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Abstract: Monitoring of ecological systems is one of the major issues in ecosystem 
research. The concepts and methodology of mathematical systems theory provide useful 
tools to face this problem. In many cases, state monitoring of a complex ecological 
system consists in observation (measurement) of certain state variables, and the whole 
state process has to be determined from the observed data. The solution proposed in the 
paper is the design of an observer system, which makes it possible to approximately 
recover the state process from its partial observation. Such systems-theoretical approach 
has been applied before by the authors to Lotka-Volterra type population systems. In the 
present paper this methodology is extended to a non Lotka-Volterra type trophic chain 
of resource – producer – primary consumer type and numerical examples for different 
observation situations are also presented. 
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1. Introduction 

 The problem of sustainability of economic and social development in a broader 

sense also involves conservation aspects of ecology. The problem of state monitoring of 

population systems, even under natural conditions, is an important issue in conservation 

ecology. Nearly natural populations are often exposed to a strong human intervention, 

e.g. by wildlife management, fisheries or environmental pollution. This means that 

human activity may improve or break the equilibrium of the population system in 

question, it may also increase or decrease the genetic variability of the given 

populations. One of the main tasks of conservation biology is to preserve the diversity 

of population systems and genetic variability of certain populations. These problems 

make it necessary to extend the traditional approach of theoretical biology focusing only 

on a biological object, to the study of the system “biological object – man”. This, in 

dynamic situation, i.e. in case of a long-term human intervention, typically requires the 
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approach of mathematical systems theory (in frequently used terms, state-space 

modelling). On the state-space approach to modelling in population biology, Metz 

(1977) is an early reference, see also Metz and Dickmann (1986). 

 Mathematical systems theory offers a methodology to answer this question. This 

discipline had been developed by the 1960s to solve variety of problems faced in 

engineering and industry. A basic reference is Kalman et al. (1969), see also Zadeh and 

Desoer (1963). A recent reference is Chen et al. (2004). While by now, mathematical 

systems theory became quite familiar to system engineers, observability and 

controllability analysis of dynamic models in population biology is relatively new. In 

many cases, state monitoring of a complex ecological system consists in observation 

(measurement) of certain state variables, and the whole state process has to be 

determined from the observed data. In a more general setting, the state process is a 

system of differential equations, and instead of its concrete solution only a transform (in 

particular a subset of the components) of it is known (measured). The considered system 

is called (locally) observable, if from the observation, the underlying state process can 

be uniquely recovered (near an equilibrium state). Based on the a sufficient condition 

for nonlinear observation systems published in Lee and Markus (1971), for different 

coexisting Lotka-Volterra type population systems, local observability results have been 

obtained in part by some of the coauthors of the of the present paper in López et al. 

(2007a,b). Later on, in addition to these theoretical results, for Lotka-Volterra systems 

even a so-called observer systems has been constructed that made it possible to 

numerically recover the state process from the observation data, see López et al. (2007a, 

b), Gámez et al. (2008a,b) and Varga (2008). We also mention that, based on an 

observability result of Varga (1992) for nonlinear observation systems with invariant 

manifold, in López et al. (2008) an observer system was designed for the frequency-

dependent model of phenotypic observation of genetic processes.  

 In the present paper ecological systems of non Lotka-Volterra type will be 

considered. Until now in Shamandy (2005), only observability results have been 

obtained for systems of type resource – producer – primary consumer. In Section 2, 

from Shamandy (2005), the model setup and basic conditions for the existence of an 

equilibrium of the system are shortly recalled. Section 3 is the main body of the paper. 

First the theoretical background of the observer design is set up. Then the construction 

of the observer and the asymptotic recovery of the state process is illustrated with 
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numerical examples for different observation situations. Section 4 is devoted to the 

discussion of the results.  

 

2. Description of the dynamic model 

 

 In order to illustrate the application of the methodology of mathematical systems 

theory, a relatively simple food web, a trophic chain has been chosen, that in addition to 

populations also involves a resource (energy or nutrient). In the following, the model 

setup is shortly recalled from Shamandy (2005), see also Svirezhev and Logofet (1983), 

Jorgensen and Svirezhev (2004). For further details on trophic chains (and genaral food 

webs) see e.g. Odum (1971) and Yodzis (1989)   

 The considered model describes how a resource moves through a trophic chain. 

A typical terrestrial trophic chains consists in the following components: 

 resource, the 0th trophic level (solar energy or inorganic nutrient), 

which is incorporated by  

 a plant population, the 1st trophic level (producer),  

which transfers it to  

 a herbivorous animal population, the 2nd trophic level (primary consumer). 

