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ABSTRACT

The concept of paranorm given by A. Wilansky in (Wilansky, 1964) suggests to us the
construction of a more restrictive type of probabilistic spaces: one introduces the notion of
Probabilistic Total Paranormed spaces (briefly PTPN spaces) and we characterize a class
of probabilistic normed spaces(briefly PN spaces) which are also Probabilistic Total Para-
normed spaces. In section 3 we use the F-norms and the F-normed spaces in connection
with the PN spaces. Finally we show the relationship between F-spaces and PTPN spaces.
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1 Introduction and Preliminaries

Probabilistic normed spaces were first defined by Serstnev in 1962 (see (Serstnev, 1963)).
Their definition was generalized in (Alsina, Schweizer and Sklar, 1993). We recall the defini-
tion of probabilistic space briefly as given in (Alsina et al., 1993), together with the notation
that will be needed (see (Schweizer and Sklar, 2005)). We shall consider the space of all dis-
tance probability distribution functions (briefly, d.f’s), namely the set of all left—continuous and
non—decreasing functions from R into [0, 1] such that F(0) =0 and F(+o0) = 1. here as usual,
R := R U {—o00,+oo}. The spaces of these functions will be denoted by AT, while the subset
D+ C At will denote the set of all proper distance d.f’s, namely those for which ¢~ F(+o0) = 1.
Here ¢~ #(z) denotes the left limit of the function f at the point z, ¢~ f(z) := lim¢—.- f(t). The
space At is partially ordered by the usual pointwise ordering of functions ie., F < & it and
only it F(z) < G(z)forallzinR. Foranya> 0, £,is the d f. given by

e 0, z<a . 0, <400
Tl 1, z>a i 1, 2=+4o0
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The space At can be metrized in several ways (Schweizer, 1975; Seibley, 1971: Taylor, 1985),
but we shall here adopt the Sibley metric ds. If F,G are d.f’s and % is in 10,1[, let (F,G; k)
denote the condition:

G(2) < F(z+h)+ A for allz e]—%,g[.

—

Then the Sibley metric ds is defined by
ds(F,G) = int{h €]0,1[: both (F,G; k) and (G, F; k) hold}.
For any Fin A+,
ds(F,&) = inf{h €]0,1[: (F, &o; ) holds} = inf{R €]0,1[: F(h*) > 1 — h}

In particular, under the usual pointwise ordering of functions, <, is the maximal element of At
A triangle function is a binary operation on At namely a function 7 : At x AT — At that
is associative, commutative, nondecreasing in each place and has «; as identity, that is, for all
F.Gand Hin At:

(TF1) 7(r(F,G), H) = 7(F,7(G, H)).
(TF2) 7(F,G)=1(G, F),

(TF3) F < G = 7(F,H) < (G, H),
(TF4) 7(F,e0) =7(e0, F) = F.

Moreover, a triangle function is continuous if it is continuous in the metric space (A1, dg).
Typical continuous triangle functions are Tr(F,G)(z) = sup, 44—, T(F(s), G(t)), and 7 (F,G) =
infspe=e T*(F(s), G(t)). Here T is a continuous t-norm. i.e. a continuous binary operation on
[0, 1] that is commutative, associative, nondecreasing in each variable and has 1 as identity; T
Is a continuous t—conorm , namely a continuous binary operation on [0, 1] which is related to
the continuous t-norm 7" through T (=, y) =1-T(1—2,1—v). Letus recall that among the tri-
angle function one has the function defined via T(F,G)(e) = T(F(z),G(z)) and T*(F, G)(z) =
T*(F(z),G(z)). For example T = min. Recall that the maximum and minimum continuous
t—horm are respectively given by M (z,v) := min{z,y} and W(z,y) := maz{z+y — 1,0}; and
another important continuous +—norm is I{z,y) = zy.

The definition below has been proposed in (Alsina et al., 1993).

Definition 1.1. A Probabilistic Normed space (briefly, PN space) is a quadruple (v, Tt
where V'is areal vector space, + and +* are continuous triangle functions with ~ < 7* and v is
a mapping (the probabifistic norm) from V into A*. such that for every choice of ¢ and b in V
the following hold:

(N1) vo =20 if, and only if, a = 8(4 is the null vector in V),

(N2) V_q =V,
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(N3) vois > 7(va, vs):
(N4) vo < 7*(vaa, vi1-n)a) for every X € [0, 1].

