
7th Workshop on

Knowledge Engineering

and Software Engineering (KESE7)

at the 14th Conference of the Spanish Association for Artificial Intelli-

gence (CAEPIA 2011), La Laguna, Tenerife, Spain, November 10, 2011

Joaqúın Cañadas, Grzegorz J. Nalepa, Joachim Baumeister

(Editors)

Technical Report TR-2011/1,

Department of Languages and Computation. University of Almeŕıa,

Almeŕıa, Spain, 2011

The KESE Workshop Series is available online: http://kese.ia.agh.edu.pl

Preface

Joaqúın Cañadas, Grzegorz J. Nalepa and Joachim Baumeister

Dept. of Languages and Computation. University of Almeria.
Agrifood Campus of International Excellence, ceiA3. Almeria, Spain

jjcanada@ual.es

—
AGH University of Science and Technology

Kraków, Poland
gjn@agh.edu.pl

—
Intelligent Systems (Informatik 6)

University of Würzburg
Würzburg, Germany

joba@uni-wuerzburg.de

Intelligent systems have been successfully developed in various domains based
on techniques and tools from the fields of knowledge engineering and software
engineering. Thus, declarative software engineering techniques have been estab-
lished in many areas, such as knowledge systems, logic programming, constraint
programming, and lately in the context of the Semantic Web and business rules.

The seventh workshop on Knowledge Engineering and Software Engineering
(KESE7) was held at the Conference of the Spanish Association for Artificial
Intelligence (CAEPIA-2011) in La Laguna (Tenerife), Spain, and brought to-
gether researchers and practitioners from both fields of software engineering and
artificial intelligence. The intention was to give ample space for exchanging lat-
est research results as well as knowledge about practical experience. Topics of
interest includes but were not limited to:

– Knowledge and software engineering for the Semantic Web
– Ontologies in practical knowledge and software engineering
– Business Rules design and management
– Practical knowledge representation and discovery techniques in software en-

gineering
– Agent-oriented software engineering
– Database and knowledge base management in AI systems
– Evaluation and verification of intelligent systems
– Practical tools for intelligent systems engineering
– Process models in AI applications
– Software requirements and design for AI applications
– AI approaches in software engineering process
– Declarative, logic-based approaches
– Constraint programming approaches

This year, we received contributions focussing on different aspects of knowl-
edge engineering: Prieto et al. present OntoMetaWorkflow, a generic ontology to

represent canonical workflow terms in the domain of administrative processes.
The fowchart-based language DiaFlux and a collection of anomalies that can oc-
cur when using it for knowledge base development are discussed by Hatko et al.
The contribution of Kluza et al. elaborates on a hybrid and hierarchical approach
to formal verification of BPMN models, using the Alvis modeling language and
the XTT2 knowledge representation. Sagrado et al. define a three-layer archi-
tecture to provide a seamless integration between Knowledge Engineering and
Requirement Engineering, enhancing requirement validation and requirement se-
lection tasks in software development projects with knowledge-based techniques.
Pascalau discusses a new perspective for the mashup concept introducing a new
perspective on mashups as behavior in context(s). Cañadas et al. introduce a
model-driven method for generating rich Web user interfaces for data-intensive
Web applications from OWL domain ontologies.

This year we also encouraged to submit tool presentations, i.e., system de-
scriptions that clearly show the interaction between knowledge engineering and
software engineering research and practice. At the workshop, one presentation
about current tools was given: Adrian and Nalepa present a semantic wiki called
Loki which enables a strong rule-based reasoning with semantic annotations
mapped to Prolog knowledge base.

Two of the workshop contributions, Prieto et al. and Sagrado et al., are
selected for being included in the Selected Papers Volume of CAEPIA 2011
proceedings: Lozano, J.A., Gámez, J.A., Moreno, J.A. (eds) LNAI series, Current
Topics in Artificial Intelligence. 14th Conference of the Spanish Association for
Artificial Intelligence, CAEPIA 2011, La Laguna, Spain, November 8-11, 2011,
Selected Papers. Here extended abstracts of both publications are provided. The
rest of contributions are published in the CAEPIA 2011 conference proceedings
published by the Spanish Association for Artificial Intelligence.

The organizers would like to thank all who contributed to the success of the
workshop. We thank all authors for submitting papers to the workshop, and we
thank the members of the program committee for reviewing and collaboratively
discussing the submissions. For the submission and reviewing process we used the
EasyChair system, for which the organizers would like to thank Andrei Voronkov,
the developer of the system. Last but not least, we would like to thank the
organizers of the CAEPIA 2011 conference for hosting the KESE7 workshop.

Joaqúın Cañadas
Grzegorz J. Nalepa

Joachim Baumeister

Workshop Organization

The 7th Workshop on Knowledge Engineering and Software Engineering
(KESE7)

was held as a one-day event at the
14th Conference of the Spanish Association for Artificial Intelligence

(CAEPIA 2011)
on November 10, 2011, La Laguna, Spain.

Workshop Chairs and Organizers

Joaqúın Cañadas, University of Almeria, Spain
Grzegorz J. Nalepa, AGH UST, Kraków, Poland
Joachim Baumeister, University Würzburg, Germany

Programme Committee

Isabel Maŕıa del Águila, University of Almeria, Spain
Klaus-Dieter Althoff, University Hildesheim, Germany
Antonio B. Bailón, University of Granada, Spain
Joachim Baumeister, University Würzburg, Germany
Manuel Campos, University of Murcia, Spain
Joaqúın Cañadas, University of Almeria, Spain
Jesualdo Tomás Fernández-Breis, University of Murcia, Spain
Adrian Giurca, BTU Cottbus, Germany
Francisco Guil, University of Almeria, Spain
José M. Juarez, University of Murcia, Spain
Jason Jung, Yeungnam University, Korea
Rainer Knauf, TU Ilmenau, Germany
Carmen Mart́ınez-Cruz, University of Jaen, Spain
Grzegorz J. Nalepa, AGH UST, Kraków, Poland
José Palma, University of Murcia, Spain
José del Sagrado, University of Almeria, Spain
Dietmar Seipel, University Würzburg, Germany
Fernando Silva Parreiras, University of Koblenz-Landau, Germany
Ioannis Stamelos, Aristotle University of Thessaloniki, Greece
Rafael Valencia-Garćıa, University of Murcia, Spain

Table of Contents

OntoMetaWorkflow: An Ontology for Representing Data and Users in
Workflows (extended abstract) . 1

Alvaro Prieto, Adolfo Lozano-Tello, José Luis Redondo-García

Anomaly Detection in DiaFlux Models . 5
Reinhard Hatko, Gritje Meinke, Joachim Baumeister, Stefan Mers-
mann, Frank Puppe

Proposal of a Hierarchical Approach to Formal Verification of BPMN
Models Using Alvis and XTT2 Methods . 15

Krzysztof Kluza, Grzegorz J. Nalepa, Marcin Szpyrka, Antoni Ligęza

Architecture for the Use of Synergies between Knowledge Engineering
and Requirements Engineering (extended abstract) . 25

José del Sagrado, Isabel M. del Águila, Francisco J. Orellana

Mashups: Behavior in Context(s) . 29
Emilian Pascalau

Model-Driven Rich User Interface Generation from Ontologies for
Data-Intensive Web Applications . 39

Joaquín Cañadas, José Palma, Samuel Túnez

Loki – Presentation of Logic-based Semantic Wiki (tool presentation) 49
Weronika T. Adrian, Grzegorz J. Nalepa

1

OntoMetaWorkflow: An Ontology for Representing Data

and Users in Workflows – Extended Abstract1

Alvaro E. Prieto, Adolfo Lozano-Tello, José Luis Redondo-García

Quercus Software Engineering Group, University of Extremadura, av. Universidad s/n

10071, Spain

{aeprieto, alozano, jluisred}@unex.es

Abstract. Administrative processes are a type of business process commonly

used in public institutions and large companies. These processes are frequently

reused because there are often similar processes within the organizations. The

use of ontologies for modeling the workflows of administrative processes can

provide significant improvements in this reuse process. In this paper, we

describe OntoMetaWorkflow, a generic ontology to represent canonical

workflow terms in the domain of administrative processes.

Keywords: business process, administrative process, workflows, ontologies,

WEAPON.

1 Introduction

Administrative processes are generally used in administrative or legal ambits. They

are characterized by being initiated by a user and which must be attended to or

evaluated by other different users following a perfectly defined protocol for data,

times and agents involved. These processes are often defined generically in the level

of management of the organizations but must be reused in the lower levels in order to

be applied in them. Examples could be the management of public contest bids, loan

application procedures or a simple holiday application.

They can be managed by simple Workflow Management Systems (hereinafter

referred to as WfMS) with features that facilitate to share and reuse this type of

process. The use of ontologies as a basis for this type of WfMS could be very useful

due to their characteristics of complete and precise representation of terms.

 An appropriate case of application to reuse processes is the WfMS model based on

ontologies was proposed in [1]. This model provided a generic ontology described in

[1] as the basis of workflow representation. We have restructured the ontology and

the WfMS model to improve the reuse process.

1 This is a long abstract of the paper published in Lozano, J.A., Gámez, J.A., Moreno, J.A. (eds)

LNAI series, Current Topics in Artificial Intelligence. 14th Conference of the Spanish

Association for Artificial Intelligence, CAEPIA 2011, La Laguna, Spain, November 8-11,

2011, Selected Papers.

2

This paper is structured as follows: section 2 enumerates works that use ontologies

in WfMS, section 3 presents a brief description of the redefinition of the WfMS [1],

now called WEAPON (Workflow Engine for Administrative Processes based on

ontologies), and, section 4 describes the new ontology, called OntoMetaWorkflow.

2 Use of Ontologies in WfMS

The application of ontologies to WfMS have been used previously in several

approaches as [2,3,4,5] and a recent survey is available in [6].

 Unlike the previous approaches, this paper presents an ontology for representing

administrative processes together with their activities, domain data and users

involved. Although several models and languages of workflow representation exist

[7,8], the application of ontologies can provide the following advantages:

─ The users, following methodologies for building ontologies, can obtain

complete, precise and shared definitions of administrative process workflows.

─ The data and the users of a process can be changed without modifying the

definition of the data managed by activities or the definition of the workflow.

─ Workflows represented in ontologies, are more easily reusable although the

reuse process may involve some effort in the search, selection and, in some

cases, adaptation to the new system.

3 WEAPON: Workflow Engine for Administrative Processes

based on Ontologies

WEAPON is a WfMS that proposes how a workflow designer must define, on one

hand, the taxonomy of relevant data of the domain and the taxonomy of users which

can participate in the workflow and, on the other hand, the activities that the process

contains together with the identification of which type of user defined can perform

them and the data managed by every activity. WEAPON uses ideas of ontology field

together with ideas of traditional WfMS and the Case Handling approach [9].

The architecture of WEAPON presents a series of interrelated components (a

graphical representation is available in 2). These components are:

1. OntoMetaWorkflow3, contains the terms that form the workflows of administrative

processes and their relationships. This ontology, represented in OWL Language, is

built adapting the definitions of workflow elements provided by the WfMC [10] to

the specific characteristics of administrative processes. It has been developed

following the METHONTOLOGY methodology [11].

2. OntoDD, an ontology of the domain data and workflow participants built following

the specifications of OntoMetaWorkflow. It imports the concepts defined in

2 http://quercusseg.unex.es/weapon/
3 http://quercusseg.unex.es/weapon/?download=OntoMetaWorkflow.owl

3

OntoMetaWorkflow and must contain, firstly, the taxonomy of data which will be

used in the corresponding domain and, secondly, the taxonomy of the possible

workflow participants. As example, the OntoDD ontology for a loan application

domain is available in 4.

3. OntoWF represents the workflow of the administrative process that will be

managed by the WfMS. It contains the concrete workflow of the administrative

process, including its properties, the activities that it contains the order of

execution of said activities, the relevant data of OntoDD that will be shown or

modified in an activity and the participants which can perform every activity. As

example, the OntoWF ontology for a loan application process is available in 5.

4. WEAPON Designer, is the tool that allows users to combine WF-Net [12]

representation with OntoMetaWorkflow and the OntoDD of a domain in order to

design the OntoWF Ontology for a specific administrative process.

5. WEAPON Manager, is the web application that reads OntoDD and OntoWF

ontologies and generates the web forms and the database that manage the workflow

of the administrative process.

4 OntoMetaWorkflow

The different definition elements of OntoMetaWorkflow are classified into two types

(a graphical representation of OntoMetaWorkflow is available in 6):

1. Definition elements of OntoDD: are used to define the classes and properties that

represent the common data and the potential users of all similar processes within a

domain. These elements are the Domain Data, Workflow Participant and Root

classes. Domain Data stores common data of all instances of an administrative

process and has the External Document and Location attributes. The Workflow

Participant class stores the users involved in the process and has Id, Password,

Name, Surname and Email attributes. The Root subclass is a special class that can

administer the WEAPON Manager WfMS.

2. Definition elements of OntoWF: are used to define the classes and properties that

represent a particular process, that is, the sequential flow of activities and their

relationships with the elements of the domain defined in OntoDD. These elements

are the Administrative Process and Activity classes. Administrative Process class is

used for representing the process managed by the WfMS and has defined the

Generated By relationship. The Activity class represents a logical unit of work and

has defined the Is Performed By and Before relationships and the Before Control

Flow Pattern, Select Class Of Domain Data, Show Class of Domain Data,Select

Instance Of Domain Data, Show Instance of Domain Data, Fill In Instance

Attributes of Process, Show Instances Attribute, Days Time Frame, Day Notice and

Activity Description attributes.

4 http://quercusseg.unex.es/weapon/?download=OntoDD_LoanApplication.owl
5 http://quercusseg.unex.es/weapon/?download=OntoWF_LoanApplication.owl
6 http://quercusseg.unex.es/weapon/?OntoMetaWorfklow

4

5 Conclusions

We have presented OntoMetaWorkflow ontology and WEAPON.

OntoMetaWorkflow is an ontology which specifies the elements and rules that define

workflows according to the standards and recommendations of the WfMC.

OntoMetaWorkflow and the methods of WEAPON have been tested in several

domains, mainly in administrative processes of University of Extremadura. They

work properly with administrative processes that are fully oriented to humans and,

specially, in those processes that involve submitting some type of application to be

considered at different stages, where different participants need to handle current

information of a dossier in order to provide new data in the corresponding activity.

Acknowledgments. This work has been developed under support of Ministerio de

Ciencia e Innovacion Project (TIN2008-02985), FEDER, Junta de Extremadura and

Plan de Iniciacion a la Investigacion, Desarrollo Tecnologico e Innovacion 2010 de la

Universidad de Extremadura (ACCVII-04).

