
Prog Artif Intell (2017) 6:133–144
DOI 10.1007/s13748-017-0115-7

REGULAR PAPER

MAP inference in dynamic hybrid Bayesian networks

Darío Ramos-López1 · Andrés R. Masegosa2 · Ana M. Martínez3 ·
Antonio Salmerón1 · Thomas D. Nielsen3 · Helge Langseth2 ·
Anders L. Madsen3,4

Received: 12 December 2016 / Accepted: 13 January 2017 / Published online: 27 January 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In this paper, we study the maximum a posteriori
(MAP) problem in dynamic hybrid Bayesian networks. We
are interested in finding the sequence of values of a class vari-
able that maximizes the posterior probability given evidence.
We propose an approximate solution based on transforming
the MAP problem into a simpler belief update problem. The
proposed solution constructs a set of auxiliary networks by
grouping consecutive instantiations of the variable of interest,
thus capturing some of the potential temporal dependences
between these variables while ignoring others. Belief update
is carried out independently in the auxiliary models, after
which the results are combined, producing a configuration of

B Antonio Salmerón
antonio.salmeron@ual.es

Darío Ramos-López
dramoslopez@ual.es

Andrés R. Masegosa
andresrm@idi.ntnu.no

Ana M. Martínez
ana@cs.aau.dk

Thomas D. Nielsen
tdn@cs.aau.dk

Helge Langseth
helgel@idi.ntnu.no

Anders L. Madsen
anders@hugin.com

1 Department of Mathematics, University of Almería, Almería,
Spain

2 Department of Computer and Information Science,
Norwegian University of Science and Technology,
Trondheim, Norway

3 Department of Computer Science, Aalborg University,
Aalborg, Denmark

4 Hugin Expert A/S, Aalborg, Denmark

values for the class variable along the entire time sequence.
Experiments have been carried out to analyze the behavior
of the approach. The algorithm has been implemented using
Java 8 streams, and its scalability has been evaluated.

Keywords MAP inference · Hybrid Bayesian networks ·
Temporal models

1 Introduction

Data acquisition is nowadays ubiquitous in any technological
environment, and large amounts of data are being produced,
often to an extent where it becomes a major challenge to
make use of it. Inmany contexts, uncertainty is inherent to the
data for different reasons (for instance, measurement noise,
technical limitations, incomplete information). Thus, suit-
able modeling and inference techniques are essential tomake
an adequate interpretation of the data. Probabilistic graph-
ical models (PGMs) are known to be a well-founded and
principled tool for performing inference and belief updat-
ing in complex domains endowed with uncertainty. In this
work, we focus on Bayesian networks (BNs) [15], which
constitute a particular type of PGMs. Specifically we will
consider dynamic hybrid BNs (DBNs), which represent sit-
uations with a temporal dimension, and which allow discrete
and continuous variables to coexist. We restrict our attention
to conditional linear Gaussian (CLG) models [10,11].

In probabilistic reasoning, the MAP problem is of spe-
cial relevance and difficulty [2,6,14]. It amounts to finding
the most probable configuration (called MAP configuration)
of some specific variables of interest (also called MAP vari-
ables), given observations of some evidence variables. This is
sometimes also referred to as partial abductive inference [1].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13748-017-0115-7&domain=pdf
http://orcid.org/0000-0003-4982-8725

134 Prog Artif Intell (2017) 6:133–144

An instantiation of this problem, which we will focus
our discussion around, is dynamic classification. Here the
variables of interest are the temporal replications of a dis-
crete variable that at time t signifies the classification of the
sequence at that time. Thus, the MAP configuration is used
to obtain the most probable development of the class over a
time sequence, given (partially) observed attributes. We are
therefore interested in finding the values of the class variables
that together maximize the (joint) posterior probability of the
sequence given the evidence and do not focus on the correct
classification at each single point in time (the two sequences
are not necessarily the same). Typically, in dynamic classifi-
cation, one is interested in detecting time periods of special
relevance and detecting specific instants where changes in
the class happen.

A direct approach to tackle this problem is to first “unroll”
the DBN, that is, to convert it into a static model by including
one copy of each variable for each time instance and then
compute the MAP configuration in the unrolled model using
existing algorithms for static BNs. Due to the computational
complexity of the MAP calculations [14] and their inability
to benefit from the regularities of the network structure of
the unrolled dynamic model, this approach would, however,
only be feasible for very short sequences. Another immediate
idea is to use the well-knownViterbi algorithm [5]. However,
this approach only works for calculating the most probable
explanation (MPE), a special case of MAP where all the
unobserved variables of interest.

Our proposal, which is an approximate solution based on
transforming the dynamic MAP problem into simpler belief
update problems, consists of two steps:

(i) Generate a collection of auxiliary models based on the
original one. In each of these models, the temporal
replications of the variable of interest are joined into
compound nodes that capture some of the temporal
dependencies among the temporal instantiations of the
class variable. Then perform standard belief update sep-
arately in each of these models;

(ii) Combine the results to find a sequence of values for
the variables of interest that approximates the MAP
sequence.

By making operations on the structure of the original
model, we thus approximately solve a MAP inference prob-
lem by performing a set of (simpler) probabilistic inference
tasks. In this general formulation, any exact or approximate
algorithm for belief update can be employed for the inference
process in i).

The proposed algorithm has been implemented using the
AMIDST Toolbox [13], and we exemplify its use by using
variational message passing (VMP) [18] and importance
sampling (IS) [7,8,17] for belief update. A set of experi-

ments has been carried out to assess the suitability of the
approach.

