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PURPOSE. A comparative study of the ability of some modal
schemes to reproduce corneal shapes of varying complexity
was performed, by using both standard radial polynomials and
radial basis functions (RBFs). The hypothesis was that the
correct approach in the case of highly irregular corneas should
combine several bases.

METHODS. Standard approaches of reconstruction by Zernike
and other types of radial polynomials were compared with the
discrete least-squares fit (LSF) by the RBF in three theoretical
surfaces, synthetically generated by computer algorithms in
the absence of measurement noise. For the reconstruction by
polynomials, the maximal radial order 6 was chosen, which
corresponds to the first 28 Zernike polynomials or the first 49
Bhatia-Wolf polynomials. The fit with the RBF was performed
by using a regular grid of centers.

RESULTS. The quality of fit was assessed by computing for each
surface the mean square errors (MSEs) of the reconstruction by
LSF, measured at the same nodes where the heights were
collected. Another criterion of the fit quality used was the
accuracy in recovery of the Zernike coefficients, especially in
the case of incomplete data.

CONCLUSIONS. The Zernike (and especially, the Bhatia-Wolf)
polynomials constitute a reliable reconstruction method of a
nonseverely aberrated surface with a small surface regularity
index (SRI). However, they fail to capture small deformations
of the anterior surface of a synthetic cornea. The most prom-
ising approach is a combined one that balances the robustness

of the Zernike fit with the localization of the RBF. (Invest
Ophthalmol Vis Sci. 2009;50:5639–5645) DOI:10.1167/iovs.08-
3351

Zernike analysis is used commonly in ophthalmology to
express ocular wavefront error in the form of a polynomial

function.1 The coefficients of these expansions have interpre-
tation in terms of the basic aberrations such as defocus, astig-
matism, coma, trefoil, and spherical aberrations, along with
higher order aberrations. As a fitting routine, Zernike polyno-
mials are not limited to analysis of wavefront error surfaces, but
can be applied to other ocular surfaces as well, including the
anterior corneal surface.2,3 It has been suggested that Zernike
analysis may be applicable in the development of corneal
topography diagnostic tools (e.g., Zernike coefficients as in-
puts into corneal classification of neural networks [Smolek MK,
et al. IOVS 1997;38:ARVO Abstract 4298]4), replacing or sup-
plementing the currently used corneal indices included with
many topography devices. Given the significance of the shape
of the front surface of the cornea to the refraction of the eye5

and the ability to correct refractive errors by laser ablation of
the front surface of the cornea, a detailed wavefront error
analysis of corneal topography data is clinically useful and
important. It has been recognized that the corneal front surface
generally provides the bulk of the ocular aberrations in the
postsurgical or pathologic eye.6

However, several potential limitations in this approach have
been reported in the literature.1,7 There is a growing concern
that the Zernike fitting method itself may be inaccurate in
abnormal conditions. Furthermore, it is very difficult to assess
a priori how many terms are necessary to achieve acceptable
accuracy in the Zernike reconstruction of any given corneal
shape.8 It is known7 that limiting Zernike analysis to only a few
orders may cause incorrect assessment of the severity of the
more advanced stages of keratoconus.5 This information is
particularly needed in the discriminant analysis of the decease
markers, or when selecting the numerical inputs for neural
network–based diagnostic software such as corneal classifica-
tion and grading utilities for condition severity.

In this sense, several alternatives to Zernike polynomials
have been recently suggested.

This is a report of a comparative study of the ability of some
modal approaches to reproduce corneal shapes of varying
complexity. Rather than dwelling further on the shortcomings
of the Zernike fit, we compare several techniques in some
“model” situations, ignoring on purpose all sources of noise
that exist in any real system. In this study we avoided experi-
ments using third-party software on corneal elevation from in
vivo eyes, but implement the fitting methods on theoretical
surfaces, synthetically generated by computer algorithms. This
method gives an insight into the intrinsic accuracy of each
approach.

