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Abstract

A class of Monte Carlo algorithms for probability propagation in belief networks is given.

The simulation is based on a two steps procedure. The first one is a node deletion technique

to calculate the ’a posteriori’ distribution on a variable, with the particularity that when

exact computations are too costly, they are carried out in an approximate way. In the second

step, the computations done in the first one are used to obtain random configurations for the

variables of interest. These configurations are weighted according to the importance sampling

methodology. Different particular algorithms are obtained depending on the approximation

procedure used in the first step and in the way of obtaining the random configurations. In

this last case, a stratified sampling technique is used, which has been adapted to be applied

to very large networks without problems with round-off errors.

Keywords: Belief networks, simulation, importance sampling, stratified sampling, approx-

imate precomputation.
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1 Introduction

The problem of probability propagation is defined as the process of calculating the prob-

ability values of some variables in a dependence graph, given a set of observed variables.

Many algorithms have been proposed in the last years to solve this problem in an exact way

[13, 14, 17, 19, 20, 21, 24]. These methods take advantage of conditional independences among

the variables given by the structure of the network, to do the propagation by local computations.

Although they give exact results, all these algorithms are NP-hard [5] in the worst case. So, if

the network is complicate enough, other types of algorithms should be considered.

This fact motivates the development of approximate algorithms. Most of them try to obtain

a good estimation of the probabilities in the network by using Monte Carlo techniques. Although

approximate inference is NP-hard too [6], the class of resolvable problems is wider.

Monte Carlo algorithms for belief networks can be classified into two different groups: those

based on importance sampling and those based on Markov chains. In both cases, the problem of

probability propagation may be viewed as the obtainment of samples form a difficult to manage

probability distribution. Importance sampling algorithms are based in the use of a modified

distribution in order to obtain independent samples, that are weighted to resemble the original

distribution. The first algorithm into this group, called Probabilistic Logic Sampling, is due to

Henrion [9]. It provides good results when no evidences are given. One improved algorithm,

called Likelihood Weighting, was proposed by Fung and Chang [8] and Shachter and Peot [22].

It performs well, but in some cases, the same problem as in Logic Sampling may arise [3]: all

the weights are 0 or 1. A more sophisticated method was proposed by Cano, Hernández and

Moral, based on entropy criteria [3]. Given the conditional distributions in the network, they

use those ones with less entropy (the most informative ones) to obtain the samples, and those

ones with more entropy to compute the weights. This way they try to solve the problem of 0-1

weights.

In the case of Markov Chain-Monte Carlo algorithms, the samples are not independent:

they verify the Markov property. The best known algorithm using this technique is Pearl’s

stochastic simulation [16]. This method was generalized by Jensen, Kong and Kjærulff [12],

allowing samples to be generated with a greater degree of independence, but with a higher

computational cost.

In this paper we study a general class of importance sampling algorithms, presented in [11].

They perform making a first approximate propagation based on the concept of node removal

[24], similar to D’Ambrosio’s symbolic propagation [21]. The results obtained from this first

2



propagation are improved by sampling the obtained functions.

Bouckaert [1] and Bouckaert, Castillo and Gutiérrez [2] developed a stratified sampling

scheme for probability propagation. It performs well, but when the network is too complex,

precision problems make this method infeasible. Here it is considered how to modify that al-

gorithm to use the same sampling distributions as in importance sampling. Also, a method is

presented to avoid rounding errors when simulating.

In section 2, the basic notation is established and the general problem is formulated. In

section 3, importance sampling is introduced. The new algorithms are treated in detail, studying

several variations over the main scheme, in section 4. Section 5 is devoted to the application

of stratified sampling to the new algorithms. A new way of performing stratified sampling,

avoiding numerical errors, is presented in section 6, while in section 7 experimental results are

commented. The paper ends with conclusions and further research in section 8.

2 Notation and Problem Formulation

A belief network is a directed acyclic graph where each node represents a random variable, and

the topology of the graph shows the independence relations among the variables, according to the

d-separation criterion [17]. Given the independences attached to the graph, the joint distribution

is determined giving a probability distribution for each node conditioned to its parents.

Let X = {X1, . . . ,Xn} be the set of variables in the network. Assume each variable Xi takes

values on a finite set Ui. We shall denote by UI the cartesian product
∏

i∈I Ui. Given x ∈ UI

and J ⊆ I, we shall denote by x↓J the element of UJ obtained from x dropping the coordinates

not in J . Given a function f defined over UI , s(f) will denote the set of indices of the variables

for which f is defined (i.e. s(f) = I). Under these conditions, the conditional distribution of Xi

given its parents in the network, F (i), is denoted by

fi(x) = fi(x
↓i, x↓F (i)) ∀i ∈ N ∀x ∈ Us(fi) (1)

where N = {1, . . . , n}, and

∑

xi∈Ui

fi(xi, x) = 1 ∀x ∈ UF (i) (2)

Then, the joint probability distribution for the n-dimensional random variable X can be

expressed as
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p(x) =
∏

i∈N

fi(x
↓s(fi)) ∀x ∈ UN (3)

An observation is the knowledge about the exact value Xi = ei of a variable. The set of

observations will be denoted by e, and called the evidence set. E will be the set of indices of the

observed variables.

Every observation Xi = ei is attached to a Dirac function defined on Ui as follows:

δei(x) =







1 if ei = x

0 if ei 6= x
(4)

The goal of probability propagation is to calculate the posterior probability function p(x|e),

for every x ∈ UI , where I ⊆ N . This probability could be obtained from the joint distribution

(3), but we assume that it is difficult to manage. Notice that it is equal to p(x∩ e)/p(e), and as

p(e) is constant, it is proportional to p(x ∩ e). So, we can know the posterior probability if we

compute for every x ∈ UI the value p(x ∩ e), normalizing afterwards. p(x ∩ e) can be expressed

in the following way,

p(x ∩ e) =
∑

y↓E=e

y↓I=x

∏

i∈N

fi(y
↓s(fi)) =

∑

y↓I=x

(

∏

i∈N

fi(y
↓s(fi))

)

.





∏

j∈E

δej (y
↓j)



 =
∑

y↓I=x

f(y) (5)

The following concepts are used throughout the paper.

Definition 1 Given a function f defined over a set of variables XI and J ⊆ I, we define the

marginalization of f over a variable XJ (or the deletion of variables in I−J) as a new function

f↓J defined over the set J given by the expression

f↓J(x) =
∑

y∈UI

y↓J=x

f(y) ∀x ∈ UJ (6)

Definition 2 Given r-functions f1, . . . , fr each one defined over the sets I1, . . . , Ir, a new func-

tion, called the combination of them, is defined over the set I =
⋃r

i=1 Ii as

f(x) =
r
⊗

i=1

fi(x
↓Ii) =

r
∏

i=1

fi(x
↓Ii) ∀x ∈ UI (7)
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Notice that the product above can be done in any ordering. Thus, combination is a commu-

tative operator.

