
Answering queries in hybrid Bayesian networks using

importance sampling

Antonio Fernández∗, Rafael Rumı́, Antonio Salmerón

Dept. Statistics and Applied Mathematics, University of Almeŕıa, La Cañada de San
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Abstract

In this paper we propose an algorithm for answering queries in hybrid

Bayesian networks where the underlying probability distribution is of class

MTE (mixture of truncated exponentials). The algorithm is based on impor-

tance sampling simulation. We show how, like existing importance sampling

algorithms for discrete networks, it is able to provide answers to multiple

queries simultaneously using a single sample. The behaviour of the new

algorithm is experimentally tested and compared with previous methods

existing in the literature.
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1. Introduction

Bayesian networks [17, 36] have become a popular tool for representing

uncertainty in decision support systems. A review of recent literature shows
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the variety of applications in which they have been successfully used [1, 10,

24, 35, 45]. One of the main reasons for using them as the inference engine

in a decision support system is that efficient reasoning algorithms can be

designed, taking advantage of their structure [2, 3, 16, 44, 43, 30, 29].

Most of the methodological development around Bayesian networks has

concentrated on the case in which all the variables involved are qualitative

or discrete. However, decision support systems usually have to operate in

domains described in terms of both discrete and continuous variables simul-

taneously. In such scenarios, there is always the possibility of discretising

the continuous variables [20, 34], in order to be able to use methods de-

signed for discrete variables. But such a solution in general conveys a loss

of information.

Continuous and discrete variables can be handled simultaneously, with

no need to discretise, in the so-called hybrid Bayesian networks. The first

advances in this field came along with the definition of the Conditional

Gaussian (CG) model [25, 26, 28]. The limitations of this approach are the

assumption of normality over the continuous variables, and also the fact

that dependencies of discrete variables conditional on continuous ones, are

not allowed. This structural restriction is overcome in the augmented Con-

ditional Linear Gaussian (CLG) networks, where discrete nodes are allowed

to have continuous parents, by representing their conditional distributions

as softmax functions [27]. However this model also relies on the normal-

ity assumption. Furthermore, exact inference is not possible in augmented

CLG networks, and the solution proposed in [27] is based on a Gaussian

approximation of the product of the Gaussian and softmax functions, which

provides exact marginals for the discrete variables and also is able to obtain

exact values only for the first and second order moments of the distribution
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of the continuous variables.

A more general proposal is based on the use of mixtures of truncated

exponentials (MTEs), which do not impose any restriction and also do not

rely on the normality assumption [31]. This model has been successfully

applied to decision problems [6]. An important feature of MTEs is that they

are compatible with efficient exact inference algorithms like, for instance, the

Shenoy-Shafer architecture [44] and the variable elimination scheme [49]. As

MTEs are able to approximate a wide variety of probability distributions [7],

they can be used as a general framework for carrying out inference in hybrid

Bayesian networks, just by approximating each conditional distribution in

the network by an MTE and then using an exact inference algorithm. This

approach has been analysed in [22], by solving a network involving Logistic

and Gaussian distributions using MTEs, variational approximations [18],

discretisation [33] and Markov Chain Monte Carlo [12].

A recent approach, similar in essence to MTEs, is based on represent-

ing the distribution in a hybrid Bayesian network as a Mixture of Poly-

nomials (MOPs) [42]. Both MTEs and MOPs have been generalised in a

global framework for representing hybrid Bayesian networks, called Mix-

tures of Truncated Basis Functions (MoTBFs) [23]. However, even though

MOPs have some advantages over MTEs, specially the ability of dealing

with a wider class of deterministic relationships, so far they lack of an al-

gorithm for learning the models from data, while this issue has been solved

for MTEs [38]. Hence, MTEs can be used as an exact model and not only

as an approximation of other distributions. In that sense, MTEs behave as

a nonparametric model, where no assumption is made about the underlying

distribution.

Even though Bayesian networks allow efficient inference algorithms to
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operate over them, it is known that exact probabilistic inference is an NP-

hard problem [8]. Furthermore, approximate probabilistic inference is also

an NP-hard problem if a given precision is required [9]. For that reason,

approximate algorithms that tradeoff complexity for accuracy have been

developed for discrete Bayesian networks. An important class of such ap-

proximate algorithms are based on the importance sampling technique, that

provides a flexible approach to construct anytime reasoning algorithms [4,

13, 32, 46, 47, 48].

Inference in hybrid Bayesian networks with MTEs does not escape from

the above mentioned complexity. If the model is learnt from a database

using the algorithm in [38], it can be too complex if the number of variables

is high. But even using the approximations in [7], inference may become

unfeasible if the model is complex enough.

With this motivation, in this paper we propose an approximate algo-

rithm for computing fast and accurate answers to precise queries in hybrid

Bayesian networks with MTEs. The algorithm is based on importance sam-

pling, and therefore it is an anytime algorithm [37] in the sense that the

accuracy of its results is proportional to the time it is allowed to use for

computing the answer. We show how our proposal outperforms the previous

state-of-the-art method for approximate inference with MTEs, introduced

in [40].

