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Abstract. We develop a systematic approach to the study of ideals of Lips-
chitz maps from a metric space to a Banach space, inspired by classical theory
on using Lipschitz tensor products to relate ideals of operator/tensor norms
for Banach spaces. We study spaces of Lipschitz maps from a metric space to
a dual Banach space that can be represented canonically as the dual of a Lip-
schitz tensor product endowed with a Lipschitz cross-norm, and we show that
several known examples of ideals of Lipschitz maps (Lipschitz maps, Lipschitz
p-summing maps, maps admitting Lipschitz factorization through subsets of
Lp-space) admit such a representation. Generally, we characterize when the
space of a Lipschitz map from a metric space to a dual Banach space is in
canonical duality with a Lipschitz cross-norm. Finally, we introduce a concept
of operators which are approximable with respect to one of these ideals of
Lipschitz maps, and we identify them in terms of tensor-product notions.

Introduction

The study of ideals of linear operators between Banach spaces (i.e., families
of operators that are closed under composition) has been an important tool in
the study of Banach spaces. A stellar example is that of p-summing operators, as
attested by the astonishing number of results and applications that can be found,
for example, in [7]. In recent years, a number of ideals of Lipschitz maps (which, in
particular, are generally nonlinear) inspired by well-known and very useful ideals
of linear operators between Banach spaces have appeared in the literature. One
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example is the notion of Lipschitz p-summing operators between metric spaces, a
nonlinear generalization of p-summing operators, which was introduced by Farmer
and Johnson in [8]. Other examples of such ideals of Lipschitz maps are operators
that admit a Lipschitz factorization through an Lp-space (see [11]), Lipschitz
p-nuclear and Lipschitz p-integral operators (see [4]), or operators admitting a
Lipschitz factorization through a subset of a Hilbert space (see [3]). If we restrict
our attention to one of these ideals of maps from a fixed metric space to a fixed
normed space, then the resulting space of maps is itself a normed space. Therefore,
being able to identify the dual of such a space of maps would be interesting and
useful. That is precisely one of the questions raised by Farmer and Johnson [8,
Problem 3] for the specific case of Lipschitz p-summing maps.

Our purpose in this article is to develop a systematic approach to the duality
theory for ideals of Lipschitz maps from a metric space to a Banach space, a gen-
eralization of the aforementioned question of Farmer and Johnson. This approach
is inspired, on one hand, by the deep and useful connections between theories of
operator ideals and theories of tensor norms for Banach spaces (see Defant and
Floret [6]) and on the other hand by the second author’s solution in [2] to the
problem of duality for Lipschitz p-summing operators. The key idea in [2] is that
of spaces of Banach-space-valued molecules, which play the role of a sort of tensor
product between a metric space and a Banach space; those spaces of molecules
are endowed with certain Lipschitz versions of the tensor norms described by
Chevet [5] and Saphar [13], which are in canonical duality with spaces of Lip-
schitz p-summing maps. In [1], the present authors formalized the notion of a
Lipschitz tensor product between a metric space and a normed space and stud-
ied its basic properties. In this article, we develop the duality theory that relates
Lipschitz tensor products and ideals of Lipschitz maps by answering the following
two questions. (1) Given an ideal of Lipschitz maps, when can it be canonically
identified with the dual of a Lipschitz tensor product? (2) Given a Lipschitz ten-
sor product, when can its dual space be canonically identified with an ideal of
Lipschitz maps?

Let us now describe the contents of this paper. Section 1 gathers some prelim-
inary results on the Lipschitz tensor product X � E between a metric space
X and a normed space E. In Section 2, we introduce and study the space
Lipα(X,E∗) of E∗-valued α-Lipschitz operators defined on X, that is, operators
from X to E∗ that induce a continuous functional on a given Lipschitz tensor
product with a Lipschitz cross-norm α (denoted by X �α E). The α-Lipschitz
operators are in fact Lipschitz maps, which justify the terminology. Moreover, we
show that several known examples of ideals of Lipschitz maps—namely, Lipschitz
maps, Lipschitz p-summing maps, and maps admitting a Lipschitz factorization
through a subset of an Lp-space—are associated to Lipschitz cross-norms in this
way.

Section 3 addresses the duality theory for α-Lipschitz operators and contains
the main result of this paper: the space of E∗-valued α-Lipschitz operators defined
on X is canonically isometrically isomorphic to the dual of the Lipschitz tensor
product X �α E. This canonical identification is the basis of our study of the
duality for ideals of Lipschitz maps. The section is completed by studying the
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several topologies on the space of E∗-valued α-Lipschitz operators defined on X.
Thus the main questions we are pursuing in this paper can be rephrased in the
following. When is the space of α-Lipschitz operators an ideal? Given an ideal of
Lipschitz maps, when can it be represented as a space of α-Lipschitz maps?

In Section 4, we take a small detour from the main theme of the paper to work
out several results dealing with approximations. We show that under minimal
assumptions on the cross-norm α, the simplest (that is, the so-called Lipschitz
finite-rank) Lipschitz operators from X to E∗ are all α-Lipschitz. We also study
the Lipschitz operators from X into E∗ that are limits in the α-Lipschitz norm of
sequences of Lipschitz finite-rank operators, which are called α-Lipschitz approx-
imable operators.

In Section 5, we formalize the notion of ideals of Lipschitz maps, which we have
called Banach ideals of Lipschitz operators. We introduce these ideals, and give
some sufficient conditions and other necessary ones on Lipα(X,E∗) and the space
of α-Lipschitz approximable operators to be such a Banach ideal of Lipschitz
operators.

In Section 6, we look at spaces of maps from X to E∗ which are not necessarily
ideals but nevertheless are in duality with Lipschitz cross-norms. We introduce
the concept of a Lipschitz operator Banach space, and give simple conditions on α
that characterize when Lipα(X,E∗) is one such space. As was already mentioned,
it is proved in Section 2 that, if α is a Lipschitz cross-norm on X � E, then
Lipα(X,E∗) can be identified with the dual of the space X �α E. We now prove
a converse result, characterizing those Lipschitz operator Banach spaces that are
canonically isometrically isomorphic to the dual of X �α E for some Lipschitz
cross-norm α on X � E (in terms of the compactness of their unit balls with
respect to one of the topologies introduced in Section 3).

1. Notation and preliminary results

Given two metric spaces (X, dX) and (Y, dY ), let us recall that a map f : X → Y
is said to be Lipschitz if there exists a real constant C ≥ 0 such that dY (f(x),
f(y)) ≤ CdX(x, y) for all x, y ∈ X. The least constant C for which the preceding
inequality holds will be denoted by Lip(f); that is,

Lip(f) = sup
{dY (f(x), f(y))

dX(x, y)
: x, y ∈ X, x 6= y

}
.

A pointed metric space X is a metric space with a basepoint in X, that is, a
designated special point, which we will always denote by 0. As usual, K denotes
the field of real or complex numbers. We will consider a normed space E over
K as a pointed metric space with the distance defined by its norm and the zero
vector as the basepoint. As is customary, BE and SE stand for the closed unit
ball of E and the unit sphere of E, respectively.

Given two pointed metric spaces X and Y , we denote by Lip0(X,Y ) the set
of all basepoint-preserving Lipschitz maps from X to Y . If E is a Banach space,
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then Lip0(X,E) is a Banach space under the Lipschitz norm given by

Lip(f) = sup
{‖f(x)− f(y)‖

d(x, y)
: x, y ∈ X, x 6= y

}
.

The elements of Lip0(X,E) are known as Lipschitz operators. The space Lip0(X,K)
is called the Lipschitz dual of X, and it will be denoted by X#.

For two vector spaces E and F , L(E,F ) stands for the vector space of all linear
operators from E into F . In the case that E and F are Banach spaces, L(E,F )
represents the Banach space of all bounded linear operators from E to F endowed
with the canonical norm of operators. In particular, the algebraic dual L(E,K)
and the topological dual L(E,K) are denoted by E ′ and E∗, respectively. For
each e ∈ E and e∗ ∈ E ′, we frequently will write 〈e∗, e〉 instead of e∗(e).