The rest of the paper is organized as follows: Sect. 2
establishes the necessary background and gives the precise
formulation of the problem. Then, the proposed algorithm
is detailed in Sect. 3. The performance of the algorithm is
examined in Sect. 4, before the paper ends with conclusions
in Sect. 5.

2 Preliminaries

In this section, we introduce the main mathematical concepts
employed in the paper: those of (dynamic hybrid) BNs,MAP
inference, and the dynamic MAP problem. A BN consists
of a directed acyclic graph, where the nodes correspond to
random variables and the arcs represent dependencies among
them; for ease of presentation, wewill use the terms node and
variable interchangeably throughout this paper. Attached to
each node in the graph, there is a conditional probability
distribution for the corresponding variable given its parents
in the network.

A BN with variables X = {X1, . . . , XN } defines a joint
probability distribution that factorizes as

p(X) =
N∏

i=1

p(Xi |Pa(Xi)), (1)

where Pa(Xi) is the set of parents of Xi in the graph. A
BN is called hybrid if it has both discrete and continuous
variables. We will use lowercase letters to refer to values or
configurations of values, so that x corresponds to a value of
the variable X and boldface x refers to a configuration of the
variables in X.

ACLGBN is a hybrid BN, where the joint distribution is a
CLG [11]. In a CLG BN, the conditional distribution of each
discrete variable XD ∈ X given its parents is a multinomial,
while the conditional distribution of each continuous variable
Z ∈ X with discrete parentsXD ⊆ X and continuous parents
XC ⊆ X is given as a normal density by

p(z|XD = xD, XC = xC) = N (z;αxD + βT
xD

xC , σxD), (2)

for all xD ∈ ΩXD and xC ∈ ΩXC ; αxD and βxD
are the

coefficients of a linear regression model of Z (there is one
such set of coefficients for each configuration of the discrete
parent variables).

Thus, the conditional mean of Z is a linear function of
its continuous parents, while its standard deviation, σD , only
depends on the discrete parents. Finally, it should be noted
that a CLG BN does not allow continuous variables with
discrete children.

123

Prog Artif Intell (2017) 6:133–144 135

Y1 Y2 Y3 YT

H1 H2 H3 HT

O1 O2 O3 OT

Fig. 1 Simplified dynamic BN

In this paper, we put special emphasis on dynamic CLG
BNs, which explicitly model the evolution over time [3]
by indexing the variables Xt with a discrete time stamp
t ∈ {1, . . . , T }; as a shorthand notation, we shall use
X1:T = (X1, . . . , XT). Specifically, we will consider model
structures as illustrated in Fig. 1, where each time step t is
composed of a variable of interest, denoted Yt , a set of hidden
variables, H t , and a set of observable variables O t .

Note that the model adheres to the Markov assump-
tion: At any time t , the variables prior to t , i.e., {Y1:t−1,
O1:t−1, H1:t−1} are conditionally independent of the future
variables {Yt+1, O t+1, H t+1} given the variables at time t ,
{Yt , O t , H t }. By also assuming that the model is stationary
(i.e., p(Xt |Pa(Xt)) = p(Xs |Pa(Xs)), for all time steps s and
t), the dynamic model can be compactly specified through a
prior model of the initial time step and a transition model for
two consecutive time steps, i.e., a model of the distributions
p(X0) and p(Xt |Xt−1). Notice also that while YT is a single
variable, both O t and H t are vectors. These vectors have an
internal dependence structure that is not explicitly depicted
in Fig. 1 and will not be utilized in the following except in
the underlying belief update algorithms.

2.1 The MAP inference problem

Generally, for the MAP inference problem we look for a
configuration of a particular subset of variables Y having
maximum posterior probability given the observation xE of
another set of variables XE :

y∗ = arg max
y∈ΩY

p(y|xE) = arg max
y∈Ωy

p(y, xE).

If XE ∪ Y ⊂ X, the variables in the set X \ (XE ∪ Y) should
be marginalized out before doing the maximization:

y∗ = arg max
y∈ΩY

∑

xD∈ΩXD\(Y∪XE)

∫

xC∈ΩXC \(Y∪XE)

p(y, xD, xC , xE)dxC .

In the special case whereX = XE ∪Y, the inference problem
is also referred to as finding the MPE.

When dealing with DBNs of the form in Fig. 1, the vari-
ables of interest areY = (Y1, . . . ,YT) and theMAP problem
amounts to finding

y∗
1:T = arg max

y1:T ∈ΩY1:T
p(y1:T , o1:T),

which involves summing/integrating out the unobservedvari-
ables H1:T .

Finding an exact solution to the general MAP problem
has been shown to be NPPP complete [14]. Furthermore,
if N equals the total number of variables in the unrolled
model (thus, N = κT , where κ is the number of variables
in Xt), approximating MAP with an error-bound growing
slower than exponentially in N is NP-hard [14,16].

General-purpose algorithms for MAP can therefore not
be employed in our setting when T (and therefore N) can
take on very large values, and we will rather pursue a tailor-
made approach, which utilizes the particular structure of the
unrolled BN. The two important features that we will take
advantage of are i) the Markov assumption inherent in the
model and i i) that the variables of interest are Y1:T , with
Pa(Yt) = {Yt−1}, t = 2, . . . , T . Nevertheless, the prob-
lem is still computationally difficult to solve, as the model in
Fig. 1 reveals that all the variables {Y1, . . . ,YT } are depen-
dent conditional on O1:T . Hence, the posterior distribution
p(y1:T |o1:T) cannot be represented in factorized form.