If v satisfies (N2), (N3), (N4) and v4 = go(but not necessarily (N1)), then (Viv,7,7%) Is said to
be a probabilistic psevdonormed space (briefly, a PPN space). The pair (V,v) is said to be a
Probabilistic Seminormed Space(briefly PSN space) if v : V — AT satisfies (N1) and (N2).

If a PN space (V,v,7,7*) satisfies the following condition

S) VaeV YAeR\0 Vz>0 VAa(ic):Va(r:-[)-

then itis called a Serstnev PN space: the condition (5) implies that the best-possible selection
forr* is 7+ = 75, which satisfies a stricter version of (IV4), namely

YA€ [0,1] va =m0 (Vaas V(1-n)a).

Therefore, condition (N4) is satistied for every 7+ such that 7, < 7+. Inthis sense, if (Viv,7,7%)
is a Serstnev PN space then (V, v, 7, 7y) is a better structure than (V, v, 7, 7*). This motivates
the following partial order relation:

Definition 1.2. A PN space (V,v, 71, 7¢) is better than another PN space (V, v, 72, 74) with the
same V and v, itforall a,b € ¥V and X € [0, 1], the following statements hold:

o T1(Va,vs) = 1a(va, vs),
® 7 (Vaa, V(1-3a) £ T3(Vaa, Y(1-2)a)-

For every PN space (V,v,7,7*),if a € V and = > 0, then v,(z) may be thought of as the
probability P(|| a ||< =), where || - || is a norm for V. So the fact that v, does not belong to
Dt means that P(|| a ||< +oo) < 1 this is to be regarded as being "odd”. Therefore we shall
call strict any PN space (V,v,7,7*) such that v(V) € D*, i.e. such that v, belongs to DT for
every a € V. When there is acontinuous t-norm T (see (Schweizer and Sklar, 2005) (Klement,
Mesiar and Pap, 2000)) such that 7 = 7 and 7* = 71+, the PN space (V,v,7,7*) is called a
Menger PN space, and is denoted by (V,v, 7). One speaks of an equifateral PN space when
there is F' € A* different from both g, and e, such that, for every o # 6, v, = F, and when
T = 7" = II,, which is the triangle function defined for G and H in A by T1,,(G, H)(z) :=
M(G(z), H(z)).

Let G € At be different from 2o and from e, and let (V; || - ||) be a normed space; then, define,

fora # 6,
va(z) =G (W) ;

Then (V,v, M) is a Menger PN space denoted by (V.|| - ||, G, M). This type of Menger PN
spaces are known as simpfe PN spaces. Observe that simple PN spaces belongs to the class
of Serstnev spaces. In the same conditions, if v is defined by

vo(z) 1= G (#) ;
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with o > 0, then the pair (V,v) is a PSN space called o—simple and it is denoted by (V.|| - ||
,G,; a). The a— simple spaces can be endowed with a structure of PN space in a very general
setting(G should be acontinuous and strictly increasing function in D1, see (Lafuerza-Guillén,
Rodriguez Lallena and Sempi, 1997)).

Let (Q, A, P) be a probability space, (V.|| - ||) a normed space and S a vector space of V—
valued random variables (possibly, the entire space). For every p € S and for every = € R, let
v: S — At be defined by vp(z) = P{w € Q :|| p(w) ||< 2} then (S,v) is called an E- normed
space (briefly, EN space) with base (Q, A, P) and target (V.|| - ||). Every EN space (S,v) is
a PPN space under 7 and ;. Itis said to be canonical if it is a PN space under the same
triangle functions. In th later case, it is a Serstnev space. See (Lafuerza-Guillén et al., 1997),
({Lafuerza-Guillén, Rodriguez Lallena and Sempi, 1995), (Sempi, 1982) for properties of PN
spaces.

Definition 1.3. Let (V,v,7,7*) a PN space, then:

(i) The strong neighbourhoods are defined as follows: for every ¢ > 0, the neighbourhood
N, (t) at a point p of V' is defined by

Np(t) :={q eV :ds(vp-qe0) <t} ={g €V :vpq(t) > 1 -1}
The strong topofogy is the topology generated by strong neighbourhoods.