Definition 3 Let f be a function defined over a set I of indices, and assume a set of variables

XJ , J ⊂ I whose values x↓J are fixed (x↓J = x0). The restriction of f to the values x0 is a new

function f ′ defined on I − J according to the following expression:

f ′(x) = f(y) (8)

such that y ∈ UI , y
↓I−J = x↓I−J and y↓J = x0.

Restriction can simplify the problem when observations are provided. Notice that formula

(5) is still valid if we replace each function fi by its restriction to the evidence e. This way we

can work with simpler functions.

3 Importance Sampling

One method to estimate the addition in (5) is the so called importance sampling technique (this

technique is described in detail in [18]). It is a Monte Carlo procedure that uses an auxiliary

probability distribution P ∗(x), instead of f(x), to obtain a sample from the space UN .

Afterwards, a weight is assigned to each obtained configuration, x(i) ∈ UN . This weight is,

wi =

(

∏

i∈N fi(x
↓s(fi))

)

·
(

∏

j∈E δej (x
↓j)
)

P ∗(x)
(9)

It is necessary that P ∗(x) > 0 whenever p(x ∩ e) > 0.

Under these conditions, if (x(1), . . . , x(m)) is the obtained sample, an unbiased estimator of

p(x↓I ∩ e) is given by

ξ =

∑

x(i)↓I=x
wi

m
(10)

It can be shown that the variance of ξ is minimized when P ∗(x) is proportional to p(x ∩ e)

(see [3, 10, 18, 22]). However, selecting a probability proportional to p is not always possible,

because p is difficult to handle. Notice that the variance of ξ is minimal when the weights are

constant, so, the best we can do is to select P ∗ as close as posible to p(·|e).

Once P ∗ is selected, we can estimate p(x ∩ e) as follows (see [3, 22] for more details):

1. for i = 1 to m
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(a) Generate a configuration x(i) according to P ∗.

(b) Do

wi =

∏

i∈N fi(x
↓i, x↓F (i))

P ∗(x)
×
∏

j∈E

δej(x
↓j) (11)

2. For every x ∈ UI

(c) Estimate p(x ∩ e) by using formula (10)

3. Normalize values p(x ∩ e)

where m is the size of the sample.

4 Importance Sampling based on Approximate Computation

The most important decision when designing an importance sampling algorithm is the selection

of the sampling distributon: it should be as similar as possible to the original distribution.

In the particular case of a belief network, the original distribution is given as a product of

conditional probability distributions. Known importance sampling algorithms [3, 8, 22] use

sampling distributions close to the original conditional ones. In this way they try to obtain a

sampling joint distribution close to the original joint distribution in order to get uniform weights

for the configurations of the variables.

Here we propose a new approach to obtain the sampling distributions. The idea is not to use

only the conditionals and likelihoods, but all the available information about a given variable.

This means to use all the functions associated with the variable when we are to simulate it.

This is the ideal case, but if the network is complicate enough, this process will be infeasible;

concretely, the complexity of this process would be the same as in exact probability propagation,

and this is what we are trying to avoid. In short, the problem is that the cost of the combination

of the functions defined for a variable may be too high.

The solution we propose is to do approximate computations when the exact ones are too

difficult. As we are not using the original p(x|e) distribution, but an approximation P ∗, we

use the importance sampling technique and compute a weight for each configuration. The key

point in this procedure is when and how to do approximate calculations in such a way that the

computations are fast and the sampling distribution P ∗ as close as possible to p(x|e).

The algorithm starts with a family of functions composed by the conditional distributions

and the observations,
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H = {f1, . . . , fn} ∪ {δel}l∈E (12)

The true p(·|e) is proportional to the product of all the functions in H (see equation (5)).

Then, an ordering of the variables in the network is considered, given by a permutation

σ over the set {1, . . . , n}. The next step is to delete the variables in sequence, following the

ordering imposed by σ. There are two ways of doing the deletion of a variable Xσ(i): exact and

approximate.

Exact

1. Combine all the functions which are defined for variable Xσ(i), obtaining a function hi.

2. Delete Xσ(i) from the combination, hi, by marginalizing the result to s(hi)− {σ(i)}.

3. Add the result to H. Remove from H all the functions which were combined to obtain hi.

If we are able to repeat this process for all the variables in each step we obtain a sampling

distribution proportional to p(x ∩ e). In fact, it performs like an exact propagation algorithm

[24], and the following proposition holds:

Proposition 1 Assume the conditions for exact deletion:

– If hn is the function obtained when we are deleting Xσ(n) then for all x ∈ Uσ(n), hn(x) is

proportional to p(x|e).

– If hi is the function obtained when we are deleting Xσ(i) (i < n), Σ(i) = {σ(i+1), . . . , σ(n)},

and x0 ∈ UΣ(i)∩s(hi), then the restriction of hi to x0, h
′
i (see equation (8)) is proportional

to the probability p(.|e, x0): ∀x ∈ Uσ(i), h
′
i(x) ∝ p(x|e, x0).

Proof: First we are going to show that if H is the set of functions obtained before deleting

Xσ(i) (i = 1, . . . , n) then

∀x ∈ U{σ(i)}∪Σ(i), p(x, e) =
∏

h∈H

h(x↓s(h)) (13)

This is trivially true for i = 1.

From (5) we obtain
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∀x ∈ U{1,...,n}, p(x, e) =
n
∏

i=1

fi(x
↓s(fi))

∏

j∈E

δej(x
↓j)

=
∏

h∈H

h(x↓s(h))

Now if H is the set of functions obtained before deleting Xσ(k) and H ′ the set after the

deletion, we are going to show that if (13) is true for i = k and H, then it is also true for

i = k + 1 and H ′.

