Oxidative Coupling of (-)-Sclareol and Related Diols Leading to Oxepane Terpenoids

Hanane Bouanou, ${ }^{\text {a }}$ Juan A. Gil, ${ }^{\text {a }}$ Ramón Alvarez-Manzaneda, ${ }^{\text {b }}$ Rachid Chahboun ${ }^{* a}$ and Enrique AlvarezManzaneda ${ }^{* a}$
${ }^{\text {ad Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, } 18071 \text { Granada, Spain }}$
hÁrea de Química Orgánica, Departamento de Química y Física, Universidad de Almería, 04120 Almería, Spain.

Abstract

Treatment of (-)-sclareol and related compounds with lead tetraacetate affords tetracyclic compounds bearing a 2,8dioxabicyclo[5.2.0]nonane moiety, with complete regio- and stereoselectivity. This process, which is also applicable to 1,5 -diols with a similar substitution pattern, facilitates the development of efficient syntheses towards oxepane terpenoids, such as aplysistatin derivatives.

Natural products are frequently utilized as the starting material for synthesizing valuable compounds, providing various advantages in this respect. These processes make use of the stereochemistry and other structural features of the natural precursor, which makes it feasible to achieve the target compound in an efficient and economical way. One such natural compound is (-)-sclareol (1). ${ }^{1}$ This labdane diterpene, which is the main component of the aerial parts of the clary sage Salvia sclarea, satisfies all the requisites for this purpose. Compound 1, which has a trans-decalinic system with five stereogenic centres, is an inexpensive, commerciallyavailable compound. The use of this diterpene as a starting material usually involves the degradative oxidation of the carbon side chain and the suitable transformation of the C-8 hydroxyl group. The oxidant systems most often utilized for this purpose are $\mathrm{RuCl}_{3} / 3 \mathrm{H}_{2} \mathrm{O} / \mathrm{NaIO}_{4}{ }^{2}$ or $\mathrm{OsO}_{4} / \mathrm{NaIO}_{4},{ }^{3,5 \mathrm{a}}$ or the more classic reagent $\mathrm{KMnO}_{4}{ }^{4}$
Continuing our research into the oxidation of (-)-sclareol (1), we were interested in exploring processes involving radical species, which have received very little research attention. Indeed, only two articles in this respect have been published. Decorzant et al. reported the preparation of the odorant (-)-ambrox from diterpene 1. Treatment with hydrogen peroxide in an acid medium produced a mixture of hydroperoxides and manoyl oxides; the degradation of 13 -hydroperoxide epimers with Fe (II) and Cu (II) salts, via an alkoxy radical, afforded the target compound in 52% global
yield. ${ }^{5}$ In addition, our group described a very efficient synthesis of manoyl oxide, ${ }^{6}$ after treatment of diterpene 1 with cerium ammonium nitrate; the participation of oxygen radicals was postulated for the cyclization process. ${ }^{7}$ In general, chemical processes involving alkoxy radicals have been little studied, probably due to their high reactivity, particularly in the case of those derived from primary and secondary alcohols, and to the ready oxidation of this type of alcohols. Mihailovic reported the use of $\mathrm{Pb}(\mathrm{OAc})_{4}$ to convert different types of alcohols into variable mixtures of cyclic ethers and other oxidation products. ${ }^{8}$
The treatment of $(-)$-sclareol (1) with $\mathrm{Pb}(\mathrm{OAc})_{4}(1.5 \mathrm{eq})$ in dichloromethane at room temperature for 12 h gave the tetracyclic diether 2 in high yield (Scheme 1). When the reaction was performed in benzene, a mixture of compounds resulted. When $\operatorname{PhI}(\mathrm{OAc})_{2}$ was utilized as the oxidant, the starting material remained unaltered.

Scheme 1. Reaction of (-)-sclareol (1) with $\mathrm{Pb}(\mathrm{OAc})_{4}$.

This unexpected result prompted us to explore the use of this reaction for the efficient preparation of terpenes bearing an oxepane moiety. ${ }^{9}$ Some interesting examples of this type of compound are found in nature, including sesquiterpenes, such as the cytotoxic $(-)$-aplysistatin (3) ${ }^{10}$ and $(+)$-palisadin B (4), ${ }^{11}$ the bromoditerpene 5, and the related oxocane $6,{ }^{12}$ the sesterterpene (+)luffalactone (7) ${ }^{13}$ or the merosesquiterpene bis(sulfate)cyclosiphonodictyol A (8). ${ }^{14}$ (Figure 1).

3

4

5

6

7

8

Figure 1. Some natural oxepane terpenes and related compounds.

In order to establish the scope of this oxidation, other diols with a substitution pattern similar to that of (-)-sclareol (1) were assayed (Table 1).

Table 1. Treatment of (-)-sclareol (1) and related diols with $\mathrm{Pb}(\mathrm{OAc})_{4}$.
Entry

4	 13	18h	 15 (73\% global)
5	 16	12h	
6	 18	24h	No reaction
7	 19	14h	

${ }^{\text {a }}$ The relative stereochemistry of the resulting compounds was established on the basis of NOE experiments.

As can be seen, diols 1, 9, 11, 13 and $\mathbf{1 6}$ gave the corresponding diethers 2, 10, 12, 14, 15 and 17, having a 2,8dioxabicyclo[5.2.0]nonane moiety, with complete regio- and stereoselectivity. This process could involve the $\mathrm{Pb}(\mathrm{IV})$ approach to the carbon-carbon double bond, probably assisted by the allyl hydroxyl group, ${ }^{16}$ to produce a complex, which undergoes the attack of the C8-hydroxyl group leading to intermediate II, which after C-O reductive elimination will gave the bicyclic ether 2 (Scheme 2). At this point, we cannot rule out the intermediacy of radical or cationic species. ${ }^{17}$ On the other hand, intermediates are not detected in the course of the reaction, and a concerted process should not be excluded. It is important to note that diol 18, the epimer of compound 16, remains unaltered under the reaction conditions; in this case, the tricylic intermediate similar to II cannot be formed, due to the 1,3-diaxial interaction between methyl groups. In the case of acyclic diol 19, the $2,8-$ dioxabicyclo[5.2.0]nonane fragment is not present in the final compound, probably due to the flexibility of the monocyclic oxepane, which is unfavourable to the formation of the oxetane ring.

Scheme 2. A possible transformation of (-)-sclareol (1) into tetracyclic ether $\mathbf{2}$ via intermediate II.

After obtaining the tetracyclic diether 2 , we studied the oxetane ring opening, in order to prepare synthetic intermediates of oxepane terpenoids related to compounds $3-8$. We then examined the nucleophilic oxetane ring opening of compounds 2 and 17. The most significant results obtained are shown in table 2.

Table 2. Nucleophilic oxetane ring opening for compounds 2 and 17.

