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Abstract

In 1995 Magnus [15] posed a conjecture about the asymptotics of the recurrence coefficients
of orthogonal polynomials with respect to the weights on [−1, 1] of the form

(1− x)α (1 + x)β |x0 − x|γ ×

{
B, for x ∈ [−1, x0) ,
A, for x ∈ [x0, 1] ,

with A,B > 0, α, β, γ > −1, and x0 ∈ (−1, 1). We show rigorously that Magnus’ conjecture
is correct even in a more general situation, when the weight above has an extra factor, which
is analytic in a neighborhood of [−1, 1] and positive on the interval. The proof is based on
the steepest descendent method of Deift and Zhou applied to the non-commutative Riemann-
Hilbert problem characterizing the orthogonal polynomials. A feature of this situation is that
the local analysis at x0 has to be carried out in terms of confluent hypergeometric functions.
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1. Introduction and statement of results

1.1. Introduction
A. Magnus considered in [15] a weight function which is smooth and positive on the whole

interval of orthogonality up to a finite number of points where algebraic singularities occur.
His primary goal was to investigate the influence of these singular points on the asymptotic
behavior of the recurrence coefficients of the corresponding orthogonal polynomials (general-
ized Jacobi polynomials). Based on numerical evidence, he conjectured explicit formulas for
the asymptotics of these coefficients (as the degree of the polynomial grows) for the weights
of the form

(1− x)α (1 + x)β |x0 − x|γ ×

{
B, for x ∈ [−1, x0) ,
A, for x ∈ [x0, 1] ,

(1)

with A,B > 0 and α, β, γ > −1, and x0 ∈ (−1, 1). This weight combines at a single point
both an algebraic singularity and a jump.

So far, Magnus’ conjecture has been confirmed rigorously in some special cases (see below);
our main goal is to establish it in its full generality, and even to extend it further. Namely,
we consider polynomials that are orthogonal on a finite interval [−1, 1] with respect to a
modified Jacobi weight of the form

wc,γ(x) = (1− x)α(1 + x)β|x0 − x|γh(x) Ξc(x), x ∈ [−1, 1], (2)

where x0 ∈ (−1, 1), α, β, γ > −1, h is real analytic and strictly positive on [−1, 1], and Ξc is
a step-like function, equal to 1 on [−1, x0) and c2 > 0 on [x0, 1].

The proof is based on the nonlinear steepest descent analysis of Deift and Zhou, introduced
in [7] and further developed in [2, 6, 9], which is based on the Riemann–Hilbert characteri-
zation of orthogonal polynomials due to Fokas, Its, and Kitaev [10]. A crucial contribution
to this approach is [14], where the complete asymptotic expansion for the orthogonal poly-
nomials with respect to the Jacobi weight modified by a real analytic and strictly positive
function was obtained (in notation (1), A = B and γ = 0). The first application of this
technique to weights with a jump discontinuity is due to [13], where the authors considered
an exponential weight on R with a jump at the origin.

Let Pn(x) = Pn(x;wc,γ) be the monic polynomial of degree n orthogonal with respect to
the weight wc,γ on [−1, 1],

� 1

−1
Pn(x;wc,γ)xkwc,γ(x) dx = 0, for k = 0, 1, . . . , n− 1.

It is well known (see e.g. [16]) that {Pn} satisfy the three-term recurrence relation

Pn+1(z) = (z − bn)Pn(z)− a2
nPn−1(z). (3)

The central result of this paper is:
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Theorem 1. The recurrence coefficients an and bn of orthogonal polynomials corresponding
to the generalized Jacobi weight (2) have a complete asymptotic expansion of the form

an =
1
2
−
∞∑
k=1

Ak(n)
nk

, bn = −
∞∑
k=1

Bk(n)
nk

,

as n → ∞, where for every k ∈ N the coefficients Ak(n) and Bk(n) are bounded in n. In
particular,

A1(n) = −
√

1− x2
0

2

√
γ2

4
+

log2 c

π2
cos
[
2n arccosx0 + 2

log c
π

log
(

4n
√

1− x2
0

)
−Θ

]
, (4)

B1(n) = −
√

1− x2
0

√
γ2

4
+

log2 c

π2
cos
[
(2n+ 1) arccosx0 + 2

log c
π

log
(

4n
√

1− x2
0

)
−Θ

]
,

(5)

where

Θ =
(
α+

γ

2

)
π− (α+ β + γ) arccosx0 − 2 arg Γ

(
γ

2
− i log c

π

)
− arg

(
γ

2
− i log c

π

)
−
√

1− x2
0

π

 1

−1

log h (t)√
1− t2

dt

t− x0
,

(6)

and
�

denotes the integral understood in terms of its principal value.

Remark 1. We can rewrite the result of this theorem as

an =
1
2
− M

n
cos
[
2n arccosx0 − 2µ log

(
4n
√

1− x2
0

)
−Θ

]
+O

(
1
n2

)
,

bn = −2M
n

cos
[
(2n+ 1) arccosx0 − 2µ log

(
4n
√

1− x2
0

)
−Θ

]
+O

(
1
n2

)
,

as n→∞, where

µ = − log c
π

, M =

√
1− x2

0

2

√
γ2

4
+ µ2,

and Θ defined by (6).
A comparison of these formulas with those in [15] (setting h(x) ≡ B and c2 = A/B) shows

that Magnus’ conjecture on the asymptotic behavior of the recurrence coefficients holds true
for weights of the form (1). Observe that this is a slight extension of the original statement
of Magnus: (i) we allow for an extra real analytic and strictly positive factor h in the weight,
and (ii) we can replace the error term o(1/n) in [15] by a more precise O(1/n2).
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Theorem 1 generalizes some previous known results about the asymptotics of the recur-
rence coefficients. To mention a few, weight w1,0 was considered in [14], w1,γ is a particular
case of the weight studied in [17], and wc,0 was matter of attention in [11].

The proof is based on the steepest descent analysis of the non-commutative Riemann-
Hilbert problem characterizing the orthogonal polynomials Pn. In theory, this approach
allows to compute all coefficients Ak and Bk in (4)–(5). However, the computations are
cumbersome and their complexity increases with k.

Most of the steps of the steepest descent analysis below are standard and well described in
the literature, see e.g. [5, 8, 14]. The main feature of the situation treated here in comparison
with the classical Jacobi weight is the singularity of the weight of orthogonality at x0. The
local behavior of Pn’s at x0 is described in terms of the confluent hypergeometric functions.
Such functions appeared already in the Riemann-Hilbert analysis for the weight wc,0 in [11]
and [13], and will work also in the general situation studied here. However, the parameter
describing the family of these functions is complex; its real part depends on the degree of
the algebraic singularity γ and its imaginary part is a function of the size of the jump c2 in
the weight wc,γ . Also, for c = 1 these confluent hypergeometric functions degenerate into the
Bessel functions, in correspondence with [14].

Interestingly enough, the confluent hypergeometric functions appear in the scaling limit
(as the number of particles goes to infinity) of the correlation functions of the pseudo-Jacobi
ensemble, see [3]. This ensemble corresponds to a sequence of weights of the form

(1 + x2)−n−Re(s)e2 Im(s) arg(1+ix), x ∈ R, (7)

where n is the degree of the polynomial and s a complex parameter. The connection between
both problems becomes apparent if we perform the inversion x 7→ 1/x in (7); this creates at
the origin an algebraic singularity with the exponent Re(s) and a jump depending on Im(s).

In the next Section we state the Riemann-Hilbert problem for the orthogonal polynomials
and perform the steepest descent analysis; as a result, Theorem 1 is proved in Section 3. For
the sake of brevity, the description of the standard steps is rather sketchy; an interested reader
may find the missing details in the literature cited above, and especially in [11]. However,
the local parametrix (the Riemann-Hilbert problem in a neighborhood of the singularity) at
x0 is analyzed in full detail. The same problem has appeared very recently in an independent
work of Deift, Its and Krasovsky [4] on the asymptotics of Toeplitz and Hankel determinants.