It should be emphasized that our primary goal was to assess
the behavior of some methods in different situations. As a
result of our study, it may be concluded that there is no unique
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and best approach to corneal surface reconstruction that can
be considered preferable in every scenario, and that a combi-
nation of techniques may therefore be the optimal strategy.

In corneal topography, the elevation of the corneal surface
is collected on a discretely sampled grid, which is typically a
polar grid for Placido-ring–based systems. These raw data are
used to reconstruct the corneal shape, by applying either zonal
(see e.g., Ref. 9) or modal algorithms. The modal approach is
taken most often because it is easy to use and it offers better
noise-suppressing properties. Within the modal approach, the
anterior surface of the cornea can be modeled by a linear
combination of some basis functions,

C�P� � �
j�1

v

aj fj�P�, (1)

where C(P) is the corneal elevation at the point P of the plane,
fj is the a priori chosen basis function, and a � (a1,…,av)T is
the expansion coefficient (the superindex T means matrix
transposition). In this setting, fitting the equation to a discrete
set of elevation data Z � (Z1,…,ZN), N � v, at the nodes Pi, i �
1,…,N, can be restated in terms of solution of the overdeter-
mined linear system

Ma � Z, M � �fj�Pi��1�i�N,1�j�v. (2)

The LSF corresponds formally to the solution of the normal
equations MTMa � MTZ, which is unique if the collocation
matrix M is of maximum rank v.

Different basis functions fj in equation 1 can be used, such
as radial polynomials (e.g., Zernike, Bhatia-Wolf), Fourier se-
ries, and radial basis functions (RBFs).

Zernike polynomials Zn
m (corresponding to the radial non-

negative integer n and azimuthal integer m indices, with �m�
� n and n � m even) exhibit special properties that make
them an interesting expansion set for the description of gen-
eral surfaces in the fields of optical engineering and physiolog-
ical optics. They form a complete set of orthonormal polyno-
mials on the unit disc with respect to the Lebesgue (plane)
measure. Since they are well-known, we omit their explicit
description, referring the reader to the standard.10

There are several methods of mapping the double indices
(n, m) into a 1-D array j. The most widely acceptable one is

j �
n�n � 2� � m

2
.

Choosing in equation 1 as fj the Zernike polynomials of radial
order � n yields the value v � (n � 1)(n � 2)/2. Most clinical
aberrometers use Zernike expansion up to the 6th (typically,
the 4th) radial order to reconstruct wavefront data or a corneal
surface,11 corresponding to values v � 15 and v � 28 for n �
4 and n � 6, respectively. It was shown in Iskander et al.8 that,
at least for the normal and astigmatic corneas, the optimal
value is v � 11 so that even n � 4 leads in most cases to
overparameterization of the model.

Closely related with the Zernike polynomials are the Bhatia-
Wolf polynomials,12 Bn

m, whose fitting properties have been
analyzed in Iskander et al.13 They also satisfy the orthonormal-
ity condition with respect to the unit Lebesgue measure on the
disc. One difference between Bhatia-Wolf and Zernike polyno-
mials is that the only constraint �m� � n on the radial and
azimuthal indices results in the generation of (n � 1)2 linearly
independent polynomials for a given radial degree n instead of
the (n � 1)(n � 2)/2 for the Zernike polynomials. It should be

noted that Bn
m are not algebraic polynomials in the Cartesian

variables x and y, but they expand in series of monomials
xiy j�k, � � (x2 � y2)1/2 for i � 0, j � 0, and k � 0. The double
indices (n, m) are easily converted into the polynomial order j
of Bj by j � n(n � 1) � m.

There are other possible choices of radial polynomials, such
as the generalized Zernike polynomials14 and the Sobolev or-
thogonal polynomials on the disc.15,16

A special note is owed to another well-known fitting
method based on the (bidimensional) Fourier transform,17

which reconstructs wavefront data by decomposing the image
into spatial frequency components (see e.g., Refs. 18–21).
Standard Fourier methods build the surface as a combination of
the trigonometric basis whose coefficients can be computed
via the FFT algorithm. In some situations, the input information
is the set of slopes and not the elevations, in which case an
additional step (reduction to the laplacian) is needed. The
typical Gibbs phenomenon (high oscillation at the boundary) is
handled via a Gershberg-type iterative method (see the litera-
ture mentioned thus far).

