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Abstract

In this paper we propose a framework, called mixtures of truncated basis functions
(MoTBFs), for representing general hybrid Bayesian networks. The proposed framework
generalizes both the mixture of truncated exponentials (MTEs) framework and the mix-
ture of polynomials (MoPs) framework. Similar to MTEs and MoPs, MoTBFs are defined
so that the potentials are closed under combination and marginalization, which ensures
that inference in MoTBF networks can be performed efficiently using the Shafer-Shenoy
architecture.

Based on a generalized Fourier series approximation, we devise a method for efficiently
approximating an arbitrary density function using the MoTBF framework. The transla-
tion method is more flexible than existing MTE or MoP-based methods, and it supports
an online/anytime tradeoff between the accuracy and the complexity of the approxima-
tion. Experimental results show that the approximations obtained are either comparable
or significantly better than the approximations obtained using existing methods.

1 Introduction

Domains involving both discrete and continuous variables represent a challenge to Bayesian
networks (BNs). The main difficulty is to find a representation of the joint distribution of
the continuous and discrete variables that supports an efficient implementation of the usual
inference operations over Bayesian networks (like restriction, combination, and marginaliza-
tion, which are found in junction tree-based algorithms for exact inference). If all variables in
the domain are discrete, their distributions can be represented by tables of probability values.
This representation is very favorable from an operational point of view, as all three operations
can be performed efficiently on this data structure. Furthermore, the operations are closed for
probability tables, meaning that all the operations required during the inference process will
always result in data that can conveniently be stored in probability tables. Unfortunately,
inference becomes more complex when the domain involves continuous variables. From an
implementation point of view we have no guarantee that a single data structure can be used
to represent all intermediate results, but a more fundamental problem is that the results may
no longer be available analytically, making exact inference unobtainable.

There are a number of popular strategies to overcome this problem: Firstly, one may
choose to carefully construct the model so that exact inference algorithms can be applied.
Computationally, this requires that the joint distribution over the variables of the domain is
from a distribution-class that is closed under combination and marginalization. One example
is the so-called Conditional Linear Gaussian (CLG) model (Lauritzen, 1992), where the joint
distribution of the continuous variables conditioned on the discrete variables is assumed to



be a multivariate Gaussian. This puts some restrictions on the topology of the network.
For example, discrete variables can only have discrete variables as parents, and continuous
parents are to be seen as partial regression coefficients for their children. A second approach
for addressing the inference problem is to apply approximate inference, for example using the
Gibbs sampler (Geman and Geman, 1984; Hrycej, 1990). Next, variational techniques (Jordan
et al., 1999) have recently gained much attention from the research community. Finally, the
approach we will follow in this paper is to “translate” the original model into an approzimate
model, for which exact inference algorithms can be applied. The most common way of making
this translation is by performing a discretization of the continuous variables (Friedman and
Goldszmidt, 1996; Kozlov and Koller, 1997). Mathematically, this amounts to approximating
the density function of every continuous variable by a step-function, which in turn implies
that we can represent any conditional or joint distribution using a table. Unfortunately,
discretization of variables can lead to a dramatic loss in precision, which is one of the reasons
why other approaches have received much attention over the last few years. One of these
alternatives is the miztures of truncated exponentials (MTE) framework (Moral et al., 2001).
This model can be seen as a generalization of discretization, since the density function is
approximated by a sum of truncated exponential functions instead of a constant. The MTE
framework therefore achieves more accurate approximations of the true density than standard
discretization, even when using a smaller number of intervals and parameters. One of the
advantages of this representation is that MTE distributions allow discrete and continuous
variables to be treated in a uniform fashion, and since the family of MTEs is closed under
combination and marginalization, inference in an MTE network can be performed efficiently
using the Shafer-Shenoy architecture (Shafer and Shenoy, 1990; Cobb and Shenoy, 2006).

Cobb et al. (2006) empirically showed that many univariate distributions can be approxi-
mated accurately by means of an MTE distribution, and they argue that this makes the MTE
framework an attractive general-purpose framework for Bayesian network modelling. Their
main contribution is a library of ready-made MTE approximations for standard univariate
densities. The MTE approximations were chosen to fit the original distributions with some
accuracy, but, unfortunately, the general procedure does not include methods for i) finding
an approximation with the quality requirements set at run-time or ii) easily obtaining ap-
proximations of other densities. Furthermore, the work by Cobb et al. (2006) has not been
extended to handle conditional distributions nor distributions over more than one variable.

In this paper we propose a new procedure for translating a hybrid Bayesian network into
an approximate model that supports exact inference. The theory we develop has a broader
applicability than just MTEs. The procedure is therefore embedded in a framework called
Miztures of Truncated Basis Functions (MoTBFSs) that includes MTEs and the recently pro-
posed Mizture of Polynomials (MoP) framework (Shenoy and West, 2011) as special cases. We
show how any hybrid BN can be efficiently translated into an MoTBF model. We propose an
anytime algorithm that iteratively refines the approximation, choosing the refinements greed-
ily, and which is able to meet arbitrary requirements regarding quality of the approximation.
The paper is concluded by a small experimental study, where we investigate the properties
of the approximations, and as a special case, show how our new approach outperforms the
library-results obtained by Cobb et al. (2006).



2 The MoTBF-framework

In this section we introduce our mixture of truncated basis functions framework for repre-
senting hybrid Bayesian networks. Before doing so, we will briefly consider the starting-point
for the framework, namely the mixtures of truncated exponentials framework (Moral et al.,
2001) and the mixture of polynomials framework (Shenoy and West, 2011).

