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1. Introduction and preliminaries

Menger proposed transferring the probalnlistic notiens of guantum mechanics from physics 1o the underlying geometry,
The theory of prababilistic normed spaces (briefly, PN spaces) is important as 4 weneralization of deterministic resalts of lin-
car normed spaces and also in the study of random operator eguations. The PN spaces may alse provide us Lhe appropriate
tools to study the geometry of nuclear physics and have impoertant applications in quantum particke physics particularly in
strings’ theory and in &~ theory which were studied by EI Maschie [2.3].

PN spaces were first defined by Earstnev in 1962 (see [12]1 Their definition was generalized in [1], We recall the defini-
tion of probabilistic space briefly as given in [1], together with the notation that will be needed (see [ 11]). We shall consider
the space of all distance probability distribution functivng (briefly, d.E's), namely the set of all lefi-centinuous and non-
decreasing functions from 7 inte (@ 1) such that Fi0) = 0 and F+ec) = 1 here as usual, = B {—oe, +oc}, The spaces
of these functions will be denoted by A, while the subset 7 C A" will denote the set of all proper distance d.l's, namely
those fur which (-l +2c1 = 1. Here i~ fix} denotes the left limit of the function fat the puint & ¢ fixl — limg_. f(£). The space
A° is partially ordered by the usual pointwise ordering of functions, i.e. F < G ifand only if Fixy = Gx) far all xin B 110, For
any a = 0, & is the .. given by

S Iﬂ fx=m
Tl ifx=a

The space &' can be metrized in several ways [11], but we shall here adopt the Sibley metnc dy which is the metric de-
noted by dyin [11]viz, the Lvy metric as a modifed by Sibley 1300 F. G are d.b's and #is in [0, 1], let |F. G 4] denate the
condition:

[
Gix) < Fix+hp+h forall x = DL[
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Then the Sildey metric ds 15 defined by
dy(F.G) = inf{k 2}, 1[: both  [F, G;h| and (G.F ] hold} (1.1}

Lemma 1.1. see [11], Lemma 4.2.210 ds(F. G) = It = 0. then both [F G0 and G, F; ] held,

Definition 1.2, & triangular norm or, briefly, a t-norm is a function T+ 0,17 — [0,1) that satisfies the following conditions:

(117 it is commutative, e, T50 =Tits) for all s and i [0 1]

(T2] it is asseciative, e, TT(s.thu) « TisTitu)) for all s.¢ and win 10,1

(T3] it is increasing in each place, Le, Tis.t) < Tis' 6 for all ¢ = [0, 1] whenever s < s
(T4] it satisfies the boundary condition T(1, 03 = £ for every 1 < [0 1],

The most impartant f-norms are the minimum M. the product (1, the Lukasiewicz t-norm Woand the drastic product
given by
Mix, ¥ = min{x. vy},
[1x. %) -= Xy,
Win oy =max{ls+yv—1}L
ming{x if mox{x.v} =1,
Digy —{ ) v ¥
] otherwise,

A triangle function is a binary eperation on &', namely a function 7 ¢ Al x A — A" rhar is assaciative, commutative, non-
decreasing in each place and has oo as identity. that is, for all F.Gand Hin A

(TF1) T(T{F, G H) = T(F, TG H).
(TF2) 7(F,G) = ©(G.F),

(TF3} F = G = ©(F. H) £ T{G,H),
(TF4) T{F, ) = Tl Fl = F.

In particular, under the usual pointwise ardering of functions, & is the maximal element of A7, Moreover, a triangle func-
tion is continuons if it is continuous in the metric space (A ds),
Typical continuous triangle functions are

(a) Tr(F, Clix) = sup . L IF{s), Gy,
(B) o (F.GlE) = infa T (F(5), G,
o) I (F Gixy = TOFIX) Gixy,

and here T is a continuous {-norm.
The definiticn below is more general; it has been proposed in [1],

Definition 1.3. A Probabifistic normed space { briefly, PN space) is a quadruple (V. v 7.1 |, where V i5 a real vector space, T and
T are continuous triangle functions with © = 7 and v is a mapping {the probebilistic norm’ from Vinte A7, such that for every
chotce of p and g in V the following hold:

(N1 v = & il and enly if p = @17 is the null vector in V);
[N2) vy = vy

(M3} Yoy = T 0

(M} vy = T (Vi V) forevery &€ (0,10

There is a natural topology in a PN space (V, v, 7.7}, called strong fopelogy: it is defined for p< V' oand r=0, by Lhe
neighborhoods

Np(t) = {g € Vivyg i) > 1 =1} ={q € Vids{vy o &0} < [}
We recall that 2 set A in & PM space (V. v.7. 7", is said to be D-bonded if its probabilistic radius R, belong 1o D7, whers
. cinflvaixype Al iFxe [D.+oc)
I{.ﬁ.x‘,-—-{ fvplxhp e A . |
' 1, if %= ne.