Entry	Conditions	t	Product
1	2, $\mathrm{CH}_{3} \mathrm{COCl}$, $\mathrm{N}, \mathrm{N}-$ dimethylaniline, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$	72h	
2	2, POCl_{3}, pyridine, $0^{\circ} \mathrm{C}$	15h	
3	2, SOCl2, ${ }^{\text {NEt }} 3,-30{ }^{\circ} \mathrm{C}$	3 h	Complex mixture
4	2, LiBr, DMF, $70{ }^{\circ} \mathrm{C}$	72h	
5	2, $\mathrm{CH}_{2}=\mathrm{CHMgBr}, \mathrm{THF}$, reflux	72h	Starting material
6	2, MgBr 2 , toluene, reflux	15h	Complex mixture

7	$\begin{aligned} & \text { 2, TMSOTf, Et2NPri, } \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \text {, } \end{aligned}$	5 min	
8	$\begin{aligned} & \text { 2, TBSOTf, Et2NPri, } \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \text {, } \end{aligned}$	5 min	
9	$\begin{aligned} & \text { 17, TBSOTf, Et2NPri, } \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \text {, } \end{aligned}$	15 min	

As can be seen, even though the treatment of diether 2 with LiBr gave alcohol 23 in low yield (entry 4), this compound was obtained in high yield when the oxetane ring opening was realized with TMSOTf (entry 7).
Compounds 21-25 appear to be suitable intermediates to prepare oxepane terpenoids related to the above natural products.
Thus, the chloroderivative 22 was transformed into chloroalcohol 27a, the corresponding 3 -debromoderivative of natural oxepane 5 (Scheme 3).

Scheme 3. Synthesis of chloroalcohols 27a-b from oxepane 22.

The homoallyl alcohol moiety presented by compounds 21 and 23-25 can also be easily converted into the γ-butyrolactone fragment of aplysistatins and related compounds. Thus, oxepane 24 was efficiently transformed into lactone 31, a tetracyclic analogue of 3-debromoaplysistatin (Scheme 4).

Scheme 4. Synthesis of lactone 31 from oxepane 24.

Following the same synthetic sequence, compound 25 could be readily converted into the corresponding tricyclic lactone (3debromoaplysistatin).
In summary, (-)-sclareol (1) and related 1,5-diols with a similar substitution pattern undergo an oxidative coupling process after treatment with lead tetraacetate, affording diethers bearing a 2,8dioxabicyclo[5.2.0]nonane moiety. The oxetane ring opening of these compounds provides suitable intermediates for synthesizing oxepane terpenoids, such as aplysistatin derivatives.

EXPERIMENTAL SECTION

General methods.

Unless stated otherwise, reactions were performed in oven-dried glassware under an argon atmosphere using dry solvents. Solvents were dried as follows: THF and MeOtBu-over Na-benzophenone, benzene over $\mathrm{Na}, \mathrm{DCM}$ and MeOH over CaH_{2}. Dimethylformamide (DMF) was dried over $4 \AA$ molecular sieves. Thin-layer chromatography (TLC) was performed using F254 precoated plates (0.25 mm) and visualized by UV fluorescence quenching and phosphomolybdic acid solution staining. Flash chromatography was performed on silica gel (230-400 mesh) Chromatography separations were carried out by conventional column on silica gel 60 (230-400 Mesh), using Hexanes-MeOtBu (H-E) mixtures of increasing polarity. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 500 MHz and 125 MHz , respectively. CDCl_{3} was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$. Chemical shifts $(\delta \mathrm{H})$ are quoted in parts per million (ppm) referenced to the appropriate residual solvent peak and tetramethylsilane. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ($\delta \mathrm{ppm}$) (multiplicity, coupling constant (Hz), integration), with the abbreviations s, br s, d, br d, t, q, and m denoting singlet, broad singlet, doublet, broad doublet, triplet, quartet and multiplet respectively. J = coupling constant in Hertz (Hz). Data for ${ }^{13} \mathrm{C}$ NMR spectra are reported in terms of chemical shift relative to $\mathrm{Me}_{4} \mathrm{Si}(\delta 0.0)$ and the signals were assigned utilizing DEPT experiments and on the basis of heteronuclear correlations.Infrared spectra (IR) were recorded as thin films or as solids on a FTIR spectrophotometer with samples between sodium chloride plates or as potassium bromide pellets and are reported in frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Only selected absorbances ($v_{\max }$) are reported. ($\left.[\alpha]^{\mathrm{D}}\right)$ measurements were carried out in a polarimeter; utilizing a 1 dm length cell and CHCl_{3} as a solvent. Concentration is expressed in $\mathrm{mg} / \mathrm{mL}$. HRMS were recorded on a spectrom-
eter, utilizing a quadrupole MS/MS analyzer, and using FAB with thioglicerol or glycerol matrix doped in $\mathrm{NaI} 1 \%$.

General procedure for the reaction of diols with $\mathbf{P b}(\mathbf{O A c}) 4$. Lead tetraacetate (2 mmol) was added to a solution of diol (2 mmol) in dichloromethane (10 mL) and the resulting mixture was stirred at room temperature for the specified time, and the course of the reaction was monitored by TLC. When the starting material was consumed, the mixture was filtered on a silicagel pad and the solvent was evaporated. The crude residue was dissolved in ether $(10 \mathrm{~mL})$ and the organic solution was successively washed with 5% aq. $\mathrm{NaHSO}_{3}(3 \times 10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(4 \times 10 \mathrm{~mL})$ and brine (10 mL). The organic phase was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give the bicyclic ether.
(4aS, 6aR, 7aR, 9aS, 11aR, 11bS)-4, 4, 6a, 9a, 11b-Pentamethyltetradecahydro-1H-naphtho[2, 1-b]oxeto [2, 3f]oxepine (2). Colourless oil, $963 \mathrm{mg}, 97 \%$. $[\alpha]_{\mathrm{D}}{ }^{25}+6.4$ (c 1.1, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 0.78(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H})$, 0.86 (s, 3H), 1.10 (ddd, $J=16.8,13.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27$ (s, 3H), 1.40 (s, 3H), 1.33-1.69 (m, 14H), 2.51 (ddd, $J=17.4,17.1,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=5.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=7.2,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68(\mathrm{dd}, J=7.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ $\delta: \square 15.4\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{2}\right), 18.7\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$, $22.6\left(\mathrm{CH}_{3}\right), 23.7\left(\mathrm{CH}_{3}\right), 31.7\left(\mathrm{CH}_{2}\right), 33.3(\mathrm{C}), 33.4\left(\mathrm{CH}_{3}\right), 38.4$ (C), $38.7\left(\mathrm{CH}_{2}\right), 40.3\left(\mathrm{CH}_{2}\right), 41.7\left(\mathrm{CH}_{2}\right), 52.4(\mathrm{CH}), 56.4(\mathrm{CH})$, $71.5(\mathrm{CH}), 72.0\left(\mathrm{CH}_{2}\right), 79.5(\mathrm{C}), 90.4$ (C). IR (film): 1594, 1457, 1386, 1214, 1160, 1103, 1084, 973, 926, 875, 772, $665 \mathrm{~cm}^{-1}$. HRMS (FAB) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na}+$) 329.2457, found: 329.2463.