Let it be noted that, in a longer trophic chain, the herbivores can be consumed by a 

predator population the 3rd trophic level (secondary consumer), which can be followed 

by top predator population (tertiary consumers). In the present paper, for technical 

simplicity only trophic chains of the type resource – producer – primary consumer will 

be studied. According to the possible types of 0th level (energy or nutrient), two types of 

trophic chains will be considered: open chains (without recycling) and closed chains 

(with recycling). At the 0th trophic level, resource is the common term for energy and 

nutrient. 

 Let 0x  denote of the time-varying quantity of resource present in the system, 1x  

and 2x , in function of time, the biomass (or density) of the producer (species 1) and the 

primary consumer (species 2), respectively. Let Q  be the resource supply considered 

constant in the model. Let 00 x  be the velocity at which a unit of biomass of species 1 

consumes the resource, and it is assumed that this consumption increases the biomass of 

this species at rate 1k . A unit of biomass of species 2 consumes the biomass of species 1 
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at velocity 1 1x , converting it into biomass at rate 2k . Both the plant and the animal 

populations are supposed to decrease exponentially in the absence of the resource and 

the other species, with respective rates of decrease (Malthus parameters) 1m  and 2m .  

Finally, in a closed system the dead individuals of species 1 and 2 are recycled into 

nutrient at respective rates 10 1    and 10 2   , while for an open system (where 

there is no natural recycling) ,01   02   holds. Then with model parameters  

0,,,, 2110 mmQ  ;  [,1,0[,  [;1,0], 2121  kk  

for the trophic chain the following dynamic model can be set up: 

 2221111000 xmxmxxQx      (2.1) 

 )( 21001111 xxkmxx       (2.2) 

 )( 112222 xkmxx  .    (2.3) 
 

Let  function f  be defined in terms of the right-hand side of this system: 

33  : RR f , 
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 In Shamandy (2005), a necessary and sufficient condition were found for the 

existence of a non-trivial ecological equilibrium x of dynamic system (2.1)-(2.3), 

where all components are present: system (2.1)-(2.3) has a unique equilibrium 

0),,( *
2

*
1

*
0  xxxx  if and only if the resource supply is high enough, i.e. 
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


 .                                                      (2.4) 

Throughout the paper condition (2.4) will be supposed. 

Remark 2.1.  For 01  the threshold 2Q  is lower than for   01  . Clearly, in the 

latter case the lack of recycling from species 1, a higher value of resource supply is 

necessary to produce the required positive equilibrium.   

Remark 2.2. Moreover, this equilibrium x  is asymptotically stable. In order to 

guarantee an ecological positive equilibrium x  we shall suppose in this paper that 

condition (2.3) holds. 
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3.  Construction of an observer system for a trophic chain 

 

For system (2.1)-(2.3) the observability (see Appendix) of it, when we observe 

separately each one of its variables, was proved in Shamandy (2005). Now, following 

the Theorem of Sundarapandian (2002) (see Appendix), we shall construct, in an 

explicit way, the local exponential observer for the three cases considered by 

Shamandy. With this aim we calculate the corresponding matrix of the linearized 

system of (2.1)-(2.3) at equilibrium 
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Case 1. We consider the observation of the resources of system (2.1)-(2.3), where the 

observation function is 

 

).0,0,1()(::)( **
00 




 x
x

h
Cxxxh                                 (3.1) 

 

In order to construct the local observer for the considered observation system, we need 

to determine a matrix ),,( 321 hhhcolH   such that matrix A-HC was Hurwitz, i.e. all 

its eigenvalues have negative real parts. According to the Hurwitz criterion (see e.g. 

Chen et al. (2004)), in terms of the normed characteristic polynomial of  A-HC, the 

following necessary and sufficient condition holds: 

 

       .0,,)( 01221001
2

2
3 aaaandaaaHurwitzisaaap         (3.2)  

 

This matrix H can be determined from the following theorem: 

Theorem 3.1.  Let us supposed that the resource supply is high enough,  
211
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is such that },max{
22

*
00

*
22

*
11

1 k

x

xm

xm
h




 . Then dynamic system defined by 

)]([)( zhyHzfz   

is a local exponential observer for system (2.1)-(2.3) with the observation of the 

resource (3.1). 

Proof. It is sufficient to show that under the conditions of the theorem, *x  is a 

Lyapunov stable equilibrium of system (2.1)-(2.3), and matrix A-HC is Hurwitz. Then 

the proof can be concluded applying Theorem of Sundarapandian (2002) (see 

Appendix).  