In this study, we investigated an alternative meshless tech-
nique for reconstructing the corneal shape from the elevation
data using as fj in equation 1 sets of RBFs, defined in their
simplest form by translates of a given function �:

fj� � � � ��� � � Qj�2�, (3)

where points Qj, called centers of the RBFs, are conveniently
chosen, and � � � denotes the Euclidean distance on the plane. The
general theory of interpolation by RBFs is developing rapidly,
and several criteria for � can be found in the literature.22 In
particular, standard options are the so-called Gaussians and
inverse multiquadrics, corresponding, respectively, to �(t) �
exp(�at) and �(t) � (t � c2)��, with positive parameters a, c,
and �. However, we are unaware of any deep theoretical
analysis of the LSF with RBF. This, according to Buhmann,23 is
a highly relevant and interesting field of research.

There are several advantages in the use of equation 1 with
the RBF. Because of the fast decay of the Gaussians or multi-
quadrics, functions fj in equation 3 are practically locally sup-
ported. Hence, equation 1 exhibits features of the zonal ap-
proach, eventually capturing small deformations of the surface,
which are missed by the polynomial fitting. The rate of decay
or the size of the effective support of fj can be controlled with
the parameters of the RBFs, endowing the model with a flex-
ibility that lacks in other modal schemes described earlier. The
correct selection of these parameters depends on several fac-
tors, such as the frequency of the sampling data, the separation
between centers of the RBFs and the grade of variation of the
surface. As far as we are aware of, the only work in which such
a use of the Gaussians has been discussed, but in the context
of the wavefront fitting, is that of Montoya-Hernández et al.24

We want to point out that the choice of the RBF in equation
1 does not imply renouncement of the Zernike coefficients as
the output information of the reconstructed surface. On the
contrary, since the centers Qj are fixed a priori, the values of

sm,n, j �
1

���
x2�y2�1

Zn
m�x, y�fj�x, y�dxdy,

with fj given by equation 3, can be computed and stored so
that the Zernike coefficients are easily recovered by the scalar
product of two vectors.
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MATERIAL AND METHODS

It is well known that in a situation close to ideal, when the corneal
surface presents only small and smooth deviations from a sphere,
almost any reasonable fitting scheme renders good results. In particu-
lar, in such a situation, the use of the Zernike polynomials is perfectly
justified. Hence, to assess the fitting properties of the different ap-
proaches, we have chosen the following three model surfaces with
high surface regularity indices (SRIs):

1. Surface A: a “flat sphere”, roughly simulating a surgically altered
cornea and a surface with a gradient discontinuity (see Fig. 4).

2. Surface B: a sphere with a radial deformation, or “scar” (Fig. 1).
3. Surface C: a cornea with topographic asymmetry and decen-

tered corneal apex (keratoconus), but with an incomplete set of
data (see Fig. 6).

In cases A and B we obtain the elevation data at a discrete set of points
Ps, s � 1,…,6144, with polar coordinates (�i, 	j) where �i � i/24, i �
1,…,24, whereas the meridians 	j, j � 1,…,256 are equidistributed in
(0, 2�). For the surface C, we collect the elevations at a subset of the
nodes just described (Fig. 2), simulating the standard situation in
clinical practice, when some of the measurements are obstructed by
the eyelashes or other obstacles. A common procedure in such cases is
to discard the elevations corresponding to incomplete rings, which
may imply an unnecessary loss of information. One of the advantages

of the RBF is that they are not bound intrinsically to circular domains.
This fact gives an additional interest to the analysis of the situation
modeled by Surface C.