((4S,4aR,6aR,7aR,9aR,11aR,11bS)-4,6a,9a,11b-

 Tetramethyltetradecahydro-1H-naphtho[2,1-b]oxeto[2,3-f]oxepin-4-yl)methanol (10). Colourless oil, $198 \mathrm{mg}, 95 \%$. $[\alpha]_{\mathrm{D}}{ }^{25}+7.06$ (c $\left.0.11, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta: 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.88-$ 1.81 (m, 15H), 2.54 (td, $J=11.9,11.4,7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.44 (d, J $=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=5.9$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=7.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=7.3$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz},\right) \delta: 15.9\left(\mathrm{CH}_{3}\right), 18.4$ $\left(\mathrm{CH}_{2}\right), 18.9\left(\mathrm{CH}_{2}\right), 20.4\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{3}\right), 23.6\left(\mathrm{CH}_{3}\right), 27.0$ $\left(\mathrm{CH}_{3}\right), 31.7\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 38.4(\mathrm{C}), 38.6(\mathrm{C}), 39.1\left(\mathrm{CH}_{2}\right)$, $40.4\left(\mathrm{CH}_{2}\right), 52.5(\mathrm{CH}), 57.0(\mathrm{CH}), 65.3\left(\mathrm{CH}_{2}\right), 71.5(\mathrm{CH}), 72.1$ $\left(\mathrm{CH}_{2}\right), 79.3$ (C), 90.2 (C). IR (film): 2959, 1426, 1255, 1125, 1075, 960, 754, $613 \mathrm{~cm}^{-1}$. HRMS (FAB) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 345.2406$, found: 345.2398.(4aS, 5S, 6aR, 7aR, 9aR, 11aR, 11bS)- 4, 4, 6a, 9a, 11b-Pentamethyltetradecahydro-1H-naphtho[2, 1-b]oxeto[2, 3-f]oxepin-5-yl acetate (12). Colourless oil, $228 \mathrm{mg}, 92 \%$. [α] $\mathrm{D}^{25}+21.8$ (c 0.6, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta \square:$ $0.83(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}$, 3H), $0.88-2.21(\mathrm{~m}, 14 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{t}, J=5.9 \mathrm{~Hz}$, 1H), 4.33 (dd, $J=5.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.52 (dd, $J=7.3,5.3 \mathrm{~Hz}$, 1H), 5.04 (dd, $J=7.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta \square \square: 17.4\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{2}\right), 19.7\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{3}\right)$, $22.0\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 24.7\left(\mathrm{CH}_{3}\right), 33.5(\mathrm{C}), 36.1\left(\mathrm{CH}_{3}\right), 38.6$ $\left(\mathrm{CH}_{2}\right) 39.2(\mathrm{C}), 40.1\left(\mathrm{CH}_{2}\right), 43.1\left(\mathrm{CH}_{2}\right), 49.5\left(\mathrm{CH}_{2}\right), 58.1$ (CH), $64.0(\mathrm{CH}), 70.9\left(\mathrm{CH}_{2}\right), 70.9(\mathrm{CH}), 72.8(\mathrm{CH}), 79.2(\mathrm{C})$, 91.4 (C), 170.3 (C). IR (film): 1736, 1458, 1367, 1245, 1166,

1106, 1029, $975 \mathrm{~cm}^{-1}$. HRMS (FAB) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$387.2511, found: 387.2526.
(4aS, 6aR, 7aS, 9aS, 11aR, 11bS)-4, 4, 6a, 7a, 9a, 11bHexamethyl tetradecahydro-1H-naphtho[2, 1-b]oxeto[2, 3f]oxepine (14). Colourless oil, $73 \mathrm{mg}, 32 \% .[\alpha]_{\mathrm{D}}{ }^{25}+7.4$ (c 0.1 , $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 0.77(\mathrm{~s}, 6 \mathrm{H}), 0.85(\mathrm{~s}$, 3H), 1.13 (s, 3H), 1.31 (s, 3H), 1.33 (s, 3H), 0.76-1.68 (m, 15 H), 2.37 (m, 1H), 3.59 (d, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (d, $J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 15.6\left(\mathrm{CH}_{3}\right)$, $18.6\left(\mathrm{CH}_{2}\right), 19.2\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{3}\right)$, $23.5\left(\mathrm{CH}_{3}\right), 33.3(\mathrm{C}), 37.9\left(\mathrm{CH}_{2}\right), 39.0\left(\mathrm{CH}_{2}\right), 39.2(\mathrm{C}), 39.9$ $\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 49.4\left(\mathrm{CH}_{3}\right), 56.3(\mathrm{CH}), 58.0(\mathrm{CH}), 64.2$ (C), $65.5\left(\mathrm{CH}_{2}\right), 65.9$ (C), 72.8 (C), 79.4 (C). IR (film): 1594, 1458, 1385, 1261, 1082, $801 \mathrm{~cm}^{-1}$. HRMS (FAB) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 343.2613$, found: 343.2622.
(4aS, 6aR, 7aR, 9aS, 11aR, 11bS)-4, 4, 6a, 7a, 9a, 11b-Hexamethyltetradecahydro-1H-naphtho[2, 1-b]oxeto[2, 3f]oxepine (15). Colourless oil, $94 \mathrm{mg}, 41 \%$. [$\alpha]_{\mathrm{D}}{ }^{25}+5.4$ (c $\left.0.16, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: \square 0.77$ (s, 3H), $0.78(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}$, $3 \mathrm{H}), 0.75-1.80(\mathrm{~m}, 14 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 3.89$ (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 16.0\left(\mathrm{CH}_{3}\right), 18.8\left(\mathrm{CH}_{2}\right), 19.6\left(\mathrm{CH}_{2}\right)$, $20.0\left(\mathrm{CH}_{2}\right), 21.9\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{3}\right), 33.4\left(\mathrm{CH}_{3}\right)$, $38.4(\mathrm{C}), 39.2\left(\mathrm{CH}_{2}\right), 40.1\left(\mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right), 44.4\left(\mathrm{CH}_{2}\right), 49.4$ (CH), 55.9 (CH), 64.7 (CH), 72.8 (C), 76.9 (C), 81.0 (C), 81.3 $\left(\mathrm{CH}_{2}\right), 92.5$ (C). IR (film): 1706, 1460, 1379, 1194, 1086, 973 cm^{-1}. HRMS (FAB) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 343.2613, found: 343.2622.

(2aS,3aS,7aS)-3a,7,7,9a-Tetramethyldecahydro-2H-

benzo[b]oxeto[2,3-f]oxepine (17). Colourless oil, 249 mg , 93%. $\alpha \alpha]_{\mathrm{D}}{ }^{25}-53.9$ (c 0.12, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$, $1.20-1.65$ (m, 11H), $4.18-4.24$ (m, 2H), 4.70 (dd, $J=7.1$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 19.8\left(\mathrm{CH}_{2}\right), 20.3$ $\left(\mathrm{CH}_{2}\right), 20.9\left(\mathrm{CH}_{3}\right), 22.7\left(2 \times \mathrm{CH}_{3}\right), 32.0\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{3}\right)$, $35.0(\mathrm{C}), 37.9\left(\mathrm{CH}_{2}\right), 41.9\left(\mathrm{CH}_{2}\right), 48.3(\mathrm{CH}), 71.7(\mathrm{CH}), 72.1$ $\left(\mathrm{CH}_{2}\right), 79.5$ (C), 90.4 (C). IR (film) : 1463, 1426, 1380, 1274, 1123, 1073, 1039, $959 \mathrm{~cm}^{-1}$. HRMS (FAB) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$261.1830, found: 261.1842.
((2R, 3S)-3-Hydroxy-3, 7, 7-trimethyloxepan-2-yl) methyl acetate (20). Colourless oil, $267 \mathrm{mg}, 50 \%$. [$\alpha]_{\mathrm{D}}{ }^{25}-3.5$ (с 0.13 , $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}$, 3H), 1.20 (s, 3H), $1.21-1.74$ (m, 7H), 2.05 (s, 3H), 3.60 (dd, J $=9.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (dd, $J=11.3,9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.31 (dd, J $=11.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 18.4$ $\left(\mathrm{CH}_{2}\right), 21.2\left(\mathrm{CH}_{3}\right), 24.7\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 40.4$ $\left(\mathrm{CH}_{2}\right), 45.6\left(\mathrm{CH}_{2}\right), 63.9\left(\mathrm{CH}_{2}\right), 72.1(\mathrm{C}), 73.4(\mathrm{CH}), 75.8(\mathrm{C})$, 171.2 (C). IR (film): 2968, 2928, 1739, 1599, 1463, 1368, $1123 \mathrm{~cm}^{-1}$. HRMS (FAB) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 253.1416, found: 253.1404.