 First, from 
211
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  inequality 2QQ   also follows, which on the one hand, 

as quoted at the end of Section 2, implies the existence of a unique positive equilibrium. 

On the other hand, in Shamandy (2005), Svirezhev and Logofet it was proved, that both 

in open systems (with ,01   02  ) and in partially or totally closed systems (at least 

one of inequalities 10 1    and 10 2    holds) condition 2QQ   also implies 

(asymptotic) stability of the equilibrium.  

 From (2.1)-(2.3) the coordinates of the positive equilibrium *x are 
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Now it will be proved that for the coefficients of the normed characteristic polynomial 

of  A-HC conditions (3.2) hold. To cut short the rather tedious calculations, the 

following statements can be checked: Hypothesis 
211

21

kk

mm
Q


  and 

[1,0[,  [;1,0], 2121  kk  imply 
1

21


mm

Q   and also 011
*
00  mx  , furthermore, the 

latter is sufficient for 01 a  and also used in the proof of 0012  aaa . On the other 

hand,  

.0     0   

0    of proof in the used be    to,0   
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From 
12

2*
1 k

m
x   and [1,0[  [;1,0], 221  kk  inequality 0*

22212
*
2

*
121  xmkkxxk   can 

be derived, which implies 00 a . Finally, inequalities 0,, *
101 xah  directly imply 

02 a . Summing up, all inequalities conditions (3.1) hold for )(p . Therefore matrix 

A-HC is Hurwitz, and concludes the proof.   

Example 3.2. As a numerical example, we consider the following 

;2.0:;1.0:;3.0:;10: 110  Q .5.0:;5.0:;4.0:;1.0:;3.0: 21212  kkmm  

In this case the considered system (2.1)-(2.3) has a positive equilibrium 

)78.5,8,52.4(* x , which is asymptotically stable (see Figure 1) 

 

 

Figure 1. Some solutions of systems (2.1)-(2.3) 
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 and with,  






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






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1

0

10

H . 

Conditions of Theorem 3.1 are verified, therefore we can construct the following 

observer system 

)]([1)1.05.04.0(

)1.03.05.01.0(

)]([104.03.01.02.03.010

*
00122

2011

*
0021100

xzyzzz

zzzz

xzyzzzzz












 (3.3) 

If we suppose the initial condition )2,7,3(:0 x , near the equilibrium of system (2.1)-

(2.3), and similarly, we consider another nearby initial condition, )8.1,2.7,9.2(:0 z  for 

the observer system (3.2), Figure 2 shows that the corresponding solution z  tends to the 

solution x  of the original system.  

 

 

Figure 2. Solutions of systems (2.1)-(2.3) and (3.3) 

 

Case 2. Now we consider the case when the plant of system (2.1)-(2.3) is observed.  

The observation function then is 

 

).0,1,0()(::)( **
11 




 x
x

h
Cxxxh                                   (3.4) 
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Similarly to Case 1, we can prove the following theorem providing an observer for the 

case (3.4).  

Theorem 3.3. Given a matrix 


















0
2

1

h

h

H , 

with  11 mh    and  02 h ,  dynamic system defined by 

)]([)( zhyHzfz   

is a local exponential observer for system (2.1)-(2.3) with the observation  of the plant , 

as given in (3.4). 

Proof.  The scheme of the proof is similar to that of the previous ones.  We only have to 

prove that matrix A-HC is Hurwitz and the application Theorem of Sundarapandian 

(2002) will conclude the proof. Since from Shamandy (2005), 
12

2*
1 k

m
x  , and 

[1,0[  [;1,0], 221  kk  we obtain that 0*
11212  xmk  . Moreover, as [1,0[1   and 

11 mh   we have that 0111  mh  . Applying these inequalities and taking into 

account that the case of a positive equilibrium 0* x  is considered and  02 h , it is 

easy to check that conditions (3.2) hold, therefore matrix A-HC is Hurwitz, and the 

proof is complete. 

Example 3.4. With the same model parameters as Example 3.2, we consider  


















0

1.0

5.0

H . 

Then, conditions of Theorem 3.3 are verified and therefore we can construct the 

following observer system 

)1.05.04.0(

)]([1.0)1.03.05.01.0(

)]([5.04.03.01.02.03.010

122

*
112011

*
1121100

zzz

xzyzzzz

xzyzzzzz












 (3.5) 

If we suppose again as initial condition )2,7,3(:0 x , near the equilibrium of system 

(2.1)-(2.3), and similarly, we consider another nearby initial condition, 
)8.1,2.7,9.2(:0 z  for observer system (3.5), Figure 3 shows that the corresponding 

solution z  tends to the solution x  of the original system.  
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Figure 3. Solutions of systems (2.1)-(2.3) and (3.5) 

  

Case 3. Let us finally consider the observation of the herbivorous species of system 

(2.1)-(2.3), where the observation function is 

 

).1,0,0()(::)( **
22 




 x
x

h
Cxxxh                         (3.6) 

 

Similarly to Theorems 3.1 and 3.3, it is not hard to prove the following theorem 

providing an observer for the case (3.6).  

