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PROBABILISTIC NORMS AND STATISTICAL
CONVERGENCE OF RANDOM VARIABLES

Mohamad Rafi Segi Rahmat and Bernardo Lafuerza-Guillén

Abstract. The paper extends certain stochastic convergence of sequences of Rk -valued random

variables (namely, the convergence in probability, in Lp and almost surely) to the context of E-valued

random variables.

1 Introduction

A probabilistic normed space (PN space) is a natural generalization of an ordinary
normed linear space. In PN space, the norms of the vectors are represented by prob-
ability distribution functions rather than a positive number. Such spaces were first
introduced by A. N. Šerstnev in 1963 [20]. Recently, C. Alsina et al [1] introduced
a new definition of PN spaces that includes Šerstnev’s and leads naturally to the
identification of the principle class of PN spaces, the Menger spaces. This definition
becomes the standard one and has been adopted by many authors (for instance, [2],
[12], [13], [14]) who have investigated the properties of PN spaces. The detailed
history and the development of the subject up to 2006 can be found in [19].

On the other hand, statistical convergence was first introduced by Fast [4] as
a generalization of ordinary convergence for real sequences. Since then it has been
studied by many authors (see [7], [8], [3], [16], [17], [22]). Statistical convergence has
also been discussed in more general abstract spaces such as the fuzzy number space
[18], locally convex spaces [15] and Banach spaces [11]. Karakus [9] has recently in-
troduced and studied statistical convergence on PN spaces and followed by Karakus
and Demirci [10] studied statistical convergence of double sequences on PN spaces.

Our work has been inspired by [14] in which the convergence of E-valued ran-
dom variables is associated with a probabilistic norms. The paper extends certain
stochastic convergence (here, statistical convergence) of sequences of Rk -valued ran-
dom variables namely, the convergence in probability, in Lp and almost surely to
the context of E-valued random variables.
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The paper is organized as follows. In the second section, some preliminary con-
cepts related to PN spaces and statistical convergence are presented. In the third,
fourth and fifth sections, the statistical convergence in probability, statistical conver-
gence in Lp and almost surely statistically convergence respectively are investigated.
In this context, we obtain some results that replicate those given in [14].

2 Preliminaries

We use the notation and terminology of [23]. Thus ∆+ is the space of probability
distribution functions F that are left-continuous on R+ = (0,+∞), F (0) = 0 and
such that F (+∞) = 1. The space ∆+ is partially ordered by the usual pointwise
ordering of functions and has both a maximal element ε0 and a minimal element
ε∞; these are given, respectively, by

ε0(x) =

{
0, x ≤ 0,
1, x > 0.

and ε∞(x) =

{
0, x < +∞,
1, x = +∞.

There is a natural topology on ∆+ that is induced by the modified Lévy metric
dL (see [21] and [23]), i.e.,

dL(F,G) = inf{h : both [F,G;h] and [G,F ;h] hold} (2.1)

for all F,G ∈ ∆+ and h ∈ (0, 1], where [F,G;h] denote the condition

G(x) ≤ F (x+ h) + h for x ∈ (0,
1
h

). (2.2)

Convergence with respect to this metric is equivalent to weak convergence of distri-
bution functions, i.e., {Fn} in ∆+ converges weakly to F in ∆+ (written Fn

w→ F )
if and only if {Fn(x)} converges to F (x) at every point of continuity of the limit
function F . Consequently, we have

Fn
w→ F if and only if dL(Fn, F )→ 0, (2.3)

F (t) > 1− t if and only if dL(F, ε0) < t for every t > 0. (2.4)

Moreover, the metric space (∆+, dL) is compact.

A triangle function is a binary operation τ on ∆+ that is commutative, associa-
tive, non-decreasing in each place, and has ε0 as an identity element. Continuity
of a triangle function means uniform continuity with respect to the natural product
topology on ∆+ ×∆+.
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Probabilistic norms and statistical convergence of random variables 67

Definition 1. A probabilistic normed space (briefly, a PN space) is a quadruple
(V, ν, τ, τ∗) in which V is a real linear space, the probabilistic norm ν is a mapping
from V into ∆+ and τ and τ∗ are continuous triangle functions so that ν, τ and τ∗

are subject to the following conditions:
(N1) νp = ε0 if, and only if, p = θ (the null vector of V );
(N2) ν−p = νp for every p ∈ V ;
(N3) νp+q ≥ τ(νp, νq) for all p, q ∈ V ;
(N4) νp ≤ τ∗(ναp, ν(1−α)q) for every p ∈ V and for every α ∈ [0, 1].