((4S,5aR,7aS,11aS,11bR)-5a,8,8,11a-Tetramethyl-3-methylenetetradecahydronaphtho[2,1-b]oxepin-4-

yl)methyl acetate (21). N, N-dimethylaniline ($4 \mathrm{~mL}, 32 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{COCl}(1.15 \mathrm{~mL}, 16.3 \mathrm{mmol})$ were added to a solution of $2(1 \mathrm{~g}, 3.26 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, and the mixture was kept stirring at room temperature under argon atmosphere for 72 h . Then, the reaction was quenched with
water (10 mL), and ether was added (30 mL). The organic solution was washed with $10 \% \mathrm{HCl}(6 \times 15 \mathrm{~mL})$ and brine (2 x 15 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporate to yield 21 ($900 \mathrm{mg}, 80 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}+27.8$ (c $0.11, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 0.78$ (s, 3H), $0.82(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H})$, 1.18 (s, 3H), $1.18-1.61$ (m, 14H), 2.05 (s, 3H), 1.88-1.97 (m, 1H), $2.63(\mathrm{~m}, 1 \mathrm{H}), 3.91$ (dd, $J=11.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (dd, $J=11.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.43 (brs, 1 H), 4.74 (s, 1H), 4.87 (s, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta: 16.2\left(\mathrm{CH}_{3}\right), 18.9\left(\mathrm{CH}_{2}\right)$, $20.5\left(\mathrm{CH}_{2}\right), 21.2(\mathrm{CH}), 21.6\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{3}\right)$, $31.0\left(\mathrm{CH}_{2}\right), 33.5(\mathrm{C}), 33.6\left(\mathrm{CH}_{3}\right), 38.3(\mathrm{C}), 38.6\left(\mathrm{CH}_{2}\right), 40.5$ $\left(\mathrm{CH}_{2}\right), 42.1\left(\mathrm{CH}_{2}\right), 53.4(\mathrm{CH}), 56.3(\mathrm{CH}), 68.0\left(\mathrm{CH}_{2}\right), 70.1$ (CH), 79.1 (C), $107.9\left(\mathrm{CH}_{2}\right), 150.8$ (C), 171.2 (C). IR (film): 1743, 1457, 1381, 1232, 1105, $1040 \mathrm{~cm}^{-1}$. HRMS (FAB) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 371.2562$, found: 371.2555.
(4S,5aR,7aS,11aS,11bR)-4-(Chloromethyl)-5a,8,8,11a-tetramethyl-3-methylenetetradecahydronaphtho[2,1-
b]oxepine (22). Pyridine (1 mL) and $\mathrm{POCl}_{3}(0.5 \mathrm{~mL})$ were added to a solution of $2(100 \mathrm{mg}, 0.326 \mathrm{mmol})$ previously cooled at $0^{\circ} \mathrm{C}$ and the mixture was kept stirring under argon atmosphere for 15 h . Then, the reaction was carefully quenched at $0^{\circ} \mathrm{C}$ with water (1 mL), and ether was added (25 $\mathrm{mL})$. The organic solution was washed with $10 \% \mathrm{HCl}(3 \times 10$ mL) and brine ($3 \times 10 \mathrm{~mL}$), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to afford a crude product that was purified by flash chromatography on silica gel (30% ether/hexane) to yield 22 ($40 \mathrm{mg}, 56 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}+68.9$ (c 0.1, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta: 0.78(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}$, 3H), $1.25-1.69(\mathrm{~m}, 14 \mathrm{H}), 2.03$ (dd, $J=11.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.62 (q, $J=10.1,1 \mathrm{H}), 3.41$ (dd, $J=11.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (dd, $J=11.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ (s, $1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 16.2\left(\mathrm{CH}_{3}\right)$, $18.9\left(\mathrm{CH}_{2}\right), 20.4\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right)$, $22.8\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{3}\right)$, $31.0\left(\mathrm{CH}_{2}\right), 33.4(\mathrm{C}), 33.6\left(\mathrm{CH}_{3}\right), 38.3(\mathrm{C}), 38.5\left(\mathrm{CH}_{2}\right), 40.5$ $\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 49.1\left(\mathrm{CH}_{2}\right), 53.4(\mathrm{CH}), 56.4(\mathrm{CH}), 72.5$ (CH), 79.3 (C), $108.5\left(\mathrm{CH}_{2}\right), 151.8$ (C). IR (film): 1637, 1457, 1383, 1130, 1100, 1038, 946, 894, 746, $664 \mathrm{~cm}^{-1}$. HRMS (FAB) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{ClONa}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 347.2118$, found: 347.2131.

((4S,5aR,7aS,11aS,11bR)-5a,8,8,11a-Tetramethyl-3 methyl-enetetradecahydronaphtho[2,1-b]oxepin-4-yl)methanol

(23). LiBr ($903 \mathrm{mg}, 10.4 \mathrm{mmol}$) was added to a solution of 2 ($80 \mathrm{mg}, 2.6 \mathrm{mmol}$) in anhydrous DMF (10 mL) and the mixture was kept stirring at $70^{\circ} \mathrm{C}$ under argon atmosphere for 72 h . Then, the reaction was quenched with water (1 mL), and ether was added $(30 \mathrm{~mL})$. The organic solution was washed with water ($4 \times 25 \mathrm{~mL}$) and brine ($3 \times 20 \mathrm{~mL}$), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to afford a crude product that was purified by flash chromatography on silica gel (30\% ether/hexane) to yield 23 ($50 \mathrm{mg}, 30 \%$). Colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}+$ 70.9 (c 0.6, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 0.79(\mathrm{~s}$, 3H), 0.81 (s, 3H), 0.86 (s, 3H), 1.06 (ddd, $J=13.4,13.4,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.22$ (s, 3H), $1.19-1.70$ (m, 14H), 2.03 (ddd, $J=$ 10.7, 8.3, 1.5 Hz, 1H), 2.11 (brs, 1H), 2.57 (m, 1H), 3.37 (dd, $J=11.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, \quad J=11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ $(\mathrm{m}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta: 16.2\left(\mathrm{CH}_{2}\right), 18.9\left(\mathrm{CH}_{2}\right), 20.5\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right), 22.8$ $\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{3}\right), 30.8\left(\mathrm{CH}_{2}\right), 33.5(\mathrm{C}), 33.6\left(\mathrm{CH}_{3}\right), 38.4(\mathrm{C})$, $39.1\left(\mathrm{CH}_{2}\right), 40.5\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 53.5(\mathrm{CH}), 56.4(\mathrm{CH})$, $66.2\left(\mathrm{CH}_{2}\right), 72.8(\mathrm{CH}), 79.3(\mathrm{C}), 107.0\left(\mathrm{CH}_{2}\right), 151.0(\mathrm{C}) . \mathrm{IR}$ (film): 3461, 1643, 1454, 1412, 1095, 1041, 888, $756 \mathrm{~cm}^{-1}$.