2. The steepest descent analysis

2.1. The Riemann-Hilbert problem and first transformations
Following Fokas, Its and Kitaev [10], we characterize the orthogonal polynomials in terms

of the unique solution Y of the following 2×2 matrix valued Riemann-Hilbert (RH) problem:
for n ∈ N,
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(Y1) Y is analytic in C \ [−1, 1].
(Y2) On (−1, x0)∪ (x0, 1), Y possesses continuous boundary values Y+ (from the upper half

plane) and Y− (from the lower half plane), and

Y+(x) = Y−(x)
(

1 wc,γ(x)
0 1

)
.

(Y3) Y(z) = (I +O (1/z)) znσ3 , as z → ∞, where all terms are 2 × 2 matrices, I is the

identity and σ3 =
(

1 0
0 −1

)
is the third Pauli matrix.1

(Y4) if (ζ, s) ∈ {(−1, β), (x0, γ), (1, α)} then for z → ζ, z ∈ C\ [−1, 1],

Y(z) =



O

(
1 |z − ζ|s

1 |z − ζ|s

)
, if s < 0;

O

(
1 log |z − ζ|
1 log |z − ζ|

)
, if s = 0;

O

(
1 1
1 1

)
, if s > 0.

Standard arguments (see e.g. [14]) show that this RH problem has a unique solution given by

Y (z, n) =
(

Pn (z) C (Pnwc,γ) (z)
−2πik2

n−1Pn−1 (z) −2πik2
n−1C (Pn−1wc,γ) (z)

)
, (8)

where Pn is the monic orthogonal polynomial of degree n with respect to wc,γ , pn(x) =
pn(x;wc,γ) is the corresponding orthonormal polynomial,

pn(x) = knPn(x),

where kn > 0 is the leading coefficient of pn, and C (·) is the Cauchy transform on [−1, 1]
defined by

C (f) (z) =
1

2πi

� 1

−1

f (x)
x− z

dx .

Note that Y and other matrices introduced hereafter depend on n; however, to simplify
notation we omit the explicit reference to n.

1In what follows, for a ∈ C \ {0} and b ∈ C, abσ3 we use the notation

abσ3 def
=

„
ab 0

0 1/ab

«
.
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The first transformations of the Deift-Zhou steepest descendent method are standard,
and up to slight variations match those described in [11, subsection 2.2]. Hence, we will omit
the details, highlighting basically the differences with the cited reference. The reader should
keep in mind also that in [11] the analysis is made for a singularity fixed at x0 = 0; however,
extending it to the general case of x0 ∈ (−1, 1) is straightforward.

We start by defining
T (z) def= 2nσ3Y (z)ϕ (z)−nσ3 , (9)

where
ϕ (z) = z +

√
z2 − 1 (10)

is the conformal map from C \ [−1, 1] onto the exterior of the unit circle, with the branch of√
z2 − 1 analytic in C \ [−1, 1] and that behaves like z as z →∞.

In order to perform the second transformation we need to extend the definition of the
weight of orthogonality to a neighborhood of the interval [−1, 1]. By assumptions, h is a
holomorphic function in a neighborhood U of [−1, 1], and positive on this interval. For any
Jordan arc Γ, intersecting [−1, 1] transversally at x0 and dividing U into two connected
components, we denote by Σ5 its intersection with the upper half plane, and by Σ6 its
intersection with the lower half plane, oriented as shown in Figure 1. Contours Σ5 ∪ Σ6 ∪ R
divide U into four open domains (“quadrants”), that we denote by QL,R± as depicted. Finally,
let QL (resp., QR) be the connected component of U \ Γ containing −1 (resp., +1).

−1 1x0

QL−

QL+ QR+

QR−

Σ6

Σ5

Figure 1: Division of the neighborhood of [−1, 1] in four regions.

Now we set

w(z) def= h(z) (1− z)α (1 + z)β ×

{
(x0 − z)γ , z ∈ QL \ (−∞,−1] ,
(z − x0)γ , z ∈ QR \ [1,+∞) ,

(11)

where the principal branches of the power functions are taken. In this way, w is defined and
holomorphic in Ũ def= U \ ((−∞,−1] ∪ [1,+∞) ∪ Γ), and w(x) > 0 for x ∈ (−1, 1)\x0. Setting

Ξc (z) =

{
1 z ∈ QL

c2 z ∈ QR,
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we extend also
wc,γ(z) def= w(z) Ξc(z), (12)

to a holomorphic function in Ũ .
We describe now the next transformation consisting in opening of lenses or contour de-

formation.

−1 1x0

Σ1

Σ2

Σ3

Σ4

inner lower dom.

inner upper dom.

outer dom.

Figure 2: First lens opening.

We build the four contours Σi lying in Ũ (except for their end points) such that Σ1 and
Σ3 are in the upper half plane, and Σ1 and Σ2 are in the left half plane, and oriented “from
−1 to 1” but now through x0 (see Fig. 2). This construction defines three domains: the
inner upper domain, bounded by [−1, 1] and the curves Σ1 and Σ3; the inner lower domain,
bounded by [−1, 1] and the curves Σ2 and Σ4, and finally the outer domain, bounded by
curves Σi and containing the infinity. Denote Σ def= [−1, 1] ∪

⋃4
k=1 Σk.

Using the matrix T from (9) we define

S (z) def=



T (z) , for z in the outer domain,

T(z)

(
1 0

− 1
wc,γ(z)ϕ

−2n(z) 1

)
, for z in the inner upper domain,

T(z)

(
1 0

1
wc,γ(z)ϕ

−2n(z) 1

)
, for z in the inner lower domain.

(13)

Then S is a solution of a new RH problem, now with jumps on Σ, that are easy to compute
explicitly. The uniqueness is guaranteed if we impose the additional local requirement: as
z → x0, z ∈ C\Σ,

• for −1 < γ < 0, S (z) = O
(

1 |z − x0|γ
1 |z − x0|γ

)
, as z → x0,
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• for γ = 0:

S(z) =


O

(
1 log |z − x0|
1 log |z − x0|

)
, as z → x0 from the outer domain,

O

(
log |z − x0| log |z − x0|
log |z − x0| log |z − x0|

)
, as z → x0 from the inner domains,

• for γ > 0:

S(z) =


O

(
1 1
1 1

)
, as z → x0, from the outer domain,

O

(
|z − x0|−γ 1
|z − x0|−γ 1

)
, as z → x0, from the inner domain.

2.2. Outer parametrix
In the next step, which is also standard, we build the so-called outer parametrix for the

RH problem for S in terms of the Szegő function D(·, wc,γ) corresponding to the weight wc,γ .
Namely, we construct the 2× 2 matrix N that satisfies

(N1) N is analytic in C\ [−1, 1];

(N2) N+(x) = N−(x)
(

0 wc,γ (x)
−wc,γ (x)−1 0

)
, x ∈ (−1, x0) ∪ (x0, 1);

(N3) N(z) = I +O (1/z), as z →∞.