Throughout this article, unless otherwise stated,X will denote a pointed metric
space with basepoint 0 and E a Banach space.

We now recall some concepts and facts whose proofs can be found in [1]. Let
X be a pointed metric space, and let E be a Banach space. The Lipschitz tensor
product X �E is the linear span of all linear functionals δ(x,y)� e on Lip0(X,E∗)
of the form

(δ(x,y) � e)(f) =
〈
f(x)− f(y), e

〉
for (x, y) ∈ X2 and e ∈ E. A norm α on X � E is a Lipschitz cross-norm if

α(δ(x,y) � e) = d(x, y)‖e‖

for all (x, y) ∈ X2 and e ∈ E. We denote by X �α E the linear space X � E

with norm α, and we denote by X �̂α E the completion of X �α E. A Lipschitz
cross-norm α on X �E is called dualizable if, given g ∈ X# and φ ∈ E∗, we have∣∣∣ n∑

i=1

(
g(xi)− g(yi)

)
〈φ, ei〉

∣∣∣ ≤ Lip(g)‖φ‖α
( n∑

i=1

δ(xi,yi) � ei

)
for all

∑n
i=1 δ(xi,yi)� ei ∈ X�E, and it is called uniform if, given h ∈ Lip0(X,X)

and T ∈ L(E,E), we have

α
( n∑

i=1

δ(h(xi),h(yi)) � T (ei)
)
≤ Lip(h)‖T‖α

( n∑
i=1

δ(xi,yi) � ei

)
for all

∑n
i=1 δ(xi,yi) � ei ∈ X � E.

For each
∑n

i=1 δ(xi,yi) � ei ∈ X � E, the Lipschitz injective norm on X � E is
defined by

ε
( n∑

i=1

δ(xi,yi) � ei

)
= sup

{∣∣∣ n∑
i=1

(
g(xi)− g(yi)

)
〈φ, ei〉

∣∣∣ : g ∈ BX# , φ ∈ BE∗

}
.

For each u ∈ X �E, the Lipschitz projective norm π and the Lipschitz p-nuclear
norm dp for 1 < p < ∞ are defined on X � E as

π(u) = inf
{ n∑

i=1

d(xi, yi)‖ei‖ : u =
n∑

i=1

δ(xi,yi) � ei

}
,
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d1(u) = inf
{(

sup
g∈B

X#

(
λi max

1≤i≤n

∣∣g(xi)− g(yi)
∣∣))( n∑

i=1

‖ei‖
)
:

u =
n∑

i=1

λiδ(xi,yi) � ei, {λi}ni=1 ⊂ R+
}
,

dp(u) = inf
{(

sup
g∈B

X#

( n∑
i=1

λp′

i

∣∣g(xi)− g(yi)
∣∣p′) 1

p′
)( n∑

i=1

‖ei‖p
) 1

p
:

u =
n∑

i=1

λiδ(xi,yi) � ei, {λi}ni=1 ⊂ R+
}
,

d∞(u) = inf
{(

sup
g∈B

X#

( n∑
i=1

λi

∣∣g(xi)− g(yi)
∣∣))(max

1≤i≤n
‖ei‖

)
:

u =
n∑

i=1

λiδ(xi,yi) � ei, {λi}ni=1 ⊂ R+
}
.

It is known that ε, π, and dp for p ∈ [1,∞] are uniform and dualizable Lipschitz
cross-norms on X � E and d1 = π. Moreover, ε is the least dualizable Lipschitz
cross-norm on X �E, and π is the greatest Lipschitz cross-norm on X �E, and

π(u) = sup
{∣∣u(f)∣∣ : f ∈ Lip0(X,E∗), Lip(f) ≤ 1

}
for all u ∈ X�E. In fact, a norm α on X�E is a dualizable Lipschitz cross-norm
if and only if ε ≤ α ≤ π.

If g ∈ X# and φ ∈ E∗, then we consider the linear functional g � φ on X � E
defined by

(g � φ)
( n∑

i=1

δ(xi,yi) � ei

)
=

n∑
i=1

(
g(xi)− g(yi)

)
〈φ, ei〉.

The associated Lipschitz tensor product of X � E, denoted by X# � E∗, is the
linear span of all linear functionals g � φ on X � E for g ∈ X# and φ ∈ E∗.
A norm β on X# � E∗ is called a Lipschitz cross-norm if

β(g � φ) = Lip(g)‖φ‖

for all g ∈ X# and φ ∈ E∗. Denote by X# �β E
∗ the linear space X# � E∗ with

norm β, and denote by X# �̂β E
∗ the completion of X# �β E

∗.
Given a dualizable Lipschitz cross-norm α on X�E, the map α′ : X#�E∗ → R

defined by

α′
( m∑

j=1

gj �φj

)
= sup

{∣∣∣( m∑
j=1

gj �φj

)( n∑
i=1

δ(xi,yi)� ei

)∣∣∣ : α( n∑
i=1

δ(xi,yi)� ei

)
≤ 1

}
for

∑m
j=1 gj � φj ∈ X# � E∗ is a Lipschitz cross-norm on X# � E∗ called the

associated Lipschitz norm of α, and clearly X#�α′E∗ is a normed linear subspace
of (X �̂αE)∗.
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For h ∈ Lip0(X,Y ) and T ∈ L(E,F ), we also consider the linear operator
h� T from X � E to Y � F given by

(h� T )
( n∑

i=1

δ(xi,yi) � ei

)
=

n∑
i=1

δ(h(xi),h(yi)) � T (ei).

2. Cross-norm-Lipschitz operators

In this section, we introduce the concept that will give rise to the canonical
association between Lipschitz cross-norms and ideals of Lipschitz maps. It is the
concept of a cross-norm-Lipschitz operator from X to E∗, which is an operator
that induces a bounded functional onX�E endowed with a Lipschitz cross-norm.
To be precise, we have the following definition.

Definition 2.1. Let α be a Lipschitz cross-norm on X�E. A basepoint-preserving
map f : X → E∗ is said to be an α-Lipschitz operator if there exists a real constant
C ≥ 0 such that ∣∣∣ n∑

i=1

〈
f(xi)− f(yi), ei

〉∣∣∣ ≤ Cα
( n∑

i=1

δ(xi,yi) � ei

)
for all

∑n
i=1 δ(xi,yi) � ei ∈ X �E. The infimum of such constants C is denoted by

Lipα(f) and called the α-Lipschitz norm of f . The set of all α-Lipschitz operators
from X into E∗ is denoted by Lipα(X,E∗).

The following lemma justifies the terminology used in Definition 2.1 since every
α-Lipschitz operator turns out to be a Lipschitz operator.

Lemma 2.2. Let α be a Lipschitz cross-norm on X�E. Then every α-Lipschitz
operator f : X → E∗ is Lipschitz, and Lip(f) ≤ Lipα(f).

Proof. Let f ∈ Lipα(X,E∗). For x, y ∈ X and e ∈ E, we have∣∣〈f(x)− f(y), e
〉∣∣ ≤ Lipα(f)α(δ(x,y) � e) = Lipα(f)d(x, y)‖e‖;

hence, ‖f(x) − f(y)‖ ≤ Lipα(f)d(x, y), so f ∈ Lip0(X,E∗), with Lip(f) ≤
Lipα(f). �

Remark 2.3. Note that, if u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E and f ∈ Lip0(X,E∗),
then

u(f) =
n∑

i=1

〈
f(xi)− f(yi), ei

〉
,

and therefore f is in Lipα(X,E∗) if and only if |u(f)| ≤ Cα(u) for all u ∈ X�E.
Moreover,

Lipα(f) = min
{
C ≥ 0:

∣∣u(f)∣∣ ≤ Cα(u), ∀u ∈ X � E
}

= sup
{∣∣u(f)∣∣ : u ∈ X � E,α(u) ≤ 1

}
= sup

{∣∣u(f)∣∣ : u ∈ X � E,α(u) = 1
}
.