The rest of the paper is organised as follows. We establish the notation

and define some preliminary concepts in Sec. 2. The problem addressed here

is formally posted in Sec. 3. The core of the methodological contributions

is in Sec. 4, and the details of the algorithm can be found in Sec. 5. The

experimental analysis carried out to test the performance of the algorithm

is reported in Sec. 6. The concluding remarks are given in Sec. 7.

4



2. Notation and preliminaries

Formally, a Bayesian network is a directed acyclic graph where each node

represents a random variable, and the topology of the graph encodes the

independence relations among the variables, according to the d-separation

criterion [36]. Given the independences attached to the graph, the joint

distribution is determined giving a probability distribution for each node

conditioned on its parents, so that for a Bayesian network with variables

X1, . . . ,Xn, the joint distribution factorises as

p(x1, . . . , xn) =
n
∏

i=1

p(xi|pa(xi)), (1)

where pa(xi) denotes the parents of variable Xi in the network.

We will use uppercase letters to denote random variables, and boldfaced

uppercase letters to denote random vectors, e.g. X = {X1, . . . ,Xn}, and its

domain will be written as ΩX. By lowercase letters x (or x) we denote some

element of ΩX (or ΩX).

We are interested in hybrid Bayesian networks, which are defined for a set

of variables X that contains discrete and continuous variables. Throughout

this paper we will assume that X = Y ∪ Z, being Y and Z sets containing

only discrete and only continuous variables respectively. We will follow the

approach based on mixtures of truncated exponentials [31], in which all

the conditional distributions in Eq. (1) are represented as MTE potentials,

which are formally defined as follows.

Definition 1. (MTE potential) Let X be a mixed n-dimensional random

vector. Let Y = (Y1, . . . , Yd)
T and Z = (Z1, . . . , Zc)

T be the discrete and

continuous parts of X, respectively, with c+ d = n. We say that a function

f : ΩX 7→ R
+
0 is a Mixture of Truncated Exponentials (MTE) potential if
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for each fixed value y ∈ ΩY of the discrete variables Y, the potential over

the continuous variables Z is defined as:

f(z) = a0 +

m
∑

i=1

ai exp
{

bT

i z
}

, (2)

for all z ∈ ΩZ, where ai ∈ R and bi ∈ R
c, i = 1, . . . ,m. We also say that f

is an MTE potential if there is a partition D1, . . . ,Dk of ΩZ into hypercubes

and in each one of them, f is defined as in Eq. (2). An MTE potential is

an MTE density if it integrates to 1.

A conditional MTE density can be specified by dividing the domain of the

conditioning variables and specifying an MTE density for the conditioned

variable for each configuration of splits of the conditioning variables. The

next is an example of a conditional MTE density.

f(y|x) =











































1.26 − 1.15e0.006y if 0.4 ≤ x < 5, 0 ≤ y < 13 ,

1.18 − 1.16e0.0002y if 0.4 ≤ x < 5, 13 ≤ y < 43 ,

0.07 − 0.03e−0.4y + 0.0001e0.0004y if 5 ≤ x < 19, 0 ≤ y < 5 ,

−0.99 + 1.03e0.001y if 5 ≤ x < 19, 5 ≤ y < 43 .

Since MTEs are defined into hypercubes, they admit a tree-structured

representation in a natural way. Each entire branch in the tree determines

one hypercube where the potential is defined, and the function stored in the

leaf of a branch is the definition of the potential on it. An example of a

tree-structured representation of an MTE potential is shown in Fig. 1.

We use the term mixed tree [31] to refer to a tree-structure representation

of an MTE potential. A tree T is a mixed tree if: (i) every internal node

represents a random variable, (ii) every arc outgoing from a continuous

variable Z is labeled with an interval of values of Z, so that the domain of Z
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Figure 1: A mixed tree representing an MTE potential.

is the union of the intervals corresponding to the arcs Z-outgoing, (iii) every

discrete variable has a number of outgoing arcs equal to its number of states

and (iv) each leaf node contains an MTE potential defined on variables in

the path from the root to that leaf.

