c)

=Pn(x)

(
1− Mρn,j,c

hn−1

(
j∑

i=0

(q; q)jD
(i)
q,ωPn−1 (c)

(q; q)i(1− q)j−i
∏j−i

k=0(x− qk+ic− ω[k + i]q)

))

+Pn−1(x)
Mρn,j,c
hn−1

(
j∑

i=0

(q; q)jD
(i)
q,ωPn (c)

(q; q)i(1− q)j−i
∏j−i

k=0(x− qk+ic− ω[k + i]q)

)
.

Finally, multiplying by rc(x) =
∏j

k=0(x− qkc− ω[k]q),

Qn(x)

j∏
k=0

(x− qkc− ω[k]q)

=Pn(x)

(
j∏

k=0

(x− qkc− ω[k]q)−
Mρn,j,c
hn−1

(
j∑

i=0

(q; q)jD
(i)
q,ωPn−1 (c)

∏j
k=0(x− qkc− ω[k]q)

(q; q)i(1− q)j−i
∏j−i

k=0(x− qk+ic− ω[k + i]q)

))

+Pn−1(x)
Mρn,j,c
hn−1

(
j∑

i=0

(q; q)jD
(i)
q,ωPn (c)

∏j
k=0(x− qkc− ω[k]q)

(q; q)i(1− q)j−i
∏j−i

k=0(x− qk+ic− ω[k + i]q)

)
,

and simplifying we obtain the desired result.

Lemma 3.2. Let {Qn(x)}n≥0 and {Pn(x)}n≥0 be the sequences of monic orthogonal polynomials
with respect to (1) and (4), respectively. Then,

rc(x)Dq,ωQn(x) = f2,c,n(x)Pn(x) + g2,c,n(x)Pn−1(x), n ≥ 1, (26)
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where

f2,c,n(x) =
x− qjc− ω[j]q

qj+1 (x− q−1c− ω[−1]q)

(
Dq,ωf1,c,n(x) + f1,c,n(qx+ ω)

Bn(x)

A(x)

−g1,c,n(qx+ ω)
Cn−1(x)

βn−1A(x)
− [j + 1]q

(x− qjc− ω[j]q)
f1,c,n(x)

)
, (27)

g2,c,n(x) =
x− qjc− ω[j]q

qj+1 (x− q−1c− ω[−1]q)

(
Dq,ω g1,c,n(x) + f1,c,n(qx+ ω)

Cn(x)

A(x)

+g1,c,n(qx+ ω)

(
Bn−1(x)

A(x)
+

(x− αn−1)Cn−1(x)

A(x)βn−1

)
− [j + 1]q

(x− qjc− ω[j]q)
g1,c,n(x)

)
, (28)

with rc(x), f1,c,n(x) and g1,c,n(x) given by (23)–(25).

Proof. Applying the operator Dq,ω to (22) in Lemma 3.1, we get

Qn(x)Dq,ωrc(x) + rc(qx+ ω)Dq,ωQn(x)

= Pn(x)Dq,ωf1,c,n(x) + f1,c,n(qx+ ω)Dq,ωPn(x)

+ Pn−1(x)Dq,ωg1,c,n(x) + g1,c,n(qx+ ω)Dq,ωPn−1(x). (29)

We are going to compute some terms in the previous relation starting with Dq,ωrc(x).

Dq,ωrc(x) =
rc(qx+ ω)− rc(x)

(q − 1)x+ ω

=
qj+1

∏j
k=0(x− qk−1c− ω[k − 1]q)−

∏j
k=0(x− qkc− ω[k]q)

(q − 1)x+ ω

= [j + 1]q

j−1∏
k=0

(x− qkc− ω[k]q) =
[j + 1]q

x− qjc− ω[j]q
rc(x). (30)

Next, we express rc(qx+ ω) =
∏j

k=0(qx+ ω − qkc− ω[k]q) in terms of rc(x) as follows,

j∏
k=0

(qx+ ω − qkc− ω[k]q) = qj+1
j∏

k=0

(x− qk−1c− ω[k − 1]q)

= qj+1x− q−1c− ω[−1]q
x− qjc− ω[j]q

rc(x). (31)

So, using (30) and (31), the relation (29) can be rewritten as

[j + 1]q
(x− qjc− ω[j]q)

rc(x)Qn(x) + qj+1x− q−1c− ω[−1]q
x− qjc− ω[j]q

rc(x)Dq,ωQn(x)

= Pn(x)Dq,ωf1,c,n(x) + f1,c,n(qx+ ω)Dq,ωPn(x)

+ Pn−1(x)Dq,ωg1,c,n(x) + g1,c,n(qx+ ω)Dq,ωPn−1(x).

