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1. INTRODUCTION

We recall the definition of a Probabilistic Normed Space, PN space
briefly, as given in [1], together with the notation that will be needed (see
[10D.

A distribution function (= d.£) is a function F:R — [0,1] that is nonde-
creasing and left-continuous on R; moreover, F(—=) = 0 and F(+x) = 1.
Here R == R U { —, +}. The set of all the d.f’s will be denoted by A
and the subset of those d.f.’s, called distance d.f.’s, such that F(0) = 0, by
A*. We shall also consider @ and 27, the subsets of A and A7,
respectively, formed by the proper d.f.s, i.e., by those d.f’s F € A that
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satisfy the conditions

lim F(x) =0 and  lim F(x)=1

X—> —® x— +®©

The first of these is obviously satisfied in all of A* since, in it, F(0) = 0.
By setting F < G whenever F (x) < G(x) for every x € R, one introduces
a natural ordering in A and in A*. The maximal element for A" in this
order is the d.f. given by

()= [0 xS0
: 1, ifx>0.

The space A can be metrized in several ways [12, 9, 11, 14], but we shall
here adopt the Sibley metric d. If F and G are df’s and A is in ]0,1], let
(F, G; h) denote the condition

11
F(x_h)—hsG(x)gF(x+h)+h foralle}—ﬁ,ﬁ}-

Then the Sibley metric d is defined by
dy(F,G) = inf{h €]0,1]: both (F,G; h) and (G, F; h) hold}.

A triangle function is a binary operation on A", namely a function
r:Atx At — AT that is associative, commutative, nondecreasing in each
place and which has €, as unit, viz. for all F,G,H € A*

r(7(F,G),H) = 7(F,7(G,H))
r(F,G) = 7(G, F)
(F,H)<7(G,H) ifF<G
7(F,¢) =F.

DEFINITION 1.1. A Probabilistic Normed Space, briefly a PN space, is a
quadruple (V,v,7,7*), in which V is a linear space, 7 and 7* are
continuous triangle functions with 7 < r* and v, and the probabilistic
norm is a map »:¥ — A" such that

(ND v, = ¢ if, and only if, p = 6, 6 being the null vector inV;
(N2) v_, =, forevery p € V;
(N3) »,.,> 7(,,v,) forall p,q € V;

N4) v, < (1), Vi - ayp) for every a € [0, 1] and for every p € V.
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If, instead of (N1), we only have y, = ¢,, then we shall speak of a
Probabilistic Pseudo Normed Space, briefly a PPN space. If the inequality
(N4) is replaced by the equality v, = 7,,(3,,, ¥ _,),), then the PN space is
called a Serstnev space; in a Serstnev space, a condition stronger than (N2)
holds, namely

J .
VA+#0Vp eV, V)\p=vp(m). (S)
Here j is the identity map on R, i.e., j(x) == x (x € R).

There is a natural topology in a PN space (V, v, r, 7*), called the strong

topology; it is defined, for ¢ > 0, by the neighbourhoods

() ={geViy () >1-t}={qgeV:d(y,_,. &) <t}.

In [5], the present authors have introduced different concepts of bound-
edness for linear operators between two PN spaces (V, v, 7, 7f) and
(V,, v', 75, 7F) and studied their relationship with the property of continu-
ity. We recall that a set 4 in a PN space (V, v, 7, 7*) is said to be bounded
if its probabilistic radius R, belongs to & *, where

I"inf{v,(x): p € 4}, x € [0, +oof,

R, (x) =
o(%) 1, x = +oo,

Here [ f(x) denotes the left limit of the function f at the point x,
I"f(x) = lim, , ,_f(¢).

In the following we shall investigate the properties of different spaces of
linear operators between PN spaces; in so doing we shall also extend and
make precise the results by Bocgan and Radu [3, 7, 8] who worked only in
the special Serstnev spaces in which the triangle function 7 is of the form
7= 7, where T is a continuous z-norm [10]. We shall also refer to our
paper [4].

2. CLASSES OF LINEAR OPERATORS

Let (V,,v, 7, 7¥) and (V,, V', 7,,75) be two PN spaces and let L =
L(V,,V,) be the vector space of linear operators V: V; — V,. Also let us
denote by I

—L, = Lb(Vl,Vz) the subset of L formed by the linear bounded
operators from V, to V,,

—L, = L/(V,,V,) the subset of L formed by the linear continuous
operators from V; to V.
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—L,, =L, (V,,V,) the subset of L formed by the linear continuous
and bounded operators from V; to V.