Lemma 2.4. Let α be a Lipschitz cross-norm on X �E. Then Lipα(X,E∗) is a
normed space with the α-Lipschitz norm.
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Proof. Let f, g ∈ Lipα(X,E∗), and let λ ∈ K. Clearly, Lipα(f) ≥ 0. Assume
that f 6= 0. Then, for some x ∈ X and e ∈ E, 〈f(x), e〉 6= 0 (i.e., 〈δ(x,0) �
e, f〉 6= 0). This implies that δ(x,0) � e 6= 0, and thus α(δ(x,0) � e) > 0. Then,
Lipα(f) ≥ |〈f(x), e〉|/α(δ(x,0) � e) > 0, as required. Next we use Remark 2.3. For
any u ∈ X � E, we obtain∣∣u(λf)∣∣ = ∣∣λu(f)∣∣ = |λ|

∣∣u(f)∣∣ ≤ |λ|Lipα(f)α(u),

and therefore λf ∈ Lipα(X,E∗) and Lipα(λf) ≤ |λ|Lipα(f). From this inequality,
it follows that if λ = 0, then Lipα(λf) = 0 = |λ|Lipα(f), and if λ 6= 0, then
we have Lipα(f) = Lipα(λ

−1(λf)) ≤ |λ|−1 Lipα(λf), and hence |λ|Lipα(f) ≤
Lipα(λf). This proves that Lipα(λf) = |λ|Lipα(f). Finally, for all u ∈ X � E,∣∣u(f + g)

∣∣ = ∣∣u(f) + u(g)
∣∣ ≤ ∣∣u(f)∣∣+ ∣∣u(g)∣∣ ≤ (

Lipα(f) + Lipα(g)
)
α(u),

and so f + g ∈ Lipα(X,E∗) and Lipα(f + g) ≤ Lipα(f)+Lipα(g). This completes
the proof of the lemma. �

We now identify the space of all Lipschitz operators from X into E∗ with the
space of all π-Lipschitz operators.

Lemma 2.5. The sets Lip0(X,E∗) and Lipπ(X,E∗) are equal. Moreover,
Lip(f) = Lipπ(f) for all f ∈ Lip0(X,E∗).

Proof. Let f ∈ Lip0(X,E∗). Since |u(f)| ≤ Lip(f)π(u) for all u ∈ X � E, we
infer that f ∈ Lipπ(X,E∗) and Lipπ(f) ≤ Lip(f). The lemma now follows by
Lemma 2.2. �

In [8], Farmer and Johnson introduced the notion of Lipschitz p-summing oper-
ators between metric spaces for 1 ≤ p < ∞ (see [2] for the case p = ∞). Let us
recall that, if X and Y are pointed metric spaces, a map f ∈ Lip0(X,Y ) is said
to be Lipschitz p-summing (1 ≤ p ≤ ∞) if there exists a constant C ≥ 0 such
that, regardless of the natural number n and regardless of the choice of points
x1, . . . , xn, y1, . . . , yn in X and positive reals λ1, . . . , λn, we have the inequality( n∑

i=1

λid
(
f(xi), f(yi)

)p) 1
p ≤ C sup

g∈B
X#

( n∑
i=1

λi

∣∣g(xi)− g(yi)
∣∣p) 1

p
if 1 ≤ p < ∞,

max
1≤i≤n

λid
(
f(xi), f(yi)

)
≤ C sup

g∈B
X#

(
max
1≤i≤n

λi

∣∣g(xi)− g(yi)
∣∣) if p = ∞.

The infimum of such constants is denoted by πL
p (f) and called the Lipschitz

p-summing norm of f . If E is a Banach space, then the set ΠL
p (X,E∗) of all

Lipschitz p-summing operators from X into E∗ with the norm πL
p is a Banach

space (see [8], [2]). If p′ is the conjugate index of p ∈ [1,∞], we next identify the
Lipschitz p-summing operators from X to E∗ with the dp′-Lipschitz operators.

Theorem 2.6. Let 1 ≤ p ≤ ∞. Then Lipdp(X,E∗) = ΠL
p′(X,E∗), and Lipdp(f) =

πL
p′(f) for every f ∈ Lipdp(X,E∗).
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Proof. Let f ∈ ΠL
p′(X,E∗), and let u ∈ X � E. If

∑n
i=1 λiδ(xi,yi) � ei is a repre-

sentation of u, then

∣∣u(f)∣∣ = ∣∣∣ n∑
i=1

〈
λi

(
f(xi)− f(yi)

)
, ei

〉∣∣∣
≤

n∑
i=1

λi

∥∥f(xi)− f(yi)
∥∥‖ei‖

≤
( n∑

i=1

λp′

i

∥∥f(xi)− f(yi)
∥∥p′

) 1
p′
( n∑

i=1

‖ei‖p
) 1

p

≤ πL
p′(f)

( n∑
i=1

‖ei‖p
) 1

p
sup

g∈B
X#

( n∑
i=1

λp′

i

∣∣g(xi)− g(yi)
∣∣p′) 1

p′

in the case 1 < p < ∞. When p = 1, we have

∣∣u(f)∣∣ ≤ n∑
i=1

λi

∥∥f(xi)− f(yi)
∥∥‖ei‖

≤
(
max
1≤i≤n

λi

∥∥f(xi)− f(yi)
∥∥) n∑

i=1

‖ei‖

≤ πL
∞(f) sup

g∈B
X#

(
max
1≤i≤n

λi

∣∣g(xi)− g(yi)
∣∣) n∑

i=1

‖ei‖,

and, for p = ∞, we have

∣∣u(f)∣∣ ≤ n∑
i=1

λi

∥∥f(xi)− f(yi)
∥∥‖ei‖

≤
(
max
1≤i≤n

‖ei‖
) n∑

i=1

λi

∥∥f(xi)− f(yi)
∥∥

≤ πL
1 (f)

(
max
1≤i≤n

‖ei‖
)

sup
g∈B

X#

( n∑
i=1

λi

∣∣g(xi)− g(yi)
∣∣).

Taking the infimumover all such representations of u, we have |u(f)| ≤ πL
p′(f)dp(u).

Since u was arbitrary in X �E, it follows that f ∈ Lipdp(X,E∗) and Lipdp(f) ≤
πL
p′(f).
Conversely, let f ∈ Lipdp(X,E∗), and let n ∈ N, x1, . . . , xn ∈ X and y1, . . . , yn ∈

X. Let ε > 0. Then, for each i ∈ {1, . . . , n}, there exists ei ∈ E with ‖ei‖ ≤ 1+ ε
such that 〈f(xi) − f(yi), ei〉 = ‖f(xi) − f(yi)‖. It is elementary that the map
T : Kn → K, defined by

T (t1, . . . , tn) =
n∑

i=1

ti
∥∥f(xi)− f(yi)

∥∥, ∀(t1, . . . , tn) ∈ Kn,
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is linear and continuous on (Kn, ‖ · ‖p) with

‖T‖ =

{
(
∑n

i=1 ‖f(xi)− f(yi)‖p
′
)1/p

′
if 1 < p ≤ ∞,

max1≤i≤n ‖f(xi)− f(yi)‖ if p = 1.

For any (t1, . . . , tn) ∈ Kn with ‖(t1, . . . , tn)‖p ≤ 1, we have∣∣T (t1, . . . , tn)∣∣ = ∣∣∣ n∑
i=1

〈
f(xi)− f(yi), tiei

〉∣∣∣
=

∣∣∣ n∑
i=1

〈
δ(xi,yi) � (tiei), f

〉∣∣∣ ≤ Lipdp(f)dp

( n∑
i=1

δ(xi,yi) � (tiei)
)
.

If 1 < p < ∞, then it follows that∣∣T (t1, . . . , tn)∣∣ ≤ Lipdp(f)
( n∑

i=1

‖tiei‖p
) 1

p
sup

g∈B
X#

( n∑
i=1

∣∣g(xi)− g(yi)
∣∣p′) 1

p′

≤ Lipdp(f)(1 + ε) sup
g∈B

X#

( n∑
i=1

∣∣g(xi)− g(yi)
∣∣p′) 1

p′
.