References

1. Prieto, A.E., Lozano-Tello, A.: Use of Ontologies as Representation Support of Workflows

Oriented to Administrative Management. J. Netw. Syst. Manag. 17, 3, 309--325 (2009)

2. Vieira, T.A.S.C., Casanova, M.A., Ferrão, L.G.: On the design of ontology-driven workflow

flexibilization mechanisms. J. Braz. Comp Soc. 11, 2, 33--43 (2006)

3. Gasevic, D., Devedzic, V. :Petri net ontology. Knowl-Based Syst. 19, 4, 220--234 (2006)

4. Haller, A., Oren, E., Kotinurmi, P.: m3po: An Ontology to Relate Choreographies to

Workflow Models. In: 3th IEEE International Conference on Services Computing, pp. 19--

27. IEEE Computer Society, Los Alamitos, CA (2006)

5. Abramowicz, W., Filipowska, A., Kaczmarek, M., Kaczmarek, T.: Semantically enhanced

Business Process Modelling Notation. In: 2nd Workshop on Semantic Business Process and

Product Lifecycle Management, pp. 88--91. CEUR-WS, Innsbruck, Austria (2007)

6. Hoang, H.H., Tran, P.C., Le, T.M.: State of the Art of Semantic Business Process

Management: An Investigation on Approaches for Business-to-Business Integration. In:

Nguyen, N.T., Le, T.M., Świątek, J. (eds.) Intelligent Information and Database Systems.

LNCS, vol. 5991 , pp. 154--165. Springer Berlin Heidelberg (2010)

7. Aalst, W.M.P.V.D., Hofstede, A.H.M.T.: YAWL: yet another workflow language. Inform.

Syst. 30, 4, 245--275 (2005)

8. OMG: Business Process Model and Notation (BPMN) 1.2 (2009)

9. Aalst, W.M.P.V.D., Weske, M.: Case handling: a new paradigm for business process

support. Data Knowl. Eng. 53, 2, 129--162 (2005)

10.Hollingsworth, D.: The Workflow Reference Model. Document Number TC00-1003

Document Status - Issue 1.1. (1995)

11.Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. With

Examples from the Areas of Knowledge Management, e-Commerce and the Semantic Web.

Springer-Verlag, London (2004)

12. Aalst, W.M.P.V.D., Hee, K.V.: Workflow Management - Models, Methods and Systems.

MIT Press, Cambridge (2002)

5

Anomaly Detection in DiaFlux Models

Reinhard Hatko1 and Gritje Meinke2 and Joachim Baumeister3 and Stefan
Mersmann2 and Frank Puppe1

1 University of Würzburg, Institute of Computer Science, Dept. of Artificial
Intelligence and Applied Informatics

97074 Würzburg, Germany
{hatko, puppe}@informatik.uni-wuerzburg.de

2 Dräger Medical GmbH, 23558 Lübeck, Germany
{gritje.meinke, stefan.mersmann}@draeger.com

3 denkbares GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
joachim.baumeister@denkbares.com

Abstract. In recent years, the use of graphical knowledge representa-
tions more and more proved to be suitable for building diagnostic and
therapeutic knowledge systems. When building such systems, the quality
assurance of the knowledge base is an integral part of the development
process. In this paper, we present the flowchart-based language DiaFlux
and we describe a collection of anomalies, that can occur when using the
language for knowledge base development. The naming of many shown
anomalies was motivated by the experiences made in real-world projects.

1 Introduction

In recent years, intelligent systems have been established in a variety of domains.
When building such systems the developers no longer depend on pure rule-based
representations, but more and more use graphical approaches that often allow
for a more intuitive knowledge elicitation process. In the medical domain, for
instance, workflow-oriented representations emerged in the last years to build
systems based on existing guidelines and standard operating procedures (SOPs),
see for instance [1].

In an industrial setting, the development of such knowledge bases is integrated in
a predefined knowledge engineering process, that shows similar phases to general
software engineering processes, see for instance [2,3]. All these process models
also propose a quality assurance phase, where the developed artifact is tested by
validation and verification methods. Here, usually the expected system behav-
ior is tested with regression-based methods, such as empirical tests [4], but also
checks at the component level are performed. The most commonly used veri-
fication method for component-based tests is the detection of (already known)
anomalies. In Software Engineering such anomalies are related to object-oriented
metrics [5] and bad smells [6]. Some typical examples for general anomalies
are cyclic dependencies between classes and packages, infinite recursion, and

6

long/unmaintainable methods. The automated detection by a static code analy-
sis and the (manual) elimination of such anomalies can prevent serious malfunc-
tions of the built application.
It is easy to see, that the ideas of anomalies in general software code can be
transfered to the artifacts produced in a knowledge engineering process. Here, the
knowledge base is investigated in order to find deficient parts of the knowledge.
In the past, verification methods for detecting anomalies in different knowledge
representations were introduced, for instance see [7,8].
Approaches for the verification of workflow models are described, e.g., in [9].
In addition, some of the anomalies we identified represent a mixture of data-
and control-flow anomalies and also involve a Truth Maintenance System. In
this paper, we introduce the workflow-based knowledge representation DiaFlux
for building diagnostic and therapeutic knowledge systems. The language is pre-
sented in Section 2 and Section 3 describes possible anomalies. We report a small
case study in Section 4 and conclude the paper with a discussion in Section 5.

2 Graphical Knowledge Models with DiaFlux

This section first describes the application scenario. Then, we introduce the
representation language DiaFlux.

2.1 Application Scenario

DiaFlux is a graphical guideline language intended to be used in mixed-initiative
devices, that continuously monitor, diagnose, and treat a patient in the setting of
an Intensive Care Unit (ICU). The clinical user interacts with such a semi-closed
loop system during the care process. Actions on the patient can be initiated by
both parties, the clinician and the device. Continuous reasoning is performed, as
some data is continuously available as a result of the monitoring task. An exe-
cution environment for automated clinical care in ICUs and the implementation
of a guideline for weaning from mechanical ventilation are presented in [10].

2.2 Language Description

Two kinds of knowledge have to be effectively combined for the specification
of a clinical protocol, namely declarative and procedural knowledge [11]. The
declarative part encompasses the facts and their relationships. The procedural
knowledge reflects how to perform a task, i.e., the correct sequence of actions.
The declarative knowledge particularly consists of the terminology, i.e., findings,
solutions, and sometimes also therapies and their interrelation. The procedural
knowledge is responsible for the decision which action to perform in a given
situation, e.g., asking a question or carrying out a test. The appropriate sequence
of actions is mandatory for efficient diagnosis and treatment, as each action has
a cost (monetary or associated risk) and a benefit (for establishing or excluding
currently considered solutions) associated with it. For the representation of the

7

procedural aspects, guideline languages employ different kinds of Task Network
Models [1]. They constrain the ordering of decisions and actions in a guideline
plan. Flowcharts are a common formalism to explicitly express this control flow.
In DiaFlux models, a domain-specific ontology represents the declarative knowl-
edge. It contains the definition of findings and solutions. This application ontol-
ogy extends the task ontology of diagnostic problem-solving, as described in [12].
Due to its strong formalization, it provides the semantics necessary for the exe-
cution of the guidelines. The procedural knowledge is represented by flowcharts,
that consist of nodes and edges. Different types of actions are represented by
nodes. Connecting edges create possible sequences of actions. To constrain these
sequences, an edge can be guarded by a condition that evaluates the state of the
current session and thus guides the course of the care process.

Fig. 1. The main model and starting point of a protocol for monitoring and treating
overweight. The state of the current testing session is highlighted in green and yellow
colors (black and grey in this figure, respectively).

In the following, we give a simple example of a protocol for the diagnosis and
treatment of overweight, modeled in DiaFlux.
Figures 1 and 2 show parts of a protocol for the diagnosis and treatment of
overweight modeled in DiaFlux. When a consultation session starts, the main
module, as depicted in Figure 1, is activated. The execution begins at the start
node (1), labeled “Begin consultation”. It points to the composed node “Anam-
nesis” (2). When this node is reached, the according submodule (cf. Figure 2)

8

is called and its start node labeled “Start” is activated. The execution of the
main module awaits the completion of the called submodule. Reaching the test
node “Height” (3) data is acquired from the user. After entering the value for
body height, the execution can continue to the next test node “Weight”. As the
weight is supposed to change from one session to the next, this test node acquires
new data each time it is activated. Therefore, the specific testing action used is
“always ask” instead of “ask”. The first one triggers data acquisition even for
inputs that are already known in order to update their value. After the value for
“Weight” has been entered, the abstraction node (4) calculates the body mass
index (BMI) from the acquired data and assigns the value to the input “BMI”.
An appropriate next action is chosen depending on the value of the BMI. For a
value contained in the range of [25; 30[the execution progresses to the solution
node (5) which establishes the solution “Overweight”. The following exit node
(6) labeled “Weight problem” terminates the execution of the module. The con-
trol flow then returns to the superordinate module. For other values of “BMI”
the appropriate solution is established and the according exit node is returned
as result of the “Anamnesis” protocol.

Fig. 2. The anamnesis module for acquiring data and establishing the current diagnosis.

Upon completion of the “Anamnesis” module, the appropriate successor node is
chosen based on the returned result. In case of “Weight ok” the execution of the
protocol ends by reaching the exit node “Finished”, as there is no superordinate
module to return to. Otherwise, a proper treatment is chosen based on the history
of values of the BMI. The decision node (7) tests the gradient of BMI values.
For a declining BMI (i.e., the patient is loosing weight), the previously selected
therapy is continued. Otherwise, another therapy is chosen within the module

9

“Select Therapy”1. Both paths reach the snapshot node (8). On activation of
this node, the execution state of the protocol is saved and truth maintenance
will not retract any conclusion beyond this point. Furthermore all active nodes
on the incoming path are deactivated, to allow their repeated execution. Next,
the execution is suspended by the wait node (9), until the given time of 7 days
has lapsed. Afterwards, a second anamnesis is conducted and the current BMI
is calculated based on the newly acquired body weight. If it has decreased, so
will the BMI and the current therapy is continued. Otherwise, a new therapy is
selected and applied until a normal body weight is obtained.

A more detailed description of the DiaFlux language and the execution engine
can be found in [13].

3 Anomaly Detection

There exists a large body of research concerning the detection of anomalies by
verification methods, for instance for rule bases [14], for ontologies [15], for mixed
verification of rules and ontologies [8]. In general, we distinguish the following
types of anomalies for knowledge bases:

1. Redundancy defining duplicate or subsuming elements of the knowledge
base

2. Inconsistency caused by contradicting elements of the knowledge base

3. Missing knowledge are absent parts of the knowledge base, that can pre-
vent the proper execution of the knowledge

4. Deficiency comprising parts of the knowledge base, that worsen the design
of the knowledge

In the following, we discuss these types in more detail and we introduce par-
ticular anomalies, that explain redundant, inconsistent, deficient, and missing
knowledge especially in DiaFlux models.

It is important to notice, that the following presentation of anomalies is not an
exhaustive set but more or less a collection of problems, that occurred during
the development of industrial knowledge bases.

3.1 Redundancy

Redundant knowledge may be removed from the knowledge base without change
in the semantics of the derivation behavior. Each found anomaly, however, needs
to be considered carefully by a human knowledge engineer, since some kinds of
redundancy can be used to increase the robustness of the knowledge base.

1 The gradient of a single value is 0 and a therapy is chosen for the first time.

10

Redundant Calculation Abstraction nodes can be used to assign a value to
a finding. That value can either be a constant number or can be calculated by
a formula, aggregating the values of the others findings. The assignment of a
constant value is redundant when the same value is assigned more than once on
a given path. The assignment of a value derived from a formula is redundant, if
the second calculation will yield the same result. This is the case if the second
abstraction uses the same formula and if there is no path between the first and
the second calculation that leads to the acquisition of new values for the findings
used in the calculation.

Redundant Test Depending on the frequency the values of a finding may
change, two different kinds of actions can be used for test nodes, “ask” and
“always ask”, respectively. The first one triggers the acquisition of data only if
no value has been assigned to the finding so far. The latter demands new data
each time the node is activated in the flowchart. If two test nodes are located on
a connecting path and trigger an “ask” action on the same finding, the second
test action is ignored and therefore redundant. In case the second node has more
than one outgoing edge with different guards, the developer should consider to
convert the node to a decision node.

3.2 Inconsistency

Inconsistent knowledge often yields unexpected and contradictory inferences dur-
ing execution. Detected inconsistencies should be investigated thoroughly by the
knowledge engineer and be considered for elimination in most cases.

Inconsistent Calculation As described in the anomaly Redundant Calcula-
tion, abstraction nodes can be used to assign a value to a finding. The assignment
contains either a constant value or a formula that is evaluated. Such a calcu-
lation is inconsistent, if different values are assigned to one finding on a single,
connected path of nodes. In the worst case, the assignment of the second value
may force the truth maintenance system to illegally retract the followed path
until the first assignment, and thus creates a truth maintenance cycle.

Inconsistent Test Action Two different types of testing actions are provided
in DiaFlux for collecting data. For findings containing high frequency data (e.g.
“blood pressure” in the medical domain), the testing action “always ask” is
appropriate to be used; the action “ask” is appropriate for the single acquisition
of data (e.g. when asking the age or sex of a patient). Using both types of testing
actions for the same finding most likely hints to a design flaw. If the finding
contains high frequency data, the value of the finding will not be updated upon
reaching the node, that performs the “ask” action. Therefore an old value will
be used, instead of acquiring new data. In the case of low frequency data, the
value for the finding is acquired more often than necessary, if the action “always
ask” is used.

11

3.3 Missing Knowledge

Some anomalies may point to unfinished areas of the knowledge base, for instance
elements of the knowledge that are never used in problem-solving sessions.

Uninitialized Value Values of findings are calculated in the DiaFlux represen-
tation by using abstraction nodes. To conduct such a calculation, proper values
have to be available for all findings that are included in the calculation. If at
least one necessary finding is not acquired (or calculated itself) on at least one
path leading to the abstraction node, then the calculation will not succeed and
the execution of the path may stop at the abstraction node.

Missing Start Node A flowchart in DiaFlux can have several distinct entry
points. Each one must begin with a start node. A flowchart not defining at least
one start node, cannot be activated during execution and thus is isolated from
the rest of the knowledge base.

Unconnected Node Every flowchart defines a process that begins at a start
node and ends at an exit node. The activation of the nodes in between depends
on the connecting edges and their respective guards. Any node (except a start
node) that is missing an incoming edge cannot be activated during the problem-
solving process. All successors of such a node are also unreachable unless they
have an alternative incoming edge, which is itself connected to at least one start
node.

Open Path End Every possible path in a flowchart has to be terminated
by an exit node. Although, an open path end does not influence the execution
of this particular flowchart, it will prevent the continuation of a superordinate
flowchart. Thus, the flowchart is not returning to the super-flowchart, that called
it. After reaching a composed node during execution, the calling flowchart awaits
the termination of the called module by an exit node. If this does not exists, then
the execution of the calling flowchart will not continue.

No Startup Flow Defined The execution of the knowledge base begins in
a distinct flowchart, which has to be marked as autostart by the knowledge
engineer. If no flowchart is marked accordingly, then none is activated at the
start of a problem-solving session. Therefore, the execution will end immediately.

Unused Flowchart For improving the structure of the knowledge base, flowcharts
can be nested. Composed nodes allow the execution of another flowchart module.
A flowchart, that is neither marked as autostart nor is called by any composed
node will never be executed during runtime.

12

Incompleteness of Edge Guards The definition of edge guards allows to
select one of multiple outgoing paths at a node, depending on the current value
of a finding. As the execution will continue only along an edge whose guard
is evaluated to true, the entirety of guards defined at one node has to cover
the complete range of possible values of the examined finding. Otherwise, the
execution of the flowchart will stop at this node, if the current value does not
match with an edge guard.

3.4 Deficiency

Deficiencies point to subtle parts in the knowledge base, that may benefit from
a design improvement. The existence of such an anomaly, however, often does
not affect the reasoning behavior in a bad manner.