 

Theorem 3.5. Given 
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where  11 mh    and  22 mh  ,  then dynamic system defined by 

)]([)( zhyHzfz   

is a local exponential observer for system (2.1)-(2.3) with the observation h  of the 

plant. 

Example 3.6. For the model parameters of the previous examples, with 



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

0

5.0

5.0

H , 
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conditions of Theorem 3.5 hold, and hence we obtain the following observer system 

)1.05.04.0(

)]([5.0)1.03.05.01.0(

)]([5.04.03.01.02.03.010

122

*
222011

*
2221100

zzz

xzyzzzz

xzyzzzzz












 (3.7) 

Set again  initial condition )2,7,3(:0 x , close to the equilibrium of system (2.1)-(2.3), 

and as a nearby initial condition for the observer system (3.7) also choose 

)8.1,2.7,9.2(:0 z . Now Figure 4 shows that the corresponding solution z  tends again 

to the solution x  of the original system.  

 

Figure 4. Solutions of systems (2.1)-(2.3) and (3.7) 

 

4. Discussion 

 

 In the paper the construction of an observer system was applied for the state 

monitoring of a simple trophic chain of the type resource – producer – primary 

consumer, recovering the whole state process from the only observation of different 

components of the systems, such as the resource, the plant (producer) and a herbivorous 

animal. The applied methodology can also be extended to more complex models of 

food webs, involving the observation of certain abiotic environmental components 

and/or certain indicator species. A similar approach may be also useful for the 

monitoring of population systems in changing environment, where the change of certain 

abiotic parameters of the ecosystem is governed by an “external” dynamic system 

(describing an industrial pollution or climatic changes).  
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Appendix 

 

Given positive integers m, n, let  

mnnn hf RRRR  :,:  

be continuously differentiable functions and for some  nx R*  we have that 0)( * xf  

and 0)( * xh . 

We consider the following observation system 

)(xfx                    (A.1) 

  )(xhy   ,                (A.2) 

where y  is called the observed function. 

 

Definition A.1. Observation system (A.1)-(A.2) is called locally observable near 

equilibrium *x , over a given time interval ],0[ T , if there exists 0 , such that for any 

two different solutions x  and x  of system (1) with  |)(| *xtx  and 

)],0[(|)(| * Ttxtx   , the observed functions xh   and xh   are different. (   

denotes the composition of functions. For brevity, the reference to ],0[ T  is suppressed). 

For the formulation of a sufficient condition for local observability consider the 

linearization of the observation system (A.1)-(A.2), consisting in the calculation of the 

Jacobians 

)(: *xfA    and  )(: *xhC  . 

 

Theorem A.2. (Lee and Markus, 1971). Suppose that 

 

.]|...|||[ 12 nCACACACrank Tn     (A.3) 
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Then the observation system (A.1)-(A.2) is locally observable near equilibrium *x . 

 

Now, the construction of an observer system will be based on Sundarapandian (2002). 

Let us consider observation system (A.1)-(A.2).  

Definition A.3.  Given a continuously differentiable function nmnG RRR : , 

system  

     ),( yzGz                                                   (A.4) 

 

is called a local asymptotic (respectively, exponential) observer for observation system 

(A.1)-(A.2) if the composite system (A.1)-(A.2), (A.4) satisfies the following two 

requirements: 

i) If )0()0( zx  , then )()( tztx  , for all 0t .  

ii) There exists a neighbourhood V  of the equilibrium *x of nR  such that for all 

Vzx )0(),0( , the estimation error )()( txtz   decays asymptotically 

(respectively, exponentially) to zero. 

 

Theorem A.4. (Sundarapandian, 2002). Suppose that equilibrium *x  of system (A.1)-

(A.2) is Lyapunov stable, and that there exists a matrix K  such that matrix KCA   is 

Hurwitz (i.e. its eigenvalues have negative real parts), where )( *xfA   and 

)( *xhC  . Then dynamic system defined by 

)]([)( zhyKzfz                             (A.5) 

is a local exponential observer for observation system (A.1)-(A.2). 
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