2.1 Background

A mixture of truncated exponential function can be seen as a generalized form of discretiza-
tion, but instead of using a constant as approximation within each interval we use a linear
combination of exponential functions. More formally, an MTE potential is defined as follows:

Definition 1. Let X be a mized n-dimensional random vector. Let Y = (Yi,...,Yy) and
Z=(Zy,...,Z.) be the discrete and continuous parts of X respectively, with ¢c+d =n. We
say that a function f : Qx ]R(J)r is a mixture of truncated exponentials potential (MTE
potential) if one of the following two conditions holds:

1. f can be written as

k c
f@) = fy.2) = aoy + Y aiyexpd S 00z b, (1)

=1 Jj=1

Jor all x € Qx, where a;y, i = 0,...,k and bz(]’;’ i=1,...,k, 5 =1,...,c are real
numbers.

2. There is a partition Iy, ..., Ty of Qx for which the domain of the continuous variables,
Oy, is divided into hyper-cubes and such that f is defined as

where each f;, i =1,...,m can be written in the form of Equation (1).
An MTE potential is said to be a density if ZyEQY sz d(y,z)dz = 1.

From the definition of an MTE potential, we see that the class of MTE functions is closed
under combination and marginalization. Thus, it supports exact inference using the Shafer-
Shenoy propagation architecture. Unfortunately, MTEs are not closed under division, which
also implies that the specification of conditional MTE densities may be problematic. To be
more specific, consider an MTE potential ¢(z1, z2). In order for ¢ to be a conditional density
for zy given zo we should have that le ¢(z1,22)dz1 = 1 for each zy € sz. When fixing
one of the elements of z5, which we denote z, this requirement corresponds to the constraint

k
(% . P(z1,22)dz1 = % . a0+;aieXp(bz'Tzl+cgz2)dzl

k
= Zaicgz)exp(cgzg)/ exp(b; z1)dz; = 0.
i=1

zZ1



Thus, we have uncountable many constraints, but only O(k) parameters to satisfy the con-
straints. For this to hold we set ¢; = 0, which means that the conditioning variables only
affect the density through the hyper-cubes over which the MTE is defined. Thus, for two sets
Z1 and Z5 of continuous variables with Z, partitioned into the hyper-cubes Z1,...,Z,,,
we define a conditional MTE density f(z1]|z2) as (for ease of presentation we disregard all
discrete variables and possible partitionings of €2 Zl):

k

f(z1]z2) = aoe + Z a;pexp(b; yz1), (2)
=1

for z9 € Zy.
Example 1. The following is an example (Fernandez et al., 2010) of a conditional MTE den-

sity following the definition above. Observe that the conditioning variable Zo only influences
the conditional density through the hyper-cubes.

1.26 — 1.15¢0:006=1 if 0 < 21 <13, 0.4 < 29 < 5;
Flea]za) = 1.18 — 1.16¢0:000221 if13 < 21 <43, 04 < 25 < 5;

0.07 — 0.03e%471 + 0.0001%0900421 40 < 2 < 5, 5 < 29 < 19;

—0.99 + 1.03¢0-00121 if 5< 2 <43, 5 < 29 < 19.

Shenoy and West (2011) propose the mixture of polynomials potential as an alternative
to the MTE potential. For an MoP potential, the core function is a polynomial whereas the
MTE potential utilize an exponential. Hence, the univariate MoP potential for a continuous
variable z equals f(z) = age + Zle aig 2* for z € Iy, and for a multivariate continuous
vector z = (z1,...,2.)", the potential takes on the form f(z) = H§:1 {aé{z + Ele ag’yg z;}
for z € Z,.

One can easily translate any distribution into an MoP using a Taylor series expansion
around a given point zg, for instance the mode of the distribution or the midpoint of a hyper
cube (Shenoy and West, 2011). While appealing in its simplicity, the approximation strategy
gives no guarantees about the quality of the approximation. In fact, if z is “far” from zg, the
approximation may require many terms to obtain a reasonable quality. Furthermore, there is
no guarantee that a translation defined using a Taylor series is strictly positive.

In contrast to MTEs, the MoP framework does not directly define conditional distri-
butions. Instead, the MoP framework defines joint distributions as above, and calculates
conditional distributions as fractions of joint distributions. For instance, the conditional dis-
tribution f(z1]|z2) will be based on the fraction f(z1,22)/f(22). As the set of polynomials
is not closed under division, the fraction is not necessarily an MoP, and situation-specific
approximations must be conducted to find an MoP-approximation to the conditional distri-
bution.

2.2 The MoTBF model

When comparing the MTE and the MoP models, one can see that the potentials share the
same structure but differ in the type of core function being used. Based on this observation we
propose a generalization of these frameworks, where we instead of the exponential /polynomial
functions use the abstract notation of basis functions ¥(-).



Definition 2. Let X be a mized n-dimensional random vector. Let Y = (Y1,...,Yy) and
Z = (Z,...,%Z.) be the discrete and continuous parts of X, respectively, with ¢+ d =mn. Let
U = {1/)@-(;)}2‘?20 with ¥; : R — R define a collection of real basis functions. We say that a

function f: Qx — RY is a mixture of truncated basis functions (MoTBF) potential to level
k wrt. W if one of the following two conditions holds:

1. f can be written as

k ¢
fx)=fy,2) =Y []av i (z). (3)
i=0 j=1
where agj,!)/ are real numbers.
2. There is a partition Iy, ..., Ty of Qx for which the domain of the continuous variables,

Oz, is divided into hyper-cubes and such that f is defined as
f(x) = fo(x) if el
where each fo, £ =1,...,m can be written in the form of Equation (3).
An MoTBF potential is said to be a density if Zyeﬂy sz fly,z)dz =1.