Let (V,, v, 7y, 7¥) and (V,, v/, 7,, 7¥) be two PN spaces. As was shown in
[2], PN spaces are not necessarily topological linear spaces. Therefore, that
the subsets L,, L , and L, are linear subspaces of L has to be proved.
This is quite easy in the case of L, where the usual proof supplemented
by the results in [2] leads to the result that we state as a theorem.

THEOREM 2.1. L (V,V,) is a vector subspace of L.

However, the sets L, and L, are not necessarily linear subspaces of L.
A sufficient condition for this is given by the following theorem.

THEOREM 2.2. If the triangle function 7, maps 9" X" into D, i.e., if
(2", 2%) cD*, then L,(V,,V,) and L, (V,,V,) are vector subspaces of
LV, V,).

Proof. 1t suffices to show that L,(V},V,) is a vector space. In this
proof, we shall always denote a bounded subset of V/; by 4.

Let T, and T, be two bounded linear maps from (V;, v, 7, 7{) into
(V,, v/, 7,, 7¥). Then, by definition of boundedness, both R’ , and R’ ,are
in @7. Since, for every p € 4, one has

7 I ’ 12 1A
VTp+Typ = (V1 Vsz) = Tz(erAa RT;A)

which belongs to 27, also Ry 7,4 belongs to &7 and T; + 7T, is
bounded.

Now let « €R and T € L,(V,V,). Because of (N2), it suffices to
consider the case a > 0. If either « = 0 or @ = 1, then a7 is bounded.
Proceeding by induction, assume that a7 is bounded, i.e., that R, €2~
for « = 0,1,...,n — 1 with n € N. Then, for every p € 4,

7 ! !
VnTp = T2( V(n -DTp> VTp)

and hence
Rirs = TZ(R’(n— DTA> R,TA)

so that R, €2 and nT is bounded. Therefore nT is bounded for
every positive integer n. If a is not a positive integer, there is n € Z,
such that n — 1 < a < n; therefore by Lemma 2 in [6], for every p € 4
one has

Varp < Varp
whence

/ !
Rir4 < Ryra)

which means that o7 is bounded. §
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3. PROBABILISTIC NORMS FOR OPERATORS

The following result is crucial for our purposes.

THEOREM 3.1. If A is a subset of V, and v*(T) = R}, then the
quadruple (L, v*,7,,75) is a PPN space. Convergence in the probabilistic
pseudonorm v is equivalent to uniform convergence of operators on A.

Proof. For (N1), if @ is the null operator (ie., ®p = 0, for every
p €V, 0, being the null vector of V) then Rp 4, = €.

Property (N2) is obvious. As for (N3), if S and T belong to L, then, by
definition of v4,

Tz(VA(S)7 VA(T)) < 1y(v5,, v7,) < Vis+T)p
for every p € A so that
T (v*(S), VA(T)) <Rsina = vA(S +T).
For (N4), if @ €[0,1] and T € L, then, for every p € 4,
v4(T) =Ry, < Vip < 75 (Varps V(i —ayrp) -

Therefore, since 75 is nondecreasing in each variable,

A *[7— 3 ’ = ’
viA(T) <~ (l inf v/, ,1" inf v/, _ )
( ) 2 ped aTp> ped (1-a)Tp

3 (v*(al),v*((1 - a)T)).

This proves that (L, v*, 7,, 7§) is a PN space.
Assume T, - T in the topology of (L, v*, 7,, 75); since »4(T, — T) <
Vr p-1p OT every p € A, then, for every p € A4,

ds(vr -1 €) < ds(VA(Tn - T), E0)
which implies 7, p — Tp uniformly in p € A.

Conversely, assume 7, — T uniformly on A, namely for every n > 0,
there exists n, = ny(n) € N such that, for every n > n, and for all p € 4

n
dS(VIT,,pr‘zﬂ 60) < E

or, equivalently,
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Therefore, for every n > n,,
4 4 n n
vA(T,—T)(n) =2vNT,—-T) 3 21—5>1—n,

ie.,
dS(VA(I1_.T)9q0 <. I

We give a condition that ensures that (L, v, 7,,75) is a PN space. We
shall assume that A contains a Hamel (or algebraic) basis for V] (see, e.g.,

[13D.