10



Then,

rc(x)Dq,ωQn(x)

=
x− qjc− ω[j]q

qj+1 (x− q−1c− ω[−1]q)
Pn(x)Dq,ωf1,c,n(x)

+
x− qjc− ω[j]q

qj+1 (x− q−1c− ω[−1]q)
f1,c,n(qx+ ω)Dq,ωPn(x)

+
x− qjc− ω[j]q

qj+1 (x− q−1c− ω[−1]q)
Pn−1(x)Dq,ωg1,c,n(x)

+
x− qjc− ω[j]q

qj+1 (x− q−1c− ω[−1]q)
g1,c,n(qx+ ω)Dq,ωPn−1(x)

− x− qjc− ω[j]q
qj+1 (x− q−1c− ω[−1]q)

[j + 1]q
(x− qjc− ω[j]q)

(f1,c,n(x)Pn(x) + g1,c,n(x)Pn−1(x)) .

Now, from (5) we can observe

Pn−2(x) =
(x− αn−1)Pn−1(x)− Pn(x)

βn−1
, n ≥ 2. (32)

Therefore, using (32) and doing some algebraic manipulations, we obtain the result.

Lemma 3.3. Let {Qn(x)}n≥0 and {Pn(x)}n≥0 be the sequences of monic orthogonal polynomials
with respect to (1) and (4), respectively. Then,

rc(x)Qn−1(x) = f3,c,n(x)Pn(x) + g3,c,n(x)Pn−1(x), n ≥ 1, (33)

where

f3,c,n(x) = −g1,c,n−1(x)

βn−1
,

g3,c,n(x) = f1,c,n−1(x) +
(x− αn−1)g1,c,n−1(x)

βn−1
.

Proof. It is enough to use Lemma 3.1 and (32) to obtain

rc(x)Qn−1(x) =f1,c,n−1(x)Pn−1(x) + g1,c,n−1(x)Pn−2(x)

=− g1,c,n−1(x)

βn−1
Pn(x) +

(
f1,c,n−1(x) +

(x− αn−1)g1,c,n−1(x)

βn−1

)
Pn−1(x),

where f1,c,n(x) and g1,c,n(x) are defined in (24) and (25), respectively.

Lemma 3.4. Let {Qn(x)}n≥0 and {Pn(x)}n≥0 be the sequences of monic orthogonal polynomials
with respect to (1) and (4), respectively. Then,

rc(x)Dq,ωQn−1(x) = f4,c,n(x)Pn(x) + g4,c,n(x)Pn−1(x), n ≥ 2,
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where

f4,c,n(x) = −g2,c,n−1(x)

βn−1
,

g4,c,n(x) = f2,c,n−1(x) +
(x− αn−1)g2,c,n−1(x)

βn−1
.

Proof. The proof is identical to the one in Lemma 3.3, but now using (26)-(28).

We define the following functions

φi,j
c,n(x) := fi,c,n(x)gj,c,n(x)− fj,c,n(x)gi,c,n(x), i, j ∈ {1, 2, 3, 4}, (34)

where fi,c,n(x) and gi,c,n(x), i ∈ {1, 2, 3, 4}, are defined in Lemmas 3.1-3.4.

Lemma 3.5. For n ≥ 2, we have

φ1,3
c,n(x)Pn(x) = rc(x)

(
g3,c,n(x)Qn(x)− g1,c,n(x)Qn−1(x)

)
, (35)

φ1,3
c,n(x)Pn−1(x) = rc(x)

(
f1,c,n(x)Qn−1(x)− f3,c,n(x)Qn(x)

)
, (36)

where the function φ1,3
c,n is given by (34) and the other functions are defined in previous lemmas.