There are special PN spaces, only some of which we list below: for the others we refer to [5]-
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When there is a continuous t-noem ¥ (see [11]) such that = 77 and T = T+, where T'x, v =1 T{1-%1-¥,
To{F, Glixy = sup TiF(s). GiL)) and T (F.GX) =51|;|F T iFisy, Gl
sifex “I=x
the PM space [V, v, Tr, 71 i5 called a Menger PN space, and is denotad by (Vv T
A PN space 15 called a Serstrev space if it satisfies (M1, (N3} and the following condition, which implies buth (N2) and [M4)
A

YpeVW Yac®' {0} Faz0 veplxl= 1-;.( .
1

.

One speals of an equilareral PN space when there is F < A7 different from buth gp and e, such that, for every p=#, 1, = F,
and when 1 = T = M, which is the triangle function defined for G and Hin A" by MG H){x) = min{Gix], Hixi}.
Lat C & AT he different from e, and from o, and let (V.| - [} be a normed space; then define, for p=0,

X
ixl =0 :
ol [_Ilpllj

Then (V.v.0} is a Menger space denoted by (V|- ||, G My {MUx ) = min{xy}) In the same conditions, il v is defined by

X
Belaie “(Tp'u‘x)'

witl & = 0, then the pair (V, v} is a PSN space called w-simple ane it is denoted by (V|| -1, Gzl Let itk o/ P be a probability

space, (V.|| |} a normed space and § a vector space of V-valued random variables {possibly, the entire space). Foreveryp e &
and for every x e R, let v: 5 &% be defined by 15ix) =Pl < B fiplen] < xE then (5.v) i called an E-normed space
{briefly, EM space) with base (Q./, ) and tacget (V.| - |1 Every EN space (5, v) is a PPN space wnder Ty and Ty 16 s sakd

to be cononical i it i5 a PM space under the same two trangle Tunctions, In this latter case, il is a Serstnev space, See
[5.8] for properties of PN spaces.

IF vyix) is viewed as the probability P{Ip! < &) that the usual nerm of pis less than x, then, the fact that, for seme p < V.,
does not belong to &' means that P{lp|| < —=c} < T2 105 is to be regarded as being “odd”. Therefore we shall call strict any
PM space (V. v, 1.7} such that vV = @7, or, cquivalently, such that v, belungs te &° for every pc V.

Definition 1.4. A copula is a function C - 0, 17 — 1] that satisfies the following conditions;
(C1) For every £ [001], O(he) = Cr,0) =0 and C{L.ty=Cif1) =0
{£2)C is 2-increasing, ie., for all 5,5t and ¢ in [0.7], with s < 5 and £ < €,
Cis' 'y = Cis, ) - Cls )+ Cis 1 = 0. (1.2
It follows from the definition that every copula C is increasing in each place,

Moreaver far any copula © one has W = C = M,

2. Invariant and semi-invariant PN spaces

Im any PN space (V, v, 1,7 | with regard to the distance ds, one has, in general, the following:
i Yooy Bl & sl Vo Vgl

But it would be interesting to know in which cases and under which conditions the inequality d: (v, .80 2 del v, Vq)
holds. In this case, the corresponding relatanship in functicnal analysis is

lp—ai = llel - gl

Definition 2.1, The probabilistic normed space (Vov.r,17) 15 said to be nvariant, if far every p.gsV owe have
dei Vyog. énd = iV, vyl

Definition 2.2. The prebabilistic normed space (V. ov, T.7°1 15 said to be semi-invariont, if for every pogo Vowe have
d_;f_':'p_q.EuJ = d_-;-: Vo ¥y e
Example 2.3, The quadruple (7, 0.7y, T} where v o AT 35 definad by
0. ifx=10,
Vaix) = 4 BXp {—»m] if Q< %< +o,

1. il 8= 4
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and vy = &g 15 a semi-invariant PN space strictly.

Proof, (R v 12T, ) 15 @ PN space of Menger that is not a Sertoev space [1]. By theorem 433 of [11] one has
de(¥p g 7} = inT{R )0 10 vp o7 =1 = ht = inf{f<]0 10 expi=lp gl = b = h) =1 - eapi—|p —g|'"*).