HRMS (FAB) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 329.2457$, found: 329.2442.

Treatment of compound 2 with TMSOTf. Obtention of alcohol 23. N, N-Diisopropylethylamine ($0.26 \mathrm{~mL}, 1.47 \mathrm{mmol}$) and TMSOTf ($0.21 \mathrm{~mL}, 1.17 \mathrm{mmol}$) were added to a solution of $2(300 \mathrm{mg}, 0.98 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, and the mixture was kept stirring at $0^{\circ} \mathrm{C}$ under argon atmosphere for 5 min . Then, the reaction was carefully quenched with water (0.5 mL), and ether (20 mL) was added. The organic solution was washed with water ($3 \times 10 \mathrm{~mL}$) and brine (2×10 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to afford a crude product that was purified by flash chromatography on silica gel (5\% ethyl acetate/hexane) to yield alcohol 23 (359 mg , 97\%) as colorless oil.
tert-Butyldimethyl(((4S,5aR,7aS,11aS,11bR)-5a,8,8,11a-tetramethyl-3-methylenetetradecahydronaphtho[2,1-b]oxepin-4-yl)methoxy)silane (24). N,NDiisopropylethylamine ($1.7 \mathrm{~mL}, 9.8 \mathrm{mmol}$) and TBSOTf (0.9 $\mathrm{mL}, 4.9 \mathrm{mmol})$ were added to a solution of $2(1 \mathrm{~g}, 4.9 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, and the mixture was kept stirring at $0^{\circ} \mathrm{C}$ under argon atmosphere for 5 min . Then, the reaction was carefully quenched with water (2 mL), and ether (30 mL) was added. The organic solution was washed with water ($3 \times 10 \mathrm{~mL}$) and brine ($2 \times 10 \mathrm{~mL}$), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to afford a crude product that was purified by flash chromatography on silica gel (5\% ethyl acetate/hexane) to yield 24 ($1.36 \mathrm{~g}, 99 \%$) as colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}+45.9$ (c $\left.0.13, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 0.06(\mathrm{~s}, 6 \mathrm{H})$, 0.78 (s, 3H), 0.82 (s, 3H), 0.86 (s, 3H), 0.89 (s, 9H), 1.12 (ddd, $J=13.5,13.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.21-1.67(\mathrm{~m}, 13 \mathrm{H})$, 1.97 (ddd, $J=9.2,5.7,1.4,1 \mathrm{H}$), 2.58 (q, $J=10 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (dd, $J=10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.52 (dd, $J=10.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.22(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{t}, J=1.36 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta:-5.1\left(\mathrm{CH}_{3}\right),-4.8$ $\left(\mathrm{CH}_{3}\right), 16.3\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{2}\right), 19.0(\mathrm{C}), 20.6\left(\mathrm{CH}_{2}\right), 21.6$ $\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{3}\right), 26.1\left(3 \mathrm{CH}_{3}\right), 31.0\left(\mathrm{CH}_{2}\right), 33.5$ $\left(\mathrm{CH}_{3}\right), 33.6(\mathrm{C}), 38.3\left(\mathrm{CH}_{2}\right), 38.7(\mathrm{C}), 40.5\left(\mathrm{CH}_{2}\right), 42.1\left(\mathrm{CH}_{2}\right)$, $53.4(\mathrm{CH}), 56.4(\mathrm{CH}), 67.9\left(\mathrm{CH}_{2}\right), 73.3(\mathrm{CH}), 78.7(\mathrm{C}), 107.1$ $\left(\mathrm{CH}_{2}\right), 151.9$ (C). IR (film): 1461, 1381, 1252, 1122, 1085, 836, $775 \mathrm{~cm}^{-1}$. HRMS (FAB) m/z: calcd for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{SiNa}$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right) 443.3321$, found: 443.3312.

tert-Butyldimethyl(((2R,5aS,9aS)-6,6,9a-trimethyl-3-methylenedecahydrobenzo[b]oxepin-2-yl)methoxy)silane

 (25). N, N-Diisopropylethylamine ($0.22 \mathrm{~mL}, 1.26 \mathrm{mmol}$) and TBSOTf ($0.36 \mathrm{~mL}, 1.57 \mathrm{mmol}$) were added to a solution of $\mathbf{1 1}$ ($250 \mathrm{mg}, 1.05 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ cooled at $0{ }^{\circ} \mathrm{C}$, and the mixture was kept stirring at this temperature under argon atmosphere for 15 min . Then, the reaction was carefully quenched with water (1 mL), and ether (20 mL) was added. The organic solution was washed with water (3 x 10 mL) and brine ($2 \times 10 \mathrm{~mL}$), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to afford a crude product that was purified by flash chromatography on silica gel (5\% ethyl acetate/hexane) to yield 25 ($359 \mathrm{mg}, 97 \%$) as colorless syrup. $[\alpha]_{\mathrm{D}}{ }^{25}-20.4$ (c $0.12, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.05(\mathrm{~s}, 3 \mathrm{H})$, 0.07 (s, 3H), $0.82(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~s}$, 3H), $1.59-1.40$ (m, 9H), 2.60 (brdt , $J=15.2,10.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.56-3.45$ (m, 2H), 4.22 (brdd, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ (d, $J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta:-5.0\left(\mathrm{CH}_{3}\right),-4.7\left(\mathrm{CH}_{3}\right), 18.6(\mathrm{C}), 20.8\left(\mathrm{CH}_{2}\right), 21.6$$\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{2}\right), 26.1\left(3 \mathrm{CH}_{3}\right), 31.2\left(\mathrm{CH}_{2}\right), 33.6$ $\left(\mathrm{CH}_{3}\right), 34.9(\mathrm{C}), 37.8\left(\mathrm{CH}_{2}\right), 42.0\left(\mathrm{CH}_{2}\right), 49.2(\mathrm{CH}), 67.9$ $\left(\mathrm{CH}_{2}\right), 73.5(\mathrm{CH}), 78.6(\mathrm{C}), 107.3\left(\mathrm{CH}_{2}\right), 151.7$ (C). IR (film): 1722, 1426, 1255, 1124, 1074, $960 \mathrm{~cm}^{-1}$. HRMS (FAB) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{SiNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 375.2695$, found: 375.2709.