If (13) is true for i = k then

∀x ∈ U{σ(k)}∪Σ(k), p(x, e) =
∏

h∈H

h(x↓s(h))

If y ∈ U{σ(k+1)}∪Σ(k+1) = UΣ(k), then

p(y, e) =
∑

x↓Σ(k)=y

p(x, e) =
∑

x↓Σ(k)=y





∏

h∈H

h(x↓s(h))





Let H(k) = {h ∈ H|σ(k) ∈ s(h)}, then

p(y, e) =
∑

x↓Σ(k)=y





∏

h∈H(k)

h(x↓s(h))









∏

h∈H−H(k)

h(x↓s(h))





Now, if h ∈ H −H(k), x↓s(h) = y↓s(h) and h(x↓s(h)) = h(y↓s(h)) not depending this value on

x, for fixed y. Then

p(y, e) =





∏

h∈H−H(k)

h(y↓s(h))



 ·





∑

x↓Σ(k)=y

∏

h∈H(k)

h(x↓s(h))





Taking into account that H ′ = [H −H(k)] ∪ {h
↓Σ(k)
k } and that

h
↓Σ(k)
k (y) =

∑

x↓Σ(k)=y





∏

h∈H(k)

h(x↓s(h))





then,

p(y, e) =





∏

h∈H−H(k)

h(y↓s(h))



 · h
↓Σ(k)
k (y)

So, we obtain the desired result:

∀y ∈ U{σ(k+1)}∪Σ(k+1), p(y, e) =
∏

h∈H′

h(y↓s(h))
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Now, we can use the form (13) to show the proposition for every i = 1, . . . , n. In fact, we

have

∀x ∈ Uσ(i)∪Σ(i), p(x, e) =
∏

h∈H

h(x↓s(h))

=





∏

h∈H(i)

h(x↓s(h))



 ·





∏

h∈H−H(i)

h(x↓s(h))





= hi(x
↓s(hi))

∏

h∈H−H(i)

h(x↓s(h))

Let x = (y, x0, z), where y ∈ U{σ(i)}, z ∈ UΣ(i)−s(hi), x0 ∈ UΣ(i)∩s(hi), x0 constant. Then,

p(x, e) = p(y, x0, z, e) = hi((y, x0)
↓s(hi))

∏

h∈H−H(i)

h((x0, z)
↓s(h))

Taking the sum on z ∈ UΣ(i)−s(hi), we have

p(y, x0, e) =
∑

z∈UΣ(i)−s(hi)

p(y, x0, z, e)

= hi((y, x0)
↓s(hi))





∑

z∈UΣ(i)−s(hi)





∏

h∈H−H(i)

h((x0, z)
↓s(h))









For x0 constant the second factor is constant and therefore,

p(y, x0, e) = k · hi((y, x0)
↓s(hi)) = k · h′i(y)

From this expression we obtain the desired result:

∀y ∈ Uσ(i), p(y|x0, e) =
k

p(x0, e)
h′i(y) = k′ · h′i(y) ∝ h′i(y)

✷

The two properties in the proposition above, allow us to simulate a value x ∈ UN with a

probability equal to p(x|e). What we have to do is to simulate values for the variables in the

ordering Xσ(n), . . . ,Xσ(1). To obtain a value for a variable Xσ(i), we sample from the function

hi, making the restriction of it to the values x0 already obtained for the preceding variables,

XΣ(i), and normalizing afterwards.
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In some cases, the size 1 of hi would be so big that its computation is infeasible. Then we

have to do the deletion of the variables in an approximate way. Several approximate criteria

may be defined, but always according to the following scheme:

Approximate

1. Let be H(i) = {h ∈ H | σ(i) ∈ s(h)}, the set of functions which are defined for variable

Xσ(i). Remove H(i) from H.

2. Transform H(i) by combination. To do this, we repeat several times the following process:

take R ⊂ H(i). Combine all the functions in R. Add the combination to H(i). Remove

R from H(i).

3. Calculate H+(i) from H(i) by deleting Xσ(i) in all the functions belonging to H(i).

4. Add H+(i) to H.

This procedure coincides with the exact one if in the second step, all the functions in H(i)

are combined. The idea of the approximate approach is to combine functions while a fixed size

threshold is not surpassed. One important property of the approximate step is that no new 0

values are added. That is, if x ∈ UN is such that h(x↓s(h)) 6= 0 for every h ∈ H, before deleting

Xσ(i), this property is verified after the deletion of the variable.

The goal of the algorithm is to obtain configurations of the variables XN . The process to

simulate a value for a variable Xσ(i) in the approximate approach is as follows: If x0 is the

obtained configuration for the variables XΣ(i), then

1. Let H(i) be the set calculated in step 2 of the approximate deletion procedure.

2. Restrict each function in H(i) to x0. Combine all the functions in H(i), obtaining a new

function h′i defined over Uσ(i).

3. If N(h′i) is the normalization of h′i, obtain a value for Xσ(i) following the probability

distribution N(h′i).

At this point we are able to formulate a general importance sampling algorithm for proba-

bility propagation:

1The size of a function h is defined as the product of the number of cases of all the variables for which h is

defined.
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The Main Algorithm (ALG IS)

1. Let H = {fi | i = 1, . . . , n}.

2. Select an ordering σ for the variables in G.

3. Incorporate observations:

(a) Restrict all the functions in H to the evidences {el}l∈E according to equation (8).

(b) For every observed variable Xl, l ∈ E do H = H ∪ {δel}

4. for i = 1 to n do

(a) Delete Xσ(i) by the approximate procedure2

5. for j = 1 to m do

(a) wj = 1.0

(b) for i = n downto 1 do

i. Obtain a value for Xσ(i), x
(j)
i , according to N(h′i).

ii. Do

wj =
wj

N(h′i)(x
(j)
i )

(c) Do

wj = wj ×
n
∏

i=1

fi(x
(j)
i )× δei(x

(j)
i )

6. Estimate the desired probabilities according to equation (10).

At the end of loop 5.(b), the weight wj takes the value

wj = 1/P ∗(x(j))

where P ∗ is the sampling disribution we use, given by:

P ∗(x(j)) =
n
∏

i=1

N(h′i)(x
(j)↓i) (14)

After step 5.(c) the resulting weight is the correct one for importance sampling (equation (11)).

Observe that the efficiency of the algorithm depends on the ordering of the variables at step

2.

2Remember that the exact computation is a particular case of this step; so the exact deletion is also possible.
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4.1 Particular Cases of the Main Algorithm

In this section we shall consider several variations from the main algorithm. The particular

algorithms will be determined by the way in which H+(i) is calculated; that is, we must define

criteria to select the subsets R fromH(i) of functions that will be combined before marginalizing,

when a variable XΣ(i) is going to be deleted.

The first criterion one can think about is to take R = H(i). This coincides with the exact

deletion algorithm. We shall not take this criterion into account, because if we have been able

to delete all the variables in an exact way, in a similar amount of time, the exact probabilities

can be computed with no need to simulate.

As the opposite of the preceding, one may decide not to combine any function, that is, H(i)

does not change in the second step of the approximate scheme. This is the faster procedure we

can consider, because no time is spent on computing the combinations. However, simulation

time may grow if many functions are associated to the variables. In this case, when a variable

is being simulated, all its attached functions have to be evaluated for the current configuration

of the variables. Moreover, the estimations obtained through this method should be the worst,

because we lose information in each deletion (remember that the correct way is first to combine

and then marginalize).

Now we shall study three groups of methods for combining the functions.

4.1.1 Size Criteria

In this section we define three criteria attending the size of the functions resulting from the

combinations.

The first idea is to combine all the functions concerning a variable if the size of the resulting

function does not exceed a given threshold. That is, if the fixed size is not surpassed, the exact

deletion is done; otherwise, no functions are combined. This threshold can be fixed taking into

account the amount of memory avaliable in the system.