Dead Path The possible paths through a flowchart are given by the edges
between nodes. Every edge can be guarded by a condition that evaluates the
values of findings entered into the system. An edge is activated, if its starting
point is active and its condition evaluates to true. If a finding is used multiple
times on a single path, then the guards at later edges have to be consistent to
the possible values at that point. Otherwise such edges cannot be activated for
certain values. An example is given in Figure 3.

Impossible Path When new findings are entered into the system, a truth
maintenance system checks the state of all flowcharts. If the value of a finding
has changed, all edges and nodes change their activation state according to the
new values. In case an abstraction node calculates a value for a finding, that is
used to guard an edge in the active path, the calculated value must not contradict
that guard. Otherwise, the truth maintenance system will collapse the path to
the abstraction node undoing its calculation. Therefore, the path starting at the
abstraction node is impossible to continue.

Fig. 3. A minimal example of a Dead Path. After setting the question “Gender” to
“Male”, the following decision node branches depending on its value. As it can only
be “Male”, the path leading to the exit node “Woman” can never be taken, and is
therefore dead.

13

Disjointness of Edge Guards The guards on the outgoing edges of every node
must be disjoint with respect to the possible outcomes of a node. If the domains
of guards overlap, all belonging edges will be activated for according values.
This easily happens, when defining intervals at a decision node that examine a
numerical finding.

In this section, we introduced a selection of anomalies that can occur in DiaFlux
knowledge bases. In the next section, we describe an implementation of a part
of the shown anomalies and we report on some experiences.

4 Case Study

The DiaFlux development environment is integrated into the Semantic Wiki
KnowWE [12]. KnowWE is a wiki aimed at building intelligent systems, offering
methods to capture and execute strong problem-solving knowledge. A Contin-
uous Integration (CI) tool supports the modeler during the development of the
knowledge base by executing a configurable set of tests after each edit. The re-
sults of the recent build of the knowledge base are indicated to the user in an
unintrusive manner. A detailed report is available on demand. The frequently
running test procedures help to find modeling errors at an early stage.
We recently integrated detection algorithms for selected anomalies as described
in Section 3 into the CI tool. The system was used in a couple of projects and
received very positive feedback, from unexperienced as well as advanced users.
A common mistake among modelers, that are new to the DiaFlux language, is to
miss marking the autostarting flowchart. As a result the knowledge base seems
to simply do nothing. In more complex knowledge bases, that are hierarchically
structured and contain different possible paths of execution, the detection of
anomalies like Uninitialized Value or Dead Path is very helpful as those are not
only tested within each flowchart module but also across their boundaries along
paths through composed nodes.

5 Conclusions

The development of knowledge-based software systems is similar to general soft-
ware engineering approaches. We motivated that today’s knowledge bases are
often built using workflow-based languages; this especially holds in the med-
ical domain, where existing guidelines and standard operating procedures are
transfered into computer-interpretable models. In this paper, we discussed the
problem of quality assurance of such models and we described the detection of
anomalies in the models as an important aspect of quality assurance. We de-
scribed the practical guideline language DiaFlux by an example protocol for
overweight treatment. Furthermore, we introduced a selection of anomalies for
this language. The selection of these anomalies is not exhaustive, but was moti-
vated by our experiences in the development of industrial knowledge bases.

14

In the future, we plan to define a more exhaustive set of anomalies, including
temporal ones, and relate the particular artifacts to anomalies already known in
classical verification research. Often, a found defect is the start of a refactoring
of the knowledge base. We are currently working also on refactoring methods
for DiaFlux models, that are used to eliminate found deficiencies but also other
kinds of anomalies.

References

1. Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R.A., Miksch, S.,
Quaglini, S., Seyfang, A., Shortliffe, E.H., Stefanelli, M., et al.: Comparing
computer-interpretable guideline models: A case-study approach. JAMIA 10
(2003) 2003

2. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N.,
de Velde, W.V., Wielinga, B.: Knowledge Engineering and Management - The
CommonKADS Methodology. 2 edn. MIT Press (2001)

3. Baumeister, J., Seipel, D., Puppe, F.: Agile development of rule systems. In Giurca,
Gasevic, Taveter, eds.: Handbook of Research on Emerging Rule-Based Languages
and Technologies: Open Solutions and Approaches. IGI Publishing (2009)

4. Baumeister, J.: Advanced empirical testing. Knowledge-Based Systems 24(1)
(2011) 83–94

5. Simon, F., Steinbruckner, F., Lewerentz, C.: Metrics based refactoring. In: Software
Maintenance and Reengineering, 2001. 5th European Conference on. (2001) 30–38

6. Fowler, M.: Refactoring. Improving the Design of Existing Code. Addison-Wesley
(1999)

7. Ayel, M., Laurent, J.P.: Validation, Verification and Test of Knowledge-Based
Systems. Wiley (1991)

8. Baumeister, J., Seipel, D.: Anomalies in ontologies with rules. Web Semantics:
Science, Services and Agents on the World Wide Web 8(1) (2010) 55–68

9. Aalst, W.M.P.v.d.: Workflow verification: Finding control-flow errors using petri-
net-based techniques. In: Business Process Management, Models, Techniques, and
Empirical Studies, London, UK, Springer-Verlag (2000) 161–183

10. Mersmann, S., Dojat, M.: SmartCaretm - automated clinical guidelines in critical
care. In: ECAI’04/PAIS’04: Proceedings of the 16th European Conference on
Artificial Intelligence, including Prestigious Applications of Intelligent Systems,
Valencia, Spain, IOS Press (2004) 745–749

11. de Clercq, P., Kaiser, K., Hasman, A.: Computer-interpretable guideline for-
malisms. In ten Teije, A., Miksch, S., Lucas, P., eds.: Computer-based Medical
Guidelines and Protocols: A Primer and Current Trends. IOS Press, Amsterdam,
The Netherlands (2008) 22–43

12. Baumeister, J., Reutelshoefer, J., Puppe, F.: KnowWE: A semantic wiki for knowl-
edge engineering. Applied Intelligence (2011)

13. Hatko, R., Baumeister, J., Belli, V., Puppe, F.: Diaflux: A graphical language for
computer-interpretable guidelines. In: KR4HC’11: Proceedings of the 3th Interna-
tional Workshop on Knowledge Representation for Health Care. (2011)

14. Preece, A., Shinghal, R.: Foundation and application of knowledge base verifica-
tion. International Journal of Intelligent Systems 9 (1994) 683–702

15. Gómez-Pérez, A.: Towards a framework to verify knowledge sharing technology.
Expert Systems with Applications 11(4) (1996)

15

Proposal of a Hierarchical Approach
to Formal Verification of BPMN Models

Using Alvis and XTT2 Methods∗

Krzysztof Kluza, Grzegorz J. Nalepa, Marcin Szpyrka, Antoni Ligęza

AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Krakow, Poland

{kluza,gjn,mszpyrka,ligeza}@agh.edu.pl

Abstract BPMN is a visual notation for modeling business processes. Although
there are many tools supporting it, they rarely provide formal verification of mod-
els. We propose a new approach to formal verification of BPMN models using the
Alvis modeling language and the XTT2 knowledge representation. The structure
of the BPMN model can be analyzed using translation to Alvis. Alvis models can
be verified with dedicated tools, and their properties can be linked to the proper-
ties of the original BPMN model. On the other hand, selected BPMN elements
can be verified using the XTT2 decision tables. Several BPMN elements can be
translated to XTT2 and checked using the HeaRT rule engine with the HalVA
verification and analysis tool. The paper constitutes an overview of the methods
and concepts and presents preliminary results of our research.

1 Introduction

Business Process Model and Notation (BPMN) has recently emerged as a leading visual
notation for modeling Business Processes. A BPMN model defines how the organiza-
tion works by describing the ways in which operations are carried out to accomplish its
intended goals. The progress in using the BPMN notation and the increasing complexity
of the modeled processes make new advanced methods and tools needed.

BPMN provides a large collection of notation elements and allows for modeling var-
ious workflow structures, such as conditional operations, loops, event-triggered actions,
splits and joins of sequence flow, etc. Moreover, it supports the hierarchical approach
to design; thus, the process can be modeled on several abstraction levels.

The complexity of BPMN makes the formal verification of models a tough task. Al-
though there are many tools supporting BPMN modeling, most of them do not provide
any kind of formal model verification. In this paper, a new hybrid approach to formal
verification of BPMN models is presented. It uses Alvis [1] and Extended Tabular Trees
version 2 (XTT2) [2] methods. The considered approach is partially based on our pre-
vious research [3,4]. It extends and separates the verification process into two layers:
the structure (or flow) layer and single components (mainly tasks) of the BPMN model.

∗The paper is supported by the BIMLOQ Project funded from 2010–2012 resources for sci-
ence as a research project.

16

This hierarchical separation provides verification of distinct properties on different
abstraction levels. For the global (process structure) verification, the translation to Alvis
modeling language is considered. The structure of the BPMN model can be analyzed
thanks to its similarity to Alvis model, which is suitable for information systems mod-
eling with subsystems working in parallel. For the local (model elements) verification,
verification of single BPMN elements is considered. Such BPMN elements are mapped
to the XTT2 knowledge representation, which can be verified using the HeaRT rule
engine [5] as well as the HalVA verification and analysis tool [6].

This paper constitutes an overview of the methods and concepts, and presents pre-
liminary results of the research aiming at formal verification of selected BPMN models
using Alvis and XTT2 methods. We have limited the presentation to describing a simple
yet illustrative case study of a student’s project evaluation process.

The rest of the paper is organized as follows. Section 2 presents the BPMN nota-
tion and the selected case study. In Section 3 several works related to our research are
presented. The BPMN model structure verification concept is introduced in Section 4,
while the BPMN elements verification concept is given in Section 5. The evaluation of
our approach is presented in Section 6. A short summary is given in the final section.

2 Business Process Modeling Notation

A Business Process can be defined as a collection of related tasks that produce a spe-
cific service or product for a particular customer. Business Process Model and Notation
(BPMN) is a leading visual notation for modeling Business Processes. It uses a set of
predefined graphical elements to depict a process and how it is performed. The current
version of BPMN defines three models to cover various aspects of processes:

1. Process Model – describes the ways in which operations are carried out to accom-
plish the intended objectives of an organization. The process can be modeled on
different abstraction levels: public (collaborative Business 2 Business Processes)
or private (internal Business Processes).

2. Choreography Model – defines expected behavior between interacting business par-
ticipants in the process.

3. Collaboration Model – can include Processes and/or Choreographies, and provides
a Conversation view (which specifies the logical relation of message exchanges).

In our research, the internal Business Process Model is considered. There are four
basic categories of elements used to model such processes: flow objects (activities,
gateways, and events), connecting objects (sequence flows, message flows, and associ-
ations), swimlanes, and artifacts.

For the purpose of our research, only a subset of BPMN elements (flow objects and
sequence flows) is considered. A task is a kind of activity, and a model defines the ways
in which individual tasks are carried out. Gateways determine forking and merging of
the sequence flow between tasks in a process, depending on some conditions. Events
denote something that happens in the process. The icon in the event circle depicts the
event type, e.g. envelope for message event, clock for time event (see Fig. 1).

17

Let us analyze an exemplary BPMN model of a simple student’s project evaluation
process. Fig. 1 depicts the evaluation process of a student’s project for an Internet tech-
nologies course. However, the process can be used for any kind of a project depending
on the rules which are applied to the particular tasks [7].Title Suppressed Due to Excessive Length 3

Syntax
validation

Preliminary
content

checking

passed

syntax error

missing
basic
content

Evaluation of a
student’s work

ready for
evaluation

Request for
completing

project

Expecting for
the completed

project

waiting
time
expired

the com-
pleted
project
reveived

Fig. 1.1 An example of the student’s project evaluation process

used to define the behavior of individual agents. Each agent is describe with a piece
of source code implemented in Alvis Code Language (AlvisCL) [1]. From the code
layer point of view, agents are divided into active and passive ones. Active agents
perform some activities and each of them can be treated as a thread of control in
a concurrent or distributed system. Passive agents do not perform any individual ac-
tivity, but provide a mechanism for the mutual exclusion and data synchronization.
The graphical layer (communication diagram) is used to define interconnections
(communication channels) among agents. A communication diagram is a hierarchi-
cal graph whose nodes may represent both kinds of agents (active or passive) and
parts of the model from the lower level. From users point of view, the system layer
is predefined and only graphical and code layers must be designed. Alvis provides a
few different system layers. The most universal one is denote by α0 and makes Alvis
similar to other formal languages. The layer is based on the following assumptions:
each active agent has access to its own processor and performs its statements as soon
as possible; the scheduler function is called after each statement automatically; in
case of conflicts, agents priorities are taken under consideration.

1.3 BPMN to Alvis transformation

The key concept of Alvis [1, 4] is an agent that denotes any distinguished part of
the system under consideration with a defined identity persisting in time. An Alvis
model is a system of agents that usually run concurrently, communicate one with an-
other, compete for shared resources etc. To describe all dependences among agents
Alvis uses three model layers: graphical, code and system one. The code layer is
used to define the behavior of individual agents. Each agent is describe with a piece

Figure 1. An example of the student’s project evaluation process

In the considered example, the process is applied to the website project evaluation.
At the beginning, the syntax is automatically checked. Every website code in XHTML
needs to be well-formed in terms of the XML standard, and valid wrt the XHTML DTD.

If the project syntax is correct, preliminary content checking is performed. Then,
if the project contains expected elementary XHTML tags, it can be evaluated and
a grade can be given according to the rules defined by the teacher. On the other hand,
if the project contains any syntax error or lacks some basic required content, it is re-
quested to be completed. After receiving the completed project, the whole process starts
from the syntax checking again. However, if the completed project is not received on
time, the process is terminated (thus, the author of the project does not get a credit).

The example will be used for presentation of our research concerning a hierarchical
approach to formal verification. We discuss the existing related works beforehand.

3 Related works

Most of the recent approaches to analysis of the BPMN models consider a restricted
subset of BPMN elements in the model. They focus on checking of selected properties
of the BPMN model through its transformation to a formal language.

In [8] Raedts et al. presented an approach transforming BPMN models to Petri
nets, and these to the mCRL2 algebraic language. This allows for verification of the
model using the mCRL2 toolset. Because the discovered problem have to be manually
identified in the BPMN model, this can slow the result interpretation process.

Dijkman et al. in [9] proposed a similar approach. They presented a formal specifi-
cation of the BPMN to Petri nets mapping, and thanks to this, they identified a number
of deficiencies in the BPMN specification. The implementation of the approach trans-
forms a BPMN model to a PNML file, which can be used in ProM tool in order to check

18

the model for absence of dead tasks and absence of incomplete process executions. One
of the limitations of this approach is not supporting of OR-join gateways.

Similar research conducted by Ou-Yang and Lin [10] proposed a Petri-net-based
approach to evaluate the feasibility of a BPMN model. This approach enables to reveal
deadlocks and infinite loops. It consists in manually translating of the BPMN model
to the Modified BPEL4WS representation, and then to Colored Petri-net XML (CP-
NXML). The resulted CPNXML representation can be verified using CPN Tools. The
major limitations of this research are the limited assessment criteria, and lack of support
of the multiple merge and split conditions in BPMN.