As a direct generalization of the MTE framework, the MoTBF definition of a conditional
distribution mirrors that of the MTEs. Thus, the influence a set of continuous parent variables
Z have on their child variable X is encoded only through the partitioning of {27 into hyper-
cubes, and not directly in the functional form of fy(x|z) inside each hyper-cube Z, (confer
also Equation (2)).

We will make some assumptions regarding the properties of the basis functions, which, as
we shall discuss in Section 3.2, ensure that MoTBF approximations can be made arbitrarily
good; these assumptions also help ensure that an MoTBF potential is closed under combina-
tion and marginalization. Let Q be the set of all linear combinations of the members of ¥,
i.e., the set of all functions of the type > 2, ;1; for real constants c;. Then, ¥ is said to
define a set of legal basis functions if the following conditions hold:

1. g is constant in its argument.

2. f€Q,9eQ = (f-g9) €Q.

3. For any pair of real numbers s and ¢, there exists a function f € Q such that f(s) # f(¢).

In this paper we shall only consider legal sets of basis functions unless explicitly stated oth-
erwise.

Example 2. If we define y;(x) = ' for i = 0,1,..., then Q corresponds to the set of
polynomials, and {1;}5°, thus trivially fulfills the requirements for being a legal set of basis
functions. Now, Definition 2 equals the MoP model for univariate distributions. For mul-
tivariate distributions the MoP and MoTBF frameworks are slightly different, as the MoP
framework only indirectly defines the conditional distributions that the MoTBF framework
represents explicitly.



Neat, by choosing V(z) = {1,exp(—x),exp(z),exp(—2x),exp(2z),...}, the MoTBF po-
tential equals the MTE potential of Definition 1. Again, it is trivial to verify that the set of
exponentials define a legal set of basis functions.

Finally, let ¥ = {1,log(x),log(2z),log(3x),...} be defined for x > 0. This is not a legal
set of basis functions, since Requirement 2 is not met.

As we see from the example above, both MTE potentials and MoP potentials relate to
MoTBF potentials, and the MoTBF's framework can therefore be seen as providing a unified
framework for both MTEs and MoPs. Furthermore, since the basis functions are closed under
combination and marginalization, then so are the MoTBF potentials. The MoTBF framework
therefore also supports exact inference in hybrid domains using Shenoy-Shafer propagation.

3 Approximating univariate distributions using MoTBF's

As opposed to the locally bounded Taylor-series expansions used for making MoP approxima-
tions, we will in the following develop a generalized Fourier-series expansion for the class of
MoTBFs. This expansion will provide a common framework for performing MTE and MoP
approximations, and it will alleviate the two most important short-comings of the Taylor-
series approach: the method will provide global error bounds for the MoTBF approximation,
and it will ensure that the MoTBF approximation is in fact a probability density. The former
property also implies that the approximations can be made arbitrarily tight, even if we do
not split the domain of the variable into intervals. It should be noted that we will amend the
generalized Fourier series expansion due to the requirement that the approximation should
be a proper density (in particular, it should be non-negative).

3.1 The geometry of approximations

Before we describe the method for finding MoTBF approximations, we will start by introduc-
ing the required notation by first considering approximations in the real vector-space R".
Assume we have a set of orthonormal basis vectors {e;}, where i = 0,...,n — 1. A set
of basis vectors is orthonormal if each vector is of length one and all vectors are pairwise
perpendicular. By letting (-,-) denote the inner product on R", i.e., (x,y) = "y, we have
that (e;,e;) =1fori=0,...,n—1and (e;,e;) = 0 for j # i. Based on the inner product we
define the norm ||-|| of a vector x as ||z|| = \/(x, x). If we want to approximate a vector f in
the span of the first basis vector, i.e., generate the approximation fo = aq €, it is well known
that ag should be chosen as the projection of f onto eg, i.e., }’0 = (eg, f) eo- This choice

ensures that of all vectors of the form ageg, f, is the one closest to f, where the distance

is measured by ||f — foll = \/ (f — fo. £ — fo). Similarly, say we want to approximate f in

the span of the first two basis vectors, f; = &geg + &; e;1. Since (eg,e;) = 0 the projection
along the first axis is not changed, a9 = a9, and we likewise choose &1 = (eq, f) for the
second basis vector. In general, the best projection using the first k& basis vector of R"
will be f, = Zfz_ol(ei,ﬁ e;, and the distance (or the error) between f, and f is then

f — }kH = \/Z?:_klu", e;)?. More generally, if h;, = Zf:_ol B; - e; for some fixed k < n, then
error(f, hy) = || f — hll = \/Z?:_ol (Bi — ci)” + || f = Fill?, where a; = (e;, f).




3.2 Approximations of functions

Although the concepts above are defined for approximations in real vector spaces, many of
them carry over to approximations in real function spaces. In this paper, we shall consider
the space L?[a,b] of quadratically integrable real functions over the interval Q = [a,b] with a
and b being finite, i.e., functions where

b
/ f(z)?dz < oco.