Mow let us see de(vp, vl Suppuse, without lust of generality. ||p| = gl Then for every fi=|0,1] and for all =0,
particularky for ¢ <|0,1/h), ope has

Vall) & vglt 4+ R+ 0,
zo that, in our example, The condition [v,, ve; & clearly holds, The ol her condition [, v, f1] says that
h = expi—liq) ") — expl=lp| ")
Consequently, if p=q.
dsi vy, v = expi—(min{ ). P17} — exp{—(max{|q]. ipiH" 7).
halds, And taking inte accoum the following relations
JIPT < TP = gl + 10l = /P —all + /Tl
= exp{— /TPl = expi—/Ip — qll) - exp(=/Tall)
= expl— /Tl - expl—/ PN < expi—+/Tqll) - expi—/ip — qil} - expi - JTal
= expi—/ Tl [1 = expi—y/llp—al)] = 1 —expl- VIp =l
one has finally the strict ineguality

O ¥y f0) = b5l vy ), o

Lemma 2.4, [fa.b e [0 400, then the slatement
ol £, &) = min ‘l..—l-—.lu — b
7 : minia. b}
halds, Porticedarhy, the coses b = 0 and b = 400 ore
sl &y £p) = mind 1.a]
et gy ) = min{1,1/a)

Proof, Based cn the definition (1.1} one has

deifg. i) = inf{h =)0, 11 both e &1 and |ey. 80 B holid}

Let us recall that for every x = |0.}] the relation [E, 0, ] = £0X) = Bulx+ )+ R holds.
Consequently

el g, 6] = i0F{H )0, 1] = Bypagon (X) 5 Ennoga sy (x =Ry +hox el 1750} (21

The inequatity on the right hand of (2.1) cccurs in the following cases:

fa)hr =1,
(B] i = min{a, b}, o eguivalently fi = ﬁ
{¢) For every x |min{a. 6], 1/k] one has

1 £ Eugea e+ R+ and k= --.u-i'['u_m
=l rnl’n{l,,-";;?-}h;-ﬁ} with x+ It = max{a.b} forall x elmin{a b} 1/0]

= h« min{],l-mn}m} with h = max{a b} — minfa b} =la-h
for all x<lmin{a, b}, 1/0. U

Thearem 2.5. Let (V, v, 7,71 be o PN space where Vs @ linear space and vy = fyp ond g -V o B is 41 positive fincrion such thel
for every poy e Vool — wip) = @ig — pl. Then (Vo T, f5 o semi-invoriont PN space,
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Proof. [t is enough we prove the below relation
sl famg Fpip) = ds(Epig-pi- Fo) (2.2)
Let p,q be in ¥. Then, from Lemma 2.4, one has:
ds{ V.. €0l = s{Eipip gt B0} = min{1, wip—ql} = min{ 1. | — r,m_q:.|.‘I,-'rnin{:.m:p}.c.n[m}:- = Ol apr Bgn)
= tde(Vp Vgl H

Example 2.6. The quadraple (V. v, T Ha where (V|| |1 is a classical normed space and vy = Eqiy with p(p)= ,% isa
somi-invariant PN space.

Proof. (V.7 Tu.M)is 2 PMspace [see [G])whichisnora Sarstnev space. From Lemmina 2o il o4 b= =il gy the ather

1 L s H +1p-ul
hand the function gip) — 15 satishes the conditien given in Theorom 2.5

NER || am— | Y
wigl —ip) = T 1] i3 Tl
igll - Izl iqll — ol lig — o ;
=——,!i%|—{lq ,“- ': q p——h'-"ﬂ—l"'
T3 tal + el =+ el = 1+ gl + el =1 +lg ol

and the proof is complete, O

It is possible to give sutfcient conditions under which the inequality
Lfsl:'l'P - = [!Sl:"l'p1 Vil
helds, as in the following theorem but we need before a lemma:

Lemma 2.7. According wirh some comsiderations in [9] one s
Ler Fi. G; (i=1.2) be distance distriition functions in A Ler A 1= 1.2 be the ser defined via

A= {hel0, 1] both  [F, Gy oand |G Esh] held}.
Then,

diiFy.Gy) = dsiFz, G2y f and only if A oA
ds(Fy.Gy) = dsiFy, Ga) If and only if Ay = Ap

Proof. Let us recall that ds(F. G == inf Ay, (£ = 1.2), By the definition of A if ho & A&, then [hy. 1] © A; 2] 1] fram Lemma 1.1,
ifh = inlA = 0 then
[Fi,G:.h| and [G.F:h).
hald.
Moreover
B { 0.1] ifdsiF G =10
"7 e, 1) i ds(FL G = o

m
—

Theorem 2.8. Let © be an associarive copuly and (Vv 7o, T') @ PN space, Then (W v. 10, T') I8 semi-invariont,

Proof. Since Cis an assuciative copula, then Cis a continuous -norm and as a consequence ene can say that 7, i5 a contin-
uous triangle function.