The solution is given by
N (z) def= Dσ3

∞A(z)D (z, wc,γ)−σ3 , (14)

and we will describe the three factor appearing in the r.h.s. of (14). Matrix A is

A(z) def=
(
A11 A12

−A12 A11

)
, A11(z) =

ϕ (z)1/2

√
2 (z2 − 1)1/4

,

A12(z) =
iϕ (z)−1/2

√
2 (z2 − 1)1/4

=
i

ϕ(z)
A11(z),

(15)

with the main branches of the roots, in such a way that A11 is analytic in C\ [−1, 1] with
A11 (z)→ 1, and A12 (z)→ 0, as z →∞. The Szegő function D(·, wc,γ) for wc,γ is given by

D(z, wc,γ) = D(z, h)D(z, w1,γ)D(z,Ξc) , (16)
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where

D(z, h) = exp
(√

1− z2 C
(

log h(t)√
1− t2

)
(z)
)
, D(z, w1,γ) =

(z − 1)α/2 (z + 1)β/2 (z − x0)γ/2

ϕ(α+β+γ)/2(z)
,

(17)
and

D(z,Ξc) = c exp

(
−λ log

(
1− zx0 − i

√
z2 − 1

z − x0

))
, (18)

with
λ

def= i
log c
π

, (19)

where we take the main branches of (z − 1)α/2, (z + 1)β/2, (z − x0)γ/2 and
√
z2 − 1 that are

positive for z > 1, as well as the main branch of the logarithm (see [11, section 2.3] for a
detailed computation). Finally,

D∞
def= D(∞, wc,γ) =

√
cD (∞, h) 2−(α+β+γ)/2 eiλ arcsinx0 > 0. (20)

Some of the properties of this function are summarized in the following lemma:

Lemma 2. The Szegő function D(·, w) for the weight w defined in (11) exhibits the following
boundary behavior:

lim
z→x∈(−1,1),

± Im z>0

D(z, w) =
√
w(x) exp

(
±iΦ̂(x)

)
, (21)

with

Φ (x) =
πα

2
− α+ β + γ

2
arccosx−

√
1− x2

2π

 1

−1

log h (t)√
1− t2

dt

t− x
, (22)

Φ̂ (x) =
{

Φ (x) + πγ
2 , −1 < x < x0

Φ (x) , x0 < x < 1
(23)

Furthermore, for the step function Ξc,

lim
z→x∈(−1,x0)∪(x0,1),

± Im z>0

D(z,Ξc) =
√

Ξc(x) exp

∓i log c
π

log

∣∣∣∣∣∣
1− x0x+

√
(1− x2)

(
1− x2

0

)
x− x0

∣∣∣∣∣∣
 ,

and

D (z,Ξc) = c
1± i

π
log

„
z−x0

2(1−x20)

«
[1 + o (1)] , as z → x0, ± Im z > 0. (24)
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The proof of this lemma is similar to [11, Lemma 7], up to the difference that our jump
here takes place at a generic point x0, and that w(z) (see (11)) has an extra factor which
makes w(z) non-analytic across Σ5 ∪ Σ6.

The main purpose for constructing N is that it solves the “stripped” RH problem, ob-
tained from the RH problem for S by ignoring all jumps asymptotically close to identity.
Unfortunately, this property of N is not uniform on the whole plane: the jumps of N and S
are no longer close in the neighborhoods of ±1 and x0. The analysis at these points requires a
separate treatment, called local analysis, that we perform next. The outline of this analysis at
each point is the following: take a small disc centered at the point and build a matrix-valued
function (local parametrix) that:

(i) matches exactly the jumps of S within the disc, and
(ii) coincides with N on the boundary of the disc, at least to an order o(1), n→∞.

2.3. Local parametrix
We fix a δ > 0 small enough such that discs Uζ

def= {z ∈ C : |x− ζ| < δ} , ζ ∈ {−1, x0, 1}
are mutually disjoint and lie in the domain of analyticity of the function h. We skip the
details of construction of the local parametrices P±1 at z = ±1 and refer the reader to [14].

For the local parametrix at the jump we need to build a 2 × 2 matrix-valued function
Px0

def= P0 in Ux0 \ Σ that satisfies the following conditions:

(P01) P0 is holomorphic in Ux0\Σ and continuous up to the boundary.
(P02) P0 satisfies the following jump relations:

P0+(z) = P0−(z)

(
1 0

1
wc,γ(z) ϕ (z)−2n 1

)
, for z ∈ Ux0 ∩

(
4⋃
i=1

Σi

)
\ {x0};

P0+(x) = P0−(x)

(
0 wc,γ (z)

− 1
wc,γ(z) 0

)
, for z ∈ Ux0 ∩ ((−1, x0) ∪ (x0, 1)) .

(P03) P0(z)N−1 (z) = I +O (1/n), as n→∞, uniformly for z ∈ ∂Ux0\Σ.
(P04) P0 has the same behavior than S as z → x0, z ∈ Ux0\Σ.

Following a standard procedure, we obtain the solution of this problem in two steps,
getting first a matrix P(1) that satisfies conditions (P01, P02, P04). After that, using an
additional freedom in the construction, we take care of the matching condition (P03).

We define an auxiliary function W , holomorphic in Ũ \R. In the next formula we under-

stand by
(
h (z) (1− z)α (1 + z)β (z − x0)γ c

)1/2
the holomorphic branch of this function in U\

((−∞, x0]∪ [1,+∞)), positive on (x0, 1). Analogously,
(
h (z) (1− z)α (1 + z)β (x0 − z)γ c

)1/2

10



stands for the holomorphic branch in U \ ((−∞,−1] ∪ [x0,+∞)), positive on (−1, x0). With
this convention we set

W (z) =


(
h (z) (1− z)α (1 + z)β (z − x0)γ c

)1/2
, z ∈ QL+ ∪QL−,(

h (z) (1− z)α (1 + z)β (x0 − z)γ c
)1/2

, z ∈ QR+ ∪QR−.
(25)

It is easy to see from (11)–(12) that

W 2 (z) =


wc,γ (z) e−γπic−1, z ∈ QR+,
wc,γ (z) eγπic, z ∈ QL+,
wc,γ (z) e−γπic, z ∈ QL−, ,
wc,γ (z) eγπic−1, z ∈ QR−.

This shows that W satisfies the following jump relations:

W+ (x) =

{
W− (x) eiγπ, −1 < x < x0,

W− (x) e−iγπ, x0 < x < 1,

and
W+ (z) = eiγπ/2W− (z) , z ∈ Σ5 ∪ Σ6. (26)

Moreover,

W+ (x) =

{√
wc,γ (x) c ei

γπ
2 =

√
w1,γ (x) c ei

γπ
2 , −1 < x < x0,√

wc,γ (x) c−1 e−i
γπ
2 =

√
w1,γ (x) c e−i

γπ
2 , x0 < x < 1,

(27)

and

W+ (x)W− (x) =

{
wc,γ (x) c, −1 < x < x0,

wc,γ (x) c−1, x0 < x < 1.
(28)

We construct the matrix function P0 in the following form:

P0 (z) = En (z) P(1) (z)W (z)−σ3 ϕ (z)−nσ3 , (29)

where En is an analytic matrix-valued function in Ux0 (to be determined). Matrix P(1) is
analytic in Ux0 \ Σ. Denote by

J1 =
(

0 c
−1/c 0

)
, J2 =

(
1 0

e−γπic−1 1

)
, J3 = J7 =

(
eiγπ/2 0

0 e−iγπ/2

)
, (30)

J4 =
(

1 0
eγπic 1

)
, J5 =

(
0 1/c
−c 0

)
, J6 =

(
1 0

e−γπic 1

)
. (31)

11



Using the properties of W and ϕ it is easy to show that

P(1)
+ (x) = P(1)

− (x)

{
J5, x ∈ (x0 − δ, x0),
J1, x ∈ (x0, x0 + δ),

(32)

and

P(1)
+ (z) = P(1)

− (z)


J4, z ∈ Σ1 ∩ Ux0 \ {x0},
J6, z ∈ Σ2 ∩ Ux0 \ {x0},
J2, z ∈ Σ3 ∩ Ux0 \ {x0},
J8, z ∈ Σ4 ∩ Ux0 \ {x0},

(33)

and, as W has a jump on Σ5 ∪ Σ6, by (26), we have two additional jumps on Σ5 ∪ Σ6:

P(1)
+ (z) = P(1)

− (z)

{
J3, z ∈ Σ5 ∩ Ux0 \ {x0},
J7, z ∈ Σ6 ∩ Ux0 \ {x0}.