For two functions f(z) and g(z) defined on  C R, we define the inner product as

(f.9) = /Q f(x) g(z) d,

which together with L?[a, b] constitute a Hilbert space (see, e.g., Kreyzig (1978)). Clearly, all
bounded real functions on 2 C R are quadratically integrable, which e.g. include the Gaussian
function.

Given a set of orthonormal basis functions {¢;}re in L?[a,b], we can approximate f €
L?[a,b] using f = S.(f, &) - ¢;. This approximation is also known as a Generalized Fourier
Series approximation. The function f minimizes Jo(f(z) — f(x))? dz, and, in particular, by
using trigonometric basis functions we obtain the standard Fourier series.

For a set of functions {9y, },—, defined on © C R that is not orthonormal, say {1, exp(—z),
exp(z), exp(—2z),...} we can e.g. use the Gram—Schmidt process to obtain orthonormal
functions {¢y},— such that for all ¢ > 0 we have ¢; = Z;:O o i1 for some constants o ;.

If the functions U = {¢;.};~, are dense in the space of all quadratically integrable func-
tions, the generalized Fourier approximation can be made arbitrarily good. It is well-known
that this is the case for polynomials (Weierstrass, 1885), but it also holds for any set ¥ of
legal basis functions (Stone, 1937). As a consequence, we can obtain approximations that
are arbitrarily good even without splitting ) into sub-intervals. Furthermore, as a set of legal
basis functions is closed under combination and marginalization, the derived approximations
support inference in the Shenoy-Shafer architecture.

Example 3. Assume we want to approximate a Gaussian distribution function with expected

value p = 0 and standard deviation o = 0.386. The interval of interest is Q = [—1,1],
containing 99% of the probability mass. It is well known that the Legendre-polynomials are
orthonormal on the interval Q = [—1,1]. The unnormalized Legendre polynomial of order m,

P, (x), is defined by

1 dm
2m . ml da™
form=0,1,.... See Figure 1 for the first four Legendre polynomials.

Figure 2 (a) shows the approximation using only one (constant) function, i.e., f(x) =
(f,d0) ¢po(x). The approzimation procedure ensures that the probability mass of f is allocated
correctly (see also Section 3.3), but the approximation is obviously poor. Part (b) approzimates
the Gaussian using both a constant term and a linear term. The contribution from the linear
term vanishes, since the Gaussian pdf is an equal function whereas the linear function is odd,
meaning that their product is odd, and the integral becomes zero. This is the case for all

$2j+1(x), 7 =0,1,2,....

P (x) = (:172 - 1)m,



Figure 1: The first four Legendre polynomials on the interval Q = [—1,1].

Figure 2 (c) gives the approximation using three functions: f(m) = 222:0<f7 ¢i) di(x).
Note that since {¢g,p2) = 0 the probability mass of f is unchanged. Finally, Figure 2 (d)
shows an approrimation using the five first contributing functions:

4

Fa) = (f bi) d2ulw),

1=0

3.3 Ensuring that f is a density

So far, we have only chosen f to minimize Jo(f(2) — f(x))?dx. Next, we will turn to the
validity of the approximation. For f (x) defined on z € € to be a density, we must have both
that [ cQ f )dr = 1, and that f () > 0, Vx € Q. The former constraint is easily verified.
Remember that ¢o(z) is a constant, meaning that ag = (f, o) = ¢o - [, f(x) dx, and since
lloo]| = 1 we have that fmGQ apg¢o dx = 1. Furthermore, as (¢g, ¢;) = 0 for all j # 0, it follows
that fxEQ ¢j(z)dx = 0, for all j # 0, and the term containing ¢q is therefore the only term
in the mixture that contributes to the probability mass over Q.

For the latter requirement there are no equally simple results as f may be negative for
some z € (). An example of this problem is given in Figure 3, where the left hand side of the
figure gives an approximation to the X% distribution using polynomials up to degree eight.
However, when considering the approximation around z = 0 (the right panel) we see that the
approximation attains negative values.

One solution to this problem is to minimize the error between f and f under the constraint
that f(z) > 0,z € Q. From Section 3.1 we have that if hy,(z) = ZZ o ! o i (2) then the squared
error of the approximation is (error(f, hg))? = S50 ((f, ¢i) — i)+ 3252, (f, ¢i)%. The latter
sum depends only on the number of basis functions used in the approximation and not on
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Figure 2: The figure shows four approximations to the normal distribution with mean value
# = 0 and standard deviation ¢ = 0.386. The approximations are defined over the interval
Q=[-1,1].

the chosen coefficients «;. Hence, with a fixed number of basis functions we can focus on
minimizing the first term in the error:

k—1
Minimize ((f, ¢ — i)’
i=0
k—1
Subject to a;pi(x) > 0,2 € Q
i=0
Qo = <¢07 f>

This is a convex optimization problem, and can be solved using algorithms for semi-definite
programming (Vandenberghe and Boyd, 1996).

The optimization problem proposed above attempts to minimize the quadratic difference
between the true distribution f and the approximation f , and does not directly have a well-
founded probabilistic interpretation. A more common measure of the distance from f to f
is the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951).! Formally, the KL-

divergence is defined as
D(715) = [ steyioe (;Eg) do. (@)

There are many arguments for using this particular measurement for calculating the qual-
ity of the approximation, see Cover and Thomas (1991). One of them is the fact that the KL

IStrictly speaking the KL-divergence is not a distance measure, since it is neither symmetric nor does it
satisfy the triangle inequality.
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Figure 3: The x? distribution with 5 degrees of freedoms approximated by nine polynomials.
The actual pdf is given by the dashed line, and the approximation by the fat solid line. The
full density is given on the left-hand side of the figure, whereas the right-hand side shows the
results zoomed in at x = 0.

divergence bounds the maximum error in the assessed probability for any event E' (Whittaker,

1990, Proposition 4.3.7):
1 A
<50 (s@1 f@).