(i) A sequence (p,,) In V is said to be strongly convergent to p in V if for each X > 0, there
exists a positive integer NV such that p, € N,(}), forn > N.

Recall that a vector space endowed with a topology, is a topologicaf vector space (briefly aTV
space) if both the addition + : ¥V x ¥V — ¥V and multiplication by scalars n: R x V — V are
continuous. If only the addition is assumed to be continuous then V' is a fopofogical group:;
it furthermore » is continuous at the first place, then it is called a topofogical vector group
(briefly, a TV group). In {Alsina, Schweizer and Sklar, 1997) the authors showed that PN with
T continuous ere topological vector groups

Theorem 1.1. (Alsina, Schweizer, Skiar (Alsina et al., 1997)). Every PN space (V,v,7,7%).
when it is endowed with the strong topology induced by the probabilistic norm v, is a topological
vector space if. and only if. for every o € V the map fromR into V defined by

A da (1.1)
s continuous.
2 Main Results-I: Probabilistic Total Paranormed Spaces

The concept of paranorm is a generalization of that of absolute value. The paranorm of x may
be thought of as the distance from x to 0.
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Definition 2.1. A paranorm Is a real function p : ¥V — R where V is a vector space, and
satisfying conditions (i) through (v) for all vectors a, bin V.

(i) p(6) =0
(i) p(a) >0
(i) p(—a) = p(a)
(iv) pla+b) < p(a)+ p(b)

(v) I t» is a sequence of scalars with ¢, — ¢ and u,, is a sequence of vectors with u,, — u,
then p(t,u, —tu) — 0 (continuity of mukiplication).

A paranorm p for which p(a) = 0 implies o = ¢ will be called total.

Definition2.2. A Probabilistic Total Paranormed space (briefly, PTPN space) is atriple (V, v, 1),
where V is a real vector space, 7 is a continuous triangle functions and v is a mapping (the
probabilistic total paranorm) from V into At, such that for every choice of o and b in V the
following hold:

(P1) v, =& if, and only if, a = (8 is the null vector in V);

(P2) v_a =va;

(P3) vays > 7(va, vs):

(P4) If (un), (an) are two sequences of vectors and scalars respectively with (u.) — u as
regards the strong topology, and (e.) — o, then ve, vw,—ou — 0.

The next Example shows a PTPN space which is not Serstney .

Example 2.1. Suppose p is a total paranorm on the vector space ¥V and let 7 be a triangle
function such that 7 (z,, &) < £,45 and v, = Epta): Then (V,v,7) is a PTPN space.

Proof. (P1)v, = €0 & €p(a) = €0 & pla)=0& a=24.

(P2) vo = eg(a) = ep(-a) = V-a-

(P3) vats = epate) 2 Epa)ta(e) 2 T(Ep(a) &p()) = T{¥ar v8)-

(P4) Suppose u,, and «,, be two sequences of vectors and scalars respectively and v,, — u,

ap — a. Then Vo,u,—ou = €p(anun—on) = €0 i

Example 2.2. Let V be a normed vector space. Define p(a) = ||af|/(1 + [|a]|) and v, = eyq).
Then (V,v,7) is a PTPN space for every triangle function = such that 7 (e,, e5) < £q45-

Proof. Inthis case notice that condition (¢v) of the Definition 2.1 holds for any complex numbers
a, b (see pp. 52 in (Wilansky, 1964)). O

Exampte2.3. Let pbe atotal paranorm. The quadruple (V, v, 7, 7*) with v,(2) == e ?(@ 7 = 7q
and 7+ = 71+ Is a PN space which is not strict, and the triple (V, v, ) is a PTPN space.
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Corollary 2.1. A PN-space (V,v,,7*) is a PTPN space if, and only if, (V,v,7) is a PTPN
space.

Proof. Suppose (V,v,7)is a PTPN space. By (p4) we have v, ., _ou — & When u,, — u and
an, — a. Therefore ds(va, p,—ap: €0) — 0 @8 n — oo. This shows that the product by a scalar
of the Theorem 1.3 is a continuous operation in the strong topology. If (V, v, 7) is a topological
vector space, then the product by a scalar is continuous in the strong topology and hence
ds(Vapun—au, £0) — 01 — co. Therefore ve, v, —ou — € When u, — v and o, — o. |

Theorem22. (i) No equilateral space (V, F, M) is a PTPN space.