(34)

Taking into account that W (z) = O
(
|z − x0|γ/2

)
and ϕ (z) = O (1) as z → x0, we

conclude also from (P04) that P(1) has the following behavior at x0: as z → x0, z ∈
C\ (Σ ∪ Σ5 ∪ Σ6),

• for γ < 0:

P(1)(z) = O

(
|z − x0|γ/2 |z − x0|γ/2

|z − x0|γ/2 |z − x0|γ/2

)
, (35)

• for γ = 0

P(1)(z) =


O
(

log |z − x0| log |z − x0|
log |z − x0| log |z − x0|

)
, from inside the lens,

O
(

1 log |z − x0|
1 log |z − x0|

)
, from outside the lens,

(36)

• for γ > 0 :

P(1)(z) =


O

(
|z − x0|γ/2 |z − x0|−γ/2

|z − x0|γ/2 |z − x0|−γ/2

)
, from outside the lens,

O

(
|z − x0|−γ/2 |z − x0|−γ/2

|z − x0|−γ/2 |z − x0|−γ/2

)
, from inside the lens.

(37)
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Figure 3: Auxiliary contours Γ.

In order to construct P(1) we solve first an auxiliary RH problem on a set Γ def=
⋃8
j=1 Γj

of unbounded oriented straight lines converging at the origin, like in Fig. 3. More precisely,

Γ1 =
{
t eiπ/2 : t > 0

}
, Γ2 =

{
t e3iπ/4 : t > 0

}
, Γ3 = {−t : t > 0} , Γ4 =

{
t e5iπ/4 : t > 0

}
,

Γ5 =
{
t e3iπ/2 : t > 0

}
, Γ6 =

{
t e−iπt/4 : t > 0

}
, Γ7 = {t : t > 0} , Γ8 =

{
eiπt/4 : t > 0

}
.

These lines split the plane into 8 sectors, enumerated anti-clockwise from ¬ to ³ as in Fig. 3.
We look for a 2× 2 matrix valued function Ψ (z), satisfying the following conditions:

(Ψ1) Ψ is analytic in C\Γ.
(Ψ2) for k = 1, . . . , 8, Ψ satisfies the jump relation Ψ+(ζ) = Ψ−(ζ)Jk on Γk, with Jk given

by (30) and (31).
(Ψ3) the behavior of Ψ as ζ → 0 is obtained from that of P(1) at x0 by replacing (z − x0)

with ζ. Now the region “inside lens” correspond to ¬ ∪ ¯ ∪ ° ∪ ³ and the region
“outside lens” corresponds to ­ ∪® ∪± ∪².

We construct Ψ explicitly using the confluent hypergeometric functions

φ (a, γ + 1; ζ) def= 1F1 (a; γ + 1; ζ) and ψ (a, γ + 1; ζ) def= z−a2F0 (a, a− γ;−;−1/ζ) ,

that are solutions of the confluent hypergeometric equation ζw′′ + (γ + 1− ζ)w′ − aw = 0,
see [1, formula (13.1.1)]. Namely, let

G (a, γ; ζ) def= ζγ/2φ (a, γ + 1; ζ) e−ζ/2, H (a, γ; ζ) def= ζγ/2ψ (a, γ + 1; ζ) e−ζ/2, (38)
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they form a basis of solutions of the confluent equation (see e.g. [1, formula (13.1.35)])

4ζ2w′′ + 4ζw′ +
[
−γ2 + 2ζ (γ + 1− 2a)− ζ2

]
w = 0. (39)

We can relateG andH with the Whittaker functions: G(a, γ; z) = Mκ,µ(z)/
√
z andH(a, γ; z) =

Wκ,µ(z)/
√
z with µ = γ/2 and κ = 1/2 + µ− a (see [1, formula (13.1.32)]).

In general, G (a, γ; ζ) and H (a, γ; ζ) from (39) are multi-valued, and we take its principal
branch in −π

2 < arg (ζ) < 3π
2 . For these values of ζ we define

Ψ̂ (ζ) def=

 Γ(1−λ+ γ
2 )

Γ(γ+1) G
(
λ+ γ

2 , γ; ζ
)

−H
(
λ+ γ

2 , γ; ζ
)

Γ(1+λ+ γ
2 )

Γ(γ+1) G
(
1 + λ+ γ

2 , γ; ζ
) Γ(1+λ+ γ

2 )
Γ( γ2−λ)

H
(
1 + λ+ γ

2 , γ; ζ
)
 e

γπi
4
σ3 .

By (Ψ2), if we set

Ψ (ζ) def=



Ψ̂ (ζ) J8J1, for ζ ∈ ¬;
Ψ̂ (ζ) J8J1J2, for ζ ∈ ­;
Ψ̂ (ζ) J8J1J2J3, for ζ ∈ ®;
Ψ̂ (ζ) J8J1J2J3J

−1
4 , for ζ ∈ ¯;

Ψ̂ (ζ) J−1
7 J6, for ζ ∈ °;

Ψ̂ (ζ) J−1
7 , for ζ ∈ ±;

Ψ̂ (ζ) , for ζ ∈ ²;
Ψ̂ (ζ) J8, for ζ ∈ ³.

(40)

then Ψ has the jumps across Γ specified in (Ψ2). Explicitly, Ψ (ζ) = c−1H
(
λ+ γ

2 , γ; ζ
)

−Γ(1−λ+ γ
2 )

Γ( γ2 +λ) H
(
1− λ+ γ

2 , γ; ζe−πi
)

−c−1 Γ(1+λ+ γ
2 )

Γ( γ2−λ)
H
(
1 + λ+ γ

2 , γ; ζ
)

H
(γ

2 − λ, γ; ζe−πi
)

 e−
γπi
4
σ3 , ζ ∈ ¬,

(41) Γ(1−λ+ γ
2 )

Γ(γ+1) G
(
λ+ γ

2 , γ; ζ
)
e−

γπi
2 −Γ(1−λ+ γ

2 )
Γ( γ2 +λ) H

(
1− λ+ γ

2 , γ; ζe−πi
)

Γ(1+λ+ γ
2 )

Γ(γ+1) G
(
1 + λ+ γ

2 , γ; ζ
)
e−

γπi
2 H

(γ
2 − λ, γ; ζe−πi

)
 e−

γπi
4
σ3 , ζ ∈ ­,

(42) Γ(1−λ+ γ
2 )

Γ(γ+1) G
(
λ+ γ

2 , γ; ζ
)

−Γ(1−λ+ γ
2 )

Γ( γ2 +λ) H
(
1− λ+ γ

2 , γ; ζe−πi
)
e−

γπi
2

Γ(1+λ+ γ
2 )

Γ(γ+1) G
(
1 + λ+ γ

2 , γ; ζ
)

H
(γ

2 − λ, γ; ζe−πi
)
e−

γπi
2

 e−
γπi
4
σ3 , ζ ∈ ®,

(43) cH
(
λ+ γ

2 , γ; ζe−2πi
)

−Γ(1−λ+ γ
2 )

Γ( γ2 +λ) H
(
1− λ+ γ

2 , γ; ζe−πi
)

−cΓ(1+λ+ γ
2 )

Γ( γ2−λ)
H
(
1 + λ+ γ

2 , γ; ζe−2πi
)

H
(γ

2 − λ, γ; ζe−πi
)

 e
γπi
4
σ3 , ζ ∈ ¯,

(44)
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 −Γ(1−λ+ γ
2 )

Γ(λ+ γ
2 ) H

(
1− λ+ γ

2 , γ; ζeπi
)
e−λπi −H

(
λ+ γ

2 , γ; ζ
)

H
(γ

2 − λ, γ; ζeπi
)
e−λπi

Γ(1+λ+ γ
2 )

Γ( γ2−λ)
H
(
1 + λ+ γ

2 , γ; ζ
)
 e−

γπi
4
σ3 , ζ ∈ °,

(45) Γ(1−λ+ γ
2 )