Another important observation is related to the units of measure-
ment. Since the elevations are obtained from synthetic surfaces where
the scaling is irrelevant, we chose to fit the data on a unit disc. Hence,
the plots appearing in Figures 2–7 and the data in Table 1 are given in
universal units, whose choice does not affect the results.

We gathered the discrete elevation data into a vector Z without
adding any noise, and solved the overdetermined system (equation 2)
in the sense of the LSF. In practice, the collocation matrix M can be
very ill-conditioned and numerically rank deficient, so we have to avoid
solving the normal equations MTMa � MTZ directly. The use of the
Moore-Penrose pseudoinverse of M computed by its singular value
decomposition (SVD), complemented with regularization, is preferable
instead (see e.g., Ref. 25).

The method can be easily adapted to include the weighted least
square fit (WLSF) by left-multiplying equation 2 by a diagonal positive
matrix representing the weights. In real-life computation, these
weights can reflect the reliability of the data (e.g., portions of the
cornea obstructed by eyelashes, poor quality of the tear film; see Ref.
26 for the algorithms that allow separation and identification of the
regions of a strong interference).

All the computations were performed in commercial software (Mat-
Lab ver. 7.6, MathWorks Inc., Natick, MA). The vectorization capabil-
ities of MatLab have been extensively exploited, and highly efficient
algorithms have been achieved that reduce the computation time
drastically (to 	3 seconds or less), even for the most time-consuming
Zernike polynomials fit (compare e.g., with Refs. 1, 3).

We performed a comparison between families of radial polynomials
(Zernike and Bhatia-Wolf) and radial basis functions (Gaussians and
inverse multiquadrics). For the reconstruction by polynomials, we
normally choose the maximal radial order 6 which corresponds to the
first 28 Zernike polynomials, or the first 49 Bhatia-Wolf polynomials,
which is the standard in modern aberrometers.11 The fit with the RBF
was performed with a regular grid of centers, like those represented in
Figure 3. Observe that to avoid high oscillations on the edge we must
use centers situated outside of the cornea, although we omit those
located too far from the nodes.

Experiments have been performed also with other functions, such
as Sobolev orthogonal polynomials on the disc or multiquadric RBF;
however, the results obtained do not differ significantly from those

FIGURE 1. A 3-D representation of surface B.

FIGURE 2. Elevation data for surface C.

FIGURE 3. Dots denote centers of the RBF.
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corresponding to other members of the same class, and we decided to
omit that discussion for the sake of brevity.

We have left out of the comparison the Fourier-based techniques
for several reasons. First, these methods can be implemented in differ-
ent ways. If we choose a number of terms v in equation 1 that is smaller
than the size of the dataset, then the behavior of the truncated Fourier
expansion is very similar to that of the Zernike polynomials (take note
that these bases differ only in the radial coordinate). Alternatively, we
can take the maximum possible size of v, which endows the Fourier
methods with the maximum resolution capacity, but deprives them at
the same time of the smoothing ability of the other modal approaches
(see Refs. 18–20). Last but not least, the implementation of the Fourier
methods is still far from clear and reliable, as a recent discussion
shows.21

Subject A (Fig. 4, top left) is given analytically by

CA�r, q� � min ��4 � r2, 1.95�� �3,

simulating a sphere with a cap removed by a flat cut. The main goal is
to check the goodness of detection of the fast variations of the gradi-
ent.

For subject B we used a sphere with a radial slit (Fig. 1); its level
curves are represented in Figure 5, upper left. Its analytic expression is
cumbersome, and thus we avoid presenting it here.

The data of subject C were collected from measurements by a
corneal topographer (CM02; CSO, Florence, Italy) of the corneal ele-

FIGURE 4. A 3-D representation of
surface A. Top left: the original sur-
face. Top right: reconstruction with
Zernike polynomials of radial order 6
(v � 28). Bottom left: reconstruction
with Bhatia-Wolf polynomials of ra-
dial order 6 (v � 49). Bottom right:
reconstruction with the inverse mul-
tiquadric RBFs (� � �1.5, c � 0.6)
with 177 centers.