Another research direction concerns the translation of BPMN models to Yet Another
Workflow Language (YAWL) [11], a modeling language for Business Processes. The
BPMN2YAWL tool for such transformation was presented in [12]. Such model can be
further checked using a YAWL-based verification tool. The recent research by Wynn et
al. [13] presented the verification of YAWL models with advanced constructs, such as
cancellations or OR-joins. The paper describes the mapping of a model to an extended
Petri net to determine the model correctness, i.e. the following properties are verified:
soundness, weak soundness, irreducible cancellation regions, and immutable OR-joins.
Although in this research the process is modeled in YAWL, according to the authors,
it can be applicable to BPMN as well. However, all of the YAWL approaches consider
only BPMN to YAWL transformation. Thus, the errors revealed in the YAWL model
can not be easily tracked in the BPMN model.

One of the recent paper in the field of BPMN model verification by Lam [14] pro-
posed a transformation of the BPMN model to New Symbolic Model Verifier (NuSMV)
language in order to do a model-checking analysis. The strength of this approach is that
it has mathematical foundations and addresses the correctness issue of the transforma-
tion. However, this approach assumes a specification of Computation Tree Logic (CTL)
formulas, which stipulate the required properties of the model to be checked. Therefore,
it is not possible to check automatically a BPMN model of the process which does not
have any properties specified using CTL.

The main drawback of these solutions is that it is difficult to map the resulting
model back to the BPMN one. Although the tools reveal some errors in the model after
translation, it is hard to find the corresponding place in the BPMN model and fix them.

4 BPMN model structure verification

In this section, we present the concept of BPMN model structure (global) verification.
For such a verification, the model structure is translated to the Alvis modeling language.

4.1 Alvis modeling language

Alvis [1] combines the advantages of formal methods and practical modeling languages.
The main differences between Alvis and more classical formal methods, especially pro-
cess algebras, are: a user-friendly syntax and a visual modeling language (communica-
tion diagrams) for defining communication among agents. The main differences be-
tween Alvis and industry programming languages is a possibility of formal verification
of Alvis models e.g. using model checking techniques.

19

The key concept of Alvis is an agent, which denotes any distinguished part of the
system with a defined identity persisting in time. An Alvis model is a system of agents
that usually run concurrently, communicate one with another, compete for shared re-
sources etc. The dependencies among agents are described with three model layers:
graphical, code and system one.

The code layer defines the behavior of individual agents. Each agent is described
with a piece of source code. Agents can be either active or passive. Active agents per-
form some activities and each of them can be treated as a thread of control in a con-
current or distributed system. Passive agents do not perform any individual activity, but
provide a mechanism for the mutual exclusion and data synchronization.

The graphical layer (communication diagram) defines connections (communication
channels) among agents. A communication diagram is a hierarchical graph with nodes
representing agents or parts of the model from the lower level. The diagrams allow
for combining sets of agents into modules, represented as hierarchical agents. Active
and hierarchical agents are drawn as rounded boxes while passive ones as rectangles.
An agent can communicate with other agents through ports, drawn as circles placed
at the edges of the corresponding agents. Communication channels are depicted as lines
(or broken lines) with arrowheads showing the direction of communication.

From the users point of view, the system layer is predefined and only graphical
and code layers have to be designed. The system layer is strictly connected with the
system architecture and the chosen operating system. Alvis provides a few different
system layers. The most universal one is denoted by α0 and makes Alvis similar to other
formal languages. The layer is based on the following assumptions: 1) each active agent
has access to its own processor and performs its statements as soon as possible; 2) the
scheduler function is called after each statement automatically; 3) in case of conflicts,
agents priorities are taken under consideration (if two or more agents with the same
highest priority compete for the same resources, the system works indeterministically).

4.2 BPMN to Alvis transformation

To verify the properties of the structure of the whole BPMN model, the model has to be
transformed into Alvis model. The transformation procedure starts with preparing the
initial set of agents which correspond to activities in the BPMN model. In the second
stage, the initial set of agents is optimized. An Alvis agent can work like a buffer which
collects a signal/value and then sends it to the next agent.

For each identified agent, we define its interface (ports) by considering the set of
surrounding edges for a given BPMN activity i.e. sequence flows that go to or from
the activity; however, if a sequence flow goes from the activity to a gateway, we con-
sider the sequence flow going from the gateway. Each surrounding edge is transformed
into a port of the corresponding agent. Moreover, for each port an identifier (a name)
has to be added. To complete the agent definition, its behavior should be defined with
additional code in the Haskell functional programming language.

Other agents in the Alvis model can be defined in very similar way. Moreover, in the
considered example, a student is treated as a part of the system environment in the Alvis
model. Thus, a project (its submission or resubmission), a grade and a timeout are sent
via border ports, which have to be further specified. To represent the possibility of a

20

timeout, the agent definition should contain the Alvis statement with a time out branch.
After receiving an error signal, the agent waits particular time for a revised project, and
after this time a time_out signal is generated and the agent finishes its activity.

Although in Alvis a decision table activity can be represented as Haskell function,
such an approach is beyond the scope of this paper. The approach considering full Alvis
representation of the presented BPMN model was proposed in [4]. In the approach
presented in this paper, Alvis is used only as a tool for global verification. For the
purpose of local verification, the XTT2 method suits much better, and contrary to Alvis
can provide a precise verification of single BPMN elements, such as gateways or tasks.

The last stage of the transformation procedure is to define communication channels
in the Alvis model graphical layer, which in most cases consist in connecting pairs of
ports. A more complex case is the transformation of the OR gateway, which requires to
connect two pairs of ports. The complete communication diagram is shown in Fig. 2.

Title Suppressed Due to Excessive Length 7

Syntax
validation

Preliminary
content

checking

passed

syntax error

missing
basic
content

Request for
completing

project

SV

submit

passed

get

error

ECP

project

error

resubmit

time_out

PCC

get error

passed

Fig. 1.4 Generation of communication channels

SV

submit

passed

get

error

ECP

project

error

resubmit

time_out

PCC

get error

passed

ESW

get grade

Fig. 1.5 Alvis model – communication diagram

correspond to different states of the BPMN model. From the BPMN model point
of view, an analysis of the corresponding Alvis model deadlocks is very important.
Deadlocks are state without any transition going from them. Moreover, states that
represent a situation when the environment generates signals but the Alvis model

Figure 2. Alvis model – communication diagram

4.3 Verification of the model structure

The transformation of a BPMN model into an Alvis one is only a half-way to the formal
verification of the model. Next, the Alvis model is transformed into a labelled transition
system (LTS), used for formal verification. An LTS graph is an ordered graph with nodes
denoting states of the considered system and edges denoting transitions among states.
A state of a model is represented as a sequence of agents states. A state of an agent
is four-tuple that consists of: agent mode (e.g. running, waiting), its program counter
(point out the current step/statement), context information list (contains additional in-
formation e.g. the name of called procedure) and a tuple with parameters values.

There are two possible approaches to the formal verification of an LTS graph. If the
graph is stored in the form of Haskell list, it is possible to add additional functions that
inspect the list e.g. to find states with specified properties. On the other hand, such an
LTS graph can be encoded using the Binary Coded Graphs (BCG) format and verified
with the CADP toolbox.CADP offers a wide set of functionalities, ranging from step-
by-step simulation to massively parallel model-checking. The verified properties can be
divided into two groups usually called safeness and liveness ones. The former link with
states properties while the latter link with an LTS graph paths’ properties.

21

5 BPMN elements verification

Apart from the BPMN model structure analysis, checking several properties of single
BPMN elements (local verification) is needed. Thus, our approach allows for verifi-
cation of selected BPMN elements, which are mapped to the XTT2 knowledge repre-
sentation. Thanks to the formal representation of XTT2, it is possible to verify several
properties of these elements using the HeaRT rule engine [5] with the HalVA tool [6].

5.1 XTT2 rule representation

EXtended Tabular Trees v2 (XTT2) is a knowledge representation that incorporates
an attributive table format. In this approach, similar rules are grouped in separated ta-
bles, and the system is split into a network of such tables representing the inference
flow [15]. The XTT2 structure and rules can be modeled visually using the HQEd
(HeKatE Qt Editor) rule editor. This table-based representation can be automatically
transformed into HeKatE Meta Representation (HMR) which is suitable for direct ex-
ecution by the HeKatE RunTime (HeaRT), a dedicated inference engine. HeaRT also
provides a verification module – HeKatE Verification and Analysis (HalVA) [16]. The
module implements a debugging mechanism that allows tracking system trajectory and
logical verification of models. It is important to notice that formal verification is possi-
ble thanks to the formalized description in the ALSV(FD) logic of the XTT2 rules.

5.2 Gateways verification

Several problems related to selected BPMN elements may be considered. In the case
of gateways, it should be checked if all the possible conditions are taken into account
during the design. The proposed approach is as follows. A gateway BPMN element is
translated to a table XTT2 knowledge representation – in this case it is represented as
a single table. Diagram elements are translated to the XTT2 form according to appro-
priate logic functions. Thus, a BPMN element and its sequence flows are transformed
to an XTT2 table filled with proper rules. Similar approach to the analysis of the BPMN
elements and corresponding logic functions can be found in [3].

An exemplary decision table corresponding to the XOR gateway from the case study
is presented in Fig. 3. The table consist of four columns. The first two, marked with (?),
contain condition attributes, and the second two, marked with (->), contain the decision
attributes. Each row contains a single rule that specifies the requirements for the flow.

The syntax of the resulting table can be validated in HQEd and then verified using
HeaRT with HalVA. In the presented example, assuming that the validation attribute
can take one of three values: error, passed or warning, the table can be verified against
its completeness. It can be observed that the state in which the validation attribute takes
the warning value is not included.

It is important to note that even if all model elements are validated, the whole model
structure is still not grasped. Therefore, the verification of the model structure, presented
in Section 4, is needed.

22

Syntax
validation

syntax = checked

validation = passed

validation = error

(?) syntax (?) validation (->) error flow (->) passed flow
checked error 1 0
checked passed 0 1

Figure 3. BPMN gateway verification

5.3 Tasks verification

Since BPMN does not specify the control logic of particular tasks, currently it has to be
implemented manually. In the proposed approach it can be specified either using rules
in the form of the XTT2 table or network, or as a HeaRT callback.

After specification of the task logic using the XTT2 decision tables, there is a possi-
bility of their formal verification. Currently, HeaRT with the HalVA module allows for
verification and analysis of the XTT2 table, i.e.: checking the inconsistency of a single
rule, inconsistency of a pair of rules, incompleteness (lack of the ability to react for
every admissible input values), subsumption of conditions and subsumption of a pair of
rules, as well as identity and equivalence of rules [6].

An exemplary XTT2 decision table for the Evaluation of a student work task is
shown in Table 1. The table can be used for evaluation a project, according to the spec-
ified rules. The output of the table is a grade for a project.

(?) implemented functionality (?) quality (->) grade
= basic = low := satisfactory (D)
= any = low := satisfactory (D)
= basic = high := good (C)
= advanced = fair := very good (B)
= advanced = high := excellent (A)

Table 1. Decision table for student’s project evaluation

In the presented table, it can be observed that there is no rule which can determine
the grade when implemented functionality is basic and the quality of the project is fair.
Thus, the verification would give the information about uncovered states (incomplete-
ness), as well as it would inform that the second rule subsumes the first one. This is
important when the system has to work correctly for any admissible input data and
produce deterministic, consistent solutions.

23

6 Evaluation

The verification method presented in this paper is a new hybrid approach to the BPMN
model verification and constitute a preliminary attempt to BPMN model execution.

From the structure point of view, the Alvis model resembles the original BPMN
one. After a verification of the Alvis model, it is easy to link the model properties to the
properties of original BPMN model. Contrary to the solutions presented in [9,10], our
approach supports the OR-join gateway and the multiple merge and split.

From the single element point of view, the approach allows for using rule verifica-
tion methods. Although this requires to specify gateway conditions using the ALSV(FD)
logic and define the logic of tasks using the XTT2 representation, this can be a consis-
tent method, complementary to the Business Processes. Moreover, the transformation
from BPMN to XTT2 can be used for execution purposes in the future.

Therefore, the presented approach differs from the earlier attempts in addressing
hierarchical verification of BPMN models. It allows for verification of both:

1. model structure (or flow) and
2. single elements (gateways and tasks) of the BPMN model.

In both presented cases, the BPMN elements are taken into account. However,
thanks to the separation of layers, the approach provides the verification of distinct
properties on different abstraction levels.

In the case of the BPMN model structure, the properties to verify can be divided
into two groups: safeness and liveness. The former is related to states properties e.g.
a project with correct content cannot be treated as a defective one. The latter concerns
properties of LTS graph paths e.g. if the time out signal has not been generated and a
project with correct content has been provide, the system must provide a suitable grade.

When it comes to the BPMN elements, there are many properties which can be veri-
fied, such as: lack of redundancy, consistency, minimal representation, or completeness.

Although the approach concerns only a small subset of BPMN, extending of this
subset is expected in the future. Dedicated tools enabling automatic translation of the
BPMN model to Alvis and XTT2 representations are planned to be implemented. More-
over, the formal definition of transformation rules will be developed.

7 Conclusion

The paper presents preliminary results of the research concerning verification of BPMN
models. The original contribution is the proposal of a hybrid and hierarchical approach
to formal verification of selected BPMN models. We propose an approach which uses
the Alvis modeling language for the global verification of the model structure and
the XTT2 knowledge representation for the local verification i.e. verification of sin-
gle BPMN elements in the model. The presentation of the approach has been limited to
the presentation of a simple, yet illustrative, case study of a student’s project evaluation
process. The considered example contains only a few activities, gateways, and events,
However, it is possible to use the presented approach for more complex models.

24

References
1. Szpyrka, M., Matyasik, P., Mrówka, R.: Alvis – modelling language for concurrent sys-

tems. In Bouvry, P., Gonzalez-Velez, H., Kołodziej, J., eds.: Intelligent Decision Systems
in Large-Scale Distributed Environments. Studies in Computational Intelligence. Springer-
Verlag (2011) (in press).

2. Nalepa, G.J., Ligęza, A.: HeKatE methodology, hybrid engineering of intelligent systems.
International Journal of Applied Mathematics and Computer Science 20(1) (2010) 35–53

3. Kluza, K., Maślanka, T., Nalepa, G.J., Ligęza, A.: Representing BPMN diagrams with
XTT2-based business rules proposal. In Brazier, F.M., Nieuwenhuis, K., Pavlin, G., Warnier,
M., Badica, C., eds.: Intelligent Distributed Computing V. Studies in Computational Intelli-
gence. Springer-Verlag (2011) in press.

4. Szpyrka, M., Nalepa, G.J., Ligęza, A., Kluza, K.: Proposal of formal verification of selected
bpmn models with alvis modeling language. In Brazier, F.M., Nieuwenhuis, K., Pavlin, G.,
Warnier, M., Badica, C., eds.: Intelligent Distributed Computing V. Studies in Computational
Intelligence. Springer-Verlag (2011) in press.