3. Problem formulation

The goal of this paper is to introduce a method for answering queries

in hybrid Bayesian networks with MTEs. We consider a hybrid Bayesian

network defined for a set of variables X. A query is a question about a

probability value for a target variable W ∈ X given that the values of some

variables E ⊂ X are known. Thus, if we write X = (W,YT,ZT,ET)T,

where Y = (Y1, . . . , Yd)
T represents the non-observed discrete variables and

Z = (Z1, . . . , Zc)
T represents the non-observed continuous variables and

E = (E1, . . . , Ek)
T, then a query about W given that E = e is

P (a < W < b|E = e) =

∫ b

a





∑

y∈Y

∫

ΩZ

φ(w,y, z, e)dz



 dw

φE(e)
(3)
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if W is a continuous variable. The function φ in Eq. (3) is the joint dis-

tribution in the network and φE is its marginal over variables E. Let φX

denote the conditional distribution of any variable X in the network. Then,

the joint distribution is defined as

φ(w,y, z, e) =

φW (w|pa(w))
d
∏

i=1

φYi(yi|pa(yi))
c
∏

j=1

φZj
(zj |pa(zj))

k
∏

l=1

φEl
(el|pa(el)). (4)

Since our goal is to answer a query given a fixed value e of variables

E, we will rather be interested in the restriction of the joint distribution to

the knowledge that E = e. We will replace any symbol φ in Eq. (4) by ψ,

where the new symbols means the former function restricted to e. With this

notation, the joint distribution restricted to e can be written as

ψ(w,y, z) =

ψW (w|pa(w))
d
∏

i=1

ψYi(yi|pa(yi))
c
∏

j=1

ψZj
(zj |pa(zj))

k
∏

l=1

ψEl
(el|pa(el)). (5)

So, the numerator in Eq. (3) can be obtained as

∫ b

a





∑

y∈Y

∫

ΩZ

φ(w,y, z, e)dz



 dw =

∫ b

a





∑

y∈Y

∫

ΩZ

ψ(w,y, z)dz



 dw

=

∫ b

a

h(w)dw, (6)

where h(w) =
∑

y∈Y

∫

ΩZ
ψ(w,y, z)dz. To finally answer the query expressed

in Eq. (3), we still have to compute φE(e). This is obtained as

φE(e) =

∫

ΩW





∑

y∈Y

∫

ΩZ

ψ(w,y, z)dz



 dw =

∫

ΩW

h(w)dw. (7)
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On the other hand, if W is discrete, a query is formulated as

P (W = w|E = e) =

∑

y∈Y

∫

ΩZ

φ(w,y, z, e)dz

φE(e)
, (8)

where w ∈ ΩW . The numerator of Eq. (8) can be expressed as

∑

y∈Y

∫

ΩZ

φ(w,y, z, e)dz =
∑

y∈Y

∫

ΩZ

ψ(w,y, z)dz = h(w). (9)

A similar procedure is carried out to compute the denominator of Eq. (8):

φE(e) =
∑

w∈ΩW

∑

y∈Y

∫

ΩZ

ψ(w,y, z)dz =
∑

w∈ΩW

h(w). (10)

Hence, answering the queries formulated in Eqs. (3) and (8), requires

the computation of the expressions in Eqs. (6), (7), (9) and (10). The

problem is that in all the cases, the calculations are carried out over the

joint distribution, which size is exponential in the number of variables in

the network. Therefore, if the number of variables is high, it can be difficult

or even impossible to represent such a joint distribution in a decision support

system, specially if memory resources are limited. In the next section we

propose a solution for approximating the quantities required to answer the

queries, keeping the complexity bounded. The solution is based on the use

of the importance sampling technique [39].

4. Answering queries using importance sampling

4.1. Continuous target variable

We will start off by considering the case in which the target variable, W ,

is continuous. Let us denote by θ the numerator of Eq. (3). We can write θ

as

θ =

∫ b

a

h(w)dw =

∫ b

a

h(w)

f∗(w)
f∗(w)dw = Ef∗

[

h(W ∗)

f∗(W ∗)

]

, (11)
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where f∗ is a probability density function on (a, b) called sampling distribu-

tion, and W ∗ is a random variable with density f∗. Let W ∗
1 , . . . ,W

∗
m be a

sample drawn from f∗. Then it is easy to prove that

θ̂1 =
1

m

m
∑

i=1

h(W ∗
i )

f∗(W ∗
i )

(12)

is an unbiased estimator of θ. This procedure is called importance sampling.

As θ̂1 is unbiased, the error of the estimation is determined by its vari-

ance, which is

Var(θ̂1) = Var

(

1

m

m
∑

i=1

h(W ∗
i )

f∗(W ∗
i )

)

=
1

m
Var

(

h(W ∗)

f∗(W ∗)

)

. (13)

In order to minimise the variance in the expression above, f∗ must be

selected in such a way that the ratio between h and f∗ be as constant as

possible within interval (a, b). Actually, the minimum variance is reached

when f∗ is proportional to h in that interval, but that is of no practical value,

as we are assuming that h, which is equivalent to the joint distribution, is

difficult to handle. Later on we will show in detail a way to obtain an

approximation to h, but keeping the complexity bounded. Let h∗ be such

an approximation. Then it holds that

f∗(w) =
h∗(w)

∫ b

a
h∗(w)dw

, a < w < b, (14)

is a probability density function within interval (a, b). Therefore, in order

to apply importance sampling to answer our target query, we have to find

an approximation, h∗, of h and then obtain a sampling distribution from it,

according to Eq. (14). Finally, we can estimate θ using Eq. (12).