This method can be improved if we realize that maybe we cannot combine all the functions,

but only some of them. The procedure would be to select R in the approximate deletion by

including functions while the resulting combination does not surpass the established limit. Notice

that, in this case, the ordering in which the functions are selected is important. Two approaches

can be considered here:

• combine functions in an arbitrary sequence while maximum size is not exceeded (criterion

1), or

12



• combine first those that maximize the size of the common variables (criterion 2). Notice

that functions defined over a single variable can be combined without adding complexity.

Thus, unitary functions should be the first to be combined.

Example 1 Assume variable Xi is going to be deleted, and it is associated to the following

functions:

f1(Xi,Xj ,Xk), f2(Xi,Xl,Xm), f3(Xi,Xk), f4(Xi)

every variable with three possible values, and suppose the size threshold is 27. The functions

remaining after the combination process would be:

criterion 1
h1i = f1 ⊗ f3 ⊗ f4

h2i = f2

criterion 2
h1i = f2 ⊗ f3

h2i = f1 ⊗ f4

Experimental evaluation shows criterion 2 to be the best of this group.

4.1.2 Entropy Criteria

We are interested in improving the results given by criterion 2. The solution could be to make a

higher effort in the combination process. The approach we propose here is the following: supose

after applying criterion 2, not all the functions have been combined. One way to refine the

process could be to select the most ”suitable” remaining function, and combine it with that one

with a higher common size (as in criterion 2). However, notice that in this case we are allowing

to surpass the size threshold considered in the preceding section, but this happens at most once

for each variable. In many cases, the increment of computational cost can be assumed.

The key point here is what do we mean by the most ”suitable” function. One approach can

be to consider the quality of the remaining functions. Namely, the function providing the biggest

amount of information should be the most likely to be combined. That amount of information

can be measured through Shannon entropy, which is defined as follows:

Definition 4 Given a probability mass function f , defined over a finite set Ω, its entropy is

defined as:

E(f) = −
∑

x∈Ω

f(x) log f(x) (15)
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The higher the entropy of a function f is, the less informative f is. The maximum (log |Ω|)

is reached when f is the uniform distribution. So, the criterion we may consider is to combine

the function whose entropy is minimum. This function should be combined with that one whose

domain is more similar. We refer to this as criterion 3. The detailed algorithm is as follows:

1. Let Xσ(i) be the variable being deleted.

2. Let H(i) be the set of functions resulting from the combination process according to

criterion 2.

3. Select h ∈ H(i) such that E(h) = max
f∈H(i)

E(f)

4. Remove h from H(i).

5. Select h∗ ∈ H(i) such that ‖s(h)∩ s(h∗)‖ = max
f∈H(i)

‖s(h)∩ s(f)‖, where ‖I‖ is the product

of the number of cases of the variables whose indices are in I.

6. Remove h∗ from H(i).

7. H(i)=H(i) ∪ {h⊗ h∗}

4.2 Dealing with Observations

Another important question to establish about the main algorithm is the treatment of the

observed variables. In this work, we have decided to incorporate them before calculating the

sampling distributions. In this way, the functions are restricted to the observed values. Thus, the

size of some functions will be reduced. Moreover, there is no need to distinguish between observed

and not observed variables during the simulation process. This fact reduces the possibility of

obtaining null weights. Notice that if the functions are reduced to the observed values, any

configuration obtained in the simulation will be consistent with the evidences. One of the causes

of null weights in existing simulation algorithms is the discordance between the simulated values

and the observations. The bond is that the dinamical inclusion of new evidences requieres a new

computation of the sampling distributions.

The other option is not to restrict the functions to the evidences. In this case, the observed

variables are not simulated; they take directly the observed value. Then, the probability of the

evidence is used to weight the simulation. This is the way Likelyhood Weighting performs. The

advantage is that the inclusion of new evidences is easy, but the counterpart is that in some

cases all the weights result to be zero.
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4.3 Selecting an Elimination Ordering

The ordering in which variables are eliminated when computing the sampling distributions de-

termines the efficiency of the propagation algorithm. This problem is similar to the construction

of optimal cluster trees in exact propagation algorithms. These algorithms requiere a previous

triangulation of the moral graph associated to the causal network. Triangulation is done by

deleting the variables in the network and connecting all the nodes adjacent to the node being

deleted. An appropriate selection of the deletion ordering should lead to the obtainment of

cliques with a lower size.

In the case of importance sampling algorithm, an appropriate ordering may result in functions

with a lower size, and this way, more exact computations could be done without exceeding the

size threshold.

We think that orderings resulting from triangulation processes would produce good results

in our algorithms. Also, it can be considered to remove, at each step, the variable producing the

smallest function. In the experimentation carried out in this paper, we have considered a deletion

ordering from leaves to roots. So, the variables will be simulated from roots to leaves. This is

the simulation ordering used in the Likelihood Weighting algorithm. The following proposition

establishes when our algorithms and Likelihood Weighting are equivalent.

Proposition 2 Let X = {X1, . . . ,Xn} be the set of variables in a causal network, and H =

{f1, . . . , fn} the conditional probabilities for each variable. Assume there are no observations.

Then, if σ is an ancestral ordering 3 of the vertices in the network, and the deletion sequence is

from σ(n) to σ(1), importance sampling algorithm is equivalent to likelihood weighting.

Proof: It is sufficient to prove that for each variable Xi, 1 ≤ i ≤ n, its sampling distribution is

just fi, i.e. the conditional distribution for Xi given its parents in the network. It is clear that

any variable Xσ(i) never appears in functions fσ(j), j < i, since σ is an ancestral ordering.

Also, given that σ is an ancestral ordering, the first variables to be removed are those being

leaves in the network. Now, assume Xi is a leaf. Its only attached distribution is fi(x
↓i, x↓F (i)),

∀x ∈ Us(fi). After removing Xi, the remaining function is

∑

xi∈Ui

fi(xi, x), ∀x ∈ UF (i)

and, by equation (2) it is equal to 1.

3An ordering of the nodes in a graph is said to be ancestral if any descendant of any given node appears after

it in the ordering sequence.
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Now assume all the leaves have been removed. At this point, the next variables to be removed

are those whose only descendants were leaves. Thus, themselves are leaves now, and their

associated distributions are the conditionals combined with those resulting from the deletion of

the previous variables, but we have seen the result of the deletion to be 1. So, the sampling

distribution for each variable is the conditional distribution of that variable given its parents. ✷

5 Applying Stratified Sampling to the New Algorithms

In this section, we apply the stratified sampling technique [2, 18] to the new algorithms proposed

in this paper. Stratified sampling is a well known simulation technique in Statistics. The basic

idea is to divide the sample space into several regions (also called strata) and then choose an

optimum number of configurations from each region. In this way, rare samples may be avoided.