5. Nalepa, G.J.: Architecture of the HeaRT hybrid rule engine. In Rutkowski, L., [et al.], eds.:
Artificial Intelligence and Soft Computing: 10th International Conference, ICAISC 2010:
Zakopane, Poland, June 13–17, 2010, Pt. II. Volume 6114 of Lecture Notes in Artificial
Intelligence., Springer (2010) 598–605

6. Nalepa, G., Bobek, S., Ligęza, A., Kaczor, K.: Halva - rule analysis framework for xtt2 rules.
In Bassiliades, N., Governatori, G., Paschke, A., eds.: Rule-Based Reasoning, Programming,
and Applications. Volume 6826 of Lecture Notes in Computer Science., Springer Berlin /
Heidelberg (2011) 337–344

7. Nalepa, G.J., Kluza, K., Ernst, S.: Modeling and analysis of business processes with business
rules. In Beckmann, J., ed.: Business Process Modeling: Software Engineering, Analysis and
Applications. Business Issues, Competition and Entrepreneurship. Nova Publishers (2011)

8. Raedts, I., Petković, M., Usenko, Y.S., van der Werf, J.M., Groote, J.F., Somers, L.: Trans-
formation of BPMN models for Behaviour Analysis. In Augusto, J.C., Barjis, J., Nitsche,
U.U., eds.: MSVVEIS, INSTICC press (2007) 126–137

9. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and automated analysis of
BPMN process models. preprint 7115. Technical report, Queensland University of Tech-
nology, Brisbane, Australia (2007)

10. Ou-Yang, C., Lin, Y.D.: BPMN-based business process model feasibility analysis: a petri
net approach. International Journal of Production Research 46(14) (2008) 3763–3781

11. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet another workflow language. In-
formation Systems 30(4) (2005) 245–275

12. Decker, G., Dijkman, R., Dumas, M., García-Bañuelos, L.: Transforming BPMN diagrams
into YAWL Nets. In Dumas, M., Reichert, M., Shan, M.C., eds.: Business Process Manage-
ment. Volume 5240 of Lecture Notes in Computer Science. Springer (2008) 386–389

13. Wynn, M., Verbeek, H., Aalst, W.v.d., Hofstede, A.t., Edmond, D.: Business process verifi-
cation – finally a reality! Business Process Management Journal 1(15) (2009) 74–92

14. Lam, V.S.W.: Formal analysis of BPMN models: a NuSMV-based approach. International
Journal of Software Engineering and Knowledge Engineering 20(7) (2010) 987–1023

15. Nalepa, G.J., Ligęza, A., Kaczor, K., Furmańska, W.T.: HeKatE rule runtime and design
framework. In Giurca, A., Nalepa, G.J., Wagner, G., eds.: Proceedings of the 3rd East Euro-
pean Workshop on Rule-Based Applications (RuleApps 2009) Cottbus, Germany, September
21, 2009, Cottbus, Germany (2009) 21–30

16. Ligęza, A., Nalepa, G.J.: Rules verification and validation. In Giurca, A., Gasevic, D.,
Taveter, K., eds.: Handbook of Research on Emerging Rule-Based Languages and Technolo-
gies: Open Solutions and Approaches. IGI Global, Hershey, New York (2009) 273–301

25

Architecture for the Use of Synergies between
Knowledge Engineering and Requirements

Engineering - Extended Abstract ?

José del Sagrado, Isabel M. del Águila, and Francisco J. Orellana

Dpt. Languages and Computation,
Ctra Sacramento s/n, 04120 University of Almeŕıa, Spain

{jsagrado,imaguila,fjorella}@ual.es

Expert knowledge is involved in every software development project since
developers must face numerous decision tasks during requirements management,
analysis, design, and implementation stages. Therefore, if expert knowledge could
be properly modelled and incorporated in the different processes of software
development as well as in the CASE tools that support these processes, that
would mean a great advantage for any software development.

In software development, requirements stage is considered a good application
domain for Artificial Intelligence (AI) techniques because of requirements nature.
Software requirements express and establish the needs and constraints that con-
tribute to the solution of a real world problem [7]. However, requirements tend
to be imprecise, incomplete and ambiguous[3] and has a big impact in whole
development stages [5, 15, 1, 2]. Therefore, the use of AI techniques in order to
improve requirements stage will favorably affect the whole software life cycle,
but we need a seamless integration of Requirement Engineering (RE) and AI
techniques to exploit the benefits of collaboration between these two knowledge
areas [10].

Besides, the biggest breakthrough in requirement management is when you
stop thinking of documents and start thinking about information. Here, is where
CARE (Computer-Aided Engineering Requirement) tools help us in order to be
able to handle all of this information. InSCo Requisite is an academic web CARE
tool, developed by DKSE group at the University of Almeŕıa, which aids during
the requirement development stage [11].

This work presents the architecture for the seamless integration of a CARE
tool to manage requirements (i.e. InSCo Requisite) with some AI techniques
(i.e. Bayesian networks [12, 6] and metaheuristics). Specifically, a Bayesian net-
work, called Requisites [13], is used in the requirement validation task in order
to validate the Software Requirements Specification (SRS) of a software develop-
ment project, they has been successfully applied in SE, [9, 4, 8, 13]. Metaheuristic
techniques (Simulated Annealing, Genetic Algorithms and Ant Colony Systems)
are used in the problem of selecting the subset of requirements among a whole

? This is a long abstract of the paper published in Lozano,J.A., Gámez, J.A., Moreno,
J.A. (eds.) LNAI Series, Current Topics in Artificial Intelligence. 14th Conference of
the Spanish Association for Artificial Intelligence, CAEPIA 2011, La Laguna, Spain,
November 8-11, 2011, Selected Papers.

26

set of candidate requirements proposed by a group of stakeholders, that will be
included in the development of a final software product [14].

The RE workflow depicted in Figure 1 shows an organization of the tasks that
must be done in a software development project during RE stage. Requirements
are elicited or gathered from users, next they are specified in a document or
its electronic equivalent, known as Software Requirements Specification (SRS).
CARE tools provide environments that make use of databases, allowing an ef-
fective management of the requirements of any software project. Requirements
validation checks whether the elicited and specified requirements present incon-
sistencies; if the information is incomplete or if there are ambiguities in the
system definition. Requisite Bayesian network provide developers an aid, under
the form of a probabilistic advice (i.e. an estimation of the degree of revision for
the SRS), helping them at the time of making a decision about the stability of
the current requirements specification. Finally, requirements selection task has as
main objective to choose, from all the requirements defined in the specification,
the subset of requirements that will be implemented.

Bayesian networks and metaheuristic techniques have demonstrated to ob-
tain interesting results through different tests data [13, 14]. However, it is difficult
to put them in practice in real software projects. We strongly believe that hav-
ing these AI techniques available in a CARE tool would be considerably helpful
for any development team, making them more accessible even for non-expert
people. However, IA techniques and the CARE tools have been developed in-
dependently of each other. Therefore, it is necessary to define a communication
interface between them preserving the independent evolution of both areas and
achieving a synergic benefic effect between them. This seamless synergic archi-
tecture is shown in Figure 1. The architectural pattern distinguish between three
logically separated layers (see Fig. 1) : the presentation (i.e. interface layer), the
application processing (i.e. service layer), and the data management (i.e. data
layer).

The interface is a web environment accessed from a web browser. Data layer
is in charge of storing and managing the electronic representation of SRS han-
dled by InSCo Requisite tool and the knowledge base that contains the Bayesian
network Requisites. Service layer is composed by the CARE tool (i.e. InSCo Req-
uisite), the AI techniques used to address requirements validation (i.e. Bayesian
network Requisites) and requirements selection (i.e. metaheuristics algorithms)
tasks. Communication interface connect CARE and knowledge-based tools pass-
ing the required information needed for the execution of the appropriated pro-
cesses. Thus, requirement validation receives metrics on the SRS and returns
an estimation of the degree of revision for SRS; requirement selection receives
resources effort bound and specific measures on individual requirements and set
the set of requirements in order to be implemented. All of these communication
processes are performed through XML files.

The purpose of this work is to define a three-layer architecture which: a)
allows the seamless collaboration between RE tasks and some AI techniques
(Bayesian networks, simulated annealing, genetic algorithms and ant colony sys-

27

Fig. 1. Seamless synergic architecture.

28

tems) in order to perform a software development project; b) facilitates their
parallel and independent evolution.

Acknowledgments. This work was supported by the Spanish Ministry of Sci-
ence and Innovation under project TIN2010-20900-C04-02 and by the Junta of
Andalućıa under project TEP-06174.

References

1. Standish Group: Chaos Report. Technical report, Standish Group International
(1994)

2. Johnson, J.: CHAOS chronicles v3.0. Technical report, Standish Group Interna-
tional (2003)

3. Cheng, B.H., Atlee, J.M.: Research directions in requirements engineering. In: Fu-
ture of Software Engineering, FOSE’07, pp. 285-303. Institute of Electrical and
Electronics Engineers, Minneapolis, Minnesota (2007)

4. Fenton, N., Neil, M., Marsh, W., Hearty, P., Marquez, D., Krause P., Mishra, R.:
Predicting software defects in varying development lifecycles using Bayesian nets,
Information and Software Technology 49(1) 32-43 (2007)

5. Glass A.R.L.: Facts and Fallacies of Software Engineering. Pearson Education,
Inc.,Boston, MA (2002)

6. Jensen F.V.: Bayesian Networks and decision graphs. Springer-Verlag, New York
(2001)

7. Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Tech-
niques. Wiley (1998)

8. Lauria, E.J.,Duchessi, P.J., A Bayesian Belief Network for IT implementation de-
cision support. Decision Support Systems 42(3), 1573-1588 (2006)

9. de Melo A.C. , Sanchez, A.J.: Software maintenance project delays prediction using
Bayesian Networks. Expert Systems with Applications 34(2), 908-919 (2008)

10. Meziane, F., Vadera, S. (eds.): Artificial intelligence applications for improved soft-
ware engineering development: new prospects. IGI Global, Hershey, New York
(2010)

11. Orellana, F.J., Cañadas, J., del Águila, I.M., Túnez, S.: INSCO requisite - a Web-
Based RM-Tool to support hybrid software development. In: International Confer-
ence of Enterprise Information System ICEIS (3-1), pp. 326-329. Barcelona, Spain
(2008)

12. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufman, San Mateo, CA (1988)

13. del Sagrado, J. , del Águila, I.M.: A Bayesian Network for Predicting the Need for
a Requirements Review. In: Meziane, F., Vadera, S. (eds.): Artificial intelligence
applications for improved software engineering development: new prospects, pp.
106-128. IGI Global, Hershey, New York (2010)

14. del Sagrado, J., del Águila, I. M., Orellana, F. J.: Requirement selection: Knowl-
edge based optimization techniques for solving the next release problem. In: 6th
Workshop on Knowledge Engineering and Software Engineering (KESE 2010), pp.
40-51. CEUR-WS, Karlsruhe, German (2010)

15. Sommerville I.: Software Engineering. Addison-Wesley Longman Publishing Co.,
Inc., Boston (2006)

29

Mashups: Behavior in Context(s)

Emilian Pascalau

Hasso Plattner Institute at University of Potsdam,
Germany,

emilian.pascalau@hpi.uni-potsdam.de

Abstract. The World Wide Web (WWW) has left behind the dot-com
bubble and changed into something new. The move to the Internet as a
platform and the shift from transaction-based Web pages to interaction-
based ones opened the way to a whole new environment. Future Internet
is a generative environment that fosters innovation, through an advance
of technologies and a shift in how people perceive, use and interact with
it. Nowadays the abilities to create new information have far exceeded the
abilities to manage it. There exist a huge amount of data and potential
that is still unused and undiscovered.

Mashups are a new paradigm emerged from Web 2.0 that tries to em-
power users with some sort of freedom to tackle this huge amount of
potential provided nowadays by the web. Current approaches however
are still restrictive in many ways e.g. are data oriented, and platform
dependent. Hence this paper introduces a new perspective on mashups.
Here a mashup is seen as a plan that a user and an engine need to
follow in order to achieve a desired goal. As such a mashup comprises
contextual information and the necessary behavior related to the con-
text(s) described, in order to fulfill desired goal. Subsequently a mashup
is defined here as behavior in context(s).

1 Introduction

Web 2.0 [12] is no longer a bleeding edge but rather a leading edge now [15]
and has become integral part of life and business. Participation is one aspect
which pushes forward Web 2.0 [3]. In the last five years Web 2.0 technologies
(i.e. social networking sites, blogs, wikis) have spread widely among consumers.
Sites such as Facebook attract more that 100 million visitors a month[3]. There
is a shift from processes towards users. Users want their problems and their
requirements to be taken into account; they want to be part of the conversation.
Continuously changing business models do not fit anymore the old and stiff
approaches. Processes must be in accordance with the reality, and reality means
people. It means that processes and system behavior have to be in accordance
with what users require and with their needs. This issue is also underlined by
process mining [16] approaches that look at event logs and see that the processes
that actually get executed are different compared to the original blueprints.
Companies need to change to what customers/users actually do.

30

Harnessing collective intelligence, wisdom of the crowds, easy consumption,
web as innovation platform, context are requirements that need to be tackled
to allow people to use their imagination without too much restriction in order
to fulfill by themselves their goals. As argued in [13] the Web is more than just
data, is about knowledge, context, behavior and most important is about people.

This paper proposes a new definition for the mashup concept from a user’s
perspective. Thus a mashup is behavior in context(s). This particular perspec-
tive is a high level one addressing mashups at a conceptual level opposed to
current approaches that are mostly application and technology oriented (see for
instance Yahoo Widgets1). The framework discussed here allows users to model
a mashup as a map containing context(s) and behavior description required to
fulfill a specific goal. In consequence this approach implies business rules, busi-
ness processes, business concepts and vocabularies that describe the businesses
and users’ goal themselves rather than a possible IT system that might support
it. The framework is formalized using the Unified Modeling Language (UML).

The reason for such a framework is manifold. To name just a few: (1) users
are able to define their own applications in order to fulfill their needs; (2) be-
cause the framework unifies several paradigms (behavior, context etc) reasoning
can be performed in an unified over all these; (3) models described can be ex-
tended, modified and maintained in an unified way as well; (4) companies can
learn their customers’ needs as these mashups expose behavior as well as the
context(s) in which exposed behavior is performed; (5) these mashups can act
very easily as prototypes for possible future major implementations; (6) statistics
can be provided about the usage of mashups and about the system(s) involved
in relationship with social networking platforms and so forth.

2 Conferences Calendar Example

The Conferences Calendar example has been first introduced in [13]. Such a
calendar is user specific since for example some users might be interested in
web related conferences, others in semantic web, others in rules or business
processes conferences. Contextual information is mashed up to fulfill a user goal;
hence specific information about conferences is stored in a calendar context. At
least two services are required: one that deals with conferences and one that
offers a calendar. From a technological point of view these services might not be
compatible with each other e.g. might not use the same definition language.

For scientists in the filed of IT the DbWorld Mailing List is the well known
place where they can search for an IT conference. A series of information are
provided here, but most important are the subject, deadline and the web page
of the event published. From a technical perspective DBWorld does not provide
an API to allow programmatically access and interrogation of the service. In
consequence with respect to current mashups approaches this service is useless.
On the other hand Google Calendar is one of the most known Google Apps

1 http://manual.widgets.yahoo.com

http://manual.widgets.yahoo.com

31

services and the service that provides the calendar context for the use case.
The information of interest for a calendar is the title of the event, the date and
description of an event. This information is found also in a Google Calendar.
Opposed to the DbWorld service, Google provides for this service beside the
regular web page representation also an API to access the contents.