On the other hand, φE(e) can be estimated using importance sampling

as well. In principle, a new sample should be generated, since the integral
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range in this case is the entire domain of W , and not only interval (a, b).

To avoid generating two different samples, we can consider the following

density:

f∗2 (w) =
h∗(w)

∫

ΩW
h∗(w)dw

, (15)

which is a density for ΩW . From this, we can generate a sampleW ∗
1 , . . . ,W

∗
m.

Then, it holds that

δ̂ =
1

m

m
∑

i=1

h(W ∗
i )

f∗2 (W
∗
i )

(16)

is an unbiased estimator of φE(e).

Now, if we writeW ∗
(1), . . . ,W

∗
(k) for the elements from sampleW ∗

1 , . . . ,W
∗
m

that fall inside interval (a, b), then it can be shown that

θ̂2 =
1

k

k
∑

i=1

h(W ∗
(i))

f∗2 (W
∗
(i))

(17)

is an unbiased estimator of θ. Next proposition establishes the impact of

using the same sample on the accuracy of the estimation.

Proposition 1. Let m,k, θ̂2 and δ̂ be as in Eqs. (16) and (17). Then,

Var(θ̂2) ≤
m

k
Var(δ̂) +

φE(e)
2

2k
. (18)

Proof. Let functions h and f∗2 be as in Eqs. (16) and (17). We define ξ, ξ1

and ξ2 as ξ(w) = h(w)
f∗2 (w)

, ξ1(w) =
h(w)I(a,b)(w)

f∗2 (w)
and ξ2(w) =

h(w)IR\(a,b)(w)

f∗2 (w)
,

w ∈ R, where a, b ∈ R, I(a,b)(w) = 1 if w ∈ (a, b) and 0 otherwise, and

IR\(a,b)(w) = 0 if w ∈ (a, b) and 1 otherwise.

It is clear that ξ = ξ1 + ξ2 and ξ1 × ξ2 = 0. Also, notice that the

expected values of ξ1 and ξ2 can be written, respectively, as E[ξ1] = P (a <

W < b|E = e)φE(e) and E[ξ2] = P (W /∈ (a, b)|E = e)φE(e).
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Then,

Var(ξ) = Var(ξ1 + ξ2) = Var(ξ1) + Var(ξ2) + 2Cov(ξ1, ξ2)

= Var(ξ1) + Var(ξ2) + 2(E[ξ1ξ2]− E[ξ1]E[ξ2])

= Var(ξ1)+Var(ξ2)−2P (a < W < b|E = e)φE(e)P (W /∈ (a, b)|E = e)φE(e)

= Var(ξ1)+Var(ξ2)−2φE(e)
2P (a < W < b|E = e)(1−P (a < W < b|E = e))

Hence,

Var(ξ1) =

Var(ξ)−Var(ξ2) + 2φE(e)
2P (a < W < b|E = e)(1− P (a < W < b|E = e))

≤ Var(ξ) +
1

2
φE(e)

2,

since Var(ξ2) ≥ 0 and P (a < W < b|E = e)(1− P (a < W < b|E = e)) ≤
1

4
.

Thus,

1

m
Var(ξ1) ≤

1

m
Var(ξ) +

φE(e)
2

2m
⇒

k

m

1

k
Var(ξ1) ≤

1

m
Var(ξ) +

φE(e)
2

2m
⇒

k

m
Var(θ̂2) ≤ Var(δ̂) +

φE(e)
2

2m
⇒ Var(θ̂2) ≤

m

k
Var(δ̂) +

φE(e)
2

2k
.

Proposition 1 establishes that the variance of θ̂2 is related to the vari-

ance of δ̂ by the inverse of the proportion of elements in the sample that

fall within interval (a, b). It means that using a single sample does not in-

crease the error of the estimation dramatically. Actually, if all the elements

in the sample are inside the target interval, then the variance of both esti-

mators is asymptotically the same, as the term φE(e)
2/2k tends to 0 as k

increases. Therefore, for large samples, the ratio between the variances of

both estimators verify that Var(θ̂2)

Var(δ̂)
≤ m

k
.
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Notice that, if we used two samples instead of one (i.e., we used θ̂1 instead

of θ̂2), of size m for δ̂ and size k for θ̂1, the ratio would be

Var(θ̂1)

Var(δ̂)
=

1
k
Var

(

h(W ∗)
f∗(W ∗)

)

1
m
Var

(

h(W ∗)
f∗2 (W

∗)

) ,

and according to Eqs. (14) and (15), it follows that

Var(θ̂1)

Var(δ̂)
=

(
∫ b

a
h∗(w)dw)2

k
Var

(

h(W ∗)
h∗(W ∗)

)

(
∫
ΩW

h∗(w)dw)2

m
Var

(

h(W ∗)
h∗(W ∗)

)

=
m

k

(
∫ b

a
h∗(w)dw)2

(
∫

ΩW
h∗(w)dw)2

≤
m

k
.