When calculating ds(ve o 6p) notice that the condition [ao, vaog: 1] 15 always right. The other ong, [Vu_g. foi ft’, tell us that
giverth €10, 1] and far all x £10,1/A|, one has the relation 1 £ vay(x + 1) = h holds. Following Lemma 2.7 assume that Fy = v,
Gy = vg andl Fa = Vpq G2 = o We have to prove that given h 210,17 and for all & <10, 1 /0] 8

1T=h<vagix+hh (2.3
then
volx) € vylx = hy=h and vgta) = vplX + Ry R

hold. We only prove the second inequality because the other ene is symmetrical: if suffices 1o interchange 2. q-
For every x |0, 1/h] and applying [2.3) one has
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vplx+ 0y +h o= telve g xR+ = SUPL OOVl vl @)} s U+ =&+ )+ B = supi{Clyy glkivfe)sut
= x4 R opiowhl ko= osupiClil - hovgie)) e < x) Sh=C01 =M ovglan) b
Moreover, since © 15 a copula, it follews lrom (1.2 that
COE1) = CilLvg(x)) = C(1 = ho 1)+ G = hovglx) = 1 —vylx) 1= +Cl - =0
so that

Ci1 = h, vl +h = vlx), O

As a consequence of this thearem, if (V. v, 77 770 15 @ PN spact such that o = o, with € an associative copula, then
(Vov T, T IS semi-invanant,

Corollary 2.9,

{a) Fvery equitateral space (V. I N is SEATE-TRvarien,
(k) Every simple PN space (V.|| -], &M s semn-invanand,
{r) Every EN space (5, v) (5 semi-invariant.

Before introducing a new class of PN spaces we need the fedlowing technical lemma from [ 7]

Lemma 2.10. Ler f |0 poc] — [D.1] be a right-continuous  non-increasing finction, Let we define J 1) =0 and
V= supfa: fix s vh for el y e [07] {F1=t(y) might he infinite). If xq € [0, +uc] ond yg £ 10,1], then the following focts
are equivalent: {a) fixg) = ygr (hixo < £ Yivg).

Proof. [f fixg) = ¥y then S = suplx: Fld = vl = % [f we suppose that supla: f1x) = ¥g) = %o then fix) = ¥y for every
= X, Thus fixg) = fixa 1] = ¥y, against the assumption: whenee ()= (b). The converse result is an immediate consequence
of the manotonicity of £ 0

The following thearem (see [7]}introduces a new class of PN spaces — which generalizes an example in [9]- and also pro-
vides some properties of the spaces in that class. As has been said above, such propertizs are interesting in erder for the pur-
poses of this paper,

Theorem 2.11. Let (V.|| ||} @ normed spece and ler T be @ continuons (-narm. Lel Fhe o function as in Lemma 2.9, ond salsying
the following bwo properties:

fu) fix) =1 ifond only if x = 0;
(e = qlly = Tifulel fgl) for every pg e V.

If v v — A" is given by

0. x 0.
Vol = & flplD, x el 4oel, 2.4)
1, X =4,

for every pe V, then (¥, v, Tr, Ty} is 0 Menger PN space satisfying the following properties:

(F1) (Ve Ty Tyl 54 T space;

(F2) {V,v. 7Ty 7w} 15 normable;

(F3) 1Epe WV and ¢ = O then the streng neighborhood M.t in (¥, v 1 Tyl 05 not w-bounded, but N,y s tepelogically
bounded whenever Ny fi=1,

(F4) (V,v,Tr, Tar) is not a Serstev space;

(F3} (V. v, T7, Ti) is Dot a characteristic "M space.

Now we consider some special cases and use the preceding theorem in arder o give some examples.