3 A MAP algorithm for DBNs

In what follows, we present a framework for approximately
solving the MAP problem for DBNs by exploiting the tem-
poral structure of the model. We seek to reduce the MAP
inference problem to the problemof performing belief update
in a collection of secondary compound model structures
derived from the original DBN. The framework is indepen-
dent of the particular belief update procedure being used,
and the updating procedure can thus be selected based on the
particularities of the domain being modeled.

The basic idea is to find a MAP configuration through a
two-step process. First, we estimate posterior distributions
over subsets of MAP variables (i.e., subsets of Y1:T); by
looking at subsets of variables, we capture some of the depen-
dencies of the posterior distribution. In the second step, we
combine these distributions to obtain an approximation of
the joint posterior distribution. Based on this compound dis-
tribution, we seek a MAP configuration. If the subsets used
in the initial step are singletons, we have a fully factorized
posterior distribution forwhich theMAPconfiguration corre-
sponds to independently identifying the most probable state
for each MAP variable. On the other hand, if the (single)

123

136 Prog Artif Intell (2017) 6:133–144

Y1 Y2 Y3 Y4 Y5 YT

H1 H2 H3 H4 H5 HT

O1 O2 O3 O4 O5 OT

Fig. 2 Two possible partitions for pair-wise MAP variables merging
are marked in solid and dashed lines

subset used initially consists of Y1:T , our algorithm is iden-
tical to exactly recovering the MAP sequence. Intermediate
solutions will have most relevance in practice.

For ease of presentation, the below description of the
method will be given relative to the simplified model struc-
ture shown in Fig. 1.

3.1 Step 1: Compound model specification

As outlined above, we transform the MAP problem into a
collection of simpler inference problems over derived struc-
tures based on which an estimate of the MAP sequence is
obtained. The aim of the derived structures is to capture a
subset of the potential dependencies between the MAP vari-
ables. For this purpose, we consider grouping consecutive
MAP variables into compound variables under the assump-
tion that temporally close MAP variables are more strongly
dependent than those further apart in the sequence.

If we only consider pair-wise dependencies between con-
secutive MAP variables, then this procedure will give rise
to two different partitionings as illustrated in Fig. 2; the
partitionings are depicted with solid lines and dashed lines,
respectively. These two groupings not only capture different
dependency relations between consecutive MAP variables,
they also represent the only possible pair-wise consecutive
partitionings of the MAP variables. The compound model
derived by merging nodes according to the partitioning
defined by the solid lines is represented in Fig. 3 (top). Each
compound node Zi in this model is defined as the Carte-
sian product of its two constituent MAP variables Y2i and
Y2i+1; for the dashed partitioning, the compound node Zi

would correspond to (Y2i−1,Y2i) and with Z0 being a sin-
gleton (see Fig. 3 (bottom)). The same construction scheme
can be applied when merging 3, 4, or in general D consecu-
tive copies of the MAP variables, producing a corresponding
number of auxiliary models.

In order to complete the specification of themodel in Fig. 3
(top), we need to populate it with probability distributions. To
simplify notation, let Z j−1, j denote the aggregated variable
corresponding to Y j−1 × Y j and let Hk be a child of Z j−1, j

(thus k = j − 1 or k = j). For these variables, the required

Z1 Z2 Z3 Z∗

H1 H2 H3 H4 H5 HT

O1 O2 O3 O4 O5 OT

Local-dependency model equivalent to the solid-line partitioning.

Z1 Z2 Z3 Z∗

H1 H2 H3 H4 H5 HT

O1 O2 O3 O4 O5 OT

Local-dependency model equivalent to the dashed-line partitioning.

Fig. 3 Two possible pair-wise partitionings and combinations of con-
secutive MAP variables

distributions can readily be calculated based on the original
model as

Pi
(
Z j−1, j = (y j−1, y j)|Z j−3, j−2 = (y j−3, y j−2)

)

= P(y j |y j−1)P(y j−1|y j−2),

Pi
(
Hk |Z j−1, j = (y j−1, y j)

)

=
{
P(Hk |Y j = y j−1) if k = j − 1,

P(Hk |Y j = y j) if k = j.

The remaining distributions in the aggregated model are
directly copied from the original DBN. A similar specifica-
tion of the probability distributions for the compound model
in Fig. 3 (bottom) follows the same pattern as above but with
shifted indexes.

Using the aggregated models, we can perform standard
belief update using, for instance, mean-field variational
inference or importance sampling, and still capture local
dependencies between the MAP variables in the original
model. Based on these posterior distributions, we approx-
imate the joint posterior distribution of the MAP variables
based on which the inference scheme can efficiently be per-
formed.

3.2 Step 2: Model combination and MAP inference

Let Z (i)
1:|Pi | be the |Pi | compound variables for the i th par-

titioning Pi . Now, we denote with Pi
(
Z (i)
1:|Pi ||o1:T

)
the

posterior distribution of the MAP variables Y1:T in Pi ; the
distribution is defined over the induced compound variables.