A PN space is called a Šerstnev space if (N1) and (N3) are satisfied along with
the following condition:

ναp(x) = νp(
x

|α|
), (2.5)

for all α ∈ R\{0} and for all x > 0, which implies (N2) and (N4) in the strength-
ened form:

νp = τM (ναp, ν(1−α)q), (2.6)

for every p ∈ V and for every α ∈ [0, 1]. A Šerstnev space will be denoted by
(V, ν, τ), since the role of τ∗ is played by a fixed triangle function τM , which satisfies
(N2).

A PN space is endowed with the strong topology generated by the strong neigh-
borhood system {Nθ(λ) : λ > 0}, where

Nθ(λ) = {p ∈ V : dL(νp, ε0) < λ} (2.7)

(see [23]) and the latter is metrizable. A sequence {pn} of elements of V converges
to θV , the null element of V , in the strong topology (written pn −→ θV ) if, and only
if,

lim
n→+∞

dL(νpn , ε0) = 0, (2.8)

i.e., for every λ > 0 there is an m = m(λ) ∈ N such that dL(νpn , ε0) < λ for all
n ≥ m, where dL denotes the modified Lévy metric (2.1). In terms of neighborhoods,
we have pn −→ θV provided that for any λ > 0 there is an N(λ) ∈ N such that
pn ∈ NθV

(λ) (i.e., νpn(λ) > 1− λ) whenever n ≥ N .

Of course, there is nothing special about θV as a limit; if one wishes to consider
the convergence of the sequence {pn} to the vector p, then it suffices to consider the
sequence {pn − p} and its convergence to θV .

An important class of PN spaces is that of E-normed spaces (see [12]). Let
(Ω,A, P ) be a probability space, (V, ‖ · ‖) a normed space, and S a linear space of
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V -valued random variables (possibly, the entire space). For every p ∈ S and for
every λ ∈ R+, let ν : S → ∆+ be defined by

νp(λ) := P{ω ∈ Ω: ‖p(ω)‖ < λ}; (2.9)

then (S, ν) is an E-normed space (briefly, EN space) with base (Ω,A, P ) and
target (V, ‖ · ‖).

Example 2. Let L0 = L0(Ω,A, P ), the linear space of (equivalence classes of)
random variable f : Ω → R. Let ν : S → ∆+ be defined, for every f ∈ L0 and for
every λ ∈ R+, by

νf (λ) := P{ω ∈ Ω : |f(ω)| < λ}.

Then, the couple (L0, ν) is an EN space. It is a PN space under the triangle
function τW and τM [23].

In what follows, we list some of the basic concepts related to the theory of
statistical convergence and we refer to [5] and [6] for more details.

Definition 3. The natural density of a set K of positive integers is defined by

δ(K) = lim
n→∞

1
n
|{k ∈ K : k ≤ n}|

where |{k ∈ K : k ≤ n}| denotes the number of elements of K not exceeding n. It is
clear that for finite set K, we have δ(K) = 0.

Remark 4. We will be particularly concerned with integer sets having natural den-
sity zero. Thus, if {xk} is a sequence such that xk satisfies property P for all k
except a set of natural density zero, then we say that {xk} satisfies P for ”almost
all k”, and we abbreviate this by ”a.a.k”.

In PN space, one can consider the statistical convergence of sequences in the
following manner.

Definition 5. Let (V, ‖ · ‖) be a normed space. A sequence {pk} in V is said to be
statistically convergent to l ∈ V provided that, for every λ > 0,

δ({k ∈ N : ‖pk − l‖ ≥ λ}) = 0

holds, viz. ‖pk − l‖ < λ for a.a.k. In this case we write pk
stat−→ l

Remark 6. We note that for every λ > 0, ‖pk − l‖ < λ implies that ‖pk − l‖
n→∞−→

0. Thus, one can say that, for every λ > 0, ‖pk − l‖ < λ for a.a.k implies that
‖pk − l‖

stat−→ 0
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Probabilistic norms and statistical convergence of random variables 69

Using these concepts, we extend the statistical convergence of sequences in PN
spaces endowed with the strong topology. We begin with defining the convergence
of probability distribution functions.

Definition 7. Let (∆+, dL) be a metric space. Then, a sequence {Fk} of ∆+ is said
to be statistically convergent (weakly) to F ∈ ∆+, if and only if, for every λ > 0,

δ({k ∈ N : dL(Fk, F ) ≥ λ} = 0, (2.10)

viz. dL(Fk, F ) < λ for a.a.k. In this case we write Fk
stat(w)−→ F .

By (2.4) and (2.10), the following lemma can be easily verified.

Lemma 8. The following statements are equivalent:

(i) Fk
stat(w)−→ ε0,

(ii) for every λ > 0, dL(Fk, ε0) < λ for a.a.k,
(iii)for every λ > 0, Fk(λ) > 1− λ for a.a.k.