Γ(γ+1) G
(
λ+ γ

2 , γ; ζ
)

−H
(
λ+ γ

2 , γ; ζ
)

Γ(1+λ+ γ
2 )

Γ(γ+1) G
(
1 + λ+ γ

2 , γ; ζ
) Γ(1+λ+ γ

2 )
Γ( γ2−λ)

H
(
1 + λ+ γ

2 , γ; ζ
)
 e−

γπi
4
σ3 , ζ ∈ ±, (46)

 Γ(1−λ+ γ
2 )

Γ(γ+1) G
(
λ+ γ

2 , γ; ζ
)

−H
(
λ+ γ

2 , γ; ζ
)

Γ(1+λ+ γ
2 )

Γ(γ+1) G
(
1 + λ+ γ

2 , γ; ζ
) Γ(1+λ+ γ

2 )
Γ( γ2−λ)

H
(
1 + λ+ γ

2 , γ; ζ
)
 e

γπi
4
σ3 , ζ ∈ ², (47)

 −c−1 Γ(1−λ+ γ
2 )

Γ( γ2 +λ) H
(
1− λ+ γ

2 , γ; ζe−πi
)

−H
(
λ+ γ

2 , γ; ζ
)

c−1H
(γ

2 − λ, γ; ζe−πi
) Γ(1+λ+ γ

2 )
Γ( γ2−λ)

H
(
1 + λ+ γ

2 , γ; ζ
)
 e

γπi
4
σ3 , ζ ∈ ³.

(48)

Proposition 3. The solution of the RH problem (Ψ1), (Ψ2), (Ψ3) is given by (40) and
det Ψ(z) = 1, for z ∈ C \ Γ.

Proof. If we take the branch cut across arg ζ = −π/2 oriented towards the origin (we
consider −π/2 < arg ζ < 3π/4), we have that the matrix Ψ has on this cut the following
jump (using (19)):

Ψ+(ζ) = Ψ−(ζ)J5, ζ ∈ Γ5, (49)

Ψ̂+(ζ) = Ψ̂−(ζ)
(
eiπγ −e−iπλ + eiπλe−iπγ

0 e−iπγ

)
, ζ ∈ Γ5. (50)

Using the following relations (see [13, appendix: formulas (7.18), (7.30), (7.27)]),

φ
(
a, b; e±2πiz

)
= φ (a, b; z) , (51)

ψ
(
a, b; e2πiz

)
= e−2iπaψ (a, b; z) + e−iπa

2πi
Γ (a) Γ (1 + a− b)

ψ
(
b− a, 1; eiπz

)
ez,

ψ
(
b− a, b; eiπz

)
ez =

−Γ (a)
Γ (b− a)

e−iπbψ (a, b; z) +
Γ (a)
Γ (b)

e−iπ(b−a)φ (a, b; z) ,

Γ (s) Γ (1− s) =
2πi

eiπs − e−iπs
,

and, combining the last three formulas we obtain:

ψ
(
a, b; e2πiz

)
= ψ (a, b; z) e−2πib + φ (a, b; z)

2πi
Γ (1 + a− b) Γ (b)

e−πib. (52)
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Set

Ψ̂11 (ζ) =
Γ
(
1− λ+ γ

2

)
Γ (γ + 1)

ζγ/2φ
(
λ+

γ

2
, γ + 1; ζ

)
e−ζ/2eiπγ/4,

Ψ̂12 = −ζγ/2ψ
(
λ+

γ

2
, γ + 1; ζ

)
e−ζ/2e−iπγ/4.

Then from (51) and (52) if follows that for ζ ∈ Γ5,(
Ψ̂11

)
+

(ζ) =
(
e2πiζ

)γ/2
φ
(
λ+

γ

2
, γ + 1; e2πiζ

)
e−ζ/2eiπγ/4

Γ(1−λ+ γ
2 )

Γ(γ+1)

= eiπγ
(
Ψ̂11

)
−

(ζ) ,

and (
Ψ̂12

)
+

(ζ) = −
(
e2πiζ

)γ/2
ψ
(
λ+

γ

2
, γ + 1; e2πiζ

)
e−ζ/2e−iπγ/4

= 2πie−πie−iπγ/4Γ(γ+1)

Γ(λ− γ2 )Γ(γ+1)Γ(1−λ+ γ
2 )eiπγ/4

(
Ψ̂11

)
−

(ζ) + eπi(γ−2γ−2)
(
Ψ̂12

)
−

(ζ)

=
[
−e−iπλ + eiπλe−iπγ

] (
Ψ̂11

)
−

(ζ) + e−iπγ
(
Ψ̂12

)
−

(ζ) ,

in accordance with (49). Analogously, we can satisfy the second row of (49) if we take

Ψ̂21 =
Γ
(
1 + λ+ γ

2

)
Γ (γ + 1)

ζγ/2φ
(

1 + λ+
γ

2
, γ + 1; ζ

)
e−ζ/2eiπ

γ
4 ,

Ψ̂22 =
Γ
(
1 + λ+ γ

2

)
Γ
(γ

2 − λ
) ζγ/2ψ

(
1 + λ+

γ

2
, γ + 1; ζ

)
e−ζ/2e−iπ

γ
4 .

By construction, Ψ satisfies the jumps relations in (Ψ2). Using formulas (7.26), (7.27) and
(7.29) from [13, appendix], we can write explicitly the matrix Ψ in all regions. Since the local
behavior of ψ(a, b; z) depends only on the value of the parameter b, by construction, all rows
of Ψ̂ have the same asymptotics as ζ → 0. Hence, it is sufficient to analyze the first row.

From formulas (13.5.5) and (13.5.12) from [1] if follows that for ζ ∈ ², Ψ̂ has the behavior
described in (Ψ3), as ζ → 0. Indeed, for γ > 0,

Ψ̂11 = O
(
ζγ/2

)
, Ψ̂12 = O

(
ζ−γ/2

)
;

for γ = 0,
Ψ̂11 = O (1) , Ψ̂12 = O (ln ζ) ;

and for −1 < γ < 0,
Ψ̂11 = O

(
ζγ/2

)
, Ψ̂12 = O

(
ζγ/2

)
.
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Analogously we can check that Ψ satisfies (Ψ3) in all regions of the plane.
Finally, using formula (13.1.22) from [1],∣∣∣∣φ (a, b; ζ) ψ (a, b; ζ)

φ′ (a, b; ζ) ψ′ (a, b; ζ)

∣∣∣∣ = −Γ (b) eζ

ζbΓ (a)
,

as well as the differential relations (13.4.23) and (13.4.10) from [1], we easily get that∣∣∣∣∣
Γ(b−a)

Γ(b) ζ
b−1
2 φ (a, b; ζ) e−ζ/2e

iπγ
4 −ζ

b−1
2 ψ (a, b; ζ) e−ζ/2e−

iπγ
4

Γ(1+a)
Γ(b) ζ

b−1
2 φ (a+ 1, b; ζ) e−ζ/2e

iπγ
4

Γ(1+a)
Γ(−(1+a−b))ζ

b−1
2 ψ (a+ 1, b; ζ) e−ζ/2e−

iπγ
4

∣∣∣∣∣ = 1.

This implies tha det Ψ̂ = 1, and, by construction, det Ψ = 1, which concludes the proof.