Consequently, we have( n∑
i=1

∥∥f(xi)− f(yi)
∥∥p′

) 1
p′ ≤ Lipdp(f)(1 + ε) sup

g∈B
X#

( n∑
i=1

∣∣g(xi)− g(yi)
∣∣p′) 1

p′
,

and since ε was arbitrary, we deduce that( n∑
i=1

∥∥f(xi)− f(yi)
∥∥p′

) 1
p′ ≤ Lipdp(f) sup

g∈B
X#

( n∑
i=1

∣∣g(xi)− g(yi)
∣∣p′) 1

p′
,

and so f ∈ ΠL
p′(X,E∗) with πL

p′(f) ≤ Lipdp(f). Reasoning similarly, we arrive at
the same conclusion for the cases p = 1 and p = ∞. Indeed, if p = 1, we have∣∣T (t1, . . . , tn)∣∣ ≤ Lipd1(f)

( n∑
i=1

‖tiei‖
)

sup
g∈B

X#

(
max
1≤i≤n

∣∣g(xi)− g(yi)
∣∣)

≤ Lipd1(f)(1 + ε) sup
g∈B

X#

(
max
1≤i≤n

∣∣g(xi)− g(yi)
∣∣),

which gives

max
1≤i≤n

∥∥f(xi)− f(yi)
∥∥ ≤ Lipd1(f) sup

g∈B
X#

(
max
1≤i≤n

∣∣g(xi)− g(yi)
∣∣),

and so f ∈ ΠL
∞(X,E∗) with πL

∞(f) ≤ Lipd1(f). For p = ∞, we have∣∣T (t1, . . . , tn)∣∣ ≤ Lipd∞(f)
(
max
1≤i≤n

‖tiei‖
)

sup
g∈B

X#

( n∑
i=1

∣∣g(xi)− g(yi)
∣∣)

≤ Lipd∞(f)(1 + ε) sup
g∈B

X#

( n∑
i=1

∣∣g(xi)− g(yi)
∣∣);
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hence
n∑

i=1

∥∥f(xi)− f(yi)
∥∥ ≤ Lipd∞(f) sup

g∈B
X#

( n∑
i=1

∣∣g(xi)− g(yi)
∣∣),

and so f ∈ ΠL
1 (X,E∗) with πL

1 (f) ≤ Lipd∞(f). �

A similar description can be obtained for the class of maps admitting a Lipschitz
factorization through a subset of an Lp-space. This has been proved, though stated
in a slightly different language, in [3] for p = 2. Let us recall the basic definitions.
For any pointed metric spacesX and Y , f ∈ Lip0(X,Y ), and 1 ≤ p ≤ ∞, consider
the infimum of Lip(R) · Lip(S) taken over all factorizations of the form

Z
S

��
X

R
>>

f
// Y

where µ is a measure and Z is a subset of Lp(µ). We will denote this infimum by
γLip
p (f), inspired by the notation of a similar situation in Banach space theory and

by ΓLip
p (X,Y ), the set of all maps in Lip0(X,Y ) admitting such a factorization.

For a pointed metric space X and a Banach space E, it is not hard to show
that (ΓLip

p (X,E), γLip
p ) is a Banach space. For xj, x

′
j, yi, y

′
i ∈ X,λi, µj ∈ R, and

1 ≤ p ≤ ∞, we write (λi, yi, y
′
i)
n
i=1 ≺p (µj, xj, x

′
j)

m
j=1 if, for every f ∈ X#,

n∑
i=1

∣∣λi

[
f(yi)− f(y′i)

]∣∣p ≤ m∑
j=1

∣∣µj

[
f(xj)− f(x′

j)
]∣∣p.

Equivalently, this means that there exists a linear map A = (aij) : `
m
p → `np of

norm at most one such that, for each 1 ≤ i ≤ n,

λiδ(yi,y′i) =
m∑
j=1

aijµjδ(xj ,x′
j)

(see [3, Lemma 3.2]).

Definition 2.7. Let X be a pointed metric space, let E be a Banach space, and
let 1 ≤ p ≤ ∞. For u ∈ X � E, define

wp(u) = inf
{( n∑

i=1

‖ei‖p
)1/p( m∑

j=1

µp′

j d(xj, x
′
j)

p′
)1/p′

: u =
n∑

i=1

λiδ(yi,y′i) � ei

}
,

where the infimum is taken over the representations of u in the form
∑n

i=1 λiδ(yi,y′i)�
ei with xj, x

′
j, yi, y

′
i ∈ X, λi, µj ∈ R, ei ∈ E, and (λi, yi, y

′
i)
n
i=1 ≺p′ (µj, xj, x

′
j)

m
j=1.

Similar arguments to those in [3] for p = 2 show that the norm wp is a uniform
and dualizable Lipschitz cross-norm on X�E. Furthermore, the Banach space of
all wp-Lipschitz operators from X to E∗ can be identified with the Banach space

ΓLip
p′ (X,E∗) according to the following restatement of [3, Theorem 4.5] (while in

that article the proof is written out in the special case p = 2, the details carry
over to the general case).
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Theorem 2.8. Let 1 ≤ p ≤ ∞. Then Lipwp
(X,E∗) = ΓLip

p′ (X,E∗), and

Lipwp
(f) = γLip

p′ (f) for every f ∈ Lipwp
(X,E∗).

3. Duality for spaces of cross-norm-Lipschitz operators

As was expected from the definition, we now verify that, if α is a Lipschitz
cross-norm on X�E, then there is a canonical identification between the normed
space Lipα(X,E∗) and the dual space of X �̂α E. In particular, Lipα(X,E∗) will
be a Banach space.

Theorem 3.1. Let α be a Lipschitz cross-norm on X �E. Then Lipα(X,E∗) is

isometrically isomorphic to (X �̂α E)∗ via the map Λ0 : Lipα(X,E∗) → (X �̂αE)∗

defined by

Λ0(f)(u) =
n∑

i=1

〈
f(xi)− f(yi), ei

〉
for f ∈ Lipα(X,E∗) and u =

∑n
i=1 δ(xi,yi) � ei ∈ X � E. Its inverse is the map

Λ−1
0 from (X �̂αE)∗ to Lipα(X,E∗) given by〈

Λ−1
0 (ϕ)(x), e

〉
= ϕ(δ(x,0) � e)

for ϕ ∈ (X �̂α E)∗, x ∈ X, and e ∈ E.

Proof. Let f ∈ Lipα(X,E∗), and let Λ(f) be the linear functional on X � E
defined by

Λ(f)(u) =
n∑

i=1

〈
f(xi)− f(yi), ei

〉
for u =

∑n
i=1 δ(xi,yi) � ei ∈ X � E. Note that Λ(f) ∈ (X �α E)∗ and ‖Λ(f)‖ ≤

Lipα(f) since ∣∣Λ(f)(u)∣∣ = ∣∣∣ n∑
i=1

〈
f(xi)− f(yi), ei

〉∣∣∣ ≤ Lipα(f)α(u)

for all u =
∑n

i=1 δ(xi,yi)�ei ∈ X�E. By the denseness of X�αE in X �̂α E, there

is a unique continuous extension Λ0(f) of Λ(f) toX �̂α E. Let Λ0 : Lipα(X,E∗) →
(X �̂αE)∗ be the map so defined. Since Λ: Lip0(X,E∗) → (X � E)′ is a linear
monomorphism by [1, Corollary 1.8], it follows easily that so is Λ0.

In order to see that Λ0 is a surjective isometry, let ϕ be in (X �̂α E)∗. Define
the mapping f : X → E∗ by〈

f(x), e
〉
= ϕ(δ(x,0) � e) (x ∈ X, e ∈ E).