Similar results for the maximal error of the estimated conditional distribution are derived by
van Engelen (1997).
Another important property is that the KL divergence factorizes, so that for two random

vectors (X,Y), we have that D ( f(z,y) || f(z,y) ) = D (f@) || {(@) )+D ( fyle) | f(yle) ).

where the last term is defined as

. B o | LX)
D (sylo) | fwle) ) =Ex [ f, oot (f(.er))] |

This invites a divide-and-conquer type of strategy for finding good approximate distributions
f: One can look at one family at a time. From a computational point of view it is also
interesting to note that the KL divergence factorizes according to the BN structure, and can
therefore be calculated without expanding the full integral in Equation (4), see Cowell et al.
(1999, Chapter 6). Finally, Zeevi and Meir (1997, Lemma 3.3) showed that the KL-divergence
is related to the L2-error:

(x)dx — f(x)dx

Trek rek

sup
E

A\ 2
. error(f, f)
D(fl!f)éW- (5)

We can use this relation when finding MoTBF approximations. That is, instead of min-
imizing the L2-error (as in the optimization problem above), we can instead minimize the
upper bound of the KL divergence defined in Equation 5. The updated optimization problem
wrt. (&) therefore becomes:

=

Minimize ~-» ((f,¢:) — @)’
¢ =
k—1

Subject to Zaiqbi(iv) > &z el
i=0
Qg = <¢07 f>

10



Note that the updated problem is still convex, and can still be solved using semi-definite
programming.

4 Conditional Distributions

In the two sections below, we will consider translation methods for conditional distributions
of discrete and continuous variable, respectively. For ease of exposition, we shall disregard
any discrete parents of these variables, since any such variable will only serve to index the
distribution in question and the results therefore generalize immediately.

4.1 Discrete Conditional Distributions

Consider a discrete variable Y with continuous parents X. In order to translate the dis-
tribution f(Y]X) (e.g. a logistic or probit function), we will again pose the problem as a
convex optimization problem. As a simplifying assumption, we will for now assume that the
discrete variable is binary in which case we can find a representation f (Y =¢|X =) of
f(Y = ¢q|X = x) by solving the following optimization problem:

Minimize Y ((f,¢:) — o)’

Subject to Zai(bi(w) >0,xelyx

and using a suitable combination function for the continuous parent variables (e.g. with the
logistic function we have a weighted linear combination of the parent variables). Observe that
in this formulation of the problem we directly seek to minimize the L2-error.

When the discrete variable is non-binary (for example associated with a soft-max func-
tion), the optimization procedure needs to simultaneously consider all the states of the variable
in order to ensure that 3 f¥ =y X =x)=1,forall z € Qx.

Example 4. Figure 4 shows two MoTBF approrimations for the probit functions having
weights 1 and 3, respectively. The approximations are defined for the interval [—2.58,2.58]
using 5 and 10 polynomial basis functions. Observe that for a fized set of basis functions, the
quality of the approximation is very dependent on the weight being used.

The quality and the result of the approximation will depend on the hyper-cube {2 x- for
which the MoTBF is specified. One approach is to define 2 x so that it covers the interval
for which e < P(Y = 0|X =) < 1 — ¢, for some ¢ > 0. However, this approach does not
take the density of X into account and, in particular, {2 x- may therefore include regions with
very low probability mass. Instead we define € x- based on the density function for X s.t.
Q) x covers a certain amount of the probability mass of f(X). For instance, in the example
above we have assumed that X ~ N(0, 1) and define Qx = [a, b] such that P(X < a) = 0.005
and P(X < b) =0.995.

11



Figure 4: The first row shows MoTBF approximations for the probit function with weight 1
and offset 0 using 5 and 10 polynomial basis functions, respectively. The second row shows
MoTBF approximations for the probit function with weight 3 and offset 0, also using 5 and
10 polynomial basis functions.
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4.2 Continuous Conditional Distributions

In this section we shall consider methods for obtaining conditional MoTBF's densities for con-
tinuous variables, using the restricted type of MoTBFs where the conditioning variables only
interact with the conditional density through the hyper-cubes and not the specific numerical
values of the conditioning variables. With this constrained type of conditional MoTBF's, ap-
proximating a conditional density function reduces to finding a partitioning of the state space
of the conditioning variables and, for each of these partitions, i) selecting the number of basis
functions and #i) approximating the conditional density function by an MoTBF potential.

4.2.1 Finding an MoTBF approximation for a fixed partitioning

Consider a conditional density f(y|z) and assume that we have found a partitioning Z1,Zo,
..o, Iy of Qx. An immediate approach for finding an approximation for f(y|z € Z;) could
be to simply approximate f(y|xo) for some fixed g € Z; (e.g. chosen as the midpoint or
the mass-center in Z;). Unfortunately, using this approach we will often underestimate the
variance of f(ylx € I;). To illustrate the effect, consider the conditional linear Gaussian
model defined by X ~ AN (0,1) and Y ~ N(z,0.1). Suppose that we look for an MoTBF
approximation over the domain defined by Qx = [—2.58,2.58] and Qy = [—2.83,2.83], and
using a polynomial basis up to order 9. If f(y|x) is approximated by making a five interval
partitioning of Qx where we condition on the midpoints of these intervals, then we get the
marginal density f (y) shown in Figure 5(a) and the conditional density f (y|z) shown in
Figure 5(b).