Example 2,12, Supposc that, in Theorem 211, T = {1, Then, property (1) reads Fillo +qllh = Pl forallpog e VoI is
not difficult to prove that, under the given assumptions on [, property (b 1s equivalent 1o the following one:

e+ v = flfin, forall xoy )0, =0l 12.5)

The following are examples of functions f satisfying the assumptions of Theorem 2.11:
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g8
fz.'-':-":} =1 o + PR
Eaglxi=1—et+zexpl=x"). O=asl =1

0oz ff o,

Example 2.13. Take T = W in Theorem. [n this case property b} reads

fllp=all = flph +filgh -1 ferallpgeV

Since W is the smallest continuous t-nerm, a1 the functions fsarisfying the assumptions of Theorem 2,11 with respect te any
t-norm T also satisfy such assumptions with respect to W, 1t is not hard to prove that, under those assumptions, property (b]
is equivalent 1o the fellowing one:

1+ fleey) = fixy+ S0 forall xy 2]0, ]

For instance, the following functions satisfy this property but not that considered in Example 2.12, since they do not satisfy

{255
_ 1-ox, 0
frsulX) 1= { =

I ;
Q= figlfa

&

X =
- ﬁ-
Theorem 2,14, Fvery PN spoce belonging to the class constdered in Theorem 2.11 i serm-invirians,

Proof. Since di(voo fol = InT{h <0, 1 vyt ") = 1 = R} one bas fillp—ali =1 -h=h=1-L{p gl and it fellows:
de{vy g f0) = T = fllp - ql)

By the other hand, according with ([ L.1).
dslvy. vo) = inf{h €]0 10 both [vg vpch] and (v v h| hold}.

Suppose, without lost of generality, [P = (gl then [vg, v Kl is cauivalent to f{[ip)) = fOlg)y = b In fact this inequality is
strict. Moreover, from [vp, vt one has oz folg) = filiel ) hence

ﬂs{‘f‘;-- "rq] =..|r|-"f]'||':' —f[ itplla:
Now we need to investigate under which particular conditions one has [or the 'M spaces considered in Theorem 2,17 the
inaquality

1-f(lp—ql) = Filal) —Foipl. (2.6)
If ene chooses | amang the type's functions [ o, then it is net difficult to checls that
Ll — gl -~ lp—19

liplilal = (el + dale+ 22 7 o2+ llp—qllx
and the inequality di(v, o ta) = delvy, vy) holds, And if one chooses famong the type's functions g, ., then the PN spaces of
Theorem 2.11 are always semi-invariant strictly: since

de{ Vg 80) = T = Zo gl —gll) = 0t — o141,
and
ds(vp. Vo) = B alllg]) = 2y i lipll] = e * — gt

one has only to check the inequality 1 - e #=9'=4 = e-19/ (1 — g7/}, which is equivalent to check on the inequality
1 _p =i’ w1 - =i -195 ) and this is true because of the well known inequality (1 - 51" = 1 — 5" In fact, the inequality
is strict and the verification is complete. Finally, il one chooses famong the Lype's functions fr, , the PN spaces considered
in Thearem 2,11 are also semi-invariant, [0

Definition 2.15 [14]. A topological space is called normael space, tFany two disjeint clozed subset of it can be separated by
QpeEn setE

Theorem 2.16. Every semi-invariant PN space (Vv 7,771 &5 novinal,

Proof. 1T A, B are closed subset of ¥ we should construct two disjeing open subset ILW of Vsuch that A o U and B < W,
Let U= {p & Viinfeadi(vy o i) < infaepdi (Vy potiad) TR e A then infgeadsi vy o &) = 0 and hence A C U, Now we prove
that LV 15 open.
Suppose pe U, oy = il dg(vy o 8y and [, = inf ds(vy 1. &n). Therefare 3, < fi,
For every € = 0 there oxist g & A such that de Ve, S0l < 2 1 €
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For every p e U we will show that N, {"—zﬁ} cl Lletg e N, -1':"'—’!’—’\) then ds{vg-p. fol < 27 and
; . - . ; ; ) -
inf ds{ Voo f0) < INFdsivy o ve_p) + daivy p; Bo) 5 InFdg{veey, vyoph + =2 5 L.

The space (Vov, £, 770 18 4 semi-invariant and hence
inf dei vy, Voop) = inFds(vp_a. o) = 5
Therefare d(v, .80) = 2 + 0,7 = 20% o g and g e U,
Similarly if W= {p e Viinfdsivp o fp) = infds{vy p.2p)} then W is open subset of V such that 8< W and the

construction of U and W shows that UnwW =0 O
Immediatety the next corollaries come from Theorem 2.8,
Corollary 2,17, Urysohn's Lemma for PN spaceAny bwo disfoint subsel of every semi-invanant P spoce can be separated by o

continuaus furction.