The conclusion is that for large sample sizes, the variances of θ̂1 and θ̂2 are

equally related to the variance of δ̂. Therefore, for large samples, the use of

a single sample is worth it.

4.2. Discrete target variable

If the target variable is discrete, the procedure is analogous. More pre-

cisely, if W is discrete then from Eq. (9) it follows that

∑

y∈Y

∫

ΩZ

φ(w,y, z, e)dz =
∑

w′∈ΩW

h(w′)Iw(w
′) =

∑

w′∈ΩW

h(w′)Iw(w
′)

p∗(w′)
p∗(w′)

= Ep∗

[

h(W ∗)Iw(W
∗)

p∗(W ∗)

]

,

where p∗ is any probability mass function defined on ΩW , W ∗ is a discrete

random variable with distribution p∗, and Iw(x) = 1 if w = x and 0 other-

wise. The rest of the procedure is analogous to the continuous case, that is, a

sampleW ∗
1 , . . . ,W

∗
m is generated from p∗ and θd =

∑

y∈Y

∫

ΩZ
φ(w,y, z, e)dz

is estimated as

θ̂d =
1

m

m
∑

i=1

h(W ∗
i )Iw(W

∗
i )

p∗(W ∗
i )

, (19)

where subscript d indicates that this estimator is for the discrete case.
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4.3. Obtaining a sampling distribution

The error in the estimation procedure above described, depends on the

variance of the ratio h/f∗. Therefore the best behaviour is obtained if the

sampling distribution is close to h, as we mentioned before. In [41] a method

for computing an accurate sampling distribution for discrete Bayesian net-

works was developed. It is based on computing the sampling distribution for

a given variable through a process of eliminating the other variables from the

set of all the conditional distributions in the network, H = {p(xi|pa(xi)), i =

1, . . . , n}. The procedure can be adapted to the case of a hybrid Bayesian

network as follows. Let {X1, . . . ,Xl} be the set of all the variables in the

network, except the target W and the observations E. An elimination

order σ is considered and variables are deleted according to such order:

Xσ(1), . . . ,Xσ(l).

The deletion of a variable Xσ(i) consists of marginalising it out from the

combination of all the functions in H which are defined for that variable.

More precisely, the steps are as follows:

• Let dom(f) denote the set of variables for which function f is defined.

• Let Hσ(i) = {f ∈ H|Xσ(i) ∈ dom(f)}.

• Calculate

fσ(i) =
∏

f∈Hσ(i)

f (20)

and f ′
σ(i) defined on dom(fσ(i)) \ {Xσ(i)}, by

f ′σ(i)(y) =

∫

xσ(i)∈ΩXσ(i)

fσ(i)(y, xσ(i))dxσ(i) ∀y ∈ Ωdom(fσ(i))\{Xσ(i)}.

(21)

• Transform H into H \Hσ(i) ∪ {f ′
σ(i)}.
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Note that the integral in Eq.(21) would be a summatory if W were

discrete. After deleting all the variables Xσ(1), . . . ,Xσ(l) from the set of

distributions H = {p(xi|pa(xi)), i = 1, . . . , n}, the remaining functions will

depend only on W . If all the computations are exact, it was proved in [14]

that the remaining function is actually the optimal sampling distribution.

However, the result of the products (see Eq. (20)) in the process of

obtaining the sampling distribution may require a large amount of space

to be stored, and therefore the algorithm in [41] approximates the result of

the combinations by pruning the probability trees (in our case, mixed trees)

used to represent the potentials. The price to pay is that the sampling

distribution is not the optimal one and the accuracy of the estimations will

depend on the quality of the approximations. Here we propose a strategy for

approximating the MTE potentials resulting from the products in Eq. (20).

We will explain the idea by considering an MTE potential defined for a set

of continuous variables Z = (Z1, . . . , Zt)
T as φ(z) = a0 +

∑t
i=1 aie

bT

i z.

The goal is to detect those exponential terms in φ(z) that are almost

constant and remove them. The rationale behind this strategy is that, from

the point of view of simulation, a flat or constant term does not provide any

useful information to the entire density, as there is already a constant term,

namely a0.

Thus, we consider a threshold α ∈ (0, 1) and then, for each term gj(z) =

aje
bT

j z, j = 1, . . . , t, in the mixture, if the condition
min(gj(z))
max(gj(z))

> α is satis-

fied, then gj(z) is replaced by kj =
∫

z
gj(z)dz.

The closer to 1 α is, the more accurate the approximation. Note that the

previous statements can be made taking into account that the exponential

function by nature is strictly increasing or decreasing on its whole domain,

and therefore its maximum and minimum are always located at the borders
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of the domain. In this way, the shape of the function can be controlled.

Summing up, if the j-th term of the mixture is replaced by constant kj ,

except in the cases where the resulting density could have negative values.