Proof. The functions f1,c,n(x), g1,c,n(x), f3,c,n(x) and g3,c,n(x) are polynomials of degree at most
j + 1 in the variable x, then we multiply (22) by g3,c,n(x) and (33) by −g1,c,n(x) obtaining

rc(x)g3,c,n(x)Qn(x) = f1,c,n(x)g3,c,n(x)Pn(x) + g1,c,n(x)g3,c,n(x)Pn−1(x),

−rc(x)g1,c,n(x)Qn−1(x) = −f3,c,n(x)g1,c,n(x)Pn(x)− g3,c,n(x)g1,c,n(x)Pn−1(x).

Adding both expressions we deduce (35). Equation (36) is obtained in the same way using appro-
priate functions.

4 Ladder operators and a second–order differential–difference equa-
tion for Qn(x)

We are ready to obtain a second–order linear differential–difference equation satisfied by the or-
thogonal polynomials Qn(x) with respect to the inner product (1). The first step is to obtain the
ladder operators for this family of polynomials. To do this, we will use the key Lemmas 3.1–3.5
obtained in the previous section.

Theorem 4.1. (Ladder Operators) Let {Qn(x)}n≥0 be a sequence of monic orthogonal polyno-
mials with respect to

(f, g)S =

∫
f(x)g(x)ϱ(x)dx+MD (j)

q,ωf(c)D
(j)
q,ωg(c).
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The ladder operators Φn and Φ̂n defined by

Φn := φ3,2
c,n(x) + φ1,3

c,n(x)Dq,ω, n ≥ 2,

Φ̂n := φ1,4
c,n(x)− φ1,3

c,n(x)Dq,ω, n ≥ 2,

satisfy

ΦnQn(x) = φ1,2
c,n(x)Qn−1(x), (37)

Φ̂nQn−1(x) = φ3,4
c,n(x)Qn(x), (38)

where the functions φi,j
c,n(x) are given by (34).

Proof. To prove (37), we first multiply (26) by φ1,3
c,n(x). Then, we use (35)–(36) obtaining

rc(x)φ
1,3
c,n(x)Dq,ωQn(x) = f2,c,n(x)rc(x)(g3,c,n(x)Qn(x)− g1,c,n(x)Qn−1(x))

+ g2,c,n(x)rc(x)(−f3,c,n(x)Qn(x) + f1,c,n(x)Qn−1(x)).

Simplifying and using (34), we find

φ1,3
c,n(x)Dq,ωQn(x) = φ2,3

c,n(x)Qn(x) + φ1,2
c,n(x)Qn−1(x).

Taking into account φ3,2
c,n(x) = −φ2,3

c,n(x), we deduce (37). The proof of (38) is completely analogous.
Therefore, we have omitted it.

Finally, we establish the following statement.

Theorem 4.2. The n-th monic orthogonal polynomials Qn(x) satisfy the following second–order
linear differential–difference equation

σ1,c,n(x)D
(2)
q,ωQn(x) + σ2,c,n(x)Dq,ωQn(x) + σ3,c,n(x)Qn(x) = 0, n ≥ 2,

where

σ1,c,n(x) = φ1,3
c,n(x)φ

1,3
c,n(qx+ ω)φ1,2

c,n(x),

σ2,c,n(x) = φ1,3
c,n(x)

(
φ1,2
c,n(x)

(
φ3,2
c,n(qx+ ω) + Dq,ωφ

1,3
c,n(x)

)
− φ1,2

c,n(qx+ ω)φ1,4
c,n(x)− φ1,3

c,n(x)Dq,ωφ
1,2
c,n(x)

)
,

σ3,c,n(x) = φ1,2
c,n(qx+ ω)

(
φ1,2
c,n(x)φ

3,4
c,n(x)− φ1,4

c,n(x)φ
3,2
c,n(x)

)
+ φ1,3

c,n(x)
(
φ1,2
c,n(x)Dq,ωφ

3,2
c,n(x)− φ3,2

c,n(x)Dq,ωφ
1,2
c,n(x)

)
.