Theoretical basis for stratified sampling can be found in [18].

5.1 Stratified Sampling in Belief Networks

First propagation algorithms based on stratified sampling were proposed by Bouckaert [1] and

Bouckaert, Castillo and Gutiérrez [2]. The idea is to consider the space of all possible configu-

rations of the variables in the network, so that most probable configurations are assigned to a

greater region. Then, configurations are selected seeking over the whole region. The procedure

is as follows:

Let X = {X1, . . . ,Xn} be a set of discrete random variables, each variable Xi taking values

on a set {0, 1, . . . , ri − 1}. Let fi(x
↓i, x↓F (i)), i = 1, . . . , n be the conditional distributions for

each variable given its parents in the network. Under these conditions we can generate all

the possible configurations from the variables and compute their associated probabilities. The

following ordering of the configurations is defined [2]:

Definition 5 Let I1 = (x1, x2, . . . , xn) e I2 = (y1, y2, . . . , yn) be two configurations of X. I1

precedes I2 (I1 < I2) if and only if:

I1 < I2 ⇔ ∃k such that ∀j < k xj = yj and xk < yk (16)

Based on the ordering in (16), a table is constructed representing the sample space. This

table is used to seek for the configurations. For example, let X = (X1,X2) be a set of variables,

each one with two possible values. Figure 1 shows the network associated to X and the table

1 shows the ’a priori’ probabilities for the variables in X. In table 2 we can find the sorted

16



✚✙
✛✘

✚✙
✛✘

✲X1 X2

Figure 1: A belief network.

X1 X2

f1(X1 = 0) = 0.6 f2(X2 = 0,X1 = 0) = 0.2

f1(X1 = 1) = 0.4 f2(X2 = 0,X1 = 1) = 0.5

f2(X2 = 1,X1 = 0) = 0.8

f2(X2 = 1,X1 = 1) = 0.5

Table 1: Probability values for the sample net.

Configuration Probability Cumulative prob. Associated interval

(0,0) 0.12 0.12 (0.00,0.12)

(0,1) 0.48 0.60 (0.12,0.60)

(1,0) 0.20 0.80 (0.60,0.80)

(1,1) 0.20 1.00 (0.80,1.00)

Table 2: Probabilities and intervals for the sorted configurations.

0

1

00

01

10

11

X1 X2

0.00

0.12

0.60

0.80

1.00

Figure 2: Configurations and their cumulative probabilities.
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configurations with their probability of occurence, cumulative probability and associate interval.

Each configuration is attached to an interval Ii = [l(i), h(i)) ⊆ [0, 1] whose limits are computed

according to the following expressions:

l(i) =
∑

j<i

n
∏

r=1

f∗
r (I

↓r
j )

h(i) = l(i) +
n
∏

r=1

f∗
r (I

↓r
j )

(17)

where Ij is the j-th configuration and f∗
r , r = 1, . . . , n, are the sampling distributions. Figure 2

shows the partition for the network in figure 1 over the interval [0, 1].

To obtain a sample of size m, it performs generating m numbers into [0, 1], and retrieve the

configuration correspondig to each number according to the partition of the region (figure 2).

Then, each configuration is scored according to the distribution used to compute the intervals

(f∗
r ) and the original distribution. The m numbers are not random, but they are calculated in

a deterministic way as [2],

ki =
i− 0.5

m
i = 1, 2, . . . ,m

Example 2 Consider the net in figure 1. Generating four numbers ki = (i−0.5)/4, i = 1, . . . , 4,

we obtain the sequence,

(0.125, 0.375, 0.625, 0.875)

and its associated sample is,

(01), (01), (10), (11)

Notice that when m grows, the relative frequency for each configuration converges to its

probability value. Several sampling distributions can be used. Bouckaert, Castillo and Gutiérrez

[2] use the same functions as in Likelihood Weighting algorithm. We use the functions developed

in section 4.

5.2 The Stratified Sampling Algorithm

In this section we formalize the method explained in previous section. The question to solve is

how to obtain the configuration associated to a given number ki ∈ [0, 1]. One procedure could be

to compute the cumulative probabilities for all the configurations in sequence until ki is reached.

However, this is the same as computing the exact probabilities, what is precisely what we are

trying to avoid.
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The method proposed by Bouckaert et al. starts with a configuration of the variables, and,

for a given ki, determines what variables must change their value to reach ki. For this purpose,

associated to each variable there will be an interval [l(i), h(i)) representing the ”zones” of the

region in which the variable Xi changes its value (see figure (2)). Then, it searches for the first

variable Xj such that kj ∈ [l(j), h(j)), starting from j = n. When j is found, the intervals

corresponding to the variables Xj+1, . . . ,Xn are updated for them to contain ki.

One important advantage of stratified sampling is that it is possible to know how many

values from the sequence ki correspond to the same configuration. For a given k ∈ [0, 1], this is

achieved by [2],

∆ = ⌊(h(n) − ki) ·m⌋+ 1 (18)

where ⌊x⌋ is the integer part of x for all x ∈ IR.

The general algorithm is as follows:

The Stratified Algorithm (ALG SS)

1. Select an ordering σ for the set of indices N = {1, . . . , n}.

2. Compute the sampling distributions f∗
l , l ∈ N according to the deletion sequence imposed

by σ (as in importance sampling).

3. Initialization.

4. For j = 1 to m do

(a) Generate configuration x(j)

(b) Compute

∆ = ⌊(h(n) − kj) ·m⌋+ 1

(c) Compute

wj = ∆ ·

[

∏

i∈N fi(x
(j)↓s(fi))

] [

∏

r∈E δer(x
(j)↓r)

]

∏

l∈N f∗
l (x

(j)↓s(f∗
l
))

(d) j = j +∆

5. Estimate the probabilities p(x ∩ e) according to equation (10).

where m is the sample size.
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This algorithm is very similar to importance sampling. The differences remain in inicializa-

tion and configurations generation procedures. These procedures are as follows [2]:

Initialization

1. l(0) = 0.0; h(0) = 1.0

2. For i = 1 to n do

(a) l(i) = 0.0

(b) If Xσ(i) ∈ XE then

• val(σ(i)) = eσ(i)

• h(i) = h(i− 1)

else

• val(σ(i)) = 0

• h(i) = h(i− 1) · f∗
σ(i)(Xσ(i) = 0)

This procedure computes the first configuration and its probability. The configuration is

stored in array val(.). Also, intervals [l(i), h(i)) are initialized according to the probability of

the first value of each variable Xi.