The usual way to achieve this goal, of having conferences stored in Google
Calendar by their deadline is manually: (1) the user is required to maintain
two open tabs in the browser; (2) even though there might be several entries
that comply with a search term, the user must deal with the events one by one
as DBWorld does not provide built in search functionality; (3) the user has to
move between the open tabs several times, in order to store only one event in
the calendar, since just one piece of information can be copied and pasted at a
time (e.g. the title of the event). An important aspect is that both services as
well as users interact with each other.

3 The Framework

As argued the framework discussed here it is defined from a user perspective and
is formalized using the de facto standard modeling language UML.

Next subsections discuss the main concepts of the framework required to
define the mashup concept.

3.1 Concept

Ackoff [1] defines an abstract system as one all of whose elements are concepts.
Because the framework has to deal with a high degree of generality it has at the
core the abstract notion of concept. A concept is a cognitive unit of meaning -
an abstract idea or a mental symbol.

Languages, number systems are examples of abstract systems. Numbers are
concepts but the symbols that represent them, numerals are physical things [1].
Humans deal both with conceptualizations as well as with physical things. How-
ever the reasoning process involves only conceptualizations.

Although many of the ontological approaches (see for instance OWL [6]) use
as the upper level entity the thing notion for the framework discussed here the
notion of concept is at the top.

The OMG specification for Semantics of Business Vocabulary and Business
Rules Specification (SBVR) [10] uses as top entity the concept notion. Definition
1 is the SBVR definition for the concept notion.

Definition 1. Concept. Unit of knowledge created by a unique combination of
characteristics.

There are two ways to recognize entities. Basically in software engineering
when dealing with typed languages, entities are recognized by their types (class
name). The other way around is based on a set of characteristics. Take for
instance a car. Stating the concept’s name car someone will be able to tell you

32

the characteristics of a car, that it has for wheels, that it has an engine etc.
Nevertheless stating the characteristics of the concept that it has 4 wheels and
an engine, the answer will be a car. The reasoning architecture [13] that uses
this framework tackles both approaches.

3.2 Context

The notion of context is of interest in cognitive psychology, in linguistics and
computer sciences. In the field of computer sciences notions of context have
appeared in several areas such as artificial intelligence, machine learning, data
bases and software development. In some of these areas the notion of context ap-
pears in the form of views, aspects, information for concept classification, means
to partition knowledge in manageable sets, or as an abstraction mechanism to
partition information into possibly overlapping parts [2].

Dey in [5] defines context as any information that can be used to characterize
the situation of an entity. An entity is a person, place, or object that is consid-
ered relevant to the interaction between a user and an application, including the
user and applications themselves. Similarly for Coutaz et al. [4] the context is a
structured and unified view of the world in which the system operates.

Context is under permanent change, is episodic, personal and hence sub-
jective interpretations and experiences of the communicative context [17],[5].
Analyti et al. discuss in [2] a general framework to harness the notion of con-
text in conceptual modeling. A full mathematical apparatus has been defined to
tackle issues such as containment and relationships between contexts. According
to them ”context in an information base can be seen as a higher-order concep-
tual entity that groups together other conceptual entities on which we want to
focus” [2]. More precisely a context is a set of objects within which each object
is associated with a set of names.

For the framework discussed here the notion of context adheres to the math-
ematical apparatus defined in [2], however here a context is a set of concepts not
objects. Nonetheless our definition is compliant with Analyti et al. definition.

Basically a context is a set of concepts (concepts according to Definition 1).

Definition 2. Context. A context consists of a context identifier and a set of
concepts identifiers.

Recalling the simple mechanism that has been discussed in subsection 3.1, a
context is identified by recursively identifying all the constituent concepts.

The notion of context supports a series of features as they have been defined
in [2]: (1) concept sharing or overlapping contexts; (2) context-dependent con-
cept names; (3) context dependent references; (4) context sharing; (5) context-
dependent reachability; (6) synonyms, homonyms, anonyms.

Beside these features the notion of context is enhanced also with attribution,
generalization and classification.

33

3.3 Behavior

For this particular approach behavior comprises rules and processes. It is de-
scribed by users in relationship with related context(s).

When dealing with human like behavior a single system (mind) produces all
aspects of behavior [8]. It is one mind that minds them all [8]. Even if such
a system has parts, modules, components or whatever they mesh together to
produce behavior.

The mind is the control unit that guides the behaving organism in its com-
plex interactions with the dynamic real world [8]. Both the behaving organism
as well as the environment behaves through time with a series of interactions
between them. [8] continues by stating that these transactions or interactions
are embedded in a sequence such that each becomes part of the context within
which further action follow.

Newell underlines a set of requirements that behavior must comply with [8]:
(1) it has to be flexible as a function of the environment; (2) flexible in such a
sense that it can deal with goals; (3) real time; (4) according with the context.

Behavior of an entity is the set of events, actions and messages that that
entity produces. Behavior is conditioned by the context and it is expressed ei-
ther as rules or as processes. Hence an event is any observable occurrence of
a phenomena. An action as stated in [7] is represented with the keyword do

and is represented as function from a time and an action, to the time at the
end of the action. Acokff defines behavior in [1] in terms of system as a system
change which initiates other events implying that behavior consists of events
whose consequences are of interest [1].

According to the PRR [9] specification a production rule is a statement that
specifies the execution of one or more actions in the case that its conditions are
satisfied. An Event Condition Action (ECA) rule is a production rule triggered
by an event. Thus the form of an ECA rule is: on [events] if [conditions]

then [action-list].
While Weske argues in [18] that a ”business process consists of a set of ac-

tivities that are performed in coordination in an organizational and technical
environment”, Ackoff on the other hand defines a process as a sequence of be-
havior that constitutes a system and has a goal producing function [1].

Hence behavior is goal oriented, is context(s) related and is expressed as rules
and processes.

3.4 Mashup

This section unifies and puts together previously discussed aspects in order to
define the mashup concept. In consequence a mashup is a map which describes
the context(s) and related behavior that a user needs to do in order to achieve
a desired goal. Such a mashup is defined from a user perspective. Coutaz et
al.’ [4] view of context-as-process is related to the idea I discuss here. However
their approach is not from a user perspective but rather from an IT system
perspective. Nonetheless at least two issues are addressed by having context

34

related to behavior. First context-as-process view allows for greater flexibility
than context-as-state as utility and usability are derived from information ex-
change and interaction [4], [14]. Secondly there is no mismatch risk between
system’s interaction model and the mental model that a user might have about
the system[4]. This approach uses actually as interaction model for the system
the one that a user defines as a mashup. Moreover as discussed in [14] con-
text provides meaning to processes. For example one could deal with a sell/buy
process, a very generic one. But whenever contextual information is added, the
meaning of a process could be totaly different, as there is a big difference be-
tween selling tomatoes and selling e.g. chemical products. To support even more
this idea SBVR specification [10] states that a body of shared meaning that
a community has is represented in concepts, fact types (relationships between
concepts) and business rules (constraints on concepts and fact types).

Definition 3 (mashup). Mashup. A mashup is a set of contexts and behavior.
Behavior consists of rules and processes.

Figures 1, 2, 3, 4 formalize the framework. These models comply with the
definitions previously discussed.

Concept

Action

Event

Message

Rule

Process Mashup

Context Entity

ServiceHuman

uml::Class uml::Property

1 *

Object

Fig. 1. Concepts

Based on Definition 1 a concept is a unit of knowledge created by a unique
combination of characteristics. Thus as depicted in Figure 1 every element of
the framework is a concept. In addition although not visually represented a
Concept is also a Concept. In this way the reasoning process can involve any of
the concepts defined in a unified way.

Figure 2 depicts the general framework. Hence the Mashup concept contains 1
or more Contexts. Further a Mashup can contain Processes, Rules or a combi-
nation of those two. A Context is basically a collection of Concepts. In addition
a Context could have subcontexts. A Context refers to an Entity.

35

ContextMashup

Concept
1

1..*

1 1..*

Rule

1

*

Process

Entity

11

*

*

*

*1

*

*
*

Fig. 2. Mashup Concept

Process

FlowElementsContainer

FlowElement

FlowNode

1*

Activity

SequenceFlow

Gateway

Event
1*

1 *

SubProcess

Task

Context

*

*

* *

RuleSet

**

Fig. 3. Business Process, based on BPMN 2.0 specification [11]

The Process Concept is further expanded in Figure 3. The definition is based
on the BPMN 2.0 specification. Thus a process is a FlowContainer and contains
FlowElements and SequenceFlows. Furthermore a FlowElement is either an
Activity, a Gateway or an Event. An Activity is subclassed by a SubProcess,
meaning that a Process might have subprocesses, and by a Task. A Task is
an atomic Activity. However this model introduces the following relationships,
which were not previously contained by the BPMN 2.0 specification: the exe-
cution of a Task can mean the execution of RuleSets; Processes are related to
Contexts. This particular relationship can provide as discussed in [14] meaning
to processes.

The model depicted in Figure 4 is compliant with the OMG PRR specifica-
tion [9] and is the basic model for a Rule. A Rule similar to a Process is related
to a Context. It can be triggered by an Event, in the case of an Event Condition
Action (ECA) Rule. It can be conditioned by a set of conditions. Conditions
concern Concepts. Actions are the result of rule execution. With respect to ex-
ecution beside the regular rule conflict resolution mechanism the engine using

36

Rule

Condition Event Action

1
1..*

1

0..*

Concept

*
*

*
*

Context

*

*

11..*

* *

RuleSet

1
1..*

Fig. 4. Rules

this framework uses processes to order the execution of actions in relationship
with events.

4 Using the Framework

Recall the example discussed in Section 2. Several contexts are involved in this
particular mashup: the DBWorld context, the Google Calendar context and the
calendconf context. Figure 5 depicts all the involved contexts mashed together.
According to Definition 2 a context contains a set of concepts. In addition as
argued in Section 3.2 identifying a context means identifying all the constituent
concepts. Let’s take for instance the Google Calendar context. This one refers to
the Google Calendar Entity. This entity is uniquely identified by its URL. The
context contains a Create Event button. While this concept in relationship
with the entity is enough for one user, someone else could use a different set
of concepts to identify the same context. Furthermore Create Event button is
identified by a set of characteristics. The most evident one is the name: Create
Event. Figure 6 depicts an excerpt of the framework instantiation.

I was arguing that behavior is in a strong relationship with the context. The
most simple example: to be able to create a calendar event in Google Calendar
a user needs to click on the Create Event button. A more complex one (see
Figure 7) is the process of searching for a particular conference in DbWorld.
From DbWorld the subject, deadline and web page are the concepts of interest.
With respect to behavior in this context, one user could be interested both in
the subject and deadline when searching for a conference. On the other hand
another one could be interested only in the subject.

While the framework allows reasoning over all the constitutes elements sim-
ilar to human cognition and as such empowering users with the ability to define
behavior in fine details an user friendly modeling platform for the non technical
users is desired. Widgets based, pipes based platforms have proven to be easy to
use. Similar to those approaches a visual modeling platform for the framework

37

Fig. 5. Calendconf Mashup

Calendconf

Mashup Context
1 1..* *

*

GoogleCalendar

Entity

11

#url : String = https://www.google.com/calendar/
GoogleCalendar

-name : String = Create Event
CreateEventButton

Fig. 6. Framework Instantiation - an excerpt

Fig. 7. Search for a Conference Process

discussed here is under development. Currently mashups are defined declara-
tively using JSON notation. Nonetheless the running version of the example
discussed here can be accessed at http://calendconf.eu.

5 Conclusions

This paper discussed a new perspective for the mashup concept. While the Web
2.0 mashup paradigm has been mostly currently addressed from a technical per-
spective and strongly application oriented, the framework formalized here con-
cerns a high level perspective and defines a mashup as behavior in context(s).

http://calendconf.eu

38

Further improvements of the framework concerns reuse of mashups with an em-
phasis on inheritance. As argued in [14] this is not a straight forward process as
here behavior is defined using UML, hence as static constructs. In consequence
UML class inheritance can not be used as it is but special types of inheritance
mechanisms are required.

References

1. R.L. Ackoff. Towards a System of System Concepts. Management Science, 17(11),
1971.

2. Anastasia Analyti, Manos Theodorakis, Nicolas Spyratos, and Panos Constan-
topoulos. Contextualization as an independent abstraction mechanism for concep-
tual modeling . Information Systems, 32(1):24–60, 2007.

3. Michael Chul, Andy Miller, and Roger P. Roberts. Six Ways to make Web 2.0
work. Business Technology, The McKinsey Quaterly, pages 1–6, February 2009.

4. Joelle Coutaz, James L. Crowley, Simon Dobson, and David Garlan. Context is
key. Communications of the ACM, 48(3):49–53, 2005.

5. Anind K. Dey and Gregory D. Abowd. Towards a better understanding of context
and context-awareness. Technical Report GIT-GVU-99-22, Georgia Institute of
Technology, 1999.

6. W3C OWL Working Group. OWL 2 Web Ontology Language.
http://www.w3.org/TR/owl2-overview/, 2009.

7. Patrick J. Hayes. A Catalog of Temporal Theories. Technical Report UIUC-BI-
AI-96-01, University of Illinois, 1996.

8. Allen Newell. Unified Theories of Cognition. Harvard University Press, 1994.
9. OMG. Production Rule Representation (PRR), Beta 1. Technical report, OMG,

November 2007.
10. OMG. Semantics of Business Vocabulary and Business Rules Specification.

http://www.omg.org/spec/SBVR/, January 2008.
11. OMG. Business Process Model and Notation (BPMN). FTF Beta 1 for Version

2.0. http://www.omg.org/spec/BPMN/2.0, August 2009.
12. T. O’Reilly. What Is Web 2.0. Design Patterns and Business Models for the Next

Generation of Software. Communications and Startegies, 1st quarter(65):17, 2007.
13. Emilian Pascalau. Towards TomTom like systems for the web: a novel architecture

for browser-based mashups. In Proceedings of the 2nd International Workshop on
Business intelligencE and the WEB (BEWEB11), pages 44–47. ACM New York,
NY, USA, 2011.

14. Emilian Pascalau and Clemens Rath. Managing Business Process Variants at eBay.
In Jan Mendling and Mathias Weske, editors, Proceedings of the 2nd International
Workshop on BPMN, BPMN2010. Springer, 2010.

15. The Economist Intelligence Unit. Serious business. Web 2.0 goes corporate. The
Economist, pages 1–20, 2007.

16. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003. http://is.tm.tue.nl/staff/

wvdaalst/publications/p206.pdf.
17. Teun A van Dijk. Cognitive Context Models and Discourse. Proceedings and

Debates of the 102d Congress, 137(84):189–226, June 1991.
18. M. Weske. Business Process Management: Concepts, Languages, Architectures .

Springer-Verlag Berlin Heidelberg, 2007.

http://is.tm.tue.nl/staff/wvdaalst/publications/p206.pdf
http://is.tm.tue.nl/staff/wvdaalst/publications/p206.pdf

39

Model-Driven Rich User Interface Generation
from Ontologies for Data-Intensive Web

Applications

Joaqúın Cañadas1, José Palma2 and Samuel Túnez1

1 Dept. of Languages and Computation. University of Almeria. Agrifood Campus of
International Excellence, ceiA3. Spain
jjcanada@ual.es, stunez@ual.es

2 Dept. of Information and Communications Engineering. University of Murcia. Spain
jtpalma@um.es

Abstract. Building data-intensive Web applications is a complex task
widely explored during the last decade. Many approaches have been pro-
posed, mainly based on conceptual models as well as on domain on-
tologies and knowledge models. This work describes a method for rich
user interface development for data-intensive Web applications based
on OWL2 ontologies, which applies model-driven engineering to derive a
user interface from the domain ontology, incorporating modern rich com-
ponents for Web-based interfaces. A tool supporting the ideas presented
this paper has been developed.