13



Proof. Once we know the corresponding ladder operators given in Theorem 4.1, we proceed as
follows. From (38) we have

Φ̂nQn−1(x) = φ3,4
c,n(x)Qn(x),

and using (37) we find

Qn−1(x) =
ΦnQn(x)

φ1,2
c,n(x)

,

so, we obtain

Φ̂n
ΦnQn(x)

φ1,2
c,n(x)

= φ3,4
c,n(x)Qn(x). (39)

Now, we analyze the left–hand side in the above expression getting

Φ̂n
ΦnQn(x)

φ1,2
c,n(x)

=
φ1,4
c,n(x)

φ1,2
c,n(x)

ΦnQn(x)− φ1,3
c,n(x)Dq,ω

ΦnQn(x)

φ1,2
c,n(x)

=
φ1,4
c,n(x)

φ1,2
c,n(x)

(
φ3,2
c,n(x)Qn(x) + φ1,3

c,n(x)Dq,ωQn(x)
)

− φ1,3
c,n(x)

(
Dq,ω

φ3,2
c,n(x)Qn(x)

φ1,2
c,n(x)

+ Dq,ω
φ1,3
c,n(x)Dq,ωQn(x)

φ1,2
c,n(x)

)
.

We use (14-15) to compute Dq,ω
φ3,2
c,n(x)Qn(x)

φ1,2
c,n(x)

and Dq,ω
φ1,3
c,n(x)Dq,ωQn(x)

φ1,2
c,n(x)

, then substituting them

into (39), we deduce

φ3,4
c,n(x)Qn(x) =

φ1,4
c,n(x)

φ1,2
c,n(x)

(
φ3,2
c,n(x)Qn(x) + φ1,3

c,n(x)Dq,ωQn(x)
)

− φ1,3
c,n(x)

(
φ1,2
c,n(x)Dq,ωφ

3,2
c,n(x)− φ3,2

c,n(x)Dq,ωφ
1,2
c,n(x)

φ1,2
c,n(x)φ

1,2
c,n(qx+ ω)

Qn(x)

+
φ3,2
c,n(qx+ ω)

φ1,2
c,n(qx+ ω)

Dq,ωQn(x)

+
φ1,2
c,n(x)Dq,ωφ

1,3
c,n(x)− φ1,3

c,n(x)Dq,ωφ
1,2
c,n(x)

φ1,2
c,n(x)φ

1,2
c,n(qx+ ω)

Dq,ωQn(x)

+
φ1,3
c,n(qx+ ω)

φ1,2
c,n(qx+ ω)

D (2)
q,ωQn(x)

)
.

Finally, to deduce the second–order differential–difference equation for the nonstandard polynomials
Qn, it only remains to multiply the previous expression by φ1,2

c,n(x)φ
1,2
c,n(qx+ ω) and simplify.

Summarizing, we have obtained ladder operators for a wide family of Sobolev–type orthogonal
polynomials with respect to an inner product involving the Hahn discrete operator. Furthermore,
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we have proved that these families of nonstandard orthogonal polynomials satisfy a second–order
differential–difference equation whose polynomial coefficients can be computed explicitly. For this
reason, we have included three appendices with all the details corresponding to the operators Dq,
∆ and d

dx . The formulas given in these appendices can be implemented in a computer program
which will be useful in practice. We will discuss this in a forthcoming paper.
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Appendix A. The Dq difference operator

The Dq difference operator is obtained by taking ω = 0 in the expression (2) of the Hahn difference
operator Dq,ω. We provide explicit expressions for all the functions involved in the construction of
the ladder operators (Theorem 4.1) for the discrete Sobolev orthogonal polynomials Qn as well as
for the coefficients of the second–order difference equation satisfied by Qn. All these expressions
can be computed using only the standard polynomials Pn, and their properties such as relation (6).
We proceed in a similar way in the following two appendices.