(i) A Serstnev space (V,v,7) is a PTPN space if. and only if, the probabilistic total paranorm
v mapsV into D, viz. v(V) C DT

(i} A simple space (V|| - ||, G, M) is a PTPN space if, and only if, G belongs to D+t .

(iv) It G is a distribution function different from =q and =, then the a—simple space (V|| - ||
,G, a) is a PTPN space if, and only if. G belongs to Dt

{v) An EN space (S,v) is a PTPN space if. and only if. v, belongs oD+ foreveryac S.

Proof. Let § denote the null vector of the linear space V. Since any PN space can be metrized,
one can limit oneself to investigating the behaviour of sequences. Moreover, because of the
linear structure of V', one can take o # ¢ and an arbitrary sequence (},,) with X,, # 0(n € N)
such that ), — 0 as »n tends to co.

(i) For every n € N, one has vy, = F while vy = gy. Therefore the map (1.1) is not
continuous.

(i) If v maps V into DT, then, for every ¢ > 0, one has

, . t )
A Tt =l ve (m) Sik

whence limp o Va,a(t) = £o(t), and limpoe va,e = 0. Conversely, if there exists at
least one a € V such that v, € AT\ D+, namely such that lim, . vo(z) = v < 1, then,
forz > 0,

. t
JLTQ Ui alt) =va (l—)\;—') =yl
so that the mapping (1.1) is not continuous.
(iiiy Is a trivial consequence of part (i), since every simple space is a Serstney space.

(iv) Let () be a sequence of real numbers that tends to 0, when n goes to co. Then, for all
a€ Vandz > 0, one has, foreveryn € N,

t t
li = lim G| —— | = li G——):l,
S Vimsl) = Jio, (n pwr ua) i (mmwna

(v) The proof is analogous to that of part ().
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O

However, in general PN spaces, the condition v(V) C D7 is not necessary to obtain a PTPN
(see Example 2.3).

Example 2.1, Corolario 2.1 and Theorem 2.2 shows that the class of PTPN spaces contains
the class of strict Serstnev spaces and the class of a-simple spaces with G € D+: the class of
PTPN spaces is larger than any other of these two classes of PN spaces.

3 Main Results-ll: F-normed spaces and PN spaces

Definition 3.1. An F-norm on a vector space Vis amap g : V — R, satisfying for alla € V'
the following conditions:

(i) g(a) =01if andonly if, a =46,
(i) g(Ma) < gla)if | X|< 1,
(i) g(a+b) < g(a) + g(b).
The pair (V, g) is called an F-normed space.

It is a TV group with respect to the metric d(a, b) = g(a— &), butin general it is not a TV space.
In [(Schaefer and Wolff, 1999), Exercise 12(b), p. 35] one can find such an example where V' is
the vector space of all continuous functions p : R — R, and g(p) := supscg 54 : s, with @ > 0.
(The problem arises with the unbounded functions the F-norm of which is 1).

Clearly different F-norms may induce the same metric-topology. For instance, if (V.|| - ||) Is a
normed space, then g(p) =|| » ||*. or g(p) = where o > 0, are F-norms which induce
the same topology as || - ||

The above condition (i) implies || —p ||=|| » ||- This remark and the fact that for every a, bin R
I8 Tazs (€4, €5) = €040, Yield easily the following result that is a correspondence between F-norms
and some specific PN spaces.

_lpl
at|p]"

Theorem 3.1. Let G : V — Ry be any map and define v by va := gyay. Then, (V,g) isa F-
normed space if, and only if, (V,v,as, M) is a PN space, where M is defined via M(F, G)(z) =
M(F(z),G(=))-

Note that M is the maximal triangle function, so that (V, 4, 7a,, M) copuld not be the best PN
structure for a given F-norm g (indeed, if ¢ is a norm then (V, ., 7,, M) is better). So in this
sense PN structures stratify all possible F-norms on a given vector space, depending on the
triangle functions we use.