Keywords: user interfaces, model-driven engineering, ontologies

1 Introduction

Data-intensive Web applications are Web-based information systems for ac-
cessing and maintaining large amounts of structured data, typically stored in
database management systems [4]. Its development involves the definition of
data models representing the information structure of the problem domain, as
well as the design of user interfaces (UIs) to enable end-users to properly in-
teract with the system when managing the collection of data, e.g. UIs for data
presentation, data acquisition and data querying.

In general, the usage of data models for domain specification suffers of poor
expressivity. To address this problem, ontologies are typically applied to domain
modeling in which a conceptualization of a particular domain is given. Ontology
formalisms such as OWL2 (Web Ontology Language 2) [22] are the backbone
of Semantic Web and are growing in importance in software development [9].
Ontologies can describe the relevant concepts, relations and properties of an
application domain adding assertions and constraints, increasing the amount of
knowledge that can be represented by data models.

In this work we describe a model-driven method for deriving rich Web-based
UIs for data management from domain models based on domain ontologies.

40

We apply Model-Driven Architecture (MDA) [15], or using the general concept,
Model-Driven Engineering (MDE) [20], as the software development approach
in which models are used as first class entities and transformations between
models and from models to code can be defined and executed. MDA/MDE is
currently being applied in many domains, such Web Engineering [14], Ontology
Engineering [8], and UI development [11].

Recent technologies for improving end-user experience in Web 2.0 include
the so called Rich Internet Applications (RIAs) [7] which provide advanced and
more interactive UIs, similar to desktop applications, while minimizing network
traffic overhead and increasing user usability and efficiency [23]. In our approach,
the UI derived from OWL2 is based on frameworks of reusable components for
RIAs. To enrich the UI generation, a presentation model tightly coupled to the
domain ontology provides modeling support to customize presentation features
of UIs for data-intensive Web applications. For practical implementation, two
different Java-based frameworks for RIAs have been considered.

A tool supporting the method presented has been developed using MDE tools
provided by the Eclipse Modeling Project3, and it is supported by the TwoUse
Toolkit [17] for ontology creation and management.

The rest of this paper is organized as follows: Section 2 reviews related work.
Next, Section 3 introduces RIAs frameworks for Web-based UI implementation.
The presentation model and the proposed mapping from OWL2 to UI compo-
nents are detailed in Section 4. Finally, main conclusions and future work are
summarized.

2 Related work

There have been many earlier approaches on UI generation based on models and
MDE. We can distinguish between those from the field of Web Engineering and
those from the field of Human-Computer Interaction (HCI).

Web Engineering approaches the design and development of Web applications
based on conceptual models [3], focusing on content, navigation and presentation
models as the most relevant concerns in Web applications design [19]. Based on
these models, the full Web application can be developed applying a model-driven
approach, including the presentation layer composed of web pages, web forms,
links, and so on.

Web Engineering offer rather mature and established methodologies for tra-
ditional Web applications, and the UI layer has been explicitly addressed in most
approaches. But when we move to Semantic Web information systems, method-
ologies are still in a development phase [1]. Examples like SHDM [12], Hera [21]
and WebML+Sem [1] offer a wide support for ontology languages, basically RDF
(Resource Description Framework) and OWL, and focus on different semantic
web technologies such as semantic model description, advanced query support,
flexible integration, ontology reasoning, and more, but leaving UI aside. In this
paper we address that open issue.

3 http://www.eclipse.org/modeling/

41

In HCI field a number of model-driven approaches for UI development have
also arisen [18]. They are commonly based on models created with extensions of
UML (Unified Modeling Language) for UIs modeling [5], but can also use textual
formats based on XML (eXtensible Markup Language), as is widely explored in
[11].

Among these approaches, the PEGASUS method [13] presents an effort to
supply end-users with mechanisms for authoring Web-based applications using
ontologies to specify knowledge for building data models together with presenta-
tion models. Moreover, it enables the generation of a Web UI from the ontology in
basic HTML (HyperText Markup Language) and JSP (JavaServer Pages) code.
In our approach we also use ontologies as domain models and a presentation
model, but we focus on current rich Web UI generation using modern compo-
nents of RIA frameworks which are richer in functionality than basic HTML and
JSP.

In a recent work [6], the same authors provide a way of modeling UIs based
on semantic models of domain problem, deriving a Web application for display-
ing content. The method is based on document transformation through a set of
XSLT (Extensible Stylesheet Language Transformations) applied to XML files
to generate documents for the UI. The result can incorporate AJAX (Asyn-
chronous JavaScript And XML) components to have a better interactive result.
Our proposal has similarities with this approach in sense that we also focus UI
development with rich AJAX components, but has important differences with
respect to the model-driven approach applied since we use MDE transformation
languages and tools for defining the approach instead of XSLT transformations,
as well as we derive a UI not only for displaying content but also for content
acquisition and querying.

3 Frameworks for RIAs in JavaEE

Modern UI development requires the usage of extensive software libraries and
frameworks, and code becomes rather platform-specific [11]. In this work we focus
on Java Platform Enterprise Edition (JavaEE4) technology and the JavaServer
Faces framework (JSF) [10] as implementation platform. To fit once of the most
important characteristics of RIAs, a richer interaction is achieved adding AJAX
technology to provide improved user experience. Several rich UI frameworks for
JSF applications are available, some of them are well established such as Rich-
Faces5 (JBoss project), ICEfaces6 (ICEsoft project), MyFaces7 (Apache project),
ADF Faces8 (Oracle project) and Google Web Toolkit9 (Google project). In this

4 http://java.sun.com/javaee
5 http://www.jboss.org/richfaces
6 http://www.icefaces.org/
7 http://myfaces.apache.org/
8 http://www.oracle.com/technetwork/developer-tools/adf/
9 http://code.google.com/webtoolkit/

42

work, only RichFaces and ICEfaces have been considered, although the approach
can easily adapted to other frameworks.

JBoss RichFaces is an advanced JSF based framework that provides a com-
plete range of rich AJAX enabled UI components. RichFaces is made up of
two component tag libraries: a4j: represents core AJAX functionality, and rich:
represents self contained and advanced components such as calendars, datata-
bles, trees and more (see the RichFaces showcase10 for details). Current version,
RichFaces 4.0, can be used in any container compatible with JSF 2.0.

ICEsoft ICEfaces is an integrated AJAX application framework that enables
JavaEE application developers to easily create and deploy thin-client RIAs in
Java. ICEfaces 2 is the current version of the open-source framework based on
the JSF 2.0 standard. It offers a vast set of rich components included in the ice:
tag library, to create rich advanced UIs (see the ICEfaces showcase11 for details).

4 Model-driven rich user interface generation

4.1 Process overview

Our approach is based on the assumption that a UI can be induced from the
ontology classes, properties and assertions. Since OWL2 semantics is richer than
semantics of UI components, only a part of OWL2 can be represented in the UI
and supported by the proposed mapping.

Fig. 1 shows the model-driven schema proposed for deriving rich Web UI from
OWL2 ontologies. The process starts with the specification of an OWL2 ontology
of the problem domain. In a first step, a presentation model with default pre-
sentation values is derived from the ontology applying a model-to-model (M2M)
transformation. Developers can customize this presentation model to drive a
better UI generation. Later, a model-to-text (M2T) transformation produces
the final code.

The model-driven process proposed was implemented using MDE tools of
Eclipse Modeling Project, and it is supported by the TwoUse Toolkit12 for
OWL2 authoring and management. The TwoUse Toolkit is a free, open source
tool bridging the gap between Semantic Web and MDE, that supports OWL2
authoring based on the Ontology Definition Metamodel (ODM) [16]. In this en-
vironment, metamodels are defined with EMF13 (Eclipse Modeling Framework)
in ecore format. The ODM metamodel is provided by TwoUse whereas the Pre-
sentation metamodel has been designed by the authors of this work.

M2M transformation is designed with ATL14 (Atlas Transformation Lan-
guage), where as final code is generated by a M2T transformation implemented
in JET15 (Java Emitter Templates). As a result, the code for the rich Web UI

10 http://richfaces.org/showcase
11 http://component-showcase.icefaces.org
12 http://code.google.com/p/twouse/
13 http://www.eclipse.org/modeling/emf/
14 http://www.eclipse.org/m2m/atl/
15 http://www.eclipse.org/modeling/m2t/?project=jet

43

JSF pages
+ configuration files Code

Rich
user interface

Web

M2M
Transformation

M2T
Transformation

Presentation model

conforms to
Presentation metamodel

OWL2 ontology

conforms to
ODM metamodel

TwoUse Toolkit

Eclipse
Modeling

EMF

JET

Default
presentation
(css, fonts,...)

 +
 framework of

rich UI
components

Models
&

Metamodels

Fig. 1. MDE schema for rich Web user interface generation

is obtained as a set of JSF web pages based on the selected framework of rich
components, RichFaces or ICEfaces. Default configuration is injected to provide
presentation templates for pages, styles and css files.

4.2 The Presentation metamodel

To drive a powerful UI generation, the Presentation model captures features of
UI components used in data-intensive applications, for example, in what other
they are to appear, their visual appearance and layout, and more. Basically we
propose three main types of presentation elements in the UI for data-intensive
Web applications:

– a menu, including a hierarchy or tree with the class taxonomy
– a list page per ontology class, listing all instances of the class,
– a form page per class for viewing and editing instances of the class.

Fig. 2 shows the Presentation metamodel using a simplified UML class dia-
gram notation. It defines the primitives that can be used in the modeling lan-
guage, that is, in presentation models. Metaclasses in this metamodel are de-
signed to allow the extension of presentation models by adding new features or
modifying existing ones, enabling the process to evolve. For that purpose, a Class
is related to a MenuItem which stores the feature(s) for displaying the class in
the menu page, and to a TableList which stores the feature(s) for displaying
the class in the list page. Similarly, a Property is related to a FormField which
stores the features for displaying the property as a field in the form page, and to
a ListColumn which stores the features for displaying the property as a column
in the list page.

Tables 1 and 2 describe the main metaclasses and attributes that can be
specified in a presentation model. How they are used in the generation of UI
elements is explained in following section.

44

Fig. 2. Presentation metamodel

Table 1. Presentation metamodel: Class features

Metaclass Feature Type Used in
Page

Description Default
value

Class

name string all name of the class OWL2
subClasses Class[0..*] menu collection of subClasses OWL2

superClasses Class[0..*] menu collection of superClasses OWL2
properties Property[0..*] form, list collection of properties having

the class as domain
OWL2

menuFeatures MenuItem menu link to presentation features for
a class in the menu page

listFeatures TableList list link to presentation features for
a class in the list page

MenuItem showInMenuTree boolean menu true if the class is showed in the
menu (tree)

true

TableList tablePaginatorSize integer list rows per page in the list 10

4.3 Mapping OWL2 to user interface components

This section describes how the menu tree, list and form pages are derived.

Menu tree. Domain concepts are represented in OWL2 as named classes,
which can have subclasses, conforming a hierarchy of classes. To display such
a hierarchy a tree is commonly used. For that purpose, RichFaces provides a
rich:tree component which renders a tree control on the page. Similarly, ICEfaces
has the ice:tree component that displays hierarchical data as a tree of branches
and leaf nodes. Only classes with the presentation feature showInMenuTree true-
valued are shown in the tree.

Form page. For displaying and editing instances of a particular class, a
rich form with the properties of the class is generated. In OWL2 each prop-
erty has a domain and a range, and two types of properties are distinguished:
datatype properties, relations between instances of classes and primitive data

45

Table 2. Presentation metamodel: Property features

Metaclass Feature Type Used in
Page

Description Default
value

Property

name string form, list name of the property OWL2
label boolean form, list text to show in the property

field (form) or the table col-
umn (list)

prop. name

fromFeatures FormField form link to presentation features
for a property in a form field

columnFeatures ListColumn list link to presentation features
for a property as a column of
the table list

FormField

isInferred boolean form true if the value is not ed-
itable

false

notEmpty boolean form true if the value can not be
empty

true

showInForm boolean form true if the form includes a
field for the property

true

formOrder integer form field order in the form null
textInputLegth integer form field size for the property

value
30

rangeMaxValue real form maximum value allowed for
number type properties

null

rangeMinValue real form minimum value allowed for
number type properties

null

isDataProperty boolean form true if the property type
is primitive, false otherwise
(object property)

OWL2

isFunctional boolean form true if the property cardinal-
ity is as much one, false oth-
erwise

OWL2

selectorType SelectorType form for object properties, kind of
selector showing related in-
stances

menu

richTableSelector boolean form for object properties, use a
rich datatable for selecting
related instances

false

ListColumn

showAsColumn boolean list true if the property is showed
as a column in the list

true

tableColumnOrder int list column order of the property
in the table

null

isSortableColumn boolean list true if the table can be sorted
by column values

true

isFilterableColumn boolean list true if the table can be fil-
tered by column values

false

types (e.g. integer or string); and object properties, relations between instances
of two classes. The default behavior in OWL determines that a property can
relate an instance of the domain to multiple instances of the range, but defining
the property as functional the relation is from an individual to only one primitive
value (functional datatype property) or individual (functional object property).
Similarly, a cardinality constraint can set the property range to 1. The form
page for a particular class contains fields for all the properties having the class
as domain and with a true value in the presentation feature showInForm.

The mapping of object properties to the UI implies that for non-functional
properties, common selectors are used, such as selectManyCheckbox,
selectManyListbox and selectManyMenu widgets, whereas for functional proper-
ties, selectOneListbox, selectOneMenu and selectOneRadio widgets can be used.

46

The widget used for an object property is set in the presentation feature se-
lectorType. In case that a property has a true value in the presentation feature
isInfered, a selector widget is not generated for it because its value can not be
modified by users.

When an object property has the feature richTableSelector to true, then
the values to be selected are shown in tables instead of in selectors. Rich-
Faces provides the rich:extendedDataTable component for a powerful selection
of one or many items. Similarly, ICEfaces includes the ice:rowSelector tag in the
ice:dataTable component to provide that functionality. Fig. 3 shows an example
of multiple data table selection.

Fig. 3. Multiple data table selection (3 rows selected)

To fulfill the list of values to be selected, individuals of the range type are
listed. When an object property has the same class as domain and range types,
then reflexive or irreflexive property axioms must be considered. In a irreflexive
object property, the self individual (domain) is not included in the list of values
to be selected (range), whereas in a reflexive one, all individuals are listed.

OWL2 provides several class extension constructs to define unnamed anony-
mous classes. The “oneOf” expression enables the definition of an enumerated
class through the list of individuals that constitute the instances of the class.
When the range of a property is an enumerated defined through a “oneOf”
anonymous class, the enumeration literals obtained from the individuals linked
to the enumeration are used as the list of allowed-values that can be selected. An
example is the hasSex functional property from the Person class to the enumer-
ated class with values {female, male}. In this case, one of the three selectOne
selectors can be used in the interface.