To avoid the presence of negative values, we correct the value of kj by making

kj = max{minz{gj(z)},
∫

z
gj(z)dz}. Thus, the resulting potential is

φ̂(z) = k + kj +
∑

i∈{1,...,t}
i 6=j

aie
bT

i z ,

But in fact, MTE potentials are defined into hypercubes. Therefore,

rather than approximating a single potential, after each product the whole

mixed tree representing the resulting potential should be approximated fol-

lowing this strategy. The detailed procedure can be found in Alg. 1.

4.4. Answering multiple queries simultaneously

The procedure described so far is designed to answer queries concerning

a single variable at a time. We will show in this section that it can be ex-

tended to allow the possibility of answering multiples queries about different

variables at the same time. The idea is based on the elimination procedure

described in Sec. 4.3.

It is possible to carry out a simulation in an order contrary to the one

in which variables are deleted. To obtain a value for Xσ(i), the function

fσ(i) obtained in the deletion of this variable is used. This function is de-

fined for the values of variable Xσ(i) and other variables already sampled.

Function fσ(i) is restricted to the already obtained values of variables in

dom(fσ(i))\{Xσ(i)}, giving rise to a density function which depends only on

Xσ(i). Finally, a value for this variable is drawn from this density. If all the

computations are exact, it was proved in [14] that the simulation is actually
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Algorithm 1: PruneMTEPotential(T ,α)

Input: An mixed tree T and a threshold α for pruning terms.

Output: Tree T with terms pruned according to α.

Let Z be the set of continuous variables of tree T .1

foreach leaf in T do2

Let φ(z) = k +

t
∑

i=1

aie
bT

i z be the MTE stored in the current leaf.
3

for j := 1 to t do4

Let aje
bT

j z be the j-term of φ(z) .5

if
min(aje

b
T

j z
)

max(aje
bT

j
z
)
> α then

6

kj := max{minz{aje
bT

j z},
∫

z
aje

bT

j zdz}.7

Remove aje
bT

j z from φ(z)8

Update the independent term k of φ(z) to k + kj .9

return T .10

carried out using the optimal density, and we obtain a sample from the joint

distribution of Xσ(1), . . . ,Xσ(l).

The details of this procedure are given in Alg. 2, which computes a

sampling distribution for each unobserved variable in a hybrid Bayesian

network. Later on we will study how to determine the order of the variables

in Step. 4. Now let us denote by W1, . . . ,Wn the unobserved variables in

the network, and by E1, . . . , Ek the observed ones. Note that after applying

Alg. 2, if we set α = 1 in Step. 7, then it holds that the true joint probability

function is f(w1, . . . , wn, e1, . . . , ek) =
∏l
i=1 f

∗
Xi
. That is, if we simulate each

variable Xi using f
∗
Xi
, we would actually be obtaining a sample of random

vectors w1, . . . ,wn, e1, . . . , ek from the true distribution.
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Algorithm 2: SamplingDistributions(B,e)

Input: A hybrid BN, B, and an observation e.

Output: A sampling distribution for each variable in the network.

Let H := {ψX1 , . . . , ψXl
} be all the potentials in B restricted to the1

evidence e, represented as mixed trees.

S := ∅.2

for i := 1 to l do3

Select the next variable to remove, Xi.4

HXi
:= {ψ ∈ H|Xi ∈ dom(ψ)}.5

fXi
:=
∏

ψ∈HXi
ψ.6

f∗Xi
:= PruneMTEPotential(fXi

, α).7

S := S ∪ {f∗Xi
} ; H := H \HXi

.8

if Xi is continuous then9

H := H ∪ {
∫

Xi
f∗Xi

dxi}.10

else11

H := H ∪ {
∑

Xi
f∗Xi

}.12

return S .13

Our goal in this section is to answer a set of queries about the unobserved

variables expressed as P (Wi = wi|E = e) or P (ai < Wi < bi|E = e), i =

1, . . . , n, if Wi is discrete or continuous, respectively. It can be shown that

we can use the joint sample to estimate the different probabilities separately,

since each individual sample is itself a sufficient statistic for the probability

of a precise variable.

Let W
(j)
1 , . . . ,W

(j)
n , j = 1, . . . ,m be a sample of size m drawn from the

18



sampling distribution in the set S returned by Alg. 2. Then

δ̂2 =
1

m

m
∑

j=1

ψ(W
(j)
1 , . . . ,W

(j)
n )

∏n
i=1 f

∗
Wi

(W
(j)
i )

(22)

is an unbiased estimator of φE(e).

LetW
(j)∗
1 , . . . ,W

(j)∗
n , j = 1, . . . , r be the elements from the sample above

that fall into interval (ai, bi) (or for which W
(j)
i = wi in the discrete case),

i = 1, . . . , n. Then

θ̂Wi
=

1

r

r
∑

j=1

ψ(W
(j)∗
1 , . . . ,W

(j)∗
n )

∏n
i=1 f

∗
Wi

(W
(j)∗
i )

(23)

is an unbiased estimator of
∫ b

a

(

∑

y∈Y

∫

ΩZ
φ(wi,y, z, e)dz

)

dwi, i = 1, . . . , n

(see Eq. (3)). A similar result can be derived immediately in the case thatWi

is discrete, and therefore the quantity to estimate is
∑

y∈Y

∫

ΩZ
φ(wi,y, z, e)dz

(see Eq. (8)). In Eqs. (22) and (23), function ψ in the numerator is defined

in a similar way as in Eq. (5), i.e. the product of conditionals restricted to

the observations.