FIGURE 5. Contour plot for the sur-
face B (top left) and its reconstruc-
tion with Zernike polynomials up to
order 6 (top right) and 18, v � 190
(bottom left). Bottom right: recon-
struction with the inverse multiquad-
rics with 177 centers, using the pa-
rameters (c � 1, � � 5).
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vations of an actual patient with keratoconus. To approximate the
situation to real-life scenarios, we retained the nodes where the eleva-
tions were obtained and considered a simulated keratoconus corneal
surface modeled with a series of the first 136 Zernike polynomials
(radial order 15). This yields an analytic expression for the surface in
Figure 6, first row, for which we already know the exact values of the
corresponding Zernike coefficients. We represent it only over the
domain where the reliable information is available.

We assess the quality of fit by computing in each case the mean
square errors (MSEs). For that purpose, after obtaining vector a in
equation 2 we reconstruct the surface by formula in equation 1 and
evaluate it at the same nodes where the heights were collected. This
gives us the vector of fitted elevations Z̃. Then

MSE �
1

N
�Z̃ � Z�2.

Another criterion of the fitting quality is the accuracy in recovery of the
Zernike coefficients, especially in the case of incomplete data, which
becomes crucial for the discriminant analysis of the decease markers,
or for the neural network-based diagnostic software4 such as corneal
classification and condition severity-grading utilities. In this sense, for
subject C we performed the discrete LSF with Zernike polynomials
directly from the raw input data and alternatively fitting the surface
previously reconstructed by the Gaussian RBF (see Fig. 7).

RESULTS

In this section, we present a comparison of the numerical
results obtained with the different methods applied to the
three simulated surfaces.

There are two aspects related to the numerical side of the
problem. One is the computational cost, and the other is the
sensitivity of the scheme to data perturbations. In the former,
the RBF clearly outperform the radial polynomials. The com-
putational time is several times higher for the Zernike polyno-
mials—even for a highly optimized vector algorithm imple-

FIGURE 6. Contour Surface C. Up:
original surface. Center: distributions
of errors of the model with Zernike
(left) and Bhatia-Wolf (right). Down:
distributions of errors of the model
with Gaussians (left) and multiquad-
rics (right).

FIGURE 7. Relative error of the reconstruction of Zernike coefficients
for subject C directly by the LSF or fitting previously the surface with
Gaussian RBF. The horizontal axis represents the 1-D index j of the
Zernike polynomial Zj, whereas the vertical axis represents the (di-
mensionless) relative errors.
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mented in MatLab—independently if we generate them by
their recurrence relation or by the explicit formula. Neverthe-
less, in our implementation, the reconstruction by the slowest
Zernike fit with as many as 231 polynomials (radial order �20),
took approximately 2.5 seconds (compare with Refs. 1, 3), so
that execution time becomes less and less of a concern with
the progress of the software optimization and computing
power.

On the other hand, the condition number of the collocation
matrices M in equation 2 for the RBF grows very rapidly with
the dimension of the problem (number of centers). Despite
this undesirable feature, they are still better fit to capture the
small local variations in the shape of the cornea than are the
standard Zernike polynomials (see e.g., the analysis for subject
B in the next section). This problem can be easily addressed
though using a Tikhonov-type regularization combined with an
SVD computation of the pseudoinverse. On the contrary, the
numerical condition of the collocation matrix for Zernike poly-
nomials initially grows slowly with the size (value of v in
equation 1), until undersampling sets in, causing an exponen-
tial growth of the condition number (phenomenon nicely de-
scribed in Yoon et al.20; see also Iskander et al.8); beyond this
point an increase in the number of terms in the expansion
(equation 1) becomes counterproductive.

Let us discuss in more detail the main results in the three
cases.