Definition 9. Let (V, ν, τ, τ∗) be a PN space. A sequence {pn} of elements of V is
said to be strongly statistically convergent to θV in the strong topology if, and only
if, for every λ > 0,

δ({k ∈ N : dL(νpk
, ε0) ≥ λ} = 0, (2.11)

viz.
dL(νpk

, ε0) < λ for a.a.k. In this case we write pk
stat−→ θV or stat− lim pk = θV .

In terms of strong neighborhoods, we have

pn
stat−→ θV ⇔ pk ∈ NθV

(λ) for a.a.k. (2.12)

Of course, there is nothing special about θV as a limit; if one wishes to consider
the convergence of sequence {pn} to the vector p in the strong topology, then it
suffices to consider the sequence {pn − p} and its convergence to θV .

3 Statistical convergence in probability

Let {Xk} be a sequence of random variables defined on a probability space (Ω,A, P )
taking values in a separable normed space (V, ‖ · ‖), where ‖ · ‖ is the norm. Then
we say the sequence Xk converges in probability or converges in measure to θV (the
null vector in V ) if for every λ > 0,

lim
k→∞

P ( ‖Xk‖ > λ)) = 0.
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Equivalently, for any λ > 0, there is an n0 ∈ N such that

P ( ‖Xk‖ < λ) > 1− λ for all n ≥ n0.

In this case we write Xk
P−→ θV .

Remark 10. The need for separability on V is to ensure that the norm, ‖Xk‖, is
a random variable, for all random variables Xk and θV . Convergence almost surely
implies convergence in probability but not conversely.

For statistical convergence in probability, we give the following definition.

Definition 11. The sequence {Xk} is said to converge statistically in probability to
θV if for every ε > 0,

δ({k ∈ N : P (‖Xk‖ < λ) ≤ 1− λ}) = 0,

viz. P ( ‖Xk‖ < λ) > 1− λ for a.a.k. In this case we write Xk
stat(P )−→ θV

Theorem 12. For a sequence of (equivalence classes of) E-valued random variables
{fk}, the following statements are equivalent:

(a) {fk} converges statistically in probability to θS, fk
stat(P )−→ θS;

(b) the corresponding sequence {νfk
} of probabilistic norms converges (weakly) sta-

tistically to ε0 for a.a.k, νfk

stat(w)−→ ε0;
(c) {fk} converges statistically to θS in the strong topology of the Šerstnev space
(L0, ν, τW ), fk

stat−→ θS.

Proof. Since (b) and (c) are equivalent by definition, it suffices to establish the
equivalence of (a) and (b).

Let K(λ) = {k ∈ N : P (‖fk‖ < λ) ≤ 1 − λ}. We note that fk
stat(P )−→ θS if and only

if δ(K(λ)) = 0. But δ(N\K(λ)) = 1. Therefore, for every k ∈ N\K(λ), we have
P (‖fk‖ < λ) > 1 − λ. By (2.9), this implies that νfk

(λ) > 1 − λ. By the property
of strong topology, we observe that

{k ∈ N : dL(νpk
, ε0) < λ} ⊇ {k ∈ N : νfk

(λ) > 1− λ}}
⊇ {k ∈ N : P (‖fk‖ < λ) > 1− λ},

which means,

{k ∈ N : dL(νpk
, ε0) ≥ λ}) ⊆ {k ∈ N : P (‖fk‖ < λ) ≤ 1− λ}.

Hence,

δ({k ∈ N : dL(νpk
, ε0) ≥ λ}) ≤ δ({k ∈ N : P (‖fk‖ < λ) ≤ 1− λ}).

Since, fk
stat(P )−→ θS , we have δ({k ∈ N : dL(νfk

, ε0) ≥ λ}) = 0, hence νfk

stat−→ ε0.
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4 Statistical convergence in Lp

In order to consider statistical convergence in Lp with p ∈ [1,+∞], the following
result connecting the Lp norms (‖ · ‖p) with the probabilistic norm (2.9) will be
needed (see [12]).

Theorem 13. Let Lp = Lp(Ω,A, P ) := {f ∈ L0 :
∫

Ω |f |
pdP < +∞} for p ∈ [1,+∞[

and L∞ := {f ∈ L0 : ‖f‖∞ := ess sup |f | < +∞}. If the probabilistic norm ν : L0 →
∆+ is defined by

νf (λ) := P{ω ∈ Ω: |f(ω)| < λ}, λ > 0,

then for every f ∈ Lp, ‖f‖p =
(∫

R+
λpdνf (λ)

)1/p
and for every f ∈ L∞, ‖f‖∞ =

sup{t > 0: νf (λ) < 1}.