In order to construct the analytic function En in (29) we need to study also the asymptotic
behavior of Ψ at infinity. Let us introduce the notation

υn
def= υn (λ) =

(
λ+ γ

2

)
n

(
λ− γ

2

)
n

n!
, (53)

τλ
def=

Γ
(
−λ+ γ

2

)(
−γ

2 − λ
)

Γ
(γ

2 + λ
) = −

Γ
(γ

2 − λ
)

Γ
(γ

2 + λ+ 1
) ; (54)

observe that

τ−λ = τλ, υn (−λ) = υn (λ), and υ1 =
(
λ2 − γ2

4

)
∈ R . (55)

Lemma 4. As ζ →∞, ζ ∈ C\Γ,

Ψ (ζ) =

[
I +

R−1∑
n=1

1
ζn

(
(−1)n υn nτλυn

(−1)n nτλυn υn

)
+O

(
|ζ|−R

)]
ζ−λσ3e

−ζσ3
2 M−1 (ζ) (56)

with υn defined by (53), τλ defined by (54), λ = i log(c)/π, and

M (ζ) def=



e
γ
4
πiσ3e−λπiσ3 , π

2 < arg ζ < π,

e−
γ
4
πiσ3e−λπiσ3 , π < arg ζ < 3π

2 ,

e
γ
4
πiσ3

(
0 1
−1 0

)
, −π

2 < arg ζ < 0,

e−
γ
4
πiσ3

(
0 1
−1 0

)
, 0 < arg ζ < π

2 ,

where we use the main branch of ζ−λ = e−λ log ζ with the cut along iR−.
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Proof. We use the classical formulas (13.5.1) and (13.5.2) from [1] for the confluent hyper-
geometric functions. If we take b = γ + 1, and multiply φ and ψ by (zγ/2e−z/2), using (38),
we have that, as |z| → ∞,

G (a, γ; z) =


Γ(γ+1)

Γ(a) za−γ/2
[

1
z

(
1 +

∑R−1
n=1

(γ+1−a)n(1−a)n
n!zn +O

(
|z|−R

))]
ez/2, Re z > 0,

Γ(γ+1)
Γ(γ+1−a)e

aπizγ/2−a
[
1 +

∑R−1
n=1

(a)n(a−γ)n
(−1)nn!zn

+O
(
|z|−R

)]
e−z/2, Re z < 0,

(57)

H (a, γ; z) = zγ/2−a

[
1 +

R−1∑
n=1

(a)n(a−γ)n
(−1)nn!zn

+O
(
|z|−R

)]
e−z/2. (58)

Replacing these expansions in the expression for Ψ for ζ ∈ ¬, π
2 < arg ζ < 3π

4 and −π
2 <

arg
(
e−πiζ

)
< −π

4 , we get for |ζ| → ∞,

Ψ (ζ) =

 ζ−λ
[
1 +

∑R−1
n=1

(λ+ γ
2 )
n
(λ− γ2 )

n
(−1)nn!ζn

+O
(
|ζ|−R

)]
e−ζ/2eλπi

−Γ(1+λ+ γ
2 )

Γ( γ2−λ)
ζ−1−λ

[
1 +

∑R−1
n=1

(1+λ+ γ
2 )
n
(1+λ− γ

2 )
n

(−1)nn!ζn
+O

(
|ζ|−R

)]
e−ζ/2eλπi

−Γ(1−λ+ γ
2 )

Γ( γ2 +λ)
(
e−πiζ

)−1+λ
[
1 +

∑R−1
n=1

(1−λ+ γ
2 )
n
(1−λ− γ

2 )
n

(−1)n(−1)nζnn!
+O

(
|ζ|−R

)]
eζ/2(

e−πiζ
)λ [1 +

∑R−1
n=1

( γ2−λ)n(− γ2−λ)n
(−1)n(−1)nζnn!

+O
(
|ζ|−R

)]
eζ/2

 e−
γπi
4
σ3 ,

which can be rewritten using notation (53)–(54) as

=

I +

 [∑R−1
n=1 (−1)n υn

ζn

]
τλ

[∑R−1
n=1 (−1)n nυn

ζn

]
τλ

[∑R−1
n=1

nυn
ζn

][∑R−1
n=1

υn
ζn

] +O
(
|ζ|−R

)(ζ−λe−ζ/2eλπie− γπi4

)σ3

.

This yields (56) for π/2 < ζ < 3π/4; this expansion is also valid for ζ ∈ ­. A comparison
of (42) with (43) shows that the behavior for ζ ∈ ®, π < arg ζ < 5π

4 , can be obtained from
the expansion in ­ by multiplying by ei

γ
2
πσ3 , which again yields (56) for π < ζ < 5π/4. It is

easy to see that asymptotics in ® is also valid in ¯.
Using (45), (57), (58) and comparing the expression for Ψ in ¬ and °, we conclude that
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for ζ ∈ °, −π
2 < arg ζ < −π

4 (π2 < arg (ζ) eπi < 3π
4 and Re ζ > 0), as |ζ| → ∞,

Ψ (ζ) =

 −
Γ(1−λ+ γ

2 )
Γ( γ2 +λ)

(
eπiζ

)−1+λ
[
1 +

∑R−1
n=1

(1−λ+ γ
2 )
n
(1−λ− γ

2 )
n

(−1)n(−1)nζnn!
+O

(
|ζ|−R

)]
e−λπieζ/2(

eπiζ
)λ [1 +

∑R−1
n=1

( γ2−λ)n(− γ2−λ)n
(−1)n(−1)nζnn!

+O
(
|ζ|−R

)]
e−λπieζ/2

−ζ−λ
[
1 +

∑R−1
n=1

(λ+ γ
2 )
n
(λ− γ2 )

n
(−1)nn!ζn

+O
(
|ζ|−R

)]
e−ζ/2

−−Γ(1+λ+ γ
2 )

Γ( γ2−λ)
ζ−1−λ

[
1 +

∑R−1
n=1

(1+λ+ γ
2 )
n
(1+λ− γ

2 )
n

(−1)nn!ζn
+O

(
|ζ|−R

)]
e−ζ/2

 e−
γπi
4
σ3

=

[(
0 −1
1 0

)
+
R−1∑
n=1

1
ζn

(
nτλυn − (−1)n υn
υn − (−1)n nτλυn

)
+O

(
|ζ|−R

)]

×
(

0 −1
1 0

)−1( 0 −1
1 0

)
ζλσ3e−

γ
4
πiσ3e

ζ
2
σ3

=

[
I +

R−1∑
n=1

1
ζn

(
(−1)n υn nτλυn

(−1)n nτλυn υn

)
+O

(
|ζ|−R

)]
ζ−λσ3e

γ
4
πiσ3e−

ζ
2
σ3

(
0 −1
1 0

)
.

This expression is valid in ± as well. Finally, comparing (46) with (47) we see that the
behavior for ζ ∈ ², 0 < arg ζ < π

4 , corresponds to that in ± times the constant factor ei
γ
2
πσ3 ,

which yields (56). Since the asymptotics for ζ ∈ ³ is the same than in ², this concludes the
proof of Lemma.

Now we are ready to build P(1) in (29). Using the properties of ϕ we define an analytic
function f in a neighborhood of x0,

f (z) def=

{
2i arccosx0 − 2 logϕ (z) , for Im z > 0,
2i arccosx0 + 2 logϕ (z) , for Im z < 0,

(59)

where we take the main branch of the logarithm. Using that ϕ+ (x)ϕ− (x) = 1 on (−1, 1)
we conclude that f can be extended to a holomorphic function in C \ ((−∞,−1] ∪ [1,+∞)).
For |z| < 1 we have

f (z) =
2i√

1− x2
0

(z − x0) +O
(
(z − x0)2

)
, as z → x0. (60)

Hence, for δ > 0 sufficiently small, f is a conformal mapping of Ux0 . Moreover, since

ϕ+(x) = x+ i
√

1− x2 = ei arccosx, x ∈ (−1, 1), (61)

then
f(x) = 2i (arccosx0 − arccosx) , x ∈ (−1, 1), (62)
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so that f maps the real interval (−1, x0) one-to-one onto the purely imaginary interval
(2i(arccosx0 − π), 0), as well as (x0, 1) one-to-one onto the purely imaginary interval (0, 2i arccosx0).