15 25~

- =

15~

0.5-

-0.5+-
05

1.5+
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Figure 5: Figure (a) shows f(y) and f(y) for the Gaussian model defined by X ~ A(0,1)
and Y ~ N (z,0.1). The marginal density f (y) is obtained by approximating f(x) and f(y|z)
based on a polynomial basis up to order 9 and by using the midpoints of a five interval
partitioning of X when approximating f(y|z). Figure (b) shows f(y|z).

Alternatively we can look for an MoTBF's representation of f(y|x € Z;):

flz) ~ flylz € ;) = /w flx) f(elz € ),

where the integral can be approximated by > 7| f(y|z;) f(xi|x; € Z;) with samples @1, ...,z
from Z;. Using this approach for approximating the linear Gaussian model described above,
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we get the marginal density f(y) shown in Figure 6(a) and the conditional density f(y|z)
shown in Figure 6(b). This is the path we will pursue in the following,.

07 a-

0.6

Figure 6: Figure (a) shows f(y) and f(y) for the Gaussian model defined by X ~ A(0,1)
and Y ~ N (z,0.1). The marginal density f (y) is obtained by approximating f(x) and f(y|z)
based on a polynomial basis up to order 9, and by approximating f(y|z) by conditioning on
each of the five partitions on Qx. Figure (b) shows f(y|z).

Having decided what the conditional MoTBF potential should approximate, the next step
is to consider the trade-off between model complexity and model quality. In particular, we
calculate this as the decrease in KL divergence between the true model and the MoTBF
representation, when the MoTBF representation uses k + 1 instead of k basis functions for a
particular hyper-cube x € Z;. Let folylx € Z;) be the MoTBF representation of f(y|x € Z;)
using ¢ basis functions. Then, after some pencil-pushing, we find that the reduction in KL
divergence is given by

D(fufk)—D(fokH) = /y/wdjf(m,y)dmlog%dy

The calculation of the KL improvement involves a multivariate integral, which potentially
can be costly to evaluate. We therefore approximate f(y|x) by fr+1(y|x € Z;), and obtain

fkj—l(mm €I;) d
fe(ylx € Z;)

Q

D(£15) -0 (flfen) = [ @iz [ futie T, os

= P@eZ) D(fonlfi).

Hence, the reduction in KL-divergence can be approximated by the KL divergence between
the two MoTBF representations, weighted by the probability of the parents being in that
particular hyper-cube.

4.2.2 Finding a partitioning of the conditioning variables

When approximating a conditional density we need to find a partitioning of the state space
of the conditioning variables Q x-. In this paper we will pursue a myopic strategy (detailed
later), where we at each step consider the reduction in KL-divergence obtained by dividing
one of the existing partitions.
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Consider a density f(y|x) and an MoTBF approximation using n partitions Z1,...,Z,
of Qx. Assume now that we divide the partition Zj into Z) and Z}, which results in a

conditional MoTBF f’(y|:1:)AWhere we approximate f(y|x) with f'(y|x € Z0) and f'(y|z € Z},)
when & € Zy and f(y|x) = f'(y|z) for all the other partitions. The reduction in KL-divergence
is then given by

p(r1f)-p(r17)= /Ml/f(m ynog#‘;k)dydm_
fyl)
</a:el'0/f % yl-’chJGIO)dydg{ﬂr

v ) log 1 W) -
/mezl/f( O eLﬁ)dyd )

f'(ylz € 70)
_ dx log 2217 =~k g
//:EEIO flylw) da log flylz € Iy) o

f'(ylz € 7})
dx log LT =7k gy
//aceIl flvlw) da log flylz € Iy) ’

As above we are confronted by multi-dimensional integration, and this time we approximate
flyle) by fi(ylz € I9) and fi(y|x € Zi) on 79 and Z}, respectively:

p(f1f)-D(s1f)

T T - Y T 0 og JE/( ’:I:GIO)
/wdgf( )d /yf(y\ e Ttog 5 Lok
( )

[ ow 1 fyle eI}
/w @ / Pl € Th oy 7 1=K
).

D(f', fIZ)-

Thus, the reduction in KL-divergence can be estimated by calculating the KL divergences

D(f', fIZ}) and D(f', f|Z}).

Q

dy +

~

dy

= P@eIy) D(f fII}) + Pz € I;

5 The Overall Algorithm

Based on the methods for finding MoTBF representations of univariate and conditional dis-
tributions, we can now describe a general algorithm for approximating an arbitrary hybrid
Bayesian network with an MoTBF network. The MoTBF network is initialized with MoTBF
potentials defined by a single basis function and with no split points. The algorithm then
iteratively selects a local MoTBF potential f to refine, using a heuristic selection criterion
based on an estimate of the immediate decrease in KL-divergence per additional parameter

introduced in the model:
Y (£17)=p(s17)
~ dim(f) —dim(f)
where f is the true distribution and f " is the refinement of f . The possible refinements depend
on the variable being considered:
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e For a univariate distribution or a discrete conditional distribution, the algorithm can
extend the MoTBF basis with one additional basis function.

e For a continuous conditional density, the algorithm can either perform a partitioning
of an existing hyper-cube over the continuous parent variables or include an additional
basis function in the MoTBF representation of the local density conditioned on a specific
hyper-cube.