It is easy to check that f(x) is a well-defined bounded linear functional on E and
that f is well defined. Note that 〈f(x) − f(y), e〉 = ϕ(δ(x,y) � e) for all x, y ∈ X
and e ∈ E. For any

∑n
i=1 δ(xi,yi) � ei ∈ X � E, we have∣∣∣ n∑

i=1

〈
f(xi)− f(yi), ei

〉∣∣∣ = ∣∣∣ϕ( n∑
i=1

δ(xi,yi) � ei

)∣∣∣ ≤ ‖ϕ‖α
( n∑

i=1

δ(xi,yi) � ei

)
,
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and therefore f ∈ Lipα(X,E∗) and Lipα(f) ≤ ‖ϕ‖. For any u =
∑n

i=1 δ(xi,yi)�ei ∈
X � E, we obtain

Λ0(f)(u) =
n∑

i=1

〈
f(xi)− f(yi), ei

〉
=

n∑
i=1

ϕ(δ(xi,yi) � ei)

= ϕ
( n∑

i=1

δ(xi,yi) � ei

)
= ϕ(u).

Hence Λ0(f) = ϕ on a dense subspace of X �̂αE, and, consequently, Λ0(f) =
ϕ. Moreover, Lipα(f) ≤ ‖ϕ‖ = ‖Λ0(f)‖, as required. Finally, it follows that

〈Λ−1
0 (ϕ)(x), e〉 = 〈f(x), e〉 = ϕ(δ(x,0) � e) for ϕ ∈ (X �̂α E)∗, x ∈ X, and e ∈ E.

�

Theorem 3.1 and Lemma 2.5 give the next result of [10, Theorems 4.1, 5.8].

Corollary 3.2. The space Lip0(X,E∗) is isometrically isomorphic to (X �̂π E)∗.

From Theorems 3.1 and 2.6, we derive the following description for the space
of Lipschitz p-summing operators from X into E∗ (compare it with [2, Theorem
4.3]).

Corollary 3.3. For 1 ≤ p ≤ ∞, the space ΠL
p (X,E∗) is isometrically isomorphic

to (X �̂dp′
E)∗.

Similarly, Theorems 3.1 and 2.8 give the next identification stated in [3, Corol-
lary 4.6] for p = 2.

Corollary 3.4. For 1 ≤ p ≤ ∞, the space ΓLip
p (X,E∗) is isometrically isomorphic

to (X �̂wp′
E)∗.

Since Lipα(X,E∗) is a dual space by Theorem 3.1, we may consider it equipped
with its weak* topology.

Definition 3.5. Let α be a Lipschitz cross-norm on X � E. The weak* topology
(in short, w*) on Lipα(X,E∗) is the weak* topology on (X �̂αE)∗, that is, the

topology induced by the linear space of linear functionals κX �̂α E(X �̂αE) on

(X �̂αE)∗, where κX �̂α E is the canonical injection fromX �̂α E into (X �̂αE)∗∗.

We also introduce on Lipα(X,E∗) another topology that we will use later.

Definition 3.6. Let α be a Lipschitz cross-norm on X � E. The weak* Lipschitz
operator topology (in short, w*Lo) on Lipα(X,E∗) is the topology induced by
the linear space X � E of linear functionals on Lipα(X,E∗).

The following facts on w*Lo can be deduced from the theory on topologies
induced by families of functions (see, for example, [12, Section 2.4]).

Remark 3.7. Let α be a Lipschitz cross-norm on X � E.

(i) Here w*Lo is a locally convex topology on Lipα(X,E∗), and the dual
space of Lipα(X,E∗) with respect to this topology is X � E. Since the
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family of functions X�E is separating, we have that w*Lo is completely
regular.

(ii) If {fγ} is a net in Lipα(X,E∗) and f ∈ Lipα(X,E∗), then {fγ} converges
to f in the w*Lo topology if and only if {u(fγ)} converges to u(f) for
each u ∈ X � E.

(iii) IfB(X,E∗) is a linear subspace of Lipα(X,E∗) andLipα(X,E∗) is equipped
with the w*Lo topology, then the relative w*Lo topology of Lipα(X,E∗)
on B(X,E∗) agrees with the topology induced by the linear space of
linear functionals on B(X,E∗) given by {u|B(X,E∗) : u ∈ X � E}.

Corollary 3.8. Let α be a Lipschitz cross-norm on X � E.

(i) A net {fγ} in Lipα(X,E∗) converges to f ∈ Lipα(X,E∗) in the weak*

topology if and only if {u(fγ)} converges to u(f) for every u ∈ X �̂αE.
(ii) On Lipα(X,E∗), the weak* Lipschitz operator topology is weaker than

the weak* topology. Moreover, on bounded subsets of Lipα(X,E∗), both
topologies agree.

Proof. (i) Let Λ0 : Lipα(X,E∗) → (X �̂α E)∗ be the isometric isomorphism defined
in Theorem 3.1. We have

{fγ} → f in
(
Lipα(X,E∗), w∗)

⇔
{
Λ0(fγ)

}
→ Λ0(f) in

(
(X �̂α E)∗, w∗)

⇔
{〈

κX �̂α E(u),Λ0(fγ)
〉}

→
〈
κX �̂α E(u),Λ0(f)

〉
, ∀u ∈ X �̂α E

⇔
{
Λ0(fγ)(u)

}
→ Λ0(f)(u), ∀u ∈ X �̂αE

⇔
{
u(fγ)

}
→ u(f), ∀u ∈ X �̂αE.

(ii) Let {fγ} be a net in Lipα(X,E∗) which converges to f ∈ Lipα(X,E∗) in the

w* topology. By (i), {u(fγ)} converges to u(f) for each u ∈ X �̂α E. In particular,

{u(fγ)} converges to u(f) for each u ∈ X�E since X�E ⊂ X �̂αE. This means
that {fγ} converges to f in the w*Lo topology. Hence the identity on Lipα(X,E∗)
is a continuous bijection from the w* topology to the w*Lo topology, and thus
the latter topology is weaker than the former, as required. On a bounded subset
of Lipα(X,E∗), the w* topology is compact and the w*Lo topology is Hausdorff,
and so both topologies must coincide. �

4. Cross-norm-Lipschitz approximable operators

The concepts of Lipschitz finite-rank operators and Lipschitz approximable
operators from X into E were introduced in [9]. We now study the relation
between Lipschitz finite-rank operators and cross-norm-Lipschitz operators of X
into E∗.

Let us recall that a Lipschitz operator f ∈ Lip0(X,E∗) is considered Lipschitz
finite-rank if the linear span lin(f(X)) of f(X) in E∗ is finite-dimensional, in
which case the rank of f , denoted by rank(f), is defined as the dimension of
lin(f(X)). We denote by Lip0F (X,E∗) the linear space of all Lipschitz finite-rank
operators from X into E∗. For every g ∈ X# and φ ∈ E∗, the map g ·φ : X → E∗,
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defined by (g · φ)(x) = g(x)φ for all x ∈ X, is in Lip0F (X,E∗) with Lip(g · φ) =
Lip(g)‖φ‖ by [1, Lemma 1.5]. Furthermore, every operator f ∈ Lip0F (X,E∗) can
be expressed in the form f =

∑m
j=1 gj · φj, where m = rank(f), g1, . . . , gm ∈ X#

and φ1, . . . , φm ∈ E∗.

Theorem 4.1. Let α be a dualizable Lipschitz cross-norm on X � E. For every
g ∈ X# and φ ∈ E∗, the map g · φ belongs to Lipα(X,E∗) and Lipα(g · φ) =
Lip(g)‖φ‖. As a consequence, Lip0F (X,E∗) is contained in Lipα(X,E∗).

Proof. Let g ∈ X#, and let φ ∈ E∗. Since the Lipschitz injective norm ε is the
least dualizable Lipschitz cross-norm on X � E by [1, Theorem 5.2], we have∣∣∣ n∑

i=1

〈
(g · φ)(xi)− (g · φ)(yi), ei

〉∣∣∣ = ∣∣∣ n∑
i=1

(
g(xi)− g(yi)

)
〈φ, ei〉

∣∣∣
≤ Lip(g)‖φ‖ε

( n∑
i=1

δ(xi,yi) � ei

)
≤ Lip(g)‖φ‖α

( n∑
i=1

δ(xi,yi) � ei

)
for all

∑n
i=1 δ(xi,yi) � ei ∈ X � E, and so g · φ ∈ Lipα(X,E∗) and Lipα(g · φ) ≤

Lip(g)‖φ‖. The converse inequality follows from Lemma 2.2. Since the Lipschitz
operators g · φ generate linearly the space Lip0F (X,E∗) and Lipα(X,E∗) is a
linear space, we conclude that Lip0F (X,E∗) is contained in Lipα(X,E∗). �

Let us recall that a Lipschitz operator from X into E∗ is said to be Lips-
chitz approximable if it is the limit in the Lipschitz norm Lip of a sequence of
Lipschitz finite-rank operators from X to E∗ (see [9]). Since the Banach spaces
(Lip0(X,E∗),Lip) and (Lipπ(X,E∗),Lipπ) coincide by Lemma 2.5, it is natural
to introduce the following class of Lipschitz operators.