(4S,5aR,7aS,11aS,11bR)-4-(Chloromethyl)-5a,8,8,11a-tetramethyldodecahydronaphtho[2,1-b]oxepin-3(2H)-one

(26). Ozone stream was bubbled into a solution of 22 (80 mg , 0.246 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ previously cooled at $-78^{\circ} \mathrm{C}$ for 1 h . When the reaction finished, an argon stream was bubbled for eliminate ozone excess. Then, PPh_{3} was added to the cooled solution and the mixture was kept stirring for 2 h . Solvent was evaporated to afford a crude product that was purified by flash chromatography on silica gel (10% ether/hexane) to yield 26 ($66 \mathrm{mg}, 83 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}+78.5$ (c $0.11, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 0.79(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}$, 3H), 1.25 (s, 3H), $1.40-1.78$ (m, 14H), 2.18 (ddd, $J=11.4$, $10.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{q}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=$ $11.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (dd, $J=11.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.02 (dd, J $=6.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl3, 125 MHz$) \delta: 15.6$ $\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{2}\right), 18.8\left(\mathrm{CH}_{2}\right), 20.3\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right), 23.5$ $\left(\mathrm{CH}_{3}\right), 33.4(\mathrm{C}), 33.5\left(\mathrm{CH}_{3}\right), 38.0\left(\mathrm{CH}_{2}\right), 38.5\left(\mathrm{CH}_{2}\right), 38.7(\mathrm{C})$, $40.3\left(\mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right), 45.6\left(\mathrm{CH}_{2}\right), 53.7(\mathrm{CH}), 56.3(\mathrm{CH})$, 76.4 (CH), 80.1 (C), 215.6 (C). IR (film): 1747, 1697, 1616, 1457, 1370, 1222, 1125, 1056, 1009, 930, 771, $665 \mathrm{~cm}^{-1}$. HRMS (FAB) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{ClO}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 349.1910, found: 349.1902.
(3R,4S,5aR,7aS,11aS,11bR) -4- (Chloromethyl)-3,5a,8,8,11a-pentamethyltetradecahydronaphtho[2,1-b]oxepin-3-ol (27a) and (3S,4S,5aR,7aS,11aS,11bR)-4-(chloromethyl)-3,5a,8,8,11a-pentamethyltetradecahydronaphtho[2,1-b]oxepin-3-ol
(27b). A CH3 MgBr solution ($0.18 \mathrm{~mL}, 1.4 \mathrm{M} \mathrm{THF} /$ Toluene, $0.18 \mathrm{mmol})$ was added to a solution of $27(120 \mathrm{mg}, 0.36$ mmol) in anhydrous THF (15 mL) previously cooled at $-30^{\circ} \mathrm{C}$ and the mixture was kept stirring under argon atmosphere for 1 h . Then $10 \% \mathrm{HCl}(1 \mathrm{~mL})$ was added and the mixture was kept stirring for 5 min more. The solvent was evaporated and ether was added (30 mL). The organic solution was washed with water ($3 \times 10 \mathrm{~mL}$) and brine (15 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to afford a crude product that was purified by flash chromatography on silica gel (5% ether /hexane) to yield 27a ($49 \mathrm{mg}, 38 \%$) and 27b ($70 \mathrm{mg}, 57 \%$). Compound 27a. $[\alpha]_{\mathrm{D}}{ }^{25}+26.6$ (c 0.1, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 0.77$ (s, 3H), 0.78 (s, 3H), $0.86(\mathrm{~s}, 3 \mathrm{H})$, $0.84-0.93(\mathrm{~m}, 1 \mathrm{H}), 1.15 \mathrm{~s}, 3 \mathrm{H}), 1.18$ (s, 3H), $1.23-1.84$ (m, 15H), 3.21 (brs, 1H), 3.35 (dd, $J=11.0,9.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.80 (dd, $J=9.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (dd, $J=11.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 16.2\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{2}\right), 19.1\left(\mathrm{CH}_{2}\right)$, $20.89\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 24.1,\left(\mathrm{CH}_{3}\right), 33.3(\mathrm{C})$, $33.3\left(\mathrm{CH}_{3}\right), 39.0(\mathrm{C}), 39.3\left(\mathrm{CH}_{2}\right), 39.7(\mathrm{C}), 42.0\left(\mathrm{CH}_{2}\right), 45.6$ $\left(\mathrm{CH}_{2}\right), 47.5\left(\mathrm{CH}_{2}\right), 56.3(\mathrm{CH}), 58.3(\mathrm{CH}), 75.3(\mathrm{C}), 76.0(\mathrm{CH})$, 78.7 (C). HRMS (FAB) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{ClO}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 365.2223, found: 365.2236. Compound 27b. $[\alpha]_{D}{ }^{25}+7.9$ (c $\left.0.13, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 0.79(\mathrm{~s}, 3 \mathrm{H})$, 0.85 (s, 3H), 0.86 (s, 3H), 1.10 (ddd, $J=11.4,10.9,2.3 \mathrm{~Hz}$, 1H), 1.25 (s, 3H), $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.78(\mathrm{~m}, 14 \mathrm{H}), 2.18$ (ddd, $J=11.4,10.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{q}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.63 (dd, $J=11.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (dd, $J=11.2,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.02(\mathrm{dd}, J=6.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta: 16.2\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{2}\right), 18.5\left(\mathrm{CH}_{2}\right), 20.9\left(\mathrm{CH}_{2}\right), 21.1$
$\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 33.3(\mathrm{C}), 33.30\left(\mathrm{CH}_{3}\right), 39.0$ (C), $39.1\left(\mathrm{CH}_{2}\right), 39.6\left(\mathrm{CH}_{2}\right), 42.1\left(\mathrm{CH}_{2}\right), 44.8\left(\mathrm{CH}_{2}\right), 45.5$ $\left(\mathrm{CH}_{2}\right), 56.3(\mathrm{CH}), 58.1(\mathrm{CH}), 72.7(\mathrm{C}), 74.4(\mathrm{CH}), 79.3(\mathrm{C})$. HRMS (FAB) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{ClO}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 365.2223, found: 365.2215.

(2S,4S,5aR,7aS,11aS,11bR)-4-((tert-

Butyldimethylsilyl)oxy)methyl)-5a,8,8,11a-tetramethyl-3-

 methylenetetradecahydronaphtho[2,1-b]oxepin-2-ol (28). tert-Butyl hydroperoxide ($0.22 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was added to a solution of 24 ($500 \mathrm{mg}, 1.2 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ previously cooled at $0^{\circ} \mathrm{C}$ and the mixture was kept stirring under argon atmosphere for 5 min . Then, catalytic SeO_{2} was added ($1.3 \mathrm{mg}, 0.12 \mathrm{mmol}$) and the mixture was kept stirring for 24 h. The solvent was evaporated, and ether was added (15 mL). The organic solution was washed with water ($3 \times 5 \mathrm{~mL}$) and brine (5 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to afford a crude product that was purified by flash chromatography on silica gel (30% AcOEt /hexane) to yield 28 (400 mg , $83 \%) .[\alpha]_{\mathrm{D}}{ }^{25}+58.3$ (c $0.12, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta: 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H})$, 0.88 (s, 9H), 1.11 (ddd, $J=13.4,13.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.17 (s, 3H), $1.26-1.64$ (m, 12H), 2.04 (ddd, $J=12.6,12.6,8.0 \mathrm{~Hz}$, 1H), 3.52 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.55 (s, 1H), 3.55 (d, $J=10.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.27 (brs, 1 H), 4.81 (dd, $J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.83 (s, $1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta:-5.2\left(\mathrm{CH}_{3}\right)$, -4.9 $\left(\mathrm{CH}_{3}\right), 16.0\left(\mathrm{CH}_{3}\right), 18.3(\mathrm{C}), 18.6\left(\mathrm{CH}_{2}\right), 20.3\left(\mathrm{CH}_{2}\right), 21.3$ $\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{3}\right), 25.9\left(3 \mathrm{CH}_{3}\right), 33.20\left(\mathrm{CH}_{2}\right), 33.26(\mathrm{C}), 33.3$ $\left(\mathrm{CH}_{3}\right), 37.5\left(\mathrm{CH}_{2}\right), 37.9(\mathrm{C}), 40.2\left(\mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right), 52.9$ $(\mathrm{CH}), 56.0(\mathrm{CH}), 67.8\left(\mathrm{CH}_{2}\right), 69.1(\mathrm{CH}), 72.0(\mathrm{CH}), 78.0(\mathrm{C})$, $104.3\left(\mathrm{CH}_{2}\right), 153.7$ (C). IR (film): 3412, 1646, 1462, 1383, 1253, 1122, 836, $776 \mathrm{~cm}^{-1}$. HRMS (FAB) m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{SiNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 459.3270$, found: 459.3259.
(2S,4S,5aR,7aS,11aS,11bR)-4-(((Tert-