THEOREM 3.2. If A C V; contains a Hamel basis for V,, then the quadru-
ple (L,v*,7,,7%) is a PN space whose topology is stronger than that of
simple convergence for operators, i.e.,

vA(T, —T) > e=>VYpeEV, v}, 1, €.

Proof. One knows from Theorem 3.1 that (L,v%,1,,75) is a PPN
space and that »“(T) = ¢, implies Tp = 6, for every p € A. If p does
not belong to A, then there exist n(p) €N, o, €R, p;€A4 (j =

1,2,...,n(p)) such that p = T/Pa; p;. Therefore

n(p) n(p)

=Y oTp = ) a;6,=0,.
j=1 j=1

n(p)

)y ;D

j=1

Ip=T

Thus Tp = 6, for every p € V,,1ie., T = 0.

If T, > T in the topology of (L, »*,r,,7%) then, as in the proof of
Theorem 3.1, T,,p — Tp for every p € A. If p does not belong to A, write
p = X%a;p,. Since the operations of vector addition and multiplication

by a fixed scalar are continuous in a PN space [2], then we obtain

n(p)
Lp=T\| XL Q;p;
=1
n(p) n(p) n(p)
- 2: 097;17 n— +o 2: 0971U’= T 2: aﬁfﬁ = ]p. I
j=1 j=1 j=1

Theorems 3.1 and 3.2 still hold when the first space is any space
endowed with a topology.

COROLLARY 3.1.  If A is an absorbing subset of V,, then (L, v*, 7, 7¥) is
a PN space; convergence in the probabilistic norm v* is equivalent to
uniform convergence of operators on A.
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Proof.  As the second statement has the same proof as in Theorem 3.4,
we shall only prove the first one. To this end we shall show that an
absorbing set A contains a Hamel basis for V.

Let B be a Hamel basis for V; and let p belong to B; since A is
absorbing, there exists a scalar a, such that a,p belongs to A. Then
B' = {a,p: p € B} is a Hamel basis for V,. |

The probabilistic norm »" is the analogue of the usual operator norm.

COROLLARY 3.2.  The topology of the PN space (L, v, 7,, 7¥) is equiva-
lent to that of uniform convergence of operators.

It ought to be noticed that the results we have just presented are
stronger than the analogous ones given by Radu [7] in the special case of
those Serstnev spaces in which 7= 7,, in that in the present note the
operators of L are only assumed to be linear and not also continuous.

In general, (L, (V},V),), v, 7,, 75) need not be a PN space since the
condition vx(T) = ¢, is equivalent to vr, = €, for every p € o(F), ie.,
Tp = 0, for every p € o(F). This latter condition is satisfied by every
T € L, (V,,V,) different from the null element ® and whose kernel
contains o (F). In this direction an extreme example is provided below.

ExaMPLE. Let F and G be two d.f’s belonging to A* both different
from €, and €, and such that the relationship F < G does not hold.
Consider (as in [4]) the PN spaces (V;, G, M) and (V,, V', 7,, 75), the first
of which is equilateral; then consider the equilateral space (L, (V;, V),
Vg, Ty, T3 ), Where, for every T € L, (V,,V,),

vp(T) = I"inf{v}, : y, > F} = ¢,.

Since v, = G for every p # 0, (L, (V},V)), vp, 7,,75) is a PN space if,
and only if, L, (V;,V,) consists only of the null operator 0.

In the following we shall consider maps ¢ : A*— A™ that satisfy some
of the properties:

¥(€) = €; (1
Y(F;) < ¢(F,) if F} <F,(F,,F,€A"); (2

if (V},v, 7, 7f) and (V,, v, 7,, 73) are two PN spaces and if T
belongs to L(V,, V), then

¢(y,) <vp, foral peV; (3)
Y is continuous in €, with respect to the weak topology, i.e., (4)

dy(F, &) > 0 = ds(4(F,) (&) = 0;
W) co. (5)



LINEAR OPERATORS: PROBABILISTIC NORMS 469

Also we shall need the following classes of mappings ¢ : A" — A"
Q.= {y:A"—> A" satisfies properties (1), (2), and (3)};
Q% = {: A" > A™ satisfies properties (1), (2), (3), and (4)};
Qb :={y:A*—> A" satisfies properties (1), (2), (3), and (5)};
Qbe == {: A" > A" satisfies properties (1) through (5)}.
Clearly Q2 = Q5N Q5 c Qs U QL Q.
For F € A*, let o(F) denote the subset of the PN space (V;, v, 7y, 71)
bounded by F, viz.
o(F)={peV: v, > F}.
If T is in L(V,,V,) define ¢, : A" — A" via
&r(F) = v7(T) = Rpor).-

Starting from the probabilistic pseudonorm introduced in Theorem 3.1,
in the next two theorems we provide characterizations of the classes of
linear operators studied in the previous section.