A summary specification of the overall algorithm can be found in Algorithm 1. Note that the
algorithm relies on an auxiliary function called Refine(M, op) that simply refines the current
MoTBF network according to the refinement operation op.

Algorithm 1 The general algorithm for finding an MoTBF representation M of a hybrid
Bayesian network B. We use U, and U, to denote the continuous and the discrete variables
in B, respectively.
Input: A hybrid Bayesian network B and an initial MoTBF network M.
Output: An MoTBF representation of the network B.
1: repeat
2:  bestGain < —inf
3: forallY el do
4 for all = € Qpa(Y)ﬂud do
5 (gain, op) <+ EstimateGain(B, M,Y, x)
6: if gain > bestGain then
7
8
9:

bestGain < gain and bestOp < op
end if
end for
10:  end for
11:  Refine(M, bestOp)
12: until bestGain < threshold
13: return M

6 Experimental results

In order to validate the proposed translation method, we have performed two empirical stud-
ies. The purpose of the first study is to investigate the accuracy that can be obtained us-
ing the proposed method. For that we have empirically compared our method with MTE-
approximations of standard univariate distributions using the library of translation functions
given by Cobb et al. (2006). In the second study we want to demonstrate the possibility
of making an online trade-off between accuracy and complexity when translating a Bayesian
network into an MoTBF network.

For the first set of experiments, we have used the same set of univariate distributions as in
(Cobb et al., 2006) together with the same support sets. Since the purpose of the experiment
is to compare the accuracy of the proposed method with the translations by Cobb et al.
(2006), we vary the number of MoTBF parameters (i.e., basis functions) between 1 and
the maximum number of parameters used by Cobb et al. (2006). From this set we choose
the MoTBF approximation that minimizes the KL-divergence between the true distribution
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Algorithm 2 EstimateGain(B, M,Y, x)
Input: A BN B, an MoTBF M representing B, a variable Y whose probability distribution
should be refined, and a configuration  over the discrete parents of Y.
Output: A tuple (gain,op), where the first component is the gain of refining M according
to the operation specified by op.
1: Let f be the potential of Y given « in B and let fy be the representation of f in M.
2. if Y e U, and pa (V) NU. # () then
3:  Let P be a partitioning of pa (V) NU.
4:  gain « —inf
5. for all Z € P do
6: Let fs be the MoTBF potential obtained from f by splitting Z into Zy and Z;.
7
8
9

gain, < h(fs. f. f) )
Let f, be the MoTBF potential obtained from f by adding a basis function in Z.

gain, ¢ h(fa, f. f)

10: if max;(gain;) > gain then
11: gain < max;(gain,) and op < (Y, arg max;(gain;),Z)
12: end if

13:  end for

14: else if Y eU. or (Y € Uy and pa(Y)NU,. # 0) then

15:  Let f/ be the MoTBF potential obtained from f by adding a basis function.
16:  gain < h(f’, f, f) and op « (Y, a, Qpa(Y)ﬂZ/{c)

17: end if

18: return (gain,op)
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and the MoTBF approximation. In principle, the KL divergence should decrease as the
number of parameters increase, but in our experiments this turned out to not necessarily be
the case; two possible reasons for this are the numerical instability encountered when using
higher-order basis functions as well as the use of numerical methods for evaluating the inner
products between the basis functions and the densities to be approximated. The result of
the experiment is summarized in Table 1, where we see that the proposed method achieves
accuracy results that are either comparable or significantly better than those of Cobb et al.
(2006). It should be noted that no split points are introduced in any of the translations,
except to define the end-points of the intervals for which the MoTBF distributions have
positive support. As a last qualitative remark for this comparison, we note that the proposed
method can immediately be applied to other distributions without any modifications to the
algorithm, something which is generally not the case when using the method by Cobb et al.
(2006). We have also conducted a similar comparison with the MoP-expansion by Shenoy
and West (2011), where a Taylor-series expansion around the midpoint of each interval was
built. To examine the effectiveness of this translation, we added polynomial terms until the
accuracy of the MoTBFs (MoP)-approach was reached. The Taylor expansion required at
least as many parameters as the proposed method in all cases, and typically around twice as
many parameters needed to be employed.?

For the MoTBF (MoP) results in Table 1, the polynomial basis (corresponding to shifted
Legendre polynomials) have been calculated recursively and afterwards shifted to the appro-
priate interval (Kreyzig, 1978). In comparison, the exponential basis has been calculated
directly following the Gram-Schmidt process and using numerical integration to evaluate the
integrals. Not surprisingly the former approach is less susceptible to numerical instability,
which can also account for the differences in accuracy that we observe when comparing the
two MoTBF-based methods. Finally, it should be emphasized that the accuracy results ob-
tained for two different distributions are generally not comparable, since the intervals over
which the distributions are defined may differ.

For the second experiment we consider a simple parameterized Bayesian network consist-
ing of two nodes X ~ N(0,1) and Y|{X = 2} ~ N(w-z,0). To investigate how the algorithm
proceeds with the translation of a model, we have applied Algorithm 1 (using a polynomial
basis) to the model X ~ N(0,1) and Y{X =z} ~ N(1-x,1) for 5, 10, 15, and 25 itera-
tions. The results of the experiments can be seen in Figure 7. Observe how the insertion of
split points is initially focused on areas with high probability mass whereas areas with lower
probability mass are only gradually refined at later iterations.