butyldimethylsilyl)oxy)methyl)-5a,8,8,11a-tetramethyl-3-methylenetetradecahydronaphtho[2,1-b]oxepin-2-yl methanesulfonate (29). $\mathrm{MsCl}(124 \mathrm{mg}, 1.08 \mathrm{mmol})$ and pyridine (5 mL) were added to a solution of $28(200 \mathrm{mg}, 0.45 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, and the mixture was kept stirring under argon atmosphere for 12 h . Then, ether was added (50 mL) and the organic solution was washed with $10 \% \mathrm{HCl}(10$ mL), water (2 x 10 mL) and brine (10 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporate to yield 29 ($210 \mathrm{mg}, 91 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}$ 31.8 (c 0.1, CHCl_{3}). $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 0.04$ (s, 6 H), 0.77 (s, 3H), 0.82 (s, 3H), 0.85 (s, 3H), 0.88 (s, 9H), 1.17 ($\mathrm{s}, 3 \mathrm{H}$), 1.72-1.21 (m, 12H), 2.09-2.01 (m, 2H), 3.62 (d, $J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.27 (m, 1H), 4.83 (brs, 1H), 5.05 (brs, 1H), 5.50 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) 8:-5.1\left(2 \mathrm{CH}_{3}\right), 16.0\left(\mathrm{CH}_{3}\right), 18.4(\mathrm{C}) 18.6$ $\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{3}\right), 25.8\left(3 \mathrm{CH}_{3}\right), 31.5$ $\left(\mathrm{CH}_{2}\right), 33.2(\mathrm{C}), 33.3\left(\mathrm{CH}_{3}\right), 37.3\left(\mathrm{CH}_{2}\right), 37.9(\mathrm{C}), 40.1\left(\mathrm{CH}_{2}\right)$, $41.7\left(\mathrm{CH}_{2}\right), 52.5\left(\mathrm{CH}_{3}\right), 52.8(\mathrm{CH}), 56.0(\mathrm{CH}), 67.9\left(\mathrm{CH}_{2}\right)$, $71.2(\mathrm{CH}), 78.3(\mathrm{C}), 80.3(\mathrm{C}), 107.1\left(\mathrm{CH}_{2}\right), 147.8(\mathrm{C}) . \mathrm{IR}$ (film): 1727, 1631, 1462, 1385, 1359, 1253, 1177, 1122, 1082, 954, 836, $761 \mathrm{~cm}^{-1}$. HRMS (FAB) m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{SSiNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$537.3046, found: 537.3061.

(4aS,6aR,7aS,12aR,12bS)-4,4,6a,12b-Tetramethyl-1,2,3,4,4a,5,6,6a,7a,8,10,12,12a,12b-

tetradecahydrofuro[3,4-b]naphtho[1,2-f]oxepine
(30).

TBAF ($74.6 \mathrm{mg}, 0.28 \mathrm{mmol}$) was added to a solution of 29 ($120 \mathrm{mg}, 0.24 \mathrm{mmol}$) in anhydrous THF (10 mL), and the
reflux mixture was kept stirring for 15 h . Then, the solvent was evaporated and ether was added (25 mL). The organic solution was washed with water (3 x 10 mL) and brine (10 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to yield 30 (80 $\mathrm{mg}, 78 \%) .[\alpha]_{\mathrm{D}}{ }^{25}-14.1$ (c 0.14, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta: 0.80(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.91$ (dd, $J=12.9,3.9 \mathrm{~Hz}$, 1H), 1.15 (ddd, $J=14.7,13.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.24 (s, 3H), 1.31 1.41 (m, 3H), 1.45 (dt, $J=13.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.79(\mathrm{~m}$, 5H), 1.90 (dd, $J=8.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.23$ (m, 2H), 3.44 (t, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.06(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ (dd, $J=12.7$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.40 (brd, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.86 (brs, 1 H), 5.53 $(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 16.1$ $\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 23.8$ $\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{3}\right), 33.4(\mathrm{C}), 37.9\left(\mathrm{CH}_{2}\right), 38.8(\mathrm{C}), 39.9\left(\mathrm{CH}_{2}\right)$, $41.9\left(\mathrm{CH}_{2}\right), 55.8(\mathrm{CH}), 56.1(\mathrm{CH}), 69.9(\mathrm{CH}), 71.0\left(\mathrm{CH}_{2}\right), 72.1$ $\left(\mathrm{CH}_{2}\right), 79.3$ (C), 121.6 (CH), 141.8 (C). IR (film): 1732, 1461, 1384, 1106, 1060, 926, $755 \mathrm{~cm}^{-1}$. HRMS (FAB) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$327.2300, found: 327.2286.

(4aS,6aR,7aS,12aR,12bS)-4,4,6a,12b-Tetramethyl-1,3,4,4a,5,6,6a,7a,8,12,12a,12b-dodecahydrofuro[3,4-

b]naphtho[1,2-f]oxepin-10(2H)-one (31). Excess of PCC was added to a solution of $\mathbf{3 0}(50 \mathrm{mg}, 0.165 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the reflux mixture was kept stirring under argon atmosphere for 12 h . When the reaction finished, the mixture was filtered on silica gel to afford a crude product that was purified by flash chromatography on silica gel (10% ether /hexane) to yield 31 ($40 \mathrm{mg}, 84 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}+6.4$ (c $0.1, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 0.80(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H})$, 0.89 (s, 3H), 1.14 (ddd, $J=13.5,13.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.26 (s, 3H), $1.29-1.87(\mathrm{~m}, 11 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=19.8$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86 (dd, $J=8.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{t}, J=8.1 \mathrm{~Hz}$, 1H), $5.15(\mathrm{~m}, 1 \mathrm{H}), 6.96$ (brd, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta: 16.0\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{2}\right), 20.5\left(\mathrm{CH}_{2}\right)$, $21.2\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{3}\right), 33.4(\mathrm{C}), 38.1$ $\left(\mathrm{CH}_{2}\right), 38.9(\mathrm{C}), 39.8\left(\mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right), 55.2(\mathrm{CH}), 56.1$ (CH), $66.7(\mathrm{CH}), 70.0\left(\mathrm{CH}_{2}\right), 80.3(\mathrm{C}), 131.8(\mathrm{C}), 144.1(\mathrm{CH})$, 169.5 (C). IR (film): 1764, 1682, 1457, 1386, 1210, 1190, 1114, 1018, 772, $668 \mathrm{~cm}^{-1}$. HRMS (FAB) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$341.2093, found: 341.2105.