Definition 4.2. Let α be a dualizable Lipschitz cross-norm on X�E. A Lipschitz
operator f ∈ Lipα(X,E∗) is said to be α-Lipschitz approximable if it is the limit
in the α-Lipschitz norm Lipα of a sequence of Lipschitz finite-rank operators from
X to E∗.

Therefore, the space of all α-Lipschitz approximable operators from X into E∗,
provided that α is a dualizable Lipschitz cross-norm on X � E, is the closure of
the space Lip0F (X,E∗) in (Lipα(X,E∗),Lipα).

Theorem 4.3. Let α be a dualizable Lipschitz cross-norm on X �E, and let α′

be the associated Lipschitz norm of α.

(i) (Lip0F (X,E∗),Lipα) is isometrically isomorphic to X# �α′ E∗ via the
map K : X# �α′ E∗ → Lip0F (X,E∗) given by

K
( m∑

j=1

gj � φj

)
=

m∑
j=1

gj · φj.

(ii) The space of all α-Lipschitz approximable operators from X into E∗ is
isometrically isomorphic to X# �̂α′ E∗.
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Proof. By [1, Theorem 2.5], the map K : X# � E∗ → Lip0F (X,E∗) given by

K
( m∑

j=1

gj � φj

)
=

m∑
j=1

gj · φj

is a linear bijection. For any
∑m

j=1 gj � φj ∈ X# � E∗, we have

α′
( m∑

j=1

gj � φj

)
= sup

{∣∣∣( m∑
j=1

gj � φj

)( n∑
i=1

δ(xi,yi) � ei

)∣∣∣ : α( n∑
i=1

δ(xi,yi) � ei

)
≤ 1

}
= sup

{∣∣∣ n∑
i=1

〈( m∑
j=1

gj · φj

)
(xi)−

( m∑
j=1

gj · φj

)
(yi), ei

〉∣∣∣ :
α
( n∑

i=1

δ(xi,yi) � ei

)
≤ 1

}
= Lipα

( m∑
j=1

gj · φj

)
by using [1, Lemmas 2.2 and 1.4] and Remark 2.3. Hence K is an isometry from
X# �α′ E∗ onto (Lip0F (X,E∗),Lipα), and this proves (i). Then (ii) follows from
(i) by applying a known result of functional analysis. �

From Corollary 3.2 and Theorem 4.3, we deduce the following consequence.

Corollary 4.4. Let α be a dualizable Lipschitz cross-norm on X � E. Then
X# �̂α′ E∗ is isometrically isomorphic to (X �̂α E)∗ if and only if Lipα(X,E∗) is
isometrically isomorphic to the space of α-Lipschitz approximable operators from
X to E∗.

5. Lipschitz operator Banach ideals

We now formalize the notion of an ideal of Lipschitz operators with a definition
inspired by the analogous one for linear operators between Banach spaces.

Definition 5.1. A Banach ideal of Lipschitz operators (or simply a Lipschitz oper-
ator Banach ideal) from X to E∗ is a linear subspace A(X,E∗) of Lip0(X,E∗)
equipped with a norm ‖ · ‖A with the following properties.

(i) The Lipschitz rank 1 operator g · φ from X to E∗ belongs to A(X,E∗)
for every g ∈ X# and φ ∈ E∗, and ‖g · φ‖A ≤ Lip(g)‖φ‖.

(ii) The linear subspace (A(X,E∗), ‖ · ‖A) is a Banach space.
(iii) The ideal property: If f ∈ A(X,E∗), h ∈ Lip0(X,X), and S ∈ L(E∗, E∗),

then the composition Sfh belongs to A(X,E∗) and ‖Sfh‖A ≤ ‖S‖·‖f‖A·
Lip(h).

Our aim is to study the case when Lipα(X,E∗) is a Lipschitz operator Banach
ideal. We will need the following lemma.
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Lemma 5.2. Let α be a Lipschitz cross-norm on X � E, and let
∑n

i=1 δ(xi,yi) �
ei ∈ X � E. Then there exists a f ∈ Lipα(X,E∗) such that Lipα(f) = 1 and∑n

i=1〈f(xi)− f(yi), ei〉 = α(
∑n

i=1 δ(xi,yi) � ei).

Proof. By the Hahn–Banach theorem, there exists a functional ϕ ∈ (X �̂αE)∗

with ‖ϕ‖ = 1 such that ϕ(
∑n

i=1 δ(xi,yi) � ei) = α(
∑n

i=1 δ(xi,yi) � ei). By Theorem
3.1, there exists a function Λ−1

0 (ϕ) ∈ Lipα(X,E∗) such that Lipα(Λ
−1
0 (ϕ)) = ‖ϕ‖

and (
∑n

i=1 δ(xi,yi) � ei)(Λ
−1
0 (ϕ)) = ϕ(

∑n
i=1 δ(xi,yi) � ei). Take f = Λ−1

0 (ϕ), and the
lemma follows. �

Theorem 5.3. Let α be a Lipschitz cross-norm on X � E. Then we have the
following.

(i) If Lipα(X,E∗) is a Lipschitz operator Banach ideal, then α is uniform.
(ii) If α is uniform and E is a reflexive Banach space, then Lipα(X,E∗) is a

Lipschitz operator Banach ideal.

Proof. (i) Let us assume that Lipα(X,E∗) is a Lipschitz operator Banach ideal.
Consider

∑n
i=1 δ(xi,yi) � ei ∈ X � E, and let h ∈ Lip0(X,X) and T ∈ L(E,E).

By Lemma 5.2, there exists f ∈ Lipα(X,E∗) with Lipα(f) = 1 such that

n∑
i=1

〈
f
(
h(xi)

)
− f

(
h(yi)

)
, T (ei)

〉
= α

( n∑
i=1

δ(h(xi),h(yi)) � T (ei)
)
;

that is,
n∑

i=1

〈
T ∗fh(xi)− T ∗fh(yi), ei

〉
= α

( n∑
i=1

δ(h(xi),h(yi)) � T (ei)
)
,

where T ∗ denotes the adjoint operator of T . Since Lipα(X,E∗) has the ideal prop-
erty, then T ∗fh belongs to Lipα(X,E∗) and Lipα(T

∗fh) ≤ ‖T ∗‖Lipα(f)Lip(h).
Then we have

α
( n∑

i=1

δ(h(xi),h(yi)) � T (ei)
)
≤ Lipα(T

∗fh)α
( n∑

i=1

δ(xi,yi) � ei

)
≤ ‖T‖Lip(h)α

( n∑
i=1

δ(xi,yi) � ei

)
,

and so α is uniform.
(ii) Notice that Lipα(X,E∗) is a linear subspace of Lip0(X,E∗) and (Lipα(X,E∗),

Lipα) is a normed space which satisfies the conditions (i) and (ii) of Definition 5.1
by Lemmas 2.2 and 2.4 and Theorems 3.1 and 4.1. Assume that α is uniform and
that E is reflexive. We only need to prove that Lipα(X,E∗) has the ideal prop-
erty. Let f ∈ Lipα(X,E∗), let h ∈ Lip0(X,X), and let S ∈ L(E∗, E∗). Since E is
reflexive, there exists T ∈ L(E,E) such that T ∗ = S and ‖T‖ = ‖S‖. For every∑n

i=1 δ(xi,yi) � ei ∈ X � E, we have∣∣∣ n∑
i=1

〈
Sfh(xi)− Sfh(yi), ei

〉∣∣∣ = ∣∣∣ n∑
i=1

〈
fh(xi)− fh(yi), T (ei)

〉∣∣∣
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≤ Lipα(f)α
( n∑

i=1

δ(h(xi),h(yi)) � T (ei)
)

≤ Lipα(f)Lip(h)‖T‖α
( n∑

i=1

δ(xi,yi) � ei

)
.