Corollary 2.18 (The Tietze extension Thearem for PN space), 17 A is any closed subser of the semi-invariant PN spoce (V.v. 1,170
and f & C{A, [0, B]) then there exists F e C{V, o, B} such that F1A =

Corollary 2.19. If A {5 any closed subset of the seavi-tavarians PN space (Vv 1,1 and f o CA) then there exists F e C(V) such
that F|A=F.

Open protlems, One needs several previous results,
Defnition 2.20 [17]. Let 2 be the set of all binary operations, L on B and Rar(l) = 27 satisfying the following conditions:

(1} L 15 non-decreasing in each place,
(1i) L is continuous on ¥ = B cxcept at the mast in (0, o) and (e, 00

Theorem 2.21 |11, fer T be o left-contimuous t-norm ond let Lo 2 sotisfing the following condirions;

(1) L is commutative,

{1F) L fs gssocintive,

(i) Uy < uy and oy < oo imply Lo, o) < L, i),

fv) Lix 00 = & then the funcrion T, 05 a triangle functian.,

The condition (1) of the Theorem 221 implies that L = Moy, and thew 7 < [
Corollary 2.22. Let L & & sotsfifng the hypothesis of Theorem 221, Then the following statements hald

fid L = Maox (rrivial and known)
G} (see (9L = Max = Ljo.a} = a for every a c (D, ou).

Theorem 2.23. Let T be an Archimedean t-norm ond gssume thot Le 5 satisfies tie hyporhesis of the Theorem 221 Then the
Soilowing stafements are equivalent;

(11 Try i a trigngle function ne Taving nee-teivial idempolents in A,
(i} L sarisfies the condition Lix, x) = x for every x < (0, =),

Example 2.24. This theorem provides us with many examples of Archimedean triangle functions: it suffices to have
L=Ki(xv) = + v % defined for every x.y 2 15 and forx = 1,

Let us recall the definition of ©,, ¢
Try, = SUPIT{Fu), Gie) 0™ + % = &)

Applying the previous example, and by Theorem 7202 in [17], one has: Ky < |y and T, < Tz implies that ©; < Ty, -
[n analogous way, as Ky < I, the inequality Ty x5 Trox,.
We are ready to propose the following epen problems all of which need from the computation sciences.



64 ME Ghuemi et wl/ Choes, Selitens and Fraceeis 42 (2000} 255-264

(1) 08 any s-simple space invariant or semi-invariant? 1§ not, are there any conditions under which it is7 Alse, if not, why

not?

[2) In the following examples and for the moment, we do not know the answer to the same questions mentiooned in (1)
[a} The guadruple (V,v.®.7') where V 15 2 normed linear space T = Hy. and v, the probabilistic norm. is a map
vV — A defined via va(x) o= 25 P and & the triangle function convalution, is a PN space; it is neither a Serstney
space nor a topological vector space,

(B) The quadruple (V. v, [T, MTy) where Vis & normed linear space and v, the probabilistic norm, isa map r: ¥V — A
defined via vy{x) .= ¥, is a PN space and a topological vector {in short, TV) space,
(o) let (Vow ooy a PN space and fet o be nen-Archimedean triangle function. Let [ g be functions satisfying the fol-
lowing conditions:
(i) fis a centinuous non-increasing from (0, +oo| nte [001] and f(0) = 1,
(i} gis a function from &' = B into [0, 1], continuous in the first and in the second places, non-decreasing in the
first place and non-increasing in the second place with gix, 0) = 1, Theno the quadruple (Vv 1o where the prob-
abilistic norm v s defined via

Vala) = fillpll) - gix gl

iz a topological vector space.
rdd Wiath the same assumptions of the previous example one has that the gquadruple (W, v, 17, T ) where

1 X

) = T T R

isa PN space that is a TV space and it is not a PN space of Serstnev. (V, v, /T, fTy) is not a strict PN space, and it is normable,

3. Application in physics

Menger sponge isa random space which could be used for instance to predict the Background microwave radiation [see El
MNaschie and alse He's Bool [4]),

4, Conclusions

In this work, we have analyzed some detail of semi-invariance for some class of PN spaces, We have shown that PN spaces
are normal spaces, A detailed study of how we can have the Urysohin's Lemima and Tietze extensien Theorem for PN spaces is
Eiven.
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