We can always deform our contours Σk close to z = x0 in such a way that

f (Σ1 ∩ Ux0) ⊂ Γ4, f (Σ2 ∩ Ux0) ⊂ Γ6, f (Σ3 ∩ Ux0) ⊂ Γ2, f (Σ4 ∩ Ux0) ⊂ Γ8

f (Σ5 ∩ Ux0) ⊂ Γ3, f (Σ6 ∩ Ux0) ⊂ Γ7.

With this convention, set
ζ

def= nf (z) , z ∈ Ux0 , (63)

and, we define
P(1) (z) def= Ψ (nf (z)) , z ∈ Ux0 . (64)

By (Ψ1)–(Ψ3) and (60), this matrix-valued function has the jumps and the local behavior at
z = x0 specified in (32)–(35). Taking into account the definition (59) we get that

enf(z) = ϕ2n
+ (x0)ϕ∓2n(z), for ± Im z > 0,

and for [nf (z)]λ we take the cut along (−∞, x0]. Since

[f (z)]λ = |f (z)|λ exp
(
− log c

π
arg (f (z))

)
,

straightforward computations show that

[f (x)]λ± =

{
|f (x)|λ c−1/2, for x0 < x < 1,
|f (x)|λ c−1/2∓1, for − 1 < x < x0,

(65)

where we assume the natural orientation of the interval.
In order to satisfy (P03) above, we define

En (z) def= N (z)W (z)σ3



(nf(z))λσ3ϕnσ3
+ (x0) ei

γπ
4
σ3cσ3 , if z ∈ QR+,(

0 1
−1 0

)
(nf(z))λσ3ϕnσ3

+ (x0) ei
γπ
4
σ3 , if z ∈ QR−,

(nf(z))λσ3ϕnσ3
+ (x0) e−i

γπ
4
σ3cσ3 , if z ∈ QL+,(

0 1
−1 0

)
(nf(z))λσ3ϕnσ3

+ (x0) e−i
γπ
4
σ3 , if z ∈ QL−.

(66)

By construction, En is analytic in Ux0\ (R ∪ Σ5 ∪ Σ6). Furthermore, by (N2) and (28), for
x ∈ (x0 − δ, x0) ∪ (x0, x0 + δ),

W− (x)−σ3 N−1
− (x)N+(x)W+ (x)σ3 =

(
0 wc,γ(x)

W−(x)W+(x)

−W−(x)W+(x)
wc,γ(x) 0

)

=
(

0 c±1

−c∓1 0

)
, for ± x > x0;
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and, by (26), for z ∈ Σ6 ∩Ux0 (oriented from above to bellow) and for z ∈ Σ5 ∩Ux0 (oriented
from bellow to above) we have,

W− (z)−σ3 N−1
− (z)N+(z)W+ (z)σ3 =

(
W+(z)/W−(z) 0

0 W−(z)/W+(z)

)
= ei

γπ
2
σ3 .

From (65) and (66) it follows that

E−1
n− (z) En+ (z) = I, for z ∈ Ux0\ {x0} .

In this form, x0 is the only possible isolated singularity of En in Ux0 . The following proposition
shows that this is in fact a removable singularity of En:

Proposition 5.

lim
z→x0

En(z) =
√

2
2
Dσ3
∞

(
e−i arcsin(x0)/2 ei arcsin(x0)/2

−ei arcsin(x0)/2 e−i arcsin(x0)/2

)
eiηnσ3 ,

with ηn defined by

ηn
def=

log c
π

log
(

4n
√

1− x2
0

)
+ n arccos(x0)− γπ

4
− Φ (x0) (67)

and Φ given by (22). In particular, En is analytic in Ux0.

Proof. Since En is analytic in a neighborhood of x0, it is sufficient to analyze its limit as
z → x0 from the first quarter of the plane, z ∈ QR+. By (24) and (60),

lim
z→x0
z∈QR+

D (z,Ξc) f (z)−λ = lim
z→x0
z∈QR+

c1+ i
π

log(z/2)− i
π

log(f(z)) = c3/2

(
4
√

1− x2
0

)−λ
.

On the other hand, by (21) and (27) (notice that w1,γ defined in (12) coincides with w defined
in (11)),

lim
z→x0
z∈QR+

D (z, w)W (z)−1 = c−1/2eiΦ(x0)eiγπ/2.

Summarizing,

lim
z→x0
z∈QR+

D (z, wc,γ)−1W (z) f (z)λ =

(
4
√

1− x2
0

)λ
c

e−iΦ(x0)−iγπ/2.
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By (14) and (66), if z ∈ QR+ (Im z > 0),

En(z) = Dσ3
∞ A(z)mn(z)σ3 , (68)

with

mn(z) def=
W (z) f (z)λ

D (z, wc,γ)
ϕn+(x0)nλeiγπ/4c = eηn , (69)

where ηn is defined in (67).
Gathering the limits computed above and using that

lim
z→x0
z∈QR+

A11(z) = e−i arcsin(x0)/2 = lim
z→x0
z∈QR+

A12(z)

and by definition of ηn, the statement follows.

Therefore, by construction the matrix-valued function Px0 given by (29) satisfies condi-
tions (P01)–(P04). Moreover, it is easy to check that

det Px0 (z) = 1 for every z ∈ Ux0\Σ.

At this point all the ingredients are ready to define the final transformation. We take

R (z) def=

{
S (z) N−1 (z) , z ∈ C\ {Σ ∪ U−1 ∪ Ux0 ∪ U1} ;
S (z) P−1

ζ (z) , z ∈ Uj \ Σ, j ∈ {−1, x0, 1}.
(70)

R is analytic in the complement to the contours ΣR depicted in Fig. 4.

−1 1x0

Figure 4: Contours ΣR.

Let
Σout
R

def= ΣR \ (∂U−1 ∪ ∂Ux0 ∪ ∂U1) .
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R satisfies the jump relation

R+(z) = R−(z)(I + ∆(z)), z ∈ ΣR,

with

∆ (s) def=

N (s)

(
1 0

wc,γ (s)−1 ϕ (s)−2n 1

)
N−1 (s)− I, for s ∈ Σout

R ;

Pζ (s) N−1 (s)− I, for s ∈ ∂Uζ , j ∈ {−1, x0, 1}.

Standard arguments show that ∆ has an asymptotic expansion in powers of 1/n of the form

∆ (s) ∼
∞∑
k=1

∆k (s, n)
nk

, as n→∞, uniformly for s ∈ ΣR, (71)

and, for k ∈ N,
∆k (s) = 0, for s ∈ Σout

R . (72)

So, it remains to determine ∆k on ∂Ux0 . Here we find explicitly only the first term, ∆1.
Using (14), (25), (29), (59), (56), (63), (66) and (55), we obtain

∆ (s) = En(s)

[(
λ2 − γ2/4

)
nf(s)

(
−1 τλ
−τλ 1

)
+O

(
1
n2

)]
E−1
n (s), s ∈ ∂Ux0 , n→∞.

Let us define

∆1 (s) def=

(
λ2 − γ2/4

)
f(s)

En(s)
(
−1 τλ
−τλ 1

)
E−1
n (s), s ∈ ∂Ux0 . (73)

Using that by (66),

En(s) = F(s)
(
ϕ+(x0)nnλ

)σ3

= F(s)
(
ein arccos(x0)c

i
π

logn
)σ3

,

with

F (s) def=


N (s)W (s)σ3 cσ3e±

γπ
4
σ3f (s)λσ3 , if Im s > x0,

N (s)W (s)σ3

(
0 1
−1 0

)
e±

γπ
4
σ3f (s)λσ3 , if Im s < x0,

where we take ± for ±Re s > x0, we conclude that, for s ∈ ∂Ux0 , ∆1 (z, n) is uniformly
bounded in n; indeed, F does not depend on n and∣∣∣ein arccosx0c

i logn
2π

∣∣∣ = 1, ∀n ∈ N.
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So ∆1 in (73) is genuinely the first coefficient in the expansion (71).
Similar analysis can be performed for ∆k (·, n), k ≥ 2, taking higher order terms in the

expansion of Ψ in (56).
The explicit expression (56) and the local behavior of f show that ∆1 (s, n) has an analytic

continuation to Ux0 except for x0, where it has a simple pole. Again, similar conclusion is
valid for other ∆k (s, n), except that now the pole has order k.