It follows that Sfh is in Lipα(X,E∗) and Lipα(Sfh) ≤ ‖S‖Lipα(f)Lip(h). This
completes the proof. �

Theorem 5.3 shows that for reflexive spaces there is an equivalence between
the uniformity of α and Lipα being an ideal.

We now study when α-Lipschitz approximable operators from X into E∗ form
a Lipschitz operator Banach ideal.

Theorem 5.4. Let α be a uniform and dualizable Lipschitz cross-norm on the
space X � E. Assume that E is a reflexive Banach space. Then (Lip0F (X,E∗),
Lipα) is a Lipschitz operator Banach ideal.

Proof. We first show that (Lip0F (X,E∗),Lipα) has the ideal property. Consider
the maps f ∈ Lip0F (X,E∗), h ∈ Lip0(X,X), and S ∈ L(E∗, E∗). Since

lin
(
Sfh(X)

)
= S

(
lin

(
fh(X)

))
⊂ S

(
lin

(
f(X)

))
,

we infer thatSfh ∈ Lip0F (X,E∗). The inequality Lipα(Sfh) ≤ ‖S‖Lipα(f)Lip(h)
follows similarly as in the proof of the assertion (ii) of Theorem 5.3.

By Theorems 4.1 and 3.1, (Lip0F (X,E∗),Lipα) satisfies the conditions (i) and
(ii) of Definition 5.1. In order to prove that it has the ideal property, let f ∈
Lip0F (X,E∗), h ∈ Lip0(X,X), and S ∈ L(E∗, E∗). Then we can take a sequence
{fn} in Lip0F (X,E∗) such that Lipα(fn − f) → 0. Then Lipα(Sfnh− Sfh) → 0
since

Lipα(Sfnh− Sfh) = Lipα

(
S(fn − f)h

)
≤ ‖S‖Lipα(fn − f)Lip(h)

for all n ∈ N. Hence Sfh ∈ Lip0F (X,E∗). Since Lipα(Sfnh) ≤ ‖S‖Lipα(fn)Lip(h)
for all n ∈ N, we deduce that Lipα(Sfh) ≤ ‖S‖Lipα(f)Lip(h), and the theorem
follows. �

6. Lipschitz operator Banach spaces

In Theorem 3.1 we have characterized Lipα(X,E∗) as the dual space (X �̂α E)∗.
Our aim in this section is to tackle the general duality problem as to when a
space of maps from X to E∗ is isometrically isomorphic to (X �̂α E)∗ for some
Lipschitz cross-norm α regardless of whether or not one has an ideal property.
For that purpose, we first introduce Banach spaces of Lipschitz operators.

Definition 6.1. A Banach space of Lipschitz operators (or simply a Lipschitz
operator Banach space) fromX to E∗ is a linear subspaceB(X,E∗) of Lip0(X,E∗)
equipped with a norm ‖ · ‖B having the properties

(i) (B(X,E∗), ‖ · ‖B) is a Banach space,
(ii) ‖f‖B ≥ Lip(f) for every f ∈ B(X,E∗),
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(iii) for every g ∈ X# and φ ∈ E∗, the map g · φ belongs to B(X,E∗) and
‖g · φ‖B = Lip(g)‖φ‖.

We first characterize all Lipschitz cross-norms α onX�E for which Lipα(X,E∗)
is a Lipschitz operator Banach space.

Theorem 6.2. Let α be a Lipschitz cross-norm on X �E. Then Lipα(X,E∗) is
a Lipschitz operator Banach space if and only if α is dualizable.

Proof. In view of Lemmas 2.4 and 2.2 and Theorem 3.1, Lipα(X,E∗) is a linear
subspace of Lip0(X,E∗), and (Lipα(X,E∗),Lipα) is a normed space satisfying
assumptions (i) and (ii) of Definition 6.1. Hence we only need to prove that
Lipα(X,E∗) satisfies condition (iii) if and only if α is dualizable.

If α is dualizable, then Lipα(X,E∗) has the property (iii) by Theorem 4.1.
Conversely, assume that every map g · φ : X → E∗ with g ∈ X# and φ ∈ E∗ is in
Lipα(X,E∗) and Lipα(g · φ) = Lip(g)‖φ‖. Take g ∈ X# and φ ∈ E∗, and since∣∣∣ n∑

i=1

(
g(xi)− g(yi)

)
〈φ, ei〉

∣∣∣ = ∣∣∣ n∑
i=1

〈
(g · φ)(xi)− (g · φ)(yi), ei

〉∣∣∣
≤ Lipα(g · φ)α

( n∑
i=1

δ(xi,yi) � ei

)
= Lip(g)‖φ‖α

( n∑
i=1

δ(xi,yi) � ei

)
for all

∑n
i=1 δ(xi,yi) � ei ∈ X � E, we have that α is dualizable. �

Since π, ε, dp, and wp for p ∈ [1,∞] are dualizable Lipschitz cross-norms on
X � E, Theorem 6.2 gives the following.

Corollary 6.3. The spaces Lipα(X,E∗) for α = π, ε, dp, wp with 1 ≤ p ≤ ∞ are
Lipschitz operator Banach spaces.

Conversely, we will now address the problem of when a Lipschitz operator
Banach space can be canonically isometrically identified with the dual of a Lip-
schitz tensor product endowed with a Lipschitz cross-norm. We begin with the
following lemma.

Lemma 6.4. Let B(X,E∗) be a Lipschitz operator Banach space. For each ele-
ment u =

∑n
i=1 δ(xi,yi) � ei ∈ X � E, define

α(u) = sup
{∣∣∣ n∑

i=1

〈
f(xi)− f(yi), ei

〉∣∣∣ : f ∈ B(X,E∗), ‖f‖B = 1
}

and 〈
i(u), f

〉
=

n∑
i=1

〈
f(xi)− f(yi), ei

〉 (
f ∈ B(X,E∗)

)
.

Then α is a dualizable Lipschitz cross-norm on X�E, and i is a linear isometry
from X �α E into B(X,E∗)∗.
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Proof. Let u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E, and let f ∈ B(X,E∗). Note that
〈i(u), f〉 = u(f). Clearly, i(u) is well defined on B(X,E∗), it is linear, and
‖〈i(u), f〉‖ ≤ Lip(f)π(u) ≤ ‖f‖Bπ(u) for all f ∈ B(X,E∗). Then i(u) is in
B(X,E∗)∗, and∥∥i(u)∥∥ := sup

{∣∣〈i(u), f〉∣∣ : f ∈ B(X,E∗), ‖f‖B = 1
}
≤ π(u).

It is immediate that i : X �E → B(X,E∗)∗ is well defined and linear. Moreover,
it is injective. Indeed, i(u) = 0 means that 〈i(u), f〉 = 0 for all f ∈ B(X,E∗).
Since B(X,E∗) contains the maps g ·φ, it follows that 〈u, g ·φ〉 = 〈i(u), g ·φ〉 = 0
for all g ∈ X# and φ ∈ E∗, and then u = 0 by [1, Proposition 1.6].

Define the map α on X � E as in the statement. Notice that α(u) = ‖i(u)‖.
Then α is a norm on X � E, and so i is a linear isometry from X �α E into
B(X,E∗)∗.

We claim that α is a Lipschitz cross-norm. Indeed, for any δ(x,y) � e ∈ X �E,
we have

α(δ(x,y) � e) =
∥∥i(δ(x,y) � e)

∥∥ ≤ π(δ(x,y) � e) = d(x, y)‖e‖.