123

Prog Artif Intell (2017) 6:133–144 137

The size of this probability table is O
(
2T

)
assuming that

Yt is binary. Thus, even if the posterior can be calculated in
theory, it is infeasible in practice. Instead, we will resort to
using the approximate marginal posterior

P̃i (Y1, . . . ,YT |o1:T) =
|Pi |∏

j=1

Pi (Z
(i)
j |o1:T). (3)

The posterior distributions obtained for the different par-
titionings encode distinct dependencies among the MAP
variables. For instance, for the two partitionings in Fig. 2
we have that Y2⊥⊥P2Y3|o1:T and Y2 �⊥⊥P1Y3|o1:T , where⊥⊥P2
and⊥⊥P1 are the independence relations captured by the pos-
terior distributions defined according to Eq. (3) for the solid
and dashed partitioning, respectively. In what follows, we
will consider a partitioning of the MAP variable to be syn-
onymous with the compound model it induces and the two
terms will therefore be used interchangeably.

Individually, each compound model captures only a sub-
set of the posterior dependencies over Y1:T , but collectively
they define a richer dependency model as compared to
any of the individual compound models. Thus, we seek
to compute a MAP configuration over a joint posterior
P∗(Y1, . . . ,YT |o1:T) which combines the local posteriors
obtained for the different partitions. Assuming that we have
D partitions, we choose P∗ as the centroid distribution using
the KL divergence as a distance measure,

P∗ = argmin
P

D∑

k=1

K L(Pi , P).

Following the results presented in [12, Theorem3.2], there
is a closed-form solution for the above problem. In the case
of multinomial variables, the solution simplifies to

P∗(Y1, . . . ,YT |o1:T) = 1

D

D∑

i=1

P̃i (Y1, . . . ,YT |o1:T). (4)

Based on this centroid distribution P∗, we can now find an
approximation to the originalMAPproblembyfinding a con-
figuration maximizing P∗(Y1, . . . ,YT |o1:T). From Eqs. (3)
and (4), we have that, for the partitioning in Fig. 2, the cen-
troid distribution defines a first-order Markov model over
Y1, . . . ,YT , where the conditional distributions P∗(Yi |Yi−1)

are given by1

1 For ease of presentation, we drop the explicit conditioning on o1:T in
the equations below.

P∗(Yi |Yi−1) ∝
∑

Y1:T \{Yi ,Yi−1}
P∗(Y1, . . . , YT)

= 1

2
(P1(Yi−1, Yi) +

∑

Yi−2

P2(Yi−2, Yi−1)
∑

Yi+1

P2(Yi , Yi+1)),

(5)

assuming that partitioning P1 defines the subset {Yi−1, Yi };
otherwise, the indexes should be reversed.

An approximate MAP configuration can now be found by
simply applying the standard Viterbi algorithm [5] based on
the Markov model defined according to Eq. (5).

The procedure described above can be generalized to
higher-order partitions, thereby potentially producing an
even richer dependency model. That is, rather than working
with pair-wise relations, one could instead consider grouping
an arbitrary number D of consecutive MAP variables. This
would produce D different compoundmodels,which, in turn,
would induce a (D − 1)-order Markov chain over the origi-
nal replications of the MAP variable. Again, an approximate
MAP sequence can be obtained using the Viterbi algorithm
with this higher-order Markov chain.

Algorithm 1 summarizes our proposal for MAP inference
over DBNs.

Dynamic_MAP(B,o1:T ,D)
Input: A dynamic BN B with variable of interest Y1:T , a

sequence of observations o1:T and the number D of
compound models to use.

Result: An approximate MAP estimate.
1 Unroll B over time steps 1, . . . , T .
2 for i ← 1 to D do
3 Compute a compound model Mi as described in Sect. 3.1.
4 Compute the posterior distribution

P̃i (Y1, . . . , YT |o1:T)

as in Equation (3) using compound model Mi .
5 end
6 Compute

P∗(Y1, . . . , YT |o1:T) = 1

D

D∑

i=1

P̃i (Y1, . . . , YT |o1:T).

7 Obtain a MAP configuration y∗
1:T from P∗(Y1, . . . , YT |o1:T)

using the Viterbi algorithm.
8 return y∗

1:T
Algorithm 1: The dynamic MAP algorithm.

4 Experimental evaluation

In order to evaluate our proposal, we have conducted a series
of experiments in two example models; each one is specified
by a DBN, whose structure is in accordance with the general
model structure introduced in Fig. 1.

123

138 Prog Artif Intell (2017) 6:133–144

Season

Temperature

Weather phenomenon

Humidity

Temperature sensor Humidity sensor

Season

Temperature

Weather phenomenon

Humidity

Temperature sensor Humidity sensor

Fig. 4 Sample two-time slice DBN for detecting season change

Personal Finance

Unexpected Event

Global Expenses

Global Income

Entitlement

Entity Expenses
Entity Income

Personal Finance

Unexpected Event

Global Expenses

Global Income

Entitlement

Entity Expenses
Entity Income

Fig. 5 Sample two-time slice DBN for detecting change in personal finances

The first model detects seasonal changes based on mea-
surements of temperature andhumidity. It includes the season
(the class variable), the presence of a special weather phe-
nomenon (such as the sudden appearance of a heat/cold
front), the true temperature and humidity values as hidden
variables, and noisy sensor readings of the temperature and
humidity as the observable variables. In accordance with
the general model structure, only the hidden variables and
the class explicitly model dynamics; notice however that the
variable related to weather phenomenons is not temporally
connected over time. A two-time slice representation of the
model is illustrated in Fig. 4.