THEOREM 3.3. Let (V,, v, 1), 7F) and (V,, V', 7, 75) be two PN spaces
and let T be in L(V,,V,). Then
(a) ¢y belongs to Q;
(b) Tisin LV}, V,) if, and only if, ¢, belongs to Q7;
(¢) Tisin L,(V,,V,) if, and only if, ¢, belongs to Qf;
(d) Tisin L, (V,,V,) if, and only if, ¢, belongs to QY.
Proof. (@) (1) ¢(e) = v7(T) = vHT) = ¢,.

(2) Let F; < F,. Then p € o(F,) implies v, > F, > F; and hence
p € o(F)), so that o(F,) C o(F,). Thus

¢r(F,) = vo(T) = Rrorp = Rrgry = v?EN(T) = ¢ (F,).
(3) For every p € V; one has p € a(»,), whence, by definition,

¢r(y,) =17 inf v, < vp,.
ge o (v,
(b) Assume that ¢, satisfies (4) and let 5 > 0; then there exists
8 = 8(m) > 0 such that dg(¢,(F), €y) < n whenever dy(F,¢,) < 8. On
the other hand, it follows from (a) that ¢, satisfies (3) so that one has, for
every p € ¥,

dS(V’Tp’ €) < dS(d)T(Vp)’ 50)-
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Therefore, if dg(v,, €)) <& then dy(v7,, €) < n, in other words, T is
continuous.

Conversely, let T be continuous; then, for every n > 0, there exists
8 = 8(n) > 0 such that dg(v7,, €) < n/2 whenever dg(v,, €) < 8. As-
sume now F, — ¢, in the weak topology, i.e., d;(F,, €,) = 0. Because of
the definition of ¢,(F,), for all x > 0 there exists p, , € o(F,) such that

n

d)T(Fn)(x) = V,Tp"/z(x) - E (6)

Since F, — €, one has dy(F,, €,) < § provided n is large enough, say
n > n, for a suitable n, = n,(8) € N. Therefore, for every n > n; and for
every p € o(FE),

ds(v,, &) < ds(F,, €) <39,

and hence dg(v7,, €) < n/2. As a consequence (see [10, (4.3.4)]), for

n > n,
n n
Y A IS
VTP(z) 2

for every p € o(F,); in particular, from (6), one has

n . (M) M
S (E)) = 6r(F)(3) = v (5] - 3 > 1=

viz, d(p(F,), €,) < m for every n > n,,.

(c) Let T be bounded and let F be in @2*. Then o(F) is bounded
and so is 7o (F); therefore ¢(F) = R7, ) is in 2. Conversely, if 4 is a
nonempty bounded set of V;, then R, belongs to 2 and v, > R, for
every p € A, so that A € o(R,). Therefore Ry, > Ry, z,, = ¢r(R,) €
27", whence T is bounded.

(d) This now follows from (b) and (c). §

The following result can be proved in a similar manner; therefore its
proof will not be given.

THEOREM 3.4. Let (Vy, v, 7y, 7f) and (V,, v/, 75, 75) be two PN spaces
and let T be in L(V,,V,). Then
(@) Tisin L(V,V,) if, and only if, Q5 # &,
(b) Tisin L,(V,,V,) if, and only if, Qb + &;
(© TisinL, (V,,V,) if, and only if, Q5° + @.
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THEOREM 3.5. IfFisin A* and T is in L(V},V,), then

(@) ¢ (F)=max{y(F): ¢ € Q)

(b) if Tisin LV}, V), then ¢;(F) = max{(¢(F): ¢ € Q7};
(©) if Tisin LV, V), then ¢,(F) = max(¢(F): ¢ € Q3);
(d) if Tisin L, (V},V,), then ¢(F) = max{y(F): ¢ € Q&)

Proof. Let T be in L(V},V,) and set vp(T) = sup{¢s(F): ¢y € Q,}. By
definition, v;(T) > ¢(F) for every ¢ € O, so that, by Theorem 3.3.
ve(T) > &, (F).