The procedure to generate configurations is,

Generate configuration x(i)

1. ki =
i− 0.5

m

2. If l(n) ≤ ki ≤ h(n) then j = n

else select j < n such that h(j − 1) ≥ ki ≥ h(j)

3. While j ≤ n do

If Xσ(j) ∈ XE then

• l(j) = l(j − 1)

• h(j) = h(j − 1)

else

• t = 0

• l(j) = l(j − 1)
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• h(j) = l(j) + (h(j − 1)− l(j − 1)) · f∗
σ(j)(Xσ(j) = t)

• While ki > h(j) do

– t = t+ 1

– l(j) = h(j)

– h(j) = l(j) + (h(j − 1)− l(j − 1)) · f∗
σ(j)(Xσ(j) = t)

• val(σ(j)) = t

j = j + 1

4. Return configuration x(i) stored in array val(.).

ki is the point into interval [0, 1] for which we want to know the associate configuration of the

variables. At step (2), it is computed the position from which the configuration of the variables

have to be updated. This position corresponds to the first variable for which its associated

interval [l, h) contains ki. At step (3) the configuration is obtained and intervals are updated.

Notice that observed variables do not influence the construction of the intervals.

5.3 Problems of Stratified Sampling

Although stratified sampling is a very efficient algorithm, in practice, a very important problem

arises when we deal with large networks. The problem is due to the limited precision of the

real numbers into the computers. Notice that when computing the intervals [l, h), we use the

following expression,

h(j) = l(j) + (h(j − 1)− l(j − 1)) · f∗
σ(j)(Xσ(j) = t)

So, we are performing two additions and one product with numbers very close to zero. In general,

the larger the network is, the smaller the numbers are. The result is that if we use single floating

point numbers to represent the limits of the intervals, they all are rounded to zero, because of

the loss of significant digits. Hence, the algorithm is unable to find any configuration for the

variables.

The solution could be to increase the number of bits used to represent floating point numbers

into the computer, but we always can find a large enough network so that all the intervals are

rounded to zero.

In the following section we propose an alternative method for doing stratified sampling

avoiding precision problems.
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6 Recursive Stratified Sampling

Whether stratified sampling works or not, depends strongly on the size of the network. It would

be interesting to find a way in which this method could be applied to any network independently

of its size. Here we propose a propagation scheme where stratified sampling is applied to each

variable separately. In each step, the intervals are scaled to [0, 1]; hence, no rounding errors

appear. We will start with a first rough approach to the algorithm, an example of how it

works and finally the detailed algorithm, which can be implemented in a recursive way. A first

approach may be like this:

1. Select an ordering {X1, . . . ,Xn} for the variables in the network and compute the sampling

distributions.

2. Take m numbers ki ∈ [0, 1] as in original stratified sampling.

3. For t = 1 to n− 1 do

(a) Consider Xt. (Initially t = 1).

(b) For each possible value of Xt do

i. Let r be the amount of numbers ki laying into the interval corresponding to the

current value of Xt.

ii. Generate the r configurations of the variable Xt+1.

When the procedure is finished, each variable has beed simulated m times. The next example

is meant to clarify the idea.

Example 3 Consider the network in figure 1, and the same sequence of numbers as in example

2. When we generate the four numbers ki, we can know how many numbers ki are in the interval

associated with the first case of the variable X1. In this case, in interval [0, 0.6) there are two

numbers: k1 = 0.125 and k2 = 0.375. So, we know that in the final sample there will be two

configurations (x1, x2) with x1 = 0.

If we use Bouckaert’s stratified sampling, then we should work on the interval [0, 0.6) in

order to obtain the configurations of X2 for the values k1 and k2. That is, we should apply (17).

But, we want remove the problem of rounding. For this task, we scale the interval [0, 0.6) in the

interval [0, 1), and the values k1 and k2 are changed to k′1 = 0.2083 and k′2 = 0.625.

Then, we repeat the process for X2, for which we have to generate two values, but now working

in the interval [0, 1]. In this case, in the new interval [0, 0.2) there are not any k′i for the first
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Figure 3: Recursive stratified sampling.

configuration of X2. And for the second configuration of X2, and in the new interval [0.2, 1),

there are two k′i. So, we obtain two configurations (x1, x2) with x2 = 1, the ones associated with

k′1 and k′2.

Since we have no more variables, then we come back to the first variable in order to resamble

the whole configurations. In this case, as k′1 and k′2 are really the values k1 and k2 in the previous

interval, then we can finish saying that there are two configurations of the manner (0, 1) in the

final sample.

So we obtain the same result that in the usual stratified sampling but removing rounding

errors.

At this point, we can give a detailed version of the algorithm, expressed as a recursive

procedure.

Recursive Stratified Algorithm (ALG RSS)

1. Select an ordering σ for the set of indices N = {1, . . . , n}.

2. Compute the sampling distributions f∗
l , l ∈ N according to the deletion sequence imposed

by σ (as in importance sampling).

3. Let m be the sample size.

4. Increment: inc =
1

m
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5. First number: k =
0.5

m

6. Interval limits: l = 0.0, h = 1.0

7. Variable to be simulated: i = 1 (the first one).

8. SIMULATE(i,l,h,k,inc,m)

9. Estimate probabilities p(x∩ e) according to equation (10), using the weights computed in

procedure SIMULATE.

where SIMULATE is a procedure performing like a classical stratified sampling just for one

variable at a time, and then calling itself recursively to simulate remaining variables.

SIMULATE(i,l,h,k(i−1),inc,∆)

1. If i > n Then

• Assign a weight to the configuration stored in array val as in ALG SS step 4.(c).

• return.

2. If Xσ(i) ∈ XE Then

(a) val[σ(i)] = eσ(i)

(b) k(i) = k(i−1)

(c) SIMULATE(i+ 1,l,h,k(i),inc,∆)

(d) return.

3. k(i) =
k(i−1) − l

h− l
; inc =

inc

h− l

4. l = 0.0; h = 0.0

5. v = 0

6. While k(i) < 1.0 do

(a) l = h

(b) h = h+ f∗
σ(i)(Xσ(i) = v)

(c) While h < k(i) do
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• v = v + 1

• l = h

• h = h+ f∗
σ(i)(Xσ(i) = v)

(d) val[σ(i)] = v

(e) ∆ =

⌊

h− k(i)

inc

⌋

+ 1

(f) SIMULATE(i+ 1,l,h,k(i),inc,∆)

(g) k(i) = k(i) +∆ · inc

(h) v = v + 1

We explain briefly the procedure SIMULATE. When this procedure is called, it is checked

whether all the variables have been simulated. If the answer is affirmative then we have a whole

configuration, whose weight can be computed as in ALG SS step 4.(c).

Otherwise, we check whether the input variable Xσ(i) is an observation or not. In the first

case we do not simulate: the algorithm takes directly the observed value and the parameters

remain unchanged and the next variable Xσ(i+1) is simulated. This task is done in step 2.