The second model monitors the financial status of a bank
client in order to identify periods of time where the client
is having financial difficulties. One could envision that a
bankwouldbe interested, for instance, in gathering additional
information about the situation in order to decrease the risk
of client defaulting, or in offering special products that could
help the client recover from the situation (e.g., debt refinanc-
ing). Figure 5 provides an illustration of the model structure.
The DBN has the financial situation of the client as the class

variable; the overall income and expense level (including all
other financial obligations or assets), the appearance of an
unexpected event that could affect the personal situation, and
the engagement level of the client with respect to the bank
as unobserved variables; and her/his expenses and incomes
at this specific bank as observable variables.

Both models involve discrete and continuous (Gaussian)
variables. The hybrid nature of the models together with the
fact that some of the variables are unobserved precludes exact
marginal inference in general. For instance, marginalizing
out variable weather phenomenon from the season change
model yields a mixture of two CLG models. In general, the
number of mixture terms grows exponentially in the number
of hidden (unobserved) discrete variables.

For the analysis of the proposed framework, we have
considered two instantiations that differ wrt. the underlying
belief update algorithm, VMP or IS, when computing the
posterior distribution in Step 4 of Algorithm 1. The imple-
mentation has been designed taking scalability into account
from two perspectives. On the one hand, the implementa-
tion is scalable in terms of the number of compound models

123

Prog Artif Intell (2017) 6:133–144 139

used. It can be seen how Algorithm 1 follows a Map/Reduce
scheme where the Map phase corresponds to Steps 3 and 4
and the Reduce phase corresponds to Step 6. Additionally,
the implementation takes advantage of the scalability of the
implementation of the IS method provided by the AMIDST
Toolbox [13,17], on top ofwhich our implementation is built.

We compare the results with two baseline models: Firstly,
for short sequences (up to approximately 10 time steps), the
exact solution of the dynamic MAP problem can be obtained
using the HUGIN system [9]. HUGIN does exact inference
in the unrolled network, and the approximateMAP sequence
provided by our scheme can therefore be compared to the
correct MAP sequence whenever HUGIN is able to provide
a result. Secondly, we utilize a simple baseline akin to greedy
search:We start by doing standard belief update in the model
with evidence xE , then locate theMAPvariablewith smallest
entropy, and select its most probable value. This selection
is considered new evidence, so we do a new belief update,
and keep selecting configurations for the variables of interest
until all of them are instantiated. The selected configuration
is the approximate MAP sequence. This approach is called
“iterative,” and it canbe runwith anyof the inferencemethods
(HUGIN, when available, IS, or VMP). This procedure is
similar to the so-called sequential initialization in [14].

Several experiments have been performed to evaluate the
algorithm along two axes: First, we consider the ability of
the proposed method to recover the MAP sequence given the
evidence; second, we analyze the computational complexity
and scalability of the method.We do this by randomly gener-
ating problems from the twomodels as follows: Themodel is
unrolled to contain T time steps, andall values of all variables
are simulated using forward sampling. The sampled values
for the observable variables are retained; these values define
the evidence xE which is provided to the algorithms. The
procedure is repeated a number of times to provide robust
results.

It should be mentioned here that evaluating the method’s
ability to recover the MAP sequence can be problematic.
For short sequences, where the HUGIN system is able to
calculate the correct MAP sequence and the likelihood of a
particular sequence can be precisely estimated, we compute
for eachmethod the likelihood ratio with respect to the actual
MAP sequence given by HUGIN. In addition, we compare
the correct and proposed sequences (both wrt. an exact match
and the average precision for each model, using several met-
rics). One possibility is measuring the precision as 1 minus
the normalized Hamming distance between the sequences,
so that 1 is a perfect match. We will refer to this metric as
the Hamming-based accuracy.

Instead of comparing the sequences element-wise, one can
analogously compare themusingmovingwindows, i.e., com-
paring subsequences of length s ≥ 1, leading to what we
will call s-tuple Hamming-based accuracy. When s is equal

to the sequence length T , this boils down to the 0–1 accu-
racy (1 if the two sequences fully match, 0 otherwise). For
longer sequences, however, we do not have access to the
correct MAP sequence. Furthermore, we also do not have
access to the probability p(x∗

I |xE) of a given sequence x∗
I ,

as calculating this probability in general involves working
withmixturemodelswhere the number of components grows
exponentially inT (due to the hiddenvariables in themodels).
Therefore, we use the sampled sequences restricted to the
MAP variables as they were the MAP sequences and calcu-
late the previously introduced accuracy metrics based on the
Hamming distance between those series and the recovered
approximate MAP sequences. It is important to notice that
in the case of short sequences, the most meaningful metric is
the likelihood ratio, where the density of each approximated
MAP sequence is compared to that of the exact one. How-
ever, in the experiments corresponding to longer sequences,
where the comparison is based on the sampled sequence, the
precision values may be less meaningful and should only
be considered for relative comparison between the different
algorithms.

For the first experiment, we generated data as described
above. Then, the dynamic MAP algorithm was run with
different group configurations (grouping 2, 3, or 4 consec-
utive MAP variable replications), and the estimated MAP
sequence was obtained for each of them. Also, the marginal
MAP approach (with no grouping of MAP variable repli-
cations, called ungrouped in the tables and figures) and the
entropy-based baseline (iterative in the tables) have been run
for comparison.