Surface A: In the portions of the plane where the surface is
smooth, all approximation schemes work very well, so that the
error is localized in a neighborhood of the ridge formed by the
cut. This explains the minimal deviation in the MSE for all
methods (see Table 1). However, if our primary goal is the
accurate reconstruction of the shape of the cornea, the visual
analysis (Fig. 4) shows that the fitting with RBFs outperforms
the fitting with radial polynomials. Clearly, the flexibility of the
RBF approach, built into the scaling parameters, allows us to
capture more easily the rapid variations (or discontinuities) of
the gradient of the surface.

Surface B: the purpose was to detect the relatively small
details on the surface by fitting the elevation data. As it follows
from Figure 5, Zernike polynomials (and in general, radial
polynomials) are less well suited for reflecting the small defor-
mation, even if we allow unusually high orders in equation 1.

Surface C: in this case the deviations of the surface from an
“ideal one” are more global, and this fact is immediately re-
flected in the MSE in Table 1, where we gain at least two orders
of precision with the RBF. However, the experiment with the
reconstruction of the Zernike coefficients of the surface, either
fitting it first by Gaussians or directly by Zernike polynomials,
is not conclusive (see Fig. 7). Still, some coefficients are clearly
better fit with the former approach, which can be significant
for an early detection of keratoconus (see Ref. 27).

These results can be improved further by using a combined
approach: fitting the raw data with Zernike polynomials with a
very low order (n � 1 or n � 2), subtracting the fit from the
original elevations, and approximating the new data by LSF
with the RBF.

DISCUSSION

The first important observation concerns the number of terms
v in the modal reconstruction (equation 1). When we use radial
polynomials (Zernike, Bhatia-Wolf), the number of terms cor-
responds to the maximum order of aberrations or frequencies
that can be captured or represented by the right-hand side in
equation 1. The computational complexity of the basis func-
tions fj in equation 1 grows with the index j.

Experiments show a saturation phenomenon: although for a
low v, an addition of a new term renders a substantial improve-
ment in the goodness of the fit, higher orders have less and less
impact. Moreover, a small change in a localized subset of data
may imply a substantial modification of all entries of the coef-
ficient vector a. On the contrary, the number of terms v used
in the fitting with the RBF is given by the numbers of centers
Qj. Higher values of v imply in this case more flexibility in the
approximating scheme. The localization property of the RBF
used implies also that a small local variation in the data has only
a “local” impact on the coefficients of a. Basis functions fj in
equation 1 for different values of the index j are computation-
ally identical, simply “aimed” at different points of the disc.

Hence, the amount v of terms used for approximation with
radial polynomials or with RBF should be compared with care.

As it was observed previously in Iskander et al.,13 Bhatia-
Wolf polynomials achieve higher precision in surface approx-
imation than their classic Zernike counterparts. Nevertheless, a
clear conclusion of this research is that the Zernike polynomi-
als still work perfectly well as a reconstruction method of a
nonseverely aberrated surface with a small SRI. They also are
an appropriate tool for recovering the lower Zernike coeffi-
cients.

However, these coefficients fail to capture small deforma-
tions of the anterior surface of the cornea. In particular, if such
deformations turn out to be markers of an eye disease, it is
reasonable to complement the Zernike coefficients with addi-
tional input parameters for the neural network–based diagnos-
tic software (see the pioneering work,4 in which corneal cases
with no surface singularities were considered). When severe
curvature changes are present, the accuracy of the fit (taking
into account the small features of the surface) can become a
priority, since it allows extracting reliably other shape indices
of the approximated surface. In such a situation, the flexibility
of the RBF functions, combining some properties of a zonal
reconstruction (localization) with the simplicity of a modal
scheme, can become relevant.

Thus, a combined approach seems promising: using
Zernike or Bhatia-Wolf polynomials of a low degree to obtain
the fundamental part of the shape of the cornea, with a sub-
sequent refinement by RBF.

However, additional research is needed to address some
computational concerns such as an automatic selection of the
scaling parameters of the RBF, or better control of the condi-
tion numbers of the corresponding collocation matrices. These
aspects will be subject of a further investigation.
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