But if the input variable is not an observation we have to select a value v for it. The third

step scales the values of k(i) and inc to the interval [0, 1]. That is, we must divide the values by

the amplitude of the interval for the former variable. Remember that k(i) is the number that will

determine which value of the variable will be selected, according to the cumulative probabilities

of such values, and inc is the increment to reach the next value of k(i).

The interval limits have to be scaled to [0, 1] too, and this is determined implicitly by the

condition k(i) < 1 in step 6. In this step, we pick the lower k(i) and choose a value v for the

variable Xσ(i), later we pick the next k(i) and the process is repeated, and so on until we take

all the values k(i) for the interval [0, 1] associated to the variable Xσ(i).

In order to select a value v for the varible we must fix the intervals

[l =
∑

u<v

f∗
σ(i)(Xσ(i) = u), h = l + f∗

σ(i)(Xσ(i) = v)]

which contain the values k(i). So, given k(i), we must establish its associated interval [l, h] to

obtain a value v. This is the aim of the steps 6.(a)-6.(d).

When a interval is fixed then we obtain, in step 6.(e), the number of configurations, ∆, that

contain the current case v for Xσ(i). Then, in the step 6.(g), we choose the next value k(i)

and the process is repeated. Morever, we must stablish the configurations for the the selected
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cases v and, as we know there are ∆, then ∆ configurations of the following variables should be

obtained. This is done by calling again to procedure SIMULATE in step 6.(f).

Notice that all the variables are simulated in the interval [0, 1], not depending on the size of

the network, what makes this stratified algorithm valid for any arbitrary network.

Another advantage of this procedure with respect to classical stratified sampling, is that it is

avoided to look for the current configuration, concretely, step 2 in the Generate configuration

procedure of the stratified algorithm (section 5.2) is not necessary.

The following results show RSS being equivalent to SS.

Lemma 3 Let X = {Xσ(1), . . . ,Xσ(n)} be the set of variables in the network, each variable

Xσ(i) taking values on a set Uσ(i). Let be N = {1, . . . , n}, and x0 ∈ UN a configuration of the

variables in X. If f∗
σ(j), j = 1, . . . , n are the sampling distributions for each variable, then, for

all i = 1, . . . , n it holds that

∑

y<x
↓I
0

y∈UI

∏

j∈I

f∗
j (y

↓j) =





∏

j∈I′

f∗
j (x

↓j
0 )





















∑

y<x
↓σ(i)
0

y∈Uσ(i)

f∗
j (y)

















+
∑

y<x
↓I′

0

y∈UI′

∏

j∈I′

f∗
j (y

↓j) (19)

where I = {σ(1), . . . , σ(i)} and I ′ = I − {σ(i)}.

Proof: If we define the following events:

A = “a configuration y ∈ UI is less than x↓I0 ”

B = “a configuration y ∈ UI−{σ(i)} is equal to x
↓I−{σ(i)}
0 ”

C = “a configuration y ∈ U{σ(i)} is less than x
↓σ(i)
0 ”

D = “a configuration y ∈ UI−{σ(i)} is less than x
↓I−{σ(i)}
0 ”

then it holds that A = (B ∧ C) ∨ D and, since A = (B ∧ C) and D are disjoint events, and

P ∗(B ∧ C) = P ∗(B) · P ∗(C|B),

P ∗(A) = P ∗(B) · P ∗(C|B) + P ∗(D)

Where P ∗ is the sampling probability distribution. This equality is trivially true and equivalent

to equation (19). ✷

Proposition 4 Assume k ∈ [0, 1]. Let k(i) be the transformed value of k when simulating

variable Xσ(i) in algorithm RSS. Let be I = {σ(1), . . . , σ(i)}, I ′ = I − {σ(i)} and x0 ∈ UN a
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configuration for all the variables in the network. Then,

k =
∑

y<x
↓I′

0

y∈UI′

∏

j∈I′

f∗
j (y

↓j) + k(i)
∏

j∈I′

f∗
j (x

↓j
0 )

Proof: Notice that observed variables are not simulated, and thus, they do not change the

interval limits l and h.

We will do the proof by induction.

Initially, in the first run of procedure SIMULATE, l = 0.0 and h = 1.0, hence k(1) =
k − l

h− l
=

k, and by step 3 in the next call to procedure SIMULATE, with parameters (2, l, h, k(1) , inc,∆),

k(2) =
k(1) − l

h− l
=

k(1) −
∑

y<x
↓σ(1)
0

y∈Uσ(1)

f∗
σ(1)(y

↓σ(1))

f∗
σ(1)(x

↓σ(1)
0 )

what follows from the fact that, for any variable Xσ(i), the values of l and h are those computed

before calling procedure SIMULATE when simulating the former variable:

l =
∑

y<x
↓σ(i−1)
0

y∈Uσ(i−1)

f∗
σ(i−1)(y

↓σ(i−1))

h =
∑

y≤x
↓σ(i−1)
0

y∈Uσ(i−1)

f∗
σ(i−1)(y

↓σ(i−1))

Hence

k =
∑

y<x
↓σ(1)
0

y∈Uσ(1)

f∗
σ(1)(y

↓σ(1)) + k(2) · f∗
σ(1)(x

↓σ(1)
0 )

Thus, the proposition holds for i = 1 and i = 2.

Now we will prove that if the proposition holds for any i, then it also holds for i+ 1:

k =
∑

y<x
↓I′

0

y∈UI′

∏

j∈I′

f∗
j (y

↓j) + k(i)
∏

j∈I′

f∗
j (x

↓j
0 )

It follows from procedure SIMULATE(i+ 1, l, h, k(i+1) , inc,∆), step 3, that
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k(i+1) =

k(i) −
∑

y<x
↓σ(i)
0

y∈Uσ(i)

f∗
σ(i)(y

↓σ(i))

f∗
σ(i)(x

↓σ(i)
0 )

Thus,

k =
∑

y<x
↓I′

0

y∈UI′

∏

j∈I′

f∗
j (y

↓j) +

















k(i+1) · f∗
σ(i)(x

↓σ(i)
0 ) +

∑

y<x
↓σ(i)
0

y∈Uσ(i)

f∗
σ(i)(y

↓σ(i))

















∏

j∈I′

f∗
j (x

↓j
0 ) =

=
∑

y<x
↓I′

0

y∈UI′

∏

j∈I′

f∗
j (y

↓j) + k(i+1)
∏

j∈I

f∗
j (x

↓j
0 ) +

∏

j∈I′

f∗
j (x

↓j
0 )

∑

y<x
↓σ(i)
0

y∈Uσ(i)

f∗
σ(i)(y

↓σ(i))

and according to lemma 3,

k =
∑

y<x
↓I
0

y∈UI

∏

j∈I

f∗
j (y

↓j) + k(i+1)
∏

j∈I

f∗
j (x

↓j
0 )