5. The algorithm

In this section we give the details of the algorithm that implements our

proposal for answering multiples queries in hybrid Bayesian networks with

MTEs using importance sampling. First of all it should be emphasised that

Alg. 2 makes a decision about which variable to remove in each iteration

(see Step 4). The decision there influences the complexity of the product in

Step 6, since it determines the set of potentials that will be multiplied. We

propose to use a one-step look-ahead heuristic based on selecting the variable

19



that results in a potential of lowest size1 after the product in Step 6.

Though it is not possible to know beforehand the exact size of a potential

resulting from a product, an upper bound is given in [40]. This is the bound

actually used for deciding the elimination order in Alg. 2. In this point,

we have all the tools necessary for establishing our proposal for answering

multiple queries, which is described in Alg. 3.
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Figure 2: Beanplots of the χ2 error, execution time and the rate error × time for the

queries in networks artificial and barley.

1The size of an MTE potential is defined as its number of exponential terms, including

the independent term.
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Algorithm 3: AnswerQueries(B,e,Q)

Input: A hybrid BN B with variables X. An observation e about a

set of variables E. A list of queries Q of the form

P (ai < Wi < bi | e) if Wi is continuous and P (Wi = wi | e)

otherwise.

Output: Estimations P̂ (ai < Wi < bi | e) or P̂ (Wi = wi | e).

Let W1, . . . ,Wn be the variables in X \E.1

S := SamplingDistributions(B,e)2

Initialise ri := 0 and P̂i := 0, i = 1, . . . , n, and φ̂(e) := 0.3

for j := 1 to m do4

Generate a sample w∗
1, . . . , w

∗
n for variables W

(j)
1 , . . . ,W

(j)
n by5

simulating in reverse order to the one used in Alg. 2, using the

sampling distributions in S (see [40]).

for i := 1 to n do6

if Wi is continuous then7

if w∗
i ∈ (ai, bi) then8

P̂i := P̂i +
ψ(w∗

1 ,...,w
∗
n)∏n

k=1 f
∗
Wk

(w∗
k
)
.9

ri := ri + 1.10

else11

if w∗
i = wi then12

P̂i := P̂i +
ψ(w∗

1 ,...,w
∗
n)∏n

k=1 f
∗
Wk

(w∗
k
)
.13

ri := ri + 1.14

φ̂(e) := φ̂(e) +
ψ(w∗

1 ,...,w
∗
n)∏n

k=1 f
∗
Wk

(w∗
k
)
.15

φ̂(e) := φ̂(e)
m

.16

P̂i :=
P̂i

ri×φ̂(e)
, i = 1, . . . , n.17

return P̂1, . . . , P̂n.18
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Figure 3: χ2 error for methods IS and MCMC as a function of the sample size and

execution time. Results for networks artificial and barley.

6. Experimental evaluation

A series of experiments was carried out with the aim of analysing the per-

formance of the proposed methodology. We have used two hybrid Bayesian

networks. The first one, denoted as artificial, is an artificial network with

97 variables, whose structure and parameters were generated at random, in

the same way as the networks used in [40].

The second one has been created taking the structure from the barley

network [21], which is originally fully discrete, and making some assumptions

about the kind of the variables. Out of the 48 variables in the network, 10
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Figure 4: χ2 error for different levels of pruning. The higher the α threshold, the less

pruning is actually carried out. Results for networks barley and artificial.

of them were considered as discrete with two states, and the remaining were

considered continuous with support in the interval [0, 1]. The domain of each

continuous variable was split into two pieces. The MTE densities associated

with each split were defined using 2 exponential terms, with parameters

generated at random as in [40]. For each network, 20% of the variables were

observed at random, considering as goal variables the remaining 80%. For

each network, we considered 10 different observations. The queries were also

selected at random, with uniform probability for each value of the discrete

variables, and considering an interval of width of a 10% of its support for

each continuous target variable.

6.1. Experiment 1

In this experiment we compared the performance of the Importance Sam-

pling (IS) algorithm versus the other two approximate propagation methods

existing in the literature for MTE networks: Markov Chain Monte Carlo

(MCMC) and Penniless Propagation (PP) [40]. The version of the MCMC

algorithm used in this paper is the adaptation for MTEs described in [40].
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For each set of observations, the execution time and the error in the esti-

mations were computed. The error was calculated using the χ2 divergence,

which is defined as

χ2 =
1

n

n
∑

i=1

(p̂i − pi)
2

pi
,

where pi, i = 1, . . . , n are the true probabilities for each query, and p̂i,

i = 1, . . . , n are their estimations. The true probabilities have been com-

puted using the Variable Elimination algorithm [49]. Notice that, using that

algorithm it is possible to obtain the exact probabilities, but the time re-

quired is too long compared with the three approximate methods analysed

here.