For short sequences (7 or 9 time steps, depending on the
model), 50 different repetitions of the experiment were car-
ried out and the average evaluation metrics precision values
(described above) for each model appear in Tables 1 and 2.
Here, the sequences are compared with the originally sam-
pled sequence with different metrics, and the correct MAP
sequence given by HUGIN in terms of the likelihood ratio
(see last row of each model). According to these results, the
metrics that are more correlated with the likelihood ratio are
theHamming-based and the 3-tuple Hamming-based accura-
cies, as high values of themcorrespond also to high likelihood
ratios. Thus, in caseswhere the correctMAPsequence cannot
be found, these metrics (wrt. the sampled sequence) might
provide an approximate manner of evaluating the precision.
In addition, the 0–1 distance does not match well with our
purpose of detecting time periods of special relevance (in
the examples, weather phenomena or financial difficulties),
since the aim is not recovering the whole exact sequence but
detecting some specific instants where changes happen.

The results in Tables 1 and 2 show how IS is more accu-
rate than VMP for the financial situation model, while VMP
is the most accurate for the season changemodel.We conjec-
ture that this difference is caused by the presence of extreme

123

140 Prog Artif Intell (2017) 6:133–144

Table 1 Analysis of the precision of the approximate dynamic MAP
methods in short sequences, compared to the originally sampled
sequence

Version Season change model (9 time steps)

IS VMP HUGIN

Hamming-based accuracy

Iterative 0.715 0.777 0.793

Ungrouped 0.680 0.780 0.793(*)

2-Grouped 0.713 0.787

3-Grouped 0.753 0.782

4-Grouped 0.731 0.784

3-Tuples Hamming-based accuracy

Iterative 0.491 0.577 0.597

Ungrouped 0.400 0.574 0.597(*)

2-Grouped 0.440 0.583

3-Grouped 0.528 0.580

4-Grouped 0.494 0.583

0–1 distance accuracy

Iterative 0.26 0.24 0.30

Ungrouped 0.10 0.24 0.30(*)

2-Grouped 0.14 0.24

3-Grouped 0.22 0.24

4-Grouped 0.18 0.24

Likelihood ratio (wrt. the correct MAP seq.)

Iterative 0.752 0.933 1.000

Ungrouped 0.351 0.948 1.000(*)

2-Grouped 0.459 0.948

3-Grouped 0.612 0.948

4-Grouped 0.659 0.948

Season change model
Numbers marked with (*) correspond to the correct MAP sequence
given by HUGIN, i.e., equivalent to 9-Grouped, since T = 9

probabilities in the season changemodel, which increases the
variability of the sampling process carried out by IS making
it more prone to error. A detailed discussion on the sensitivity
of IS to extreme probabilities can be found in [4].

For longer sequences (50, 100 and 200 time steps), each
experiment was replicated 100 times and the average metrics
are presented in Table 3. We could not obtain exact results
using HUGIN for these sequences. This is due to the com-
plexity of the resulting networks after unrolling. Recall that
the number of variables in the unrolled network is equal to
the number of variables in a time slice times the number of
time steps. It means that a sequence of length 7 on the sea-
son change model results in an unrolled network with 42
variables, while a sequence of 200 time steps contains 1,200
variables. In order to obtain comparable results in terms of
accuracy, the number of samples used by IS was increased
according to model complexity and sequence length: For the

Table 2 Analysis of the precision of the approximate dynamic MAP
methods in short sequences, compared to the originally sampled
sequence

Version Financial situation model (7 time steps)

IS VMP HUGIN

Hamming-based accuracy

Iterative 0.811 0.651 0.866

Ungrouped 0.849 0.660 0.869(*)

2-Grouped 0.869 0.665

3-Grouped 0.860 0.671

4-Grouped 0.857 0.671

3-Tuples Hamming-based accuracy

Iterative 0.652 0.52 0.772

Ungrouped 0.708 0.532 0.768(*)

2-Grouped 0.764 0.544

3-Grouped 0.740 0.548

4-Grouped 0.740 0.548

0–1 distance accuracy

Iterative 0.40 0.24 0.58

Ungrouped 0.48 0.24 0.58(*)

2-Grouped 0.60 0.26

3-Grouped 0.58 0.26

4-Grouped 0.54 0.26

Likelihood ratio (wrt. the correct MAP seq.)

Iterative 0.697 0.569 0.998

Ungrouped 0.811 0.569 1.000(*)

2-Grouped 0.878 0.586

3-Grouped 0.909 0.586

4-Grouped 0.952 0.586

Financial situation model
Numbers marked with (*) correspond to the correct MAP sequence
given by HUGIN, i.e., equivalent to 7-Grouped, since T = 7

season model with 9 time steps and the financial situation
model with 7 time steps, 10,000 samples were used. For
longer sequences, the same number of samples was used
for both models: For 50 time steps, 20,000 samples; for 100
time steps, 50,000 samples; and for 200 time steps, 100,000
samples were simulated.

Table 4 reports run times of each method for short
sequences, as well as HUGIN’s [9] run time, showing that
our approach is several orders of magnitude quicker. The
experiments were run on a dual-processor AMD Opteron
2.8GHz server with 32 cores and 64GB of RAM, running
Linux Ubuntu 14.04.1 LTS.