✷

Theorem 5 Let kj, j ∈ {1, . . . ,m} be a sequence of numbers in [0, 1]. Let {x(1), . . . , x(m)} be

the set of configurations obtained by algorithm SS for the sequence above, and {y(1), . . . , y(m)}

those ones obtained by algorithm RSS. Then,

∀i ∈ {1, . . . ,m}, x(i) = y(i)

Proof: Let I and I ′ be as in proposition 4. For a given k ∈ [0, 1], the configuration obtained

by algorithm SS is that configuration x0 verifying

∑

y<x
↓I
0

y∈UI

∏

j∈I

f∗
j (y

↓j) < k ≤
∑

y≤x
↓I
0

y∈UI

∏

j∈I

f∗
j (y

↓j)

while algorithm RSS returns that configuration x0 verifying that, for all i ∈ {1, . . . , n},

∑

y<x
↓σ(i)
0

y∈Uσ(i)

f∗
σ(i)(y) < k(i) ≤

∑

y≤x
↓σ(i)
0

y∈Uσ(i)

f∗
σ(i)(y)
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So, to show that the theorem is true, it is sufficient to prove the following equivalence:

∑

y<x
↓σ(i)
0

y∈Uσ(i)

f∗
σ(i)(y) < k(i) ≤

∑

y≤x
↓σ(i)
0

y∈Uσ(i)

f∗
σ(i)(y) ⇔

∑

y<x
↓I
0

y∈UI

∏

j∈I

f∗
j (y

↓j) < k ≤
∑

y≤x
↓I
0

y∈UI

∏

j∈I

f∗
j (y

↓j)

By proposition 4, this last inequality is true if and only if

∑

y<x
↓I
0

y∈UI

∏

j∈I

f∗
j (y

↓j) <
∑

y<x
↓I′

0

y∈UI′

∏

j∈I′

f∗
j (y

↓j) + k(i)
∏

j∈I′

f∗
j (x

↓j
0 ) ≤

∑

y≤x
↓I
0

y∈UI

∏

j∈I

f∗
j (y

↓j)

and by lemma 3, this is equivalent to

∑

y<x
↓σ(i)
0

y∈Uσ(i)

f∗
σ(i)(y) < k(i) ≤

∑

y≤x
↓σ(i)
0

y∈Uσ(i)

f∗
σ(i)(y)

✷

7 Experimental Evaluation

This section presents the results of the empirical analysis carried out to test the performance

of the new algorithms. They have been used to propagate in a 50 variables network, with

both dense and sparse zones. We have done three different experiments. In the first one, the

probability distributions have been generated following an uniform distribution U(0, 1), and no

observations have been considered. In the second one, the only difference is that 7 variables have

been instanciated to their first value. In the third experiment, the same 7 variables have been

observed, and the conditional distributions have been modified in this way: the probability of

obtaining the observed value has been set to 0 except for one configuration of the parents, for

which it is 1. This is to make likelihood weighting and likelihood stratified sampling fail (see

[11]).

The following algorithms have been tested:
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LW Likelihood Weighting

IS2 Importance Sampling, criterion 2

IS3 Importance Sampling, criterion 3

LSS Likelihood Stratified Sampling

SS2 Recursive Stratified Sampling, criterion 2

SS3 Recursive Stratified Sampling, criterion 3

In the step of combining the functions to obtain the sampling distributions, the threshold has

been set to 512 values, that is, combinations can be done while the resulting function has no

more than 512 values. The sampling ordering considered is from roots to leaves. Each algorithm

has been run 100 times, except the stratified ones, given their deterministic character. Mean

time and error have been computed. The number of simulations have been set from 1.000 to

10.000, in a frequency of 1.000.

For one variable Xl, the goodness of the estimation is measured as [7]:

G(Xl) =

√

√

√

√

1

|Ul|

∑

al∈Ul

(p′(al|e)− p(al|e))2

p(al|e)(1 − p(al|e))
(20)

where p(al|E) is the true a posteriori probability, p′(al|E) is the estimated value and |Ul| is the

number of cases of variable Xl. For a set of variables (Xi)i∈I , the goodness of the estimation is:

G((Xi)i∈I) =

√

∑

i∈I

G(Xi)
2 (21)

The experiments have been carried out in an Intel Pentium 75MHz computer, with 16 MB

of RAM. The operating system was Linux 1.2.13, and the programs were implemented in C++

language.

Figures 4 to 17 show the results of the experiments. For each one, each importance sam-

pling algorithm is compared with its stratified version, and also, importance and stratified are

compared separately.

Attending the obtained results, the following can be said:

• There are no important differences neither among importance sampling algorithms nor

among stratified algorithms when no evidences are given (experiment 1). It can be observed

that, in general, applying stratified sampling is always advantageous.

• In experiment 2, importance sampling algorithms perform clearly better than likelihood

weighting, due to the observed variables. Also, new stratified algorithms improve likelihood
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stratified scheme.

• The extreme case is experiment 3. Here, likelihood weighting and likelihood stratified are

not able to give any estimation of the probabilities, because all weights result to be zero.

8 Conclusions

In this paper, we have revisited and expanded the class of importance sampling algorithms

presented in [11], applying them to stratified schemes. An important feature is that it can be

detected when exact computation is feasible, namely, when all functions can be combined in an

exact way. Experimental results show the new algorithms being less sensitive to close to zero

probabilities than Likelihood Weighting and classical Stratified Sampling. However, as we are

dealing with a NP-hard problem, several examples where our algorithms do not work can be

found. Nevertheless, we think the methodology proposed here will lead to solve a wide range of

problems.

About recursive stratified sampling, it is able to work with arbitrary large networks. It is

an important advance. Also it is shown to be equivalent to classical stratified sampling, thus,

verifying the same theoretical convergence results as is [2].

Now we are developing a new way of approximating the sampling distributions, using decision

trees to represent them. We expect this will lead to a better representation of difficult problems,

namely, those where many close to zero probabilities are provided.
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Figure 4: Experiment 1, IS2 vs SS2.
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Figure 5: Experiment 1, LW vs LSS.
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Figure 6: Experiment 1, IS3 vs SS3.
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Figure 7: Experiment 1, Importance Sampling.
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Figure 8: Experiment 1, Stratified Sampling.
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Figure 9: Experiment 2, IS2 vs SS2.
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Figure 10: Experiment 2, LW vs LSS.
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Figure 11: Experiment 2, IS3 vs SS3.
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Figure 12: Experiment 2, Importance Sampling.
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Figure 13: Experiment 2, Stratified Sampling.
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Figure 14: Experiment 3, IS2 vs SS2.
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Figure 15: Experiment 3, IS3 vs SS3.
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Figure 16: Experiment 3, Importance Sampling.
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Figure 17: Experiment 3, Stratified Sampling.
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