With the help of the previous result one can characterize statistical convergence
in Lp. As in the previous section, there is no loss of generality in considering only
convergence to θV , for, if one wishes to study the statistical convergence of a sequence
{fn} to f 6= θV , it suffices to replace {fn} by {fn − f}.

Theorem 14. For a sequence of (equivalence classes of) E-valued random variable
{fk} in Lp, the following statements are equivalent:
if p ∈ [1,+∞):

(a) {fk} statistically converges to θS in Lp, fk
stat(Lp)−→ θS:

(b) the sequence of the p-th moments of the probabilistic norms {νfn} statistically
converges to 0, viz. ∫

R+

tpdνfk
(t) −→ 0 for a.a.k;

if p = +∞:

(c) {fk} statistically converges to θV in L∞, fk
stat(L∞)−→ θS;

(d) for every λ > 0, the sequence {νfk
(λ)} is definitely equal to 1 for a.a.k.

Proof. (a) ⇔ (b) We note that fk
stat(Lp)−→ θS ⇔ δ({k ∈ N : ‖fk‖p ≥ λ} = 0 for every

λ > 0. But then

δ({k ∈ N :
(∫

R+

tpdνfk
(t)
)1/p

≥ λ} = δ({k ∈ N : ‖fk‖p ≥ λ}.

Since the right hand side is zero, we have

δ({k ∈ N :
∫

R+

tpdνfk
(t) ≥ (λ)p} = 0.
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This clearly implies that
∫

R+
tpdνfk

(t) −→ 0 for a.a.k.

(c) ⇒ (d) Assume fk
stat(L∞)−→ θS , i.e., ‖fk‖∞

stat−→ 0, and let t > 0; then for every
ε ∈ (0, t), one has

δ({k ∈ N : sup{t > 0: νfk
(t) < 1} ≥ ε}) = δ({k ∈ N : ‖fk‖ ≥ ε}) = 0.

This means that
sup{t > 0: νfk

(t) < 1} < ε for a.a.k.

But then, for a.a.k, νfk
(t) ≥ νfk

(ε) = 1.
(d) ⇔ (c) For t > 0, let νfk

(t) = 1 for a.a.k; therefore, ‖fk‖∞ < t for a.a.k, which

yields fk
stat(L∞)−→ θS .

5 Almost sure statistical convergence

We begin with the following definition of almost surely statistical convergence of
random variables:

Definition 15. A sequence {fk} of E-valued random variables is said to be statistical
convergent almost surely to θE, the null vector of E, provided that for every t > 0,

δ({k ∈ N : P (|fk| < t) < 1}) = 0,

viz. for every t > 0, P (|fk| < t) = 1 for a.a.k. In this case we write fk
stat a.s.−→ θE

Consider the family V = {L0(A)}N of all sequences of (equivalence classes of)
E-valued random variables. The set V is a real vector space with respect to the
componentwise operations; specifically, if s = {fk} and s′ = {gk} are two sequences
in V and if α is a real number, then the sum s⊕s′ of s and s′ and the scalar product
α� s of α and s are defined via

s⊕ s′ := {fk} ⊕ {gk} := {fk + gk}, α� s = α� {fk} := {αfk}.

A mapping φ : V → ∆+ will be defined on V via

φs(x) := P

(
sup
k∈N
|fk| < x

)
= P

(⋂
k∈N
{|fk| < x}

)
,

where x > 0 and s = {fk}. In [14], it is proved that the triple (V, φ, τW ) is a Šerstnev
space.

Given an element s of V , viz. given a sequence s = {fk : k ∈ N} of E-valued
random variables, fk ∈ L0(A) for every k ∈ Z+ := {0, 1, · · · }, consider the n-shift
sn of s, sn := {fk+n : k ∈ N}, which again belongs to V .
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Theorem 16. A sequence s = {fk : k ∈ N} of E-valued random variables statis-
tically converges almost surely to θE, if and only if, the sequence {φsn : n ∈ N}
of the probabilistic norms of the n-shifts of s statistically converges (weakly) to ε0,
or, if and only if, the sequence {sn} of the n-shifts of s converges statistically to
O := {θE , θE , · · · } in the strong topology of (V, φ, τW ).

Proof. All statements are equivalent to the assertion, which holds for every t > 0,

0 = δ({n ∈ N : φsn(t) < 1}) = δ({n ∈ N : P

(⋂
k∈N
{|fk+n| < t}

)
< 1})

≥ δ({n ∈ N : P

⋂
k≥n
{|fk| < t}

 < 1})

≥ δ({k ∈ N : P (|fk| < t) < 1}).

This proves the result.

Acknowledgement. We would like to express our gratitude to the referees of
the paper for their useful comments and suggestions.
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