For long sequences (50, 100 and 200 time steps), we com-
pare the run time of VMP and IS for the ungrouped and
the 4-grouped versions on the season change model (simi-
lar results are obtained for the financial model). Results are
reported in Fig. 6, which also plots the run time of IS when

123

Prog Artif Intell (2017) 6:133–144 141

Table 3 Mean precision of the approximate dynamic MAP sequence for longer sequences, compared to the originally sampled sequence

Version Season change model Financial situation model

Length 50 Length 100 Length 200 Length 50 Length 100 Length 200

IS VMP IS VMP IS VMP IS VMP IS VMP IS VMP

Hamming-based accuracy

Iterative 0.760 0.614 0.713 0.660 – – 0.785 0.745 0.844 0.795 – –

Ungrouped 0.797 0.617 0.889 0.679 0.862 0.680 0.885 0.757 0.951 0.816 0.905 0.795

2-Grouped 0.826 0.700 0.914 0.747 0.868 0.742 0.893 0.818 0.943 0.839 0.907 0.824

3-Grouped 0.845 0.735 0.909 0.764 0.873 0.757 0.898 0.835 0.946 0.855 0.912 0.843

4-Grouped 0.847 0.792 0.905 0.791 0.878 0.787 0.898 0.859 0.943 0.896 0.912 0.877

3-Tuples Hamming-based accuracy

Iterative 0.716 0.505 0.699 0.575 – – 0.752 0.713 0.832 0.785 – –

Ungrouped 0.735 0.509 0.867 0.594 0.842 0.600 0.838 0.724 0.942 0.807 0.891 0.784

2-Grouped 0.766 0.620 0.893 0.693 0.847 0.689 0.855 0.786 0.935 0.829 0.892 0.814

3-Grouped 0.800 0.668 0.892 0.715 0.857 0.708 0.868 0.805 0.939 0.845 0.901 0.831

4-Grouped 0.806 0.730 0.890 0.747 0.864 0.744 0.868 0.829 0.935 0.886 0.903 0.867

0–1 distance accuracy

Iterative 0.11 0.10 0.24 0.07 – – 0.27 0.20 0.4 0.16 – –

Ungrouped 0.11 0.10 0.21 0.07 0.07 0.0 0.34 0.22 0.63 0.18 0.25 0.05

2-Grouped 0.17 0.10 0.23 0.07 0.11 0.0 0.38 0.25 0.61 0.18 0.23 0.08

3-Grouped 0.18 0.13 0.24 0.08 0.11 0.0 0.45 0.28 0.64 0.22 0.29 0.09

4-Grouped 0.22 0.14 0.26 0.08 0.10 0.0 0.43 0.30 0.67 0.24 0.31 0.10

parallelizing the random sampling generation step (the most
time consuming part), using the multi-core implementation
provided by the AMIDST toolbox [13]. We show results
using 1, 2, 4, 8, 16 or 32 cores. Figure 6 also details the speed-
up factor (understood as the run time using 1 core divided by
the run time using more cores) for IS. All methods were run
50 times with each number of cores, and the run time was
measured covering the whole procedure: merging of vari-
ables, belief update on each partition, and final computation
of the MAP sequence.

We can see that VMP is much quicker than IS on long
sequences when using a single CPU. However, IS is able
to exploit multi-core CPUs and reduces its run time dra-
matically, specially for the longest sequences (it achieves
a speed-up factor of 25 for 32 cores on 200-size sequences).
As a result, when using 32 cores, the computation time of
IS is quite close to the one obtained with VMP. Notice that
we have used a sequential implementation of VMP, while
the implementation of IS provided by the AMIDST Toolbox
is able to take advantage of the existence of multiple com-
puting units by distributing the sample generation process
among them [17]. In the experiments reported here, we have
not analyzed the scalability in terms of distributing the cal-
culations with the different compound models, as its number
is typically low.

Table 4 Dynamic MAP run times on short sequences compared to
HUGIN

Version Average execution time (s)

IS VMP HUGIN

Season change model (sequences of length 9)

Ungrouped 0.0797 0.0332 171.52

2-Grouped 0.1652 0.0606

3-Grouped 0.1748 0.1136

4-Grouped 0.2352 0.2433

Financial situation model (sequences of length 7)

Ungrouped 0.0682 0.0230 28.17

2-Grouped 0.1396 0.0490

3-Grouped 0.1673 0.0697

4-Grouped 0.2095 0.1027

From the results obtained for short sequences (precisions
in Tables 1 and 2, run times in Table 4), we conclude that
an approximation to the dynamic MAP sequence can be
obtained using the proposed algorithm. Furthermore, the
results show that increasing the degree of the compound
variables always increases the run time and typically the
precision goes up as well. These results are to be expected,
since the model with a single compound variable consisting
of D = T variables recaptures the full MAP problem. On

123

142 Prog Artif Intell (2017) 6:133–144

Fig. 6 Mean run times to
obtain estimated MAP
sequences of length 50, 100 and
200, versus the number of cores
employed

123

Prog Artif Intell (2017) 6:133–144 143

the other hand, choosing D = 1 corresponds to marginal
MAP. The corresponding results are denoted “Ungrouped”
in the tables. Using degree up to D = 4, we find that the
calculations are much faster than HUGIN’s algorithm.

These results are consistent with those for longer sequen-
ces, see Table 3. However, the run time and space complexity
of HUGIN’s algorithm prevent us from comparing these
results to the exact MAP sequences, and the results are there-
fore harder to interpret. In particular, Table 3 does not show
a significant increase in the accuracy for IS when the vari-
ables are compounded, while the improvements are easily
recognizable for VMP.