On the other hand one has v7, > (/J(Vp) for every p € V; and for every
¢ € Qy, so that

v, = ¥(,) = ¥(F)
for every p € o(F). Thus one has, for every p € o (F),
v, = sup{¢(F): ¢ € Q) = ve(T)
and hence

é,(F) =1"inf{v}, :p € o(F)} = ve(T).

The proof of the remaining assertion is similar. |

THEOREM 3.6. Let (Vy, v, 7y, 7F), (V,, V', 75, 73), and Vs, V", 75, 75) be
three PN spaces and let T, and T, be linear operators in L(V},V;) and
L(V,,V,), respectively. Then T, o T, belongs to L(V},V3) and

br,.1, = b1,° 1, (7)

Proof. We need only prove inequality (7), or, equivalently,

" "
Rir, o 1y0) Z Ry Ry ey (8)

for every F € A*. Since A4 C o(R,) for every set A4, we have, in particu-
lar, Ty(o (F)) € 0(RY, ;) Which implies

(T, T,) o (F) = T,[Ty(o(F))] € T,0(Rrory):

an inclusion that immediately yields inequality (8). 1
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4. COMPLETENESS RESULTS

It is interesting to study when some of the PN spaces that we have
introduced above are complete.

THEOREM 4.1.  Let A be a closed subset of the PN space (V,, v, ,, 7¥)
that contains a Hamel basis for V. If the PN space (V,, v, Ty 73 ) 8
complete, then both (L(V,,V,), v, ,,7%) and (L (V,,V,), v4, 1), %) are
complete.

Proof. Let {T,} be a Cauchy sequence in (L(V},V,), v*, 1,,73); in
other words, for every 6 > 0 there exists n, = n,(8) € N such that for all
n,m >n,

ds(v*(T, - T,,), €) < 8.
Because of the definition of »“, one has, for every p € A,
dS(V/Tnprmp’ E0) =< dS(VA(Tn - Tm)’ E0) < 6’ (9)

so that for every p € 4, {T, p} is a Cauchy sequence in (V,, v/, 7,, 75),
which is complete. Therefore there exists Yp €V, such that T, p -y, for
every p € A. Since A contains a Hamel basis for V), every p ¢ A can be
represented in the form

n(p)

P = z: a;Dis

i=1

where the p,’s are in A4 and belong to a Hamel basis for V.
Since both addition and product by a fixed scalar are continuous [2], we

can define a linear operator 7 :V; — V, through

Yo it pea,
T = ! "p) n(p)
o Y @y, ifpgAdandp= ) ap,.

i=1 i=1

Then T, p — Tp uniformly on 4, i.e., T, — T in the strong topology of the
PN space (L(V,,V,), v, 7,, 75).

In order to show that the PN space (L (V,V,), v4, 7,, 75) is complete it
suffices to prove that the limit operator T just obtained is continuous if
{T,} was a Cauchy sequence in (L (V}, V), v4, 1,, 73).

It follows from the uniform continuity of the probabilistic norm [2,
Theorem 1] that, for every n > 0 there exists 8 = 8(n) > 0 such that if
p,q belong to V; and ds(y,_, €) < 8, then dg(v}, v}) < 1/2. Now, since
T,p converges uniformly to 7Tp, there is n, =ny(n) € N such that
ds(vr 1, €) < & for every p €V, whenever n > n,. Therefore
ds(vr ,, vr,) < m/2 for every p € V; when n > n,. Since T, is continu-



LINEAR OPERATORS: PROBABILISTIC NORMS 473

ous, there is p = p(n) >0 such that dS(V’Tnop, €,) < m/2 whenever
dg(v,, €) < p. Thus

ds(vr,, €) < dS(V’TP,V’Tnop) + dS(V’Tnﬂp’ €) <n

whenever ds(v,, €)) < p, i.e., T is continuous.

THEOREM 4.2. If the PN space (V,,v',7,,7%) is complete and if the
triangle function T, maps X" into D, then also the PN spaces
(Ly(V1, V), v¥1, 15, 7%) and L, (V1,V,), v, 75, 7%) are complete.