ASSOCIATED CONTENT

Supporting information

The Supporting Information is available free of charge on the ACS Publications website at DOI:
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all new compounds.

AUTHOR INFORMATION

Corresponding Author

* E-mail: rachid@ugr.es; eamr@ugr.es.

Author Contributions

The manuscript was written through contributions of all authors. / All authors have given approval to the final version of the manuscript.

Funding Sources

Spanish Ministry of Economy and Competitiveness: Project CTQ2014-56611-R/BQU.
Regional Government of Andalucia (Spain): Project P11-CTS7651.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the Spanish Ministry of Economy and Competitiveness (Project CTQ2014-56611-R/BQU) and the Regional Government of Andalucia (Project P11-CTS-7651) for financial support and assistance provided to the FQM-348 group. This work is related to the Ph.D. Thesis of J. A. Gil.

REFERENCES

(1) For a review concerning the isolation, chemical and biotransformation routes of labdane-type diterpenes, including (-)-sclareol (1), see: Frija, L. M. T.; Frade, R. F. M.; Afonso, C. A. M. Chem. Rev. 2011, 111, 44184452.
(2) Martres, P.; Perfetti, P.; Zahra, J. P.; Waegell, B. Tetrahedron Lett 1993, 34, 3127-3128.
(3) Barton, D. H. R.; Shyamal, I.; Dennis, P.; Taylor, I. L.; Tse, C.-L. Tetrahedron Lett 1994, 35, 5801-5804.
(4) Marcos, I. S.; Laderas, M.; Diez, D.; Basabe, P.; Moro, R. F.; Garrido, N. M.; Urones, J. G. Tetrahedron Lett 2003, 44, 5419-5422.
(5) Decorzant, R; Vial, C.; Naef, F.; Whitesides, G. M. Tetrahedron 1987, 43, 1871-1879.
(6) (a) Angelopoulou, D.; Demetzos, C.; Dimas, C.; Perdetzoglou, D.; Loukis, A. Planta Med 2001, 67, 168171. (b) Garcez, F. R.; Garcez, W. S.; da Silva, A. F. G.; de Cássia Bazzo, R.; Resende, U. M. J. Braz. Chem. Soc. 2004, 15, 767-772.
(7) Alvarez-Manzaneda, E. J.; Chaboun, R.; Alvarez, E.; Cabrera, E.; Alvarez-Manzaneda, R.; Haidour, A.; Ramos, J. M. Synlett 2006, 12, 1829-1834.
(8) (a) Mihailovic, M. L. J.; Cekovic, Z.; Maksimovic, V.; Jeremic, D.; Lorenc, L. J.; Mamuzic, R. I. Tetrahedron 1965, 21, 2799-2812. (b) Mihailovic, M. L. J.; Miloradovic, M. Tetrahedron 1966, 22, 723-738. (c) Mihailovic, M. L. J.; Gojkovic, S.; Milosavljevic, S. J. J. Serb. Chem. Soc. 1995, 60, 535-541.
(9) For reviews concerning the synthesis of sevenmembered ring ethers, see: (a) Kleinke, A.; Webb, D.; Jamison, T. F. Tetrahedron 2012, 68, 6999-7018. (b) Piva, O. Topics in Heterocyclic Chemistry 2013, 36, 283-320.
(10) (a) Pettit, G. R.; Herald, C. L.; Allen, M. S.; von Dreele, R. B.; Vanell, L. D.; Kao, J. P. Y.; Blake, W. J. Am. Chem. Soc. 1977, 99, 262-263. (b) von Dreele, R. B.; Kao, J. P. Y. Acta Cryst. 1980, B36, 2695-2698. (c) Capon, R.; Ghisalberti, E. L.; Jefferis, P. R.; Skelton; B. W.; White, A. H. Tetrahedron 1981, 37, 1613-1621. For a synthesis of this compound involving ring-closing metathesis see: (d) Couladuros, E. A.; Vidali, V. P. Chem. Eur. J. 2004, 10, 3822-3835.
(11) (a) Paul, V. J.; Fenical, W. Tetrahedron Lett. 1980, 21, 2787-2790. For the synthesis of this type of compounds utilizing electrophilic cyclizations mediated by ion bromonium see: (b) Tanaka, A.; Suzuki, M. Agric. Biol. Chem, 1986, 50, 1069-1071.
(12) Iliopoulou, D.; Mihopoulos, N.; Roussis, V.; Vagias, C. J. Nat. Prod. 2003, 66, 1225-1228.
(13) (a) Potes, B. C. M.; Capon, R. J.; Faulkner, D. J. J. Org. Chem. 1992, 57, 2965-2967. For the synthesis of this compound see: (b) Basabe, P.; Bodero, O.; Marcos, I. S.; Díez, D.; Blanco, A.; de Román, M.; Urones, J. G. J. Org. Chem. 2009, 74, 7750-7754.
(14) Killday, K. B.; Wright, A. E.; Jackson, R. H.; Sills, M. A. J. Nat. Prod. 1995, 58, 958-960.
(15) Diols were easily prepared from the suitable natural terpene (cupressic acid, larixol, sclareol or α-cyclocitral). Hanane Bouanou, PhD Thesis, University of Granada, 2015.
(16) Alkoxy-lead intermediates, involving tertiary hydroxyl groups, have been previously postulated in the LTA oxidation of unsaturated alcohols. See: (a) Preite, M. D.; Cuellar, M. A. Chem. Commun. 2004, 1970-1971. (b) Elkhayat, Z.; Safir, I.; Dakir, M.; Arseniyadis, S. Tetrahedron: Asymmetry 2007, 18, 1589-1602. (c) AlvarezManzaneda, E. J.; Chaboun, R.; Alvarez, E.; Fernández, A.; Alvarez-Manzaneda, R.; Haidour, A.; Ramos, J. M.; Akhaouzan, A. Chem. Commun. 2012, 48, 606608.
(17) Examples of reactions of $\mathrm{Pb}(\mathrm{IV})$ with both radical and cationic intermediates have been previously reported. For radical mechanisms examples see: (a) Tsunoi, S.; Ryu, I.; Okuda, T.; Tanaka, M.; Komatsu, M.; Sonoda, N. J. Am. Chem. Soc. 1998, 120, 8692-8701. (b) Paredes, M. D.; Alonso, R. Tetrahedron Lett. 1999, 40, 3973-3976. For cationic mechanisms examples see: (c) Cekovic, Z.; Saicic, R.; Mihailovic, M. L. Res. Chem. Interm. 1989, 11, 257-270. (d) Abet, V.; Castillo, R. R.; Aquino, M.; Gandara, Z.; Arseniyadis, S. Tetrahedron: Asymmetry 2015, 26, 981-1035.