ρn,j,c =
D

(j)
q Pn(c)

1 +MK
(j,j)
n−1 (c, c)

,

rc(x) =

j∏
k=0

(x− qkc),

f1,c,n(x) = rc(x)−
Mρn,j,c
hn−1

(
j∑

i=0

(q; q)jD
(i)
q Pn−1 (c)

∏i−1
k=0(x− qkc)

(q; q)i(1− q)j−i

)
,

g1,c,n(x) =
Mρn,j,c
hn−1

(
j∑

i=0

(q; q)jD
(i)
q Pn (c)

∏i−1
k=0(x− qkc)

(q; q)i(1− q)j−i

)
,

f2,c,n(x) =
x− qjc

qj+1 (x− q−1c)

(
Dqf1,c,n(x) + f1,c,n(qx)

Bn(x)

A(x)
− g1,c,n(qx)

Cn−1(x)

βn−1A(x)

)
− [j + 1]q

qj+1 (x− q−1c)
f1,c,n(x),

g2,c,n(x) =
x− qjc

qj+1 (x− q−1c)

(
Dqg1,c,n(x) + f1,c,n(qx)

Cn(x)

A(x)

+g1,c,n(qx)

(
Bn−1(x)

A(x)
+

(x− αn−1)Cn−1(x)

A(x)βn−1

)
− [j + 1]q

(x− qjc)
g1,c,n(x)

)
,

f3,c,n(x) = −g1,c,n−1(x)

βn−1
,

g3,c,n(x) = f1,c,n−1(x) +
(x− αn−1)g1,c,n−1(x)

βn−1
,

f4,c,n(x) = −g2,c,n−1(x)

βn−1
,

g4,c,n(x) = f2,c,n−1(x) +
(x− αn−1)g2,c,n−1(x)

βn−1
,

σ1,c,n(x) = φ1,3
c,n(x)φ

1,3
c,n(qx)φ

1,2
c,n(x),

σ2,c,n(x) = φ1,3
c,n(x)

(
φ1,2
c,n(x)

(
φ3,2
c,n(qx) + Dqφ

1,3
c,n(x)

)
− φ1,2

c,n(qx)φ
1,4
c,n(x)− φ1,3

c,n(x)Dqφ
1,2
c,n(x)

)
,

σ3,c,n(x) = φ1,2
c,n(qx)

(
φ1,2
c,n(x)φ

3,4
c,n(x)− φ1,4

c,n(x)φ
3,2
c,n(x)

)
+ φ1,3

c,n(x)
(
φ1,2
c,n(x)Dqφ

3,2
c,n(x)− φ3,2

c,n(x)Dqφ
1,2
c,n(x)

)
,

where
φi,j
c,n(x) = fi,c,n(x)gj,c,n(x)− fj,c,n(x)gi,c,n(x), i, j ∈ {1, 2, 3, 4}.
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Appendix B. The forward difference operator

The forward difference operator, ∆, is obtained by taking ω = 1 and q = 1 in the expression (2) of
the Hahn difference operator Dq,ω. Taking into account (see [29])

lim
q→1

[a]q = a, lim
q→1

(qa; q)n
(1− q)a

= (a)n,

we obtain,

ρn,j,c =
∆(j)Pn(c)

1 +MK
(j,j)
n−1 (c, c)

,

rc(x) =

j∏
k=0

(x− c− k) = (x− c− j)j+1,

f1,c,n(x) = rc(x)−
Mρn,j,c
hn−1

(
j∑

i=0

j!∆iPn−1(c)
∏i−1

k=0(x− c− k)

i!

)
,

g1,c,n(x) =
Mρn,j,c
hn−1

(
j∑

i=0

j!∆iPn(c)
∏i−1

k=0(x− c− k)

i!

)
,

f2,c,n(x) =
x− c− j

x− c+ 1

(
∆f1,c,n(x)− g1,c,n(x+ 1)

Cn−1(x)

A(x)βn−1
+

Bn(x)

A(x)
f1,c,n(x+ 1)

)
− j + 1

x− c+ 1
f1,c,n(x),

g2,c,n(x) =
x− c− j

x− c+ 1

(
∆g1,c,n(x) + f1,c,n(x+ 1)

Cn(x)

A(x)

+g1,c,n(x+ 1)

(
Bn−1(x)

A(x)
+

(x− αn−1)Cn−1(x)