Proof.  Let {T,} be a Cauchy sequence in (L,(V,V3), ¥, 7,, ¥); since
it is also a Cauchy sequence in (L(V},V,), v"1, 7,, 7¥), it converges, by
Theorem 4.1, to a linear operator T in this latter space. In order to show
that T is bounded, let D be a bounded set of Vi, ie, R, €27, then one
has to prove that there exists a d.f. G, in 27, such that, for every
P € D, vy, > Gy, Assume, if possible, that this is not so, namely that there
exist p, € D and B < 1 such that V’Tpo(x) < B < 1for every x > 0. By the
same argument as in the previous proof, for every n < (1 — 8)/2, one has
ds(vy ,, v1,) < m for every p € V; whenever n > ny(n). For every x > 0
there is n small enough to have x < 1/7; for every such value of n one
has, in particular, for every n > n,,

<1

vrp(¥) <vp,(x+m) +n<B+n<

so that 7, D could not be bounded, a contradiction. As a consequence, TD
is bounded. |

5. FAMILIES OF LINEAR OPERATORS

DEFINITION 5.1. A set of B linear operators, B C L(V,V,), is said to
be equicontinuous if, for every € > 0 there exists 8 = 6(e) > 0 such that,
for every T € B and for every p € V), one has

ds(vry, €) < €  whenever dg(,, €) < 8.

A set B of linear operators, B < L(V,,V,), is said to be uniformly bounded
if for every bounded subset A4 of ¥ there exists a d.f. G, in & such that
R}, > G, for every T € B.

In particular, every operator in an equicontinuous family is continuous
and every operator in a uniformly bounded family is bounded.
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In the following we shall need mappings ¢ : A*— A" that satisfy some
of the properties (1)—(5) of Section 3 and the other one:

it (W, v, 7y, 7F) and (V,, v/, 7,, 75) are PN spaces and B is a
set of linear operators from ¥, into V,, B c L(V,,V,), then (10)
() < vy, forall T € B and for all p € V,.

It is convenient to introduce the families
Qp = {y: A" > A" satisfies properties (1), (2), and (10)};
Q5 = {y € O : satisfies property (4)};
0% == {y € Q, :satisfies property (5));
OF == (¢ € Oy : satisfies properties (4) and (5)}.
As above it is obvious that
QF =05n 05 cO5U 0% cq,.

We can now characterize equicontinuous families and uniformly bounded
families of linear operators.

THEOREM 5.1.  Let (Vy, v, 1y, 7¥) and (V,, v', 75, 7%) be two PN spaces,
let B be a family of linear operators from V, into V,, B C LV, V,), and
define a mapping ¢g: A" — A" through

¢p(F) =1"inf{v},: T € B,p € o (F)}.
Then

(@) ¢ € Qp;
(b) B is equicontinuous if, and only if, ¢ belongs to Q5;
(c) B is uniformly bounded if, and only if, ¢ belongs to 02

(d) B is both equicontinuous and uniformly bounded if, and only if, ¢g
belongs to Q5°.

Proof.  (a) This is immediate, while the proof of (b) is a simple adapta-
tion of that part (b) of Theorem 3.3.

(c) Let B < L(V,,V,) be uniformly bounded and let F be any d.f. in
2", Since o (F) is bounded and hence R (ry = Gry(r, this latter being
the d.f. of Definition 5.1, one has vrp 2 G, (py which belongs to 9.
Therefore ¢z(d*) c2™.

Conversely, let 4 be a bounded subset of ¥; so that R, is in &*; since
v, = R, for every p € A4, one has 4 c 0(R,) so that R}, > ¢4(R,) €
2" forevery T € B, whence B is a uniformly bounded subset of L(V,, )

i

Now one can easily prove the analogues of Theorems 3.4 and 3.5.
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THEOREM 5.2. If (V}, v, 7, 7F) and (V,, V', 7,,75) are two PN spaces,
and if B is a family of linear operators from V, into V,, B € L(V,V,). Then
(a) B is equicontinuous if, and only if, Q% + &;
(b) B is uniformly bounded if, and only if, Q5 + &,
(¢) B is both equicontinuous and uniformly bounded if, and only if,
QF + @

THEOREM 5.3. Let (V}, v, 7y, 7F) and (V,, V', 75, 75) be two PN spaces
and let B be a family of linear operators from V| into V,, B < L(V,,V,); then

(@) ¢p = max{¢ € Q)
(b) ¢p = max{¢ € O}, if B is equicontinuous;
(©) ¢z = max({¢ € QL) if B is uniformly bounded,

(d ¢
bounded.

max{¢ € QO%°), if B is both equicontinuous and uniformly
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