Fig. 2 shows the results of the experiment for networks artificial and

barley, respectively, represented as beanplots [19], which are extended ver-

sions of the well known box-plots where the empirical distribution of the

data is also shown. The three beanplots correspond to the χ2 error, execu-

tion time and the rate error × time obtained for a set of 10 observations.

Each execution of the simulation algorithms (IS and MCMC) was repeated

10 times, using in both cases a sample of size 500. The results shown cor-

respond to the average over the 10 executions. In order to simplify the

potentials during the propagation, we have set a threshold α = 0.95 for the

mixed trees in the IS algorithm (see Sec. 4.3) and for algorithm PP we chose

the following parameters, taken from [40]: ǫJoin = 0.05, ǫDisc = 0.05. We

refer the readers to the original reference for a detailed explanation of the

meaning of those parameters. We limited the maximum number of expo-

nential terms in the PP algorithm to 2.

The experimental results show how the IS algorithm clearly outperforms

the other two in terms of accuracy, speed and rate error× time for network
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artificial. For network barley, the error is again lower for IS, but in ex-

change the running time is the worse. This is due to the higher complexity

of the potentials involved in this network, which makes the algorithm invest

much time on obtaining the sampling distributions. However, the time in-

vested is worth it, as can be seen looking at the plot corresponding to the

rate error × time, which is better for IS. Therefore, we conclude that this

experiments suggest that IS offers the best way for dealing with the tradeoff

between complexity and accuracy when answering multiple queries.

6.2. Experiment 2

The second experiment is devoted to analyse the impact of the sample

size as well as the execution time in the behaviour of the simulation algo-

rithms, that is IS and MCMC. Fig. 3 shows the χ2 divergence as a function

of sample size and time, for the two networks considered. It can be seen that

IS converges more quickly than MCMC, and also converges to a more accu-

rate solution. The results are consistent with the known tendency of MCMC

in Bayesian networks, to fall in regions of the sample space conformed by

configurations of low probability [15].

6.3. Experiment 3

The third experiment was aimed at testing the impact of using the prun-

ing method proposed in Sec. 4.3. More precisely, we performed a test con-

sisting of running the algorithm with different α thresholds and measuring

the χ2 error of the predictions. As in previous experiments, for each of the

10 observations, the algorithm was run 10 times. The results displayed in

Fig. 4 show the average of the errors obtained. As expected, the error de-

creases as we increase the threshold, which means that we are being more

strict with the pruning criterion.
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Figure 5: Beanplots of the χ2 error, execution time and the rate error × time for the

queries in networks artificial and barley with deterministic relations.

6.4. Experiment 4

Finally, we replicated the three experiments described above including

deterministic relations in the used networks. We only considered determin-

istic conditionals for discrete variables, as the MTE model does not support

this kind of relations among continuous variables beyond linear dependencies

involving a single variable [5].

In order to include deterministic conditionals, we selected at random 80%

of the discrete variables and then set to 1 the probability of one of its possible

values, and to 0 the remaining probabilities. The results are displayed in

Figs. 5 to 7. It can be seen that the performance of the algorithm in the

presence of deterministic relations is similar to the general case.
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Figure 6: χ2 error for methods IS and MCMC as a function of the sample size and

execution time. Results for networks artificial and barley with deterministic relations.

7. Conclusions

We have introduced a method for solving multiples queries in hybrid

Bayesian networks with MTEs. The method is based on importance sam-

pling, which makes it an anytime algorithm. The algorithm is able to com-

pute answers to multiple questions using a unique sample. We have shown

that the variance remains bounded if the same sample is also used to com-

pute the numerator and denominator in each query.

The experiments conducted illustrate the behaviour of the proposed al-

gorithm, and they support the idea that the IS algorithm outperforms the
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Figure 7: χ2 error for different levels of pruning. The higher the α threshold, the less

pruning is actually carried out. Results for networks barley and artificial with deter-

ministic relations.

two algorithms previously used for carrying out probabilistic reasoning in

hybrid Bayesian networks with MTEs. Therefore, the methodology intro-

duced here expands the class of problems that can be handled using hybrid

Bayesian networks, and more precisely, it provides versatility to the MTE

model, by increasing the efficiency in solving probabilistic inference tasks.

We expect to continue this research line by developing methods for an-

swering more complex queries. For instance, a query consisting on finding

the most probable explanation to an observed fact in terms of a set of target

variables, which is called abductive inference [11]. We also plan to study the

application of the proposed algorithm to MOPs [42]. The main difference

would be in Alg. 1, as in the case of MOPs, each term may oscillate within

an interval, while MTEs are smoother.
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