For the reverse, we may take φ ∈ SE∗ and g ∈ SX# satisfying that 〈φ, e〉 = ‖e‖
and g(x) − g(y) = d(x, y). For example, g(z) = d(z, y) − d(0, y) for all z ∈ X.
Then g · φ ∈ B(X,E∗) with ‖g · φ‖ = 1, and we infer that

α(δ(x,y) � e) ≥
∣∣〈(g · φ)(x)− (g · φ)(y), e

〉∣∣ = ∣∣(g(x)− g(y)
)
〈φ, e〉

∣∣ = d(x, y)‖e‖,

and this proves our claim.
Finally, we prove that α is dualizable. Let u =

∑n
i=1 δ(xi,yi) � ei ∈ X � E. For

any g ∈ SX# and φ ∈ SE∗ , we have∣∣∣ n∑
i=1

(
g(xi)− g(yi)

)
〈φ, ei〉

∣∣∣
=

∣∣∣ n∑
i=1

〈
(g · φ)(xi)− (g · φ)(yi), ei

〉∣∣∣
≤ sup

{∣∣∣ n∑
i=1

〈
f(xi)− f(yi), ei

〉∣∣∣ : f ∈ B(X,E∗), ‖f‖B = 1
}
,

and therefore ε(u) ≤ α(u). Then α is dualizable by [1, Theorem 6.3 and Propo-
sition 6.4]. �

We are ready to obtain the main result of this section.

Theorem 6.5. Let B(X,E∗) be a Lipschitz operator Banach space. Then the
following are equivalent:

(i) There exists a dualizable Lipschitz cross-norm α on X � E such that
B(X,E∗) = Lipα(X,E∗) and ‖f‖B = Lipα(f) for every f ∈ B(X,E∗).

(ii) If f is in Lip0(X,E∗) and {fγ} is a bounded net in B(X,E∗) which
converges to f in the weak* Lipschitz operator topology of Lip0(X,E∗),
then f ∈ B(X,E∗) and ‖f‖B ≤ sup{‖fγ‖B : γ ∈ Γ}.
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Proof. Suppose that (i) holds. Let f ∈ Lip0(X,E∗), and let {fγ} be a bounded
net in B(X,E∗) converging to f in the w*Lo topology of Lip0(X,E∗). Denote

M = sup
{
‖fγ‖B : γ ∈ Γ

}
.

If
∑n

i=1 δ(xi,yi) � ei ∈ X � E and ε > 0, then we have∣∣∣ n∑
i=1

〈
f(xi)−f(yi), ei

〉
−

n∑
i=1

〈
fγ0(xi)−fγ0(yi), ei

〉∣∣∣ = ∣∣∣( n∑
i=1

δ(xi,yi)�ei

)
(f−fγ0)

∣∣∣ < ε

for some γ0 ∈ Γ, and therefore∣∣∣ n∑
i=1

〈
f(xi)− f(yi), ei

〉∣∣∣ < ∣∣∣ n∑
i=1

〈
fγ0(xi)− fγ0(yi), ei

〉∣∣∣+ ε

≤ Lipα(fγ0)α
( n∑

i=1

δ(xi,yi) � ei

)
+ ε

= ‖fγ0‖Bα
( n∑

i=1

δ(xi,yi) � ei

)
+ ε

≤ Mα
( n∑

i=1

δ(xi,yi) � ei

)
+ ε.

Since ε was arbitrary, we deduce that f ∈ Lipα(X,E∗) and Lipα(f) ≤ M . Hence
f ∈ B(X,E∗) and ‖f‖B ≤ M .

Conversely, assume that (ii) is true. Take the dualizable Lipschitz cross-norm
α on X � E and the linear isometry i from X �α E into B(X,E∗)∗ defined in
Lemma 6.4. Next we check that B(X,E∗) = Lipα(X,E∗) and ‖f‖B = Lipα(f)
for all f ∈ B(X,E∗). To this end, we first take a function f in B(X,E∗). The
definition of α gives∣∣∣ n∑

i=1

〈
f(xi)− f(yi), ei

〉∣∣∣ ≤ ‖f‖Bα
( n∑

i=1

δ(xi,yi) � ei

)
for all

∑n
i=1 δ(xi,yi)�ei ∈ X�E, and then f ∈ Lipα(X,E∗) with Lipα(f) ≤ ‖f‖B.

Conversely, pick a function f in Lipα(X,E∗), and let S(f) : i(X�E) → K be the
functional given by 〈

S(f), i(u)
〉
=

n∑
i=1

〈
f(xi)− f(yi), ei

〉
for u =

∑n
i=1 δ(xi,yi) � ei ∈ X � E. The fact that i is injective guarantees that

S(f) is well defined. The linearity of S(f) follows easily. Since |〈S(f), i(u)〉| =
|u(f)| ≤ Lipα(f)α(u) = Lipα(f)‖i(u)‖ for all u ∈ X � E, it follows that S(f)
is continuous and ‖S(f)‖ ≤ Lipα(f). Since i(X � E) is a linear subspace of

B(X,E∗)∗, the Hahn–Banach theorem provides a functional S̃(f) ∈ B(X,E∗)∗∗

which extends to S(f) and has the same norm. Let κB be the canonical injection
from B(X,E∗) into B(X,E∗)∗∗. By Goldstein’s theorem, there exists a net {fγ}
in B(X,E∗) for which sup{‖fγ‖B : γ ∈ Γ} ≤ ‖S̃(f)‖ and {κB(fγ)} converges to
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S̃(f) in the weak* topology of B(X,E∗)∗∗. Since i(X�E) ⊂ B(X,E∗)∗, it follows

that, for each u ∈ X �E, the net {〈κB(fγ), i(u)〉} converges to 〈S̃(f), i(u)〉; that
is, {u(fγ)} converges to u(f). This means that {fγ} converges to f in the weak*
Lipschitz operator topology of Lip0(X,E∗) by Remark 3.7. Then, by hypothesis,
f ∈ B(X,E∗), and ‖f‖B ≤ sup{‖fγ‖B : γ ∈ Γ} ≤ Lipα(f). This finishes the
proof. �

Theorem 6.5 can be reformulated as follows.

Corollary 6.6. Let B(X,E∗) be a Lipschitz operator Banach space. The following
are equivalent.

(i) There exists a dualizable Lipschitz cross-norm α on X � E such that
B(X,E∗) = Lipα(X,E∗) and ‖f‖B = Lipα(f) for all f ∈ B(X,E∗).

(ii) There exists a dualizable Lipschitz cross-norm α on X � E such that

B(X,E∗) is isometrically isomorphic to (X �̂α E)∗.
(iii) The closed unit ball of B(X,E∗) is compact in the weak* Lipschitz oper-

ator topology of Lip0(X,E∗).

Proof. Here, the fact that (i) implies (ii) is deduced immediately, taking into
account Theorem 3.1. Assume now that (ii) holds. Then B(X,E∗) is isometrically
isomorphic to Lipα(X,E∗) by Theorem 3.1. Then Alaoglu’s theorem says that the
closed unit ball of B(X,E∗) is compact in the w* topology of Lipα(X,E∗), and
hence by Corollary 3.8 in the w*Lo topology of Lipα(X,E∗). Since Lipα(X,E∗) is
a linear subspace of Lip0(X,E∗), this last topology agrees with the relative w*Lo
topology of Lip0(X,E∗) on Lipα(X,E∗) by Remark 3.7. Then (iii) follows easily.

Finally, suppose that (iii) is true. Let f ∈ Lip0(X,E∗), and let {fγ} be a
bounded net in B(X,E∗) which converges to f in the w*Lo topology of
Lip0(X,E∗). Let M = sup{‖fγ‖B : γ ∈ Γ}. By (iii), the closed unit ball of
B(X,E∗) is closed in the w*Lo topology of Lip0(X,E∗). Therefore, the limit
of the net {fγ/M} in the w*Lo topology of Lip0(X,E∗), that is, f/M , is in the
closed unit ball of B(X,E∗). Hence f ∈ B(X,E∗) and ‖f‖B ≤ M . Then the
assertion (ii) of Theorem 6.5 is satisfied, and we obtain (i). �
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