By varying w and o we can change the correlation between X and Y. The change in
correlation should also affect the sequence in which Algorithm 1 considers the child and parent
distributions as well as whether a basis function is added or a split point is being introduced.
The effect is illustrated in Figure 8, where we see the result of running the algorithm for 15
iterations for three networks with a varying degree of correlation between the two variables.
Notice that as the correlation between X and Y increases, more split points are introduced to
encode the correlation (with the result that fewer basis function are being added to model the
local behaviors of the distributions). In particular, we see that with w = 1 and o = 0.5, the

2We were only able to perform the test for the Normal, Gamma, and Beta distributions. Matlab’s symbolic
module could not generate a sufficiently descriptive Taylor-series approximation for the LogNormal distribution
within 8hrs CPU-time (Matlab 2011b, running on a 2.8 GHz Intel Core 2 Duo processor with 4GB RAM).
The parameter overhead varied from zero (both methods finding the exact representation of Beta(2,2)) to 164
extra parameters required in case of Beta(1.3, 2.7).
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Figure 7: The figure shows the results of applying Algorithm 1 on the model X ~ N(0,1)
and Y ~ N(1-z,1) for varying number of iterations.



Distribution Cobb et al. MoTBFs (MTE) MoTBFs (MoP) [Interval]
N(0,1) [15] 3.46 - 10704 [8] 1.93-1079%  [14] 2.68 - 10~ [-3,3]
Gamma(6,1) [23] 2.10-107% | [20] 6.41-107%  [18] 2.91-107%  [0.527864, 18.4164]
Gamma(8,1) [23] 8.56 - 10~ [7] 5.37-1079  [18] 7.26- 10~ [1.7085,22.8745]
Gamma(11,1) (23] 2.83-107%% | [12] 6.58 - 1079 [17] 1.47-107%  [2.09431,22.6491]
Beta(2,2) [17] 2.62 - 10706 [9] 3.98-1079  [3] 1.64 - 10716 [0,1]
Beta(2.7,1.3) [17] 3.30 - 1074 [8] 5.33-1079  [9] 4.44.107% [0,1]
Beta(1.3,2.7) [17] 3.30 - 10~ [8] 5.33-107%4  [16] 4.97-107% [0,1]
LogNormal(0,0.25) | [23] 3.30-107% | [19] 9.05-107% [18] 3.97-10"%  [0.22313,4.4817]
LogNormal(0,0.5) | [23] 9.90-107% | [22] 5.69-107% [21] 1.86-107%  [0.11987,8.3421]
LogNormal(0,1) [23] 6.47 - 10703 [6] 4.05-10792  [17] 3.06 - 10793 [0.0497871,20.0855]

Table 1: The table lists the KL-divergence between the true distribution and the approxi-
mation obtained using i) the method by Cobb et al. (2006), i) the MoTBF method with
exponential basis functions, and #i7) the MoTBF with polynomial basis functions. The num-
bers in brackets are the number of parameters used by the approximations.

MoTBF representation of the conditional distribution reduces to a standard discretization.

7 Conclusions

In this paper we have proposed a new framework for representing general hybrid Bayesian
networks, denoted miztures of truncated basis functions, which supports efficient inference
using the Shenoy-Shafer architecture. We have investigated how generalized Fourier series
approximation theory and convex optimization techniques can be combined to obtain MoTBF
distributions that can approximate univariate probability distributions to any preset quality
constraint. We have also discussed how the same methods are viable to handle conditional
distribution functions. The translation method is faster and more flexible than existing MTE
methods, and it supports an online/anytime trade-off between the accuracy and the complex-
ity of the approximation.

Our future research on this topic will follow three distinct paths: 7) The translation from
the original model to the MoTBF representation is performed off-line, before any evidence
is entered into the model. However, a translation that is made to be cost-efficient before
entering evidence may not be as effective after evidence has been taken into account. We
will therefore consider a dynamic translation process in the spirit of Kozlov and Koller (1997)
to iteratively re-define an optimal translation given evidence. ii) The translation procedure
(outlined in Algorithm 1) uses the immediate decrease in KL-divergence per additional pa-
rameter introduced in the model as a guide for finding the most cost-efficient translation.
In the future we will examine other heuristics that better reflect the trade-off between the
cost of inference and the obtained precision, where the cost could, e.g., be measured in the
size of the junction tree representation. This would require the triangulation of a number of
almost identical MoTBF models, which also motivates research into incremental triangulation
of MoTBF models. iii) We want to continue our previous work on learning MTEs/MoTBFs
from data (Langseth et al., 2009, 2010), and will investigate how the translation of a Bayesian
network structure with conditional probability tables represented by non-parametric density
estimates learned from data into an MoTBF compares to models learned directly using a
maximum likelihood procedure.
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An MoTBEF representation of the model X ~ N(0,1) and Y ~ N(0.3 - z, 1.5).

An MoTBF representation of the model X ~ N(0,1) and Y ~ N(1-z,1).

An MoTBF representation of the model X ~ N(0,1) and Y ~ N(1-z,0.5).

Figure 8: MoTBF representations of three Bayesian networks over X ~ N(0,1) and ¥V ~
N(w-z,0), defined by (w =0.3,0 =1.5), (w=1,0 =1), and (w =1,0 = 0.5). The MoTBF
models were obtained by running Algorithm 1 for 15 iterations.
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