Theorem 3.2. Letg : V — R, be any map and define v by v, = £,,). LetT and 7+ be two
{non necessarily associative) triangle functions. Then one has the following statements:

(1) Hfr(ca.es) > £aye. oraffa, binRy, and (V,v,7,7*) is a PN space, then g is a F-nomm.
(i) W T(ca,25) < £a4s. foralta, binRy, and g is a F-nom, then (V,v,r,7*) is a PN space if,

and only if, (N4) holds.

75 ISSN 0974-7117 (Print); ISSN 0873-8347 (Onfine)



76 international Journal of Mathematics and Statistics

(i) If T(ea,85) < €445, for all a, bin Ry, then g is 2 norm if. and only if, (V,v,7,7*) is a
Serstnev PN space.

4 Main Results-lll: F-spaces and PTPN spaces

In this section the relation between F-spaces and PTPN spaces are considered.

As an example of F-norm one has the function z — |z| on ¥ into R such that

(i) |A < limplies |Az| < |z|forallz € V.

(i) [z+v| < |z|+|v|forallze V,y e V.

(iii) |z| = 0 equivalent with = = 0. The metric (z,v) — |z — v| generates the topology on V.

Theorem 4.1. If (V,v,7) is a PTPN space then there exists a F-norm |- | such that (V,| - |) is
F-nomed space.

Proof. Let (V,v,7) be a PTPN space. By Corolary 2.1 (V,v,7) is a topological vector space
and the set {Ns(1/n) : » € N} is a countable 0-neighborhood base. Let {V4(1/n;) : i € N} be
a base of circled 0-neighborhoods satistying

Ng(1/ni1) + Np(1/nig1) C No(1/ns) (i€ N). (41)

For each non-empty finite subset K of N, define the circled 0-neighborhood Vi by Vy =
> nex Ns(1/n) and the real number Py by Px =3, 27" It follows from (2.1) by induction
on the number of elements of X that these implications hold:

PR <2 "> n< K= Vg C Na(l/ne), (4.2)

where » < K means that n < kfor k € K. We define the real-valued function = — |z| on V' by
|z] = 1if z is not contained in any Vg, and by

|¢C| = ian{PK e VK}

otherwise; the range of this function is contained in the real unitinterval. The function |- | is the
desired F-norm.

O

Foranye> 0,let B, ={z € V : |z| < &}; then we have
By-x-1 C Ng(1/np) C By-x  (n€N). (4.3)

The inclusion Nj(1/n:) C B_g is obvious since = € Ny(1/n.) implies |z| < 27*. On the other
hand | if |z| < 27™1, then there exist X such that = € Vx and px < 2% hence (4.2) implies
that z € Np(1/ng)
The following Theorem and Corollary are geometrical forms of the Hahn- Banach Theorem in
the PTPN spaces.

Theorem 4.2. Let (V,v,7) be a PTPN space, A an open convex set in 'V and L a vector
subspace such that not meeting A, then there exists a continuous function f on V' such that
f(L) =0 and f(A) # 0.
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Proof. (V,v,7)is a PTPN space. Now by Corolary 2.1 V is a topological vector space with
strong topology. A is convex therefore A may be represented by a equation Pz — 2y) < 1,
where 29 Is a point of V and P is subadditive, and positive- homogeneous functionon V. P is
continuous since Ais open. Since LNA = ¢, P(y—xp) > 1fory € L. Define the linear function
foon L+ Rzg by f(y — azy) =aforye L and e € R. # < P at all point of L + Rzg. Since P
is a positive gauge function on E, the Hahn Banach theorem shows that 7, may be extended
to a linear functional f on V such that f < P at points of V.,

Moreover H = f71(0) is a closed hyperplane in V which contains L = (L + Rz) n #71(0).
flz) =0torz € Handso 0 = f(z) = flz—zo)+ f(z0) = flz— 20)+ folzo) = fle—2z0) —1 <
P(z—20) — 1, showing that p(z — 2 — z0) > 1 for 2 € H—that is , that A dos not meet 5. Since
L c H,s0 f(L) = 0. Since H does not meet A and A is convex, 7(A) must be a real interval
not containing 0. Therefore f(a) > 0. O

The next Corollary is immediate from the Theorem 4.2.

Corollary 4.3. Let (V,v,7) be a P p-N space A an open convex set and B a convex set in
strong topology of (V, v, T) and suppose that AN B = ¢. Then there exists a continuous finear
form f # 0 on'V and a real number o such that
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