Like in [5, Theorem 7.10] we obtain from (71) that

R (z) ∼ I +
∞∑
j=1

R(j) (z, n)
nj

, as n→∞, (74)

uniformly for z ∈ C\ {∂U−1 ∪ ∂Ux0 ∪ ∂U1}, where each R(j) (z) is analytic, uniformly bounded
in n, and

R(j) (z, n) = O
(

1
z

)
as z →∞.

Since R(1) is analytic in the complement of ∂U−1 ∪ ∂Ux0 ∪ ∂U1 (see (72)) and vanishes at
infinity, by Sokhotskii-Plemelj formulas,

R(1) (z, n) =
1

2πi

�
∂U−1∪∂Ux0∪∂U1

∆1 (s, n)
s− z

ds.

Recall that ∆1 can be extended analytically inside Uj ’s with simple poles at ±1 and x0; let us
denote by A(1) (n), B(1) (n) and C(1) (n) the residues of ∆1(·, n) at 1, −1 and x0, respectively.
Then the residue calculus gives

R(1) (z, n) =


A(1) (n)
z − 1

+
B(1) (n)
z + 1

+
C(1) (n)
z − x0

, for z ∈ C\ {U−1 ∪ Ux0 ∪ U1} ;

A(1) (n)
z − 1

+
B(1) (n)
z + 1

+
C(1) (n)
z − x0

−∆1 (z, n) , for z ∈ U−1 ∪ Ux0 ∪ U1.

(75)
Residues A(1) (n) and B(1) (n) are in fact independent of n; they have been determined in
[14, Section 8]:

A(1) (n) = A(1) =
4α2 − 1

16
Dσ3
∞

(
−1 i
i 1

)
D−σ3
∞ ,

B(1) (n) = B(1) =
4β2 − 1

16
Dσ3
∞

(
1 i
i −1

)
D−σ3
∞

(76)

(notice however that the constant D∞ is different with respect to [14]). The value of the
remaining residue C(1) (n) is given in the following
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Proposition 6. If we denote

C(1) (n) =

(
C

(1)
11 (n) C

(1)
12 (n)

C
(1)
21 (n) C

(1)
11 (n)

)

then the entries are given explicitly by:

C
(1)
11 (n) = −

(
log2 c

2π2
+
γ2

8

)
x0 +

√
log2 c

4π2
+
γ2

16
sin θn (77)

C
(1)
12 (n) = iD2

∞

 log2 c

2π2
+
γ2

8
−

√
log2 c

4π2
+
γ2

16
cos (arcsin (x0)− θn)

 (78)

C
(1)
21 (n) =

i

D2
∞

 log2 c

2π2
+
γ2

8
+

√
log2 c

4π2
+
γ2

16
cos (arcsin (x0) + θn)

 (79)

C
(1)
22 (n) =

(
log2 c

2π2
+
γ2

8

)
x0 −

√
log2 c

4π2
+
γ2

16
sin θn (80)

where
θn = 2ηn + ς, (81)

with ηn defined by (67) and ς = −2 arg Γ
(γ

2 + λ
)
− arg

(γ
2 + λ

)
.

Proof. Taking into account (60) and (73) we conclude that the residue C(1) (n) of ∆1 (z, n)
at z = x0 is given by

C(1) (n) =

(
λ2 − γ2/4

)√
1− x2

0

2i
En (x0)

(
−1 τλ
−τλ 1

)
E−1
n (x0) . (82)

Since En is analytic in a neighborhood of x0 (see Proposition 5),

En (x0) = lim
z→x0

z∈QR+

En (z) =
1

√
2 4
√

1− x2
0

Dσ3
∞

(
e−i arcsin(x0)/2 ei arcsin(x0)/2

−ei arcsin(x0)/2 e−i arcsin(x0)/2

)
eiηnσ3 , (83)

so that

E−1
n (x0) =

1
√

2 4
√

1− x2
0

e−iηnσ3

(
e−i arcsin(x0)/2 −ei arcsin(x0)/2

ei arcsin(x0)/2 e−i arcsin(x0)/2

)
D−σ3
∞ . (84)
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From (83) we obtain

C(1) (n) =

(
λ2 − γ2/4

)
4i

Dσ3
∞

(
e−i arcsin(x0)/2 ei arcsin(x0)/2

−ei arcsin(x0)/2 e−i arcsin(x0)/2

)
eiηnσ3

×
(
−1 τλ
−τλ 1

)
e−iηnσ3

(
e−i arcsin(x0)/2 −ei arcsin(x0)/2

ei arcsin(x0)/2 e−i arcsin(x0)/2

)
D−σ3
∞ .

Using formulas (6.1.28), (6.1.23) and (4.3.2) from [1] and (54) we can rewrite

τλ = −
Γ
(γ

2 + λ
)(γ

2 + λ
)

Γ
(γ

2 + λ
) = −

∣∣∣∣∣ Γ
(γ

2 + λ
)(γ

2 + λ
)

Γ
(γ

2 + λ
)∣∣∣∣∣ eiς = − eiς√

γ2/4 + |λ|2
,

where

ς = arg

(
Γ
(γ

2 + λ
)(γ

2 + λ
)

Γ
(γ

2 + λ
)) .

Then,

C(1)(n) =

(
λ2 − γ2/4

)
2

Dσ3
∞

 x0 − sin θn√
γ2/4+|λ|2

−i+ i cos(arcsin(x0)−θn)√
γ2/4+|λ|2

−i− i cos(arcsin(x0)+θn)√
γ2/4+|λ|2

−x0 − sin(−θn)√
γ2/4+|λ|2

D−σ3
∞ .

We can simplify this expression using that
(
λ2 − γ2

4

)
= −

(
log2 c
π2 + γ2

4

)
= −

(√
γ2

4 + |λ|2
)2

,

and this settles the proof.

3. Proof of Theorem 1

Unraveling the transformations Y → T → S → R we can obtain an expression for
Y. Repeating the arguments in [8] (see also [14], [11, Section 3] and [17]) we see that the
recurrence coefficients (3) are given by

a2
n = lim

z→∞

(
−D

2
∞

2i
+ zR12 (z, n)

)(
zR21 (z, n) +

1
2iD2

∞

)
, (85)

bn = lim
z→∞

z (1−R11 (z, n+ 1) R22 (z, n)) . (86)

Taking into account the expression for R(1) in (75), as well as (76) and Proposition 6, we
obtain for an:

a2
n =

1
4
− 1
n

√
γ2

16
+

log2 c

4π2
cos (arcsinx0) cos (θn) +O

(
1
n2

)
, n→∞,
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where θn is given by (81). It also can be rewritten in the form

θn =
2 log c
π

log
(

4n
√

1− x2
0

)
+ 2n arccosx0 −Θ,

with Θ defined in (6). This proves (4).
Analogously,

bn = −

√
log2 c
4π2 + γ2

16 (sin θn+1 − sin θn)

n
+O

(
1
n2

)
, n→∞.

By (81),

θn+1 − θn = 2 arccos(x0) + 2
log c
π

log
(

1 +
1
n

)
,

and

sin θn+1 − sin θn = sin (θn + 2 arccosx0)− sin θn +O
(

1
n

)
= 2 cos (θn + arccosx0) sin (arccosx0) +O

(
1
n

)
, n→∞.

Thus we obtain

bn = − 1
n

√
log2 c

π2
+
γ2

4
sin (arccosx0) cos (θn + arccosx0) +O

(
1
n2

)
,

which proves (5).
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