It is possible to further constrain the range of a property with property
restrictions. The “has-Value” restriction specifies an anonymous class based on
the existence of particular property value. Other classes can be a subclasses
of such a property restriction. As example, the Woman class is a subclass of
“hasSex has female” property restriction, and similarly, the Man class is subclass

47

of “hasSex has male”. In the UI, this is mapped to default values that can not
be editable by end-users.

List page. Finally, for listing all the instances or individuals of each named
class, a page with a rich data table component is generated. Table columns are
those properties of the class with a true value in the showAsColumn feature of
the presentation model, and the column position in the table is established by
the tableColumnOrder value. Both RichFaces and ICEfaces provide a datatable
component with advanced functionality including a paginator widget for viewing
the table as multiple pages of rows instead of as one large table, a sortColumn
feature allowing the user to sort of data in the table, and filterValue feature for
filtering data rows (only available in RichFaces). The corresponding features in
the presentation model allow to customize these elements.

5 Conclusions and future work

In this work a model-driven method for generating rich Web UIs from OWL2
domain ontologies was presented, continuing a research focused on model-driven
development of Web applications from ontologies and rules [2]. Our approach
is based on the assumption that a UI for a data-intensive application can be
induced from the domain ontology classes, properties and axioms. To obtain an
enhanced result, a presentation model captures presentation features related to
the UI. Since UI development is platform-specific task, JavaEE and JSF technolo-
gies for Web application development were chosen as target implementation in
our research. Two frameworks of rich UI components were considered, although
the approach can be extended to other frameworks. The proposal is tested with
a proof of the concept tool.

The extension of the proposal to cover a larger set of OWL2 elements is
considered as future work, as well as enhanced UI functionality to provide full
Semantic Web information system generation from ontologies. Enriching the
ontology with SWRL rules and analyzing how rules can affect to the UI is also
considered as future work, focusing on how rules can provide UI adaptivity.

Acknowledgments. The authors wish to thank the Spanish Ministry of Ed-
ucation and Science for funding received under projects TIN2009-14372-C03-01
and PET2007-0033, and the Andalusian Regional Government under project
P06-TIC-02411.

References

1. Brambilla, M., Facca, F.M.: Building semantic web portals with WebML. In: Web
Engineering, 7th International Conference, ICWE 2007, Como, Italy. Lecture Notes
in Computer Science, vol. 4607, pp. 312–327. Springer (2007)

2. Cañadas, J., Palma, J., Túnez, S.: A MDD approach for generating rule-based
web applications from OWL and SWRL. In: 3rd Workshop on Transforming and
Weaving Ontologies in Model Driven Engineering (TWOMDE 2010). vol. 604.
CEUR Workshop Proceedings, Málaga, Spain (June 2010)

48

3. Ceri, S., Fraternali, P., Matera, M.: Conceptual modeling of data-intensive web
applications. Internet Computing, IEEE 6(4), 20–30 (2002)

4. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, 1 edn. (Dec 2002)

5. Cerny, T., Song, E.: A profile approach to using UML models for rich form gener-
ation. In: Information Science and Applications (ICISA), 2010 International Con-
ference on. pp. 1–8 (2010)

6. Chavarriaga, E., Maćıas, J.A.: A model-driven approach to building modern seman-
tic web-based user interfaces. Advances in Engineering Software 40(12), 1329–1334
(2009)

7. Driver, M., Valdes, R., Phifer, G.: Rich internet applications are the next evolution
of the web. Tech. rep., Gartner Research Note. G (2005)

8. Gašević, D., Djurić, D., Devedžić, V.: Model Driven Architecture and Ontology
Development. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)

9. Gašević, D., Kaviani, N., Milanović, M.: Ontologies and software engineering. In:
Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 593–615. Springer Berlin
Heidelberg (2009)

10. Geary, D., Horstmann, C.S.: Core JavaServer Faces. Prentice Hall, 2 edn. (2007)
11. Hussmann, H., Meixner, G., Zuehlke, D.: Model-Driven Development of Advanced

User Interfaces. Springer-Verlag New York Inc (2011)
12. Lima, F., Schwabe, D.: Application modeling for the semantic web. In: LA-WEB.

pp. 93–102. IEEE Computer Society (2003)
13. Maćıas, J.A., Castells, P.: Providing end-user facilities to simplify ontology-driven

web application authoring. Interacting with Computers 19(4), 563–585 (2007)
14. Moreno, N., Romero, J.R., Vallecillo, A.: An overview of Model-Driven Web En-

gineering and the MDA. In: Web Engineering: Modelling and Implementing Web
Applications, pp. 353–382. Springer London (2008)

15. Object Management Group: MDA Guide Version 1.0.1. OMG document:
omg/2003-06-01 (2003)

16. Object Management Group: Ontology Definition Metamodel. Version 1.0. OMG
(2009), available at http://www.omg.org/spec/ODM/1.0/

17. Parreiras, F.S., Staab, S.: Using ontologies with UML class-based modeling: The
TwoUse approach. Data & Knowledge Engineering 69(11), 1194–1207 (Nov 2010)

18. Pérez-Medina, J.L., Dupuy-Chessa, S., Front, A.: A survey of model driven en-
gineering tools for user interface design. In: Task Models and Diagrams for User
Interface Design, 6th International Workshop, TAMODIA 2007, Toulouse, France.
Lecture Notes in Computer Science, vol. 4849, pp. 84–97. Springer (2007)

19. Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.): Web Engineering: Mod-
elling and Implementing Web Applications. Human-Computer Interaction Series,
Springer London, London (2008)

20. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. Computer
39(2), 25–31 (2006)

21. Vdovjak, R., Frasincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web
Information Systems in Hera. J. Web Engineering 2(1-2), 3–26 (2003)

22. W3C OWL Working Group: OWL 2 Web Ontology Language:
Document Overview. W3C Recommendation (2009), available at
http://www.w3.org/TR/owl2-overview/

23. Wright, J.M., Dietrich, J.: Requirements for rich internet application design
methodologies. In: Web Information Systems Engineering - WISE 2008, 9th Inter-
national Conference, Auckland, New Zealand. Lecture Notes in Computer Science,
vol. 5175, pp. 106–119. Springer (2008)

49

Loki � Presentation of Logic-based Semantic Wiki

Weronika T. Adrian, Grzegorz J. Nalepa

AGH University of Science and Technology,
al. A. Mickiewicza 30, 30-059 Krakow, Poland

{wta,gjn}@agh.edu.pl

Abstract. TOOL PRESENTATION: The paper presents a semantic
wiki, called Loki, with strong logical knowledge representation using
rules. The system uses a coherent logic-based representation for seman-
tic annotations of the content and implementing reasoning procedures.
The representation uses the logic programming paradigm and the Prolog
programming language. The proposed architecture allows for rule-based
reasoning in the wiki. It also provides a compatibility layer with the
popular Semantic MediaWiki platform, directly parsing its annotations.

1 Motivation

Semantic wikis enrich standard wikis with the semantic information expressed
by a number of mechanisms. Three basic questions every semantic wiki needs to
address are1: 1) how to annotate content?, 2) how to formally represent content?,
3) how to navigate content? In last several years multiple implementations of
semantic wikis have been developed, including IkeWiki2, OntoWiki3, Semantic
MediaWiki4, and AceWiki5. The summary of semantic wiki systems is available6.

From the knowledge engineering point of view, simply expressing semantics
is not enough. A knowledge-based system should provide both e�ective knowl-
edge representation and processing methods. In order to extend semantic wikis to
knowledge-based systems, ideas to use rule-based reasoning and problem-solving
knowledge have been introduced. An example of such a system is the KnowWE
semantic wiki7.The system allows for introducing knowledge expressed with de-
cision rules and trees related to the domain ontology.

Logic-based Wiki [5], or Loki for short, uses the logic programming paradigm
to represent knowledge in the wiki. The main design principles are as follows:
1) provide an expressive underlying logical representation for semantic annota-
tions and rules, 2) allow for strong reasoning support in the wiki, 3) preserve
backward compatibility with existing wikis, namely Semantic MediaWiki.

1 See http://aran.library.nuigalway.ie/xmlui/handle/10379/574.
2 See http://ikewiki.salzburgresearch.at/.
3 See http://ontowiki.net/Projects/OntoWiki.
4 See http://semantic-mediawiki.org/wiki/Semantic_MediaWiki.
5 See http://attempto.ifi.uzh.ch/acewiki/.
6 See http://semanticweb.org/wiki/Semantic_Wiki_State_Of_The_Art.
7 See www.is.informatik.uni-wuerzburg.de/en/research/applications/knowwe.

50

2 Architecture

A prototype implementation of Loki, called PlWiki (Prolog Wiki), has been de-
veloped [2,4]. The main goal of the system design is to deliver a generic and
�exible solution. Thus, instead of modifying an existing wiki engine or imple-
menting a new one, an extension of the DokuWiki8 system has been developed.

The architecture can be observed in Fig. 1. The stack is based on a simple
runtime including the Unix environment with the Unix �lesystem, Apache web
server and PHP stack. Using this runtime, a standard DokuWiki installation is
run. The Loki functionality is implemented with the use of Dokuwiki plugins
allowing to enrich the wikitext with semantic annotations and Prolog clauses, as
well as run the SWI-Prolog interpreter. It is also possible to extend the wikitext
with explicit semantic information encoded using RDF and OWL representation.
This layer uses the Semantic Web library provided by SWI-Prolog.

rules

XTTO
W

L

R
D

F

w
i
k
i
t
e
x
t

+

P
r
o
l
o
g

p
l
a
i
n

w
i
k
i
t
e
x
t

Apache Web Server Unix Filesystem

PHP stack wiki

files

Prolog
files

render lexer

plwiki

render syntax

plwiki

Prolog

SWI

DokuWiki

PlWiki Prolog Engine

Fig. 1. Loki Architecture � PlWiki Implementation

3 Features

The main idea of Loki consists in representing the semantic annotations in a
formalized way, and simultaneously enriching them with an expressive rule-based
knowledge representation. Both semantic annotations and Prolog clauses (facts
and rules) may be embedded within in the wiki content. The resulting knowledge
base is homogeneous from the logical point of view.

SMW Support There are three main methods of semantic annotations in Se-
mantic MediaWiki (SMW) that are supported in Loki: categories, relations and
attributes. Loki also supports the query language used in SMW.

8 See http://www.dokuwiki.org.

51

Categories, relations, attributes and queries are represented by appropriate
Prolog terms. Technically, SMW markup is converted to Prolog code and then
saved in a Loki �le related to a Wiki page. Examples (annotations written on
a page for "The Call of Cthulhu" book) are as follows, with the SMW syntax
given �rst, and the Prolog representation below.

[[category:book]]

wiki_category('book','the_call_of_cthulhu').

Author: [[author::h_p_lovecraft]]

wiki_relation('the_call_of_cthulhu','author','h_p_lovecraft').

Date: [[date:=2011]]

wiki_attribute('the_call_of_cthulhu','date','2011').

{{#ask: [[category:book]] [[author::h_p_lovecraft]]}}

wiki_category('book',Page),

wiki_relation(Page,'author','h_p_lovecraft').

Semantic Web Standards Support RDF annotations can be embedded directly
in the XML serialization. They are parsed by the SWI-Prolog semweb/rdf_db li-
brary, and turned to the internal representation. Within the wikitext, a SPARQL
query (SELECT, ASK or DESCRIBE) may be posed. The query scope is the
whole wiki system. Analogously to the SMW-like queries, SPARQL ones are also
translated to Prolog goals and then executed by the wiki engine.

Semantic information gathered in Loki may be exported to the RDF/XML
format. The exported �le consists of a header with used namespaces, metadata
of the exported page, and optionally ontological information about categories,
relations and attributes. Categories are exported as OWL Classes, relations be-
tween pages as Object Properties, and attributes as Datatype Properties. Infor-
mation about subcategories and subproperties is exported with the the use of
rdfs:subClassOf and rdfs:subProperty.

Rule-based Reasoning An optional rule layer is provided using the HeaRT [3] run-
time for the XTT2 framework [6]. XTT2 (eXtended Tabular Trees v2) knowledge
representation uses attributive table format. Rules based on the same attributes
are grouped within tables, and the system is split into a network of such ta-
bles representing the inference �ow. XTT2 rules can be serialized into a HMR
(HeKatE Meta Representation) format, supported in Loki.

An example rule: xrule a/1: [age in[18to100],movie_types sim[comedy]]==>

[age_filter set union(age_filter,[adult_comedy])]:comedy_rules. would be in-
terpreted as: for users who are older than 18 and like comedies adjust the
age_�lter attribute and redirect the inference to comedy_rules table.

HeaRT (HeKatE RunTime), a dedicated inference engine for the XTT2 rule
bases, has been added to Loki as a part of the plugin responsible for parsing
Prolog. HMR code is embedded on wiki pages within the <pl></pl> tags (see
Fig. 2). To run reasoning, a <pl scope="" goal=""> tag is used. If the goal is
a valid HeaRT command, the reasoning is performed by the engine, the result is
calculated and rendered on a wiki page. Embedding HeaRT in Loki is currently
in an experimental phase and is not provided with the current release.

52

Fig. 2. Goal query on user pro�le page

4 Summary

In the paper, a semantic wiki called Loki has been presented. An essential feature
of the system is a strong rule-based reasoning thanks to a coherent knowledge
representation. In the system, standard semantic annotations are mapped to the
Prolog knowledge base, in which also rule-based reasoning is speci�ed. Moreover,
a custom rule-based engine using decision tables and trees is provided. Loki
allows for the development of modularized knowledge bases with the use of a wiki.
In future, Loki is planned to be used as a platform for knowledge evaluation [1].

References

1. Baumeister, J., Nalepa, G.J.: Veri�cation of distributed knowledge in semantic
knowledge wikis. In: Lane, H.C., Guesgen, H.W. (eds.) FLAIRS-22: Proceedings
of the twenty-second international Florida Arti�cial Intelligence Research Society
conference: 19�21 May 2009, Sanibel Island, Florida, USA. pp. 384�389. FLAIRS,
AAAI Press, Menlo Park, California (2009)

2. Nalepa, G.J.: PlWiki � a generic semantic wiki architecture. In: Nguyen, N.T.,
Kowalczyk, R., Chen, S.M. (eds.) Computational Collective Intelligence. Seman-
tic Web, Social Networks and Multiagent Systems, First International Conference,
ICCCI 2009, Wroclaw, Poland, October 5-7, 2009. Proceedings. Lecture Notes in
Computer Science, vol. 5796, pp. 345�356. Springer (2009)

3. Nalepa, G.J.: Architecture of the HeaRT hybrid rule engine. In: Rutkowski, L., [et
al.] (eds.) Arti�cial Intelligence and Soft Computing: 10th International Conference,
ICAISC 2010: Zakopane, Poland, June 13�17, 2010, Pt. II. Lecture Notes in Arti�cial
Intelligence, vol. 6114, pp. 598�605. Springer (2010)

4. Nalepa, G.J.: Collective knowledge engineering with semantic wikis. Journal of Uni-
versal Computer Science 16(7), 1006�1023 (2010)

5. Nalepa, G.J.: Loki � semantic wiki with logical knowledge representation. In:
Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence III, Lec-
ture Notes in Computer Science, vol. 6560, pp. 96�114. Springer (2011)

6. Nalepa, G.J., Lig¦za, A.: HeKatE methodology, hybrid engineering of intelligent
systems. International Journal of Applied Mathematics and Computer Science 20(1),
35�53 (2010)