5 Conclusion

We have proposed a technique for solving the MAP problem
in hybrid DBNs. As this problem is NPPP complete in gen-
eral, we resort to an approximate technique. The main idea
is to translate the original MAP inference problem into the
simpler problem of performing belief update in auxiliary net-
works, where the MAP variables are merged into compound
nodes. The result of these belief updates is combined using
their centroid distribution, and the Viterbi algorithm is then
run to generate the final result.

We have first tested our approach on short sequences to
be able to compare the obtained results to those generated
by the state-of-the-art HUGIN software. This gave promis-
ing results. Our proposal is orders of magnitude faster than
HUGIN and is mostly able to find similar sequences in terms
of distance and likelihood ratio. The results also indicated
that using more expressive compound variables resulted in
improved accuracy and that the proposal improves the naïve
marginalMAPbaseline aswell as the entropy-basedbaseline.

For larger models, the time and memory requirements
of HUGIN made the comparison between our approximate
scheme and the tool impractical. Additionally, calculating the
exact log-probability of the generated sequences was infeasi-
ble. Therefore, we compared our models using metrics based
on the Hamming distance between the generated sequence
and the sampled one as a proxy. When the correct MAP
sequence can be calculated, these metrics correlate well with
the respective likelihood ratio. The results are still promising,
but the lack of a well-defined gold-standard solution leaves
them difficult to interpret.

We considered the parallelization of the sample generation
step of IS. By doing that, we showed that IS and VMP have
similar computational time complexity in practice. Overall,
we found that our proposal provides useful sequences in short
time.

Acknowledgements This work was partly carried out as part of the
AMIDST project. AMIDST has received funding from the European
Union’s Seventh Framework Programme for research, technological
development and demonstration under Grant Agreement No 619209.
This research has been partly funded by the Spanish Ministry of Econ-
omy andCompetitiveness, throughProject TIN2013-46638-C3-1-P and
by ERDF funds.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. de Campos, C.P.: New complexity results for MAP in Bayesian
networks. In: Walsh, T. (ed.) Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence, pp. 2100–
2106 (2011)

2. de Campos, L.M., Gámez, J.A., Moral, S.: Partial abductive infer-
ence in Bayesian belief networks by simulated annealing. Int. J.
Approx. Reason. 27, 263–283 (2001)

3. Dean, T., Kanazawa, K.: A model for reasoning about persistence
and causation. Comput. Intell. 5(2), 142–150 (1989)

4. Fernández, A., Rumí, R., Salmerón, A.: Answering queries in
hybrid Bayesian networks using importance sampling. Decis. Sup-
port Syst. 53, 580–590 (2012)

5. Forney, G.: The Viterbi algorithm. Proc. IEEE 61, 268–278 (1973)
6. Fu, Q., Wang, H., Banerjee, A.: Bethe-ADMM for tree decompo-

sition based parallel MAP inference. In: Proceedings of the 29th
Conference on Uncertainty in Artificial Intelligence (UAI2013),
pp. 222–231 (2013)

7. Fung, R., Chang, K.C.: Weighting and integrating evidence for
stochastic simulation in Bayesian networks. In: Henrion, M.,
Shachter, R., Kanal, L., Lemmer, J. (eds.) Uncertainty in Artifi-
cial Intelligence, vol. 5, pp. 209–220. North-Holland, Amsterdam
(1990)

8. Hammersley, J., Handscomb, D.: Monte Carlo Methods. Chapman
& Hall, Boca Raton (1964)

9. Jensen, F.: Hugin API-referencemanual, version 8.3. Hugin Expert
A/S, Aalborg (2016)

10. Lauritzen, S.L., Jensen, F.: Stable local computation with condi-
tional Gaussian distributions. Stat. Comput. 11(2), 191–203 (2001)

11. Lauritzen, S.L., Wermuth, N.: Graphical models for associations
between variables, some of which are qualitative and some quan-
titative. Ann. Stat. 17, 31–57 (1989)

12. Liu, Q., Ihler, A.T.: Distributed estimation, information loss and
exponential families. In: Advances in Neural Information Process-
ing Systems, pp. 1098–1106 (2014)

13. Masegosa, A.R., Martínez, A.M., Borchani, H., Ramos-López,
D., Nielsen, T.D., Langseth, H., Salmerón, A., Madsen, A.L.:
AMIDST: analysis of massive data streams. In: Proceedings of the
27th Benelux Conference on Artificial Intelligence (BNAIC 2015)
(2015)

14. Park, J., Darwiche, A.: Complexity results and approximation
strategies for MAP explanations. J. Artif. Intell. Res. 21, 101–133
(2004)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

144 Prog Artif Intell (2017) 6:133–144

15. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann Publishers Inc., San
Mateo (1988)

16. Roth, D.: On the hardness of approximate reasoning. Artif. Intell.
82, 273–302 (1996)

17. Salmerón, A., Ramos-López, D., Borchani, H., Masegosa, A.R.,
Fernández, A., Langseth, H., Madsen, A.L., Nielsen, T.D.: Paral-
lel importance sampling in conditional linear Gaussian networks.
CAEPIA’2015. Lect. Notes Artif. Intell. 9422, 36–46 (2015)

18. Winn, J., Bishop, C.: Variational message passing. J. Mach. Learn.
Res. 6, 661–694 (2005)

123

	MAP inference in dynamic hybrid Bayesian networks
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The MAP inference problem

	3 A MAP algorithm for DBNs
	3.1 Step 1: Compound model specification
	3.2 Step 2: Model combination and MAP inference

	4 Experimental evaluation
	5 Conclusion
	Acknowledgements
	References