A(x)βn−1

))
− j + 1

x− c+ 1
g1,c,n(x),

f3,c,n(x) = −g1,c,n−1(x)

βn−1
,

g3,c,n(x) = f1,c,n−1(x) +
(x− αn−1)g1,c,n−1(x)

βn−1
,

f4,c,n(x) = −g2,c,n−1(x)

βn−1
,

g4,c,n(x) = f2,c,n−1(x) +
(x− αn−1)g2,c,n−1(x)

βn−1
,

σ1,c,n(x) = φ1,3
c,n(x)φ

1,3
c,n(x+ 1)φ1,2

c,n(x),

σ2,c,n(x) = φ1,3
c,n(x)

(
φ1,2
c,n(x)

(
φ3,2
c,n(x+ 1) + ∆φ1,3

c,n(x)
)
− φ1,2

c,n(x+ 1)φ1,4
c,n(x)− φ1,3

c,n(x)∆φ1,2
c,n(x)

)
,

σ3,c,n(x) = φ1,2
c,n(x+ 1)

(
φ1,2
c,n(x)φ

3,4
c,n(x)− φ1,4

c,n(x)φ
3,2
c,n(x)

)
+ φ1,3

c,n(x)
(
φ1,2
c,n(x)∆φ3,2

c,n(x)− φ3,2
c,n(x)∆φ1,2

c,n(x)
)
,

where
φi,j
c,n(x) = fi,c,n(x)gj,c,n(x)− fj,c,n(x)gi,c,n(x), i, j ∈ {1, 2, 3, 4}.
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Appendix C. The derivative operator

The derivative operator is obtained as the limiting case of the Hahn difference operator Dq,ω when
ω = 0 and q → 1. Then, we find:

ρn,j,c =
P

(j)
n (c)

1 +MK
(j,j)
n−1 (c, c)

,

rc(x) = (x− c)j+1,

f1,c,n(x) = rc(x)−
Mρn,j,c
hn−1

(
j∑

i=0

j!P
(i)
n−1(c)(x− c)i

i!

)
,

g1,c,n(x) =
Mρn,j,c
hn−1

(
j∑

i=0

j!P
(i)
n (c)(x− c)i

i!

)
,

f2,c,n(x) = f ′
1,c,n(x)− g1,c,n(x)

Cn−1(x)

A(x)βn−1
+ f1,c,n(x)

(
Bn(x)

A(x)
− j + 1

x− c

)
,

g2,c,n(x) = g′1,c,n(x) + f1,c,n(x)
Cn(x)

A(x)
+ g1,c,n(x)

(
Bn−1(x)

A(x)
+

(x− αn−1)Cn−1(x)

A(x)βn−1
− j + 1

x− c

)
,

f3,c,n(x) = −g1,c,n−1(x)

βn−1
,

g3,c,n(x) = f1,c,n−1(x) +
(x− αn−1)g1,c,n−1(x)

βn−1
,

f4,c,n(x) = −g2,c,n−1(x)

βn−1
,

g4,c,n(x) = f2,c,n−1(x) +
(x− αn−1)g2,c,n−1(x)

βn−1
,

σ1,c,n(x) =
(
φ1,3
c,n(x)

)2
φ1,2
c,n(x),

σ2,c,n(x) = φ1,3
c,n(x)

(
φ1,2
c,n(x)

(
φ3,2
c,n(x) +

(
φ1,3
c,n

)′
(x)− φ1,4

c,n(x)
)
−
(
φ1,2
c,n

)′
(x)φ1,3

c,n(x)

)
,

σ3,c,n(x) = φ1,2
c,n(x)

(
φ1,2
c,n(x)φ

3,4
c,n(x)− φ1,4

c,n(x)φ
3,2
c,n(x)

)
+ φ1,3

c,n(x)
(
(φ3,2

c,n)
′(x)φ1,2

c,n(x)−
(
φ1,2
c,n

)′
(x)φ3,2

c,n(x)
)
,

where
φi,j
c,n(x) = fi,c,n(x)gj,c,n(x)− fj,c,n(x)gi,c,n(x), i, j ∈ {1, 2, 3, 4}.
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