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Abstract—This paper deals with modeling the temperature of a
room in a smart building. Two different approaches are analyzed
and compared. The first one is based on a black-box identification
procedure, which yields a fairly simple dynamical system that
is suitable for real-time control. The second approach is based
on first principles, it requires a complex and time consuming
calibration procedure but it is capable of describing accurately
the physical behavior of the system. The trade-off between
the accuracy of the model and its computational complexity is
evaluated by using experimental data collected from a smart pilot
building located in Almerı́a, Spain.

I. INTRODUCTION

Nowadays, people spend most of their time developing
their quotidian activities inside buildings. For this reason,
it is necessary to provide comfortable environments while,
at the same time, trying to satisfy the energy requirements
which have been established in the different parts of the
world. Indeed, the energy consumption in buildings represents
approximately 40% of the total world energy consumption
[1] and therefore this issue is very relevant to achieve a
sustainable growth. In order to reach the required goals, one
of the most used options consists of developing appropriate
control strategies that are able both to optimize the energy
consumption and to maintain the users’ comfort (see, for
example, [2], [3]). In this context, temperature control plays
a major role (although also air quality is very important
to determine the comfort) and it is therefore necessary to
develop appropriate models since they can provide useful
information about the behavior of different control systems
avoiding the associated costs and risks derived from testing
them in a real plant. In other words, an accurate model can
be used either for simulation and evaluation purposes or for
the design of (model-based) control systems [4]. Within the
process control area, it is very usual to develop nonlinear first
principles models of the system. However, mainly because
of the excessive computational complexity, it can be more

sensible to obtain linear and nonlinear models by means of
classical identification techniques.

In general, the majority of the available models which can
be found in literature are related to the evaluation of the energy
performance in buildings (see, for example, [5], [6]), and to
the development of adequate control strategies at building
level (see, for example, [7]). Furthermore, in literature there
are works which use different techniques to obtain black-box
models such as Artificial Neural Networks (ANNs) [8]. As a
result, it is possible to find different kinds of models which
are developed under several perspectives and with diverse final
objectives.

In this paper we perform a comparison between the com-
putational complexity and accuracy provided by two indoor
air temperature models. In particular, we consider a recently
devised black-box model whose parameters are estimated by
means of a standard identification procedure and we compare
it with a (complex) nonlinear model based on first principles.

The comparison is performed by analyzing the main char-
acteristics of the two methods and by evaluating the results
obtained by using experimental data collected in a room inside
the CIESOL building (http://www.ciesol.es/en), which is a
smart building located in Almerı́a, Spain. The aim of the
comparison is to provide a trade-off between the accuracy
and computational complexity of two different strategies, so
that the user can evaluate the most convenient one to be used
depending on the required task.

II. INDOOR AIR TEMPERATURE MODELS

In general, the development of appropriate models that
are capable to precisely represent the dynamic behavior of a
system requires both effort and time. A room is a complex
system influenced by different kinds of elements and by
the surroundings environmental conditions. Furthermore, these
elements can be defined as a function of their thermal and
optical properties. In this section, two different approaches to



obtain a room-level indoor air temperature model are shown,
a black-box model (see [9]) and a nonlinear first principles
model.

A. Black-box Model

The proposed approach consists in considering a single
room and in determining an (black-box) Auto-Regressive
Moving Average with eXogenous inputs (ARMAX) model
based on the first-principles thermodynamics equations of the
system. Then, the model parameters are estimated by initially
employing a standard procedure and then by using a self-
calibrating method when the performance deteriorates.
The thermodynamic fundamental equation that describes the
variation of the temperature of a single mass is:

maCpa

dTain

dt
= Q (1)

where Q [W ] is the total amount of heat exchanged, Cpa[
Jkg−1K−1

]
is the specific heat, ma [kg] is the mass, Tain

[K] is the temperature and t [s] is the time. By applying this
equation to a room it is possible to describe the variation of its
temperature by taking into account simplifying assumptions,
such as: (i) the air inside the room is supposed to be at the
same temperature; (ii) the room is considered a closed system
with no mass exchange with the external environment. How-
ever, a single room is usually bordering with more different
areas, for example with the ground through the floor, or with
the external environment or with other rooms. Thus, it is also
important to take into account all the different heat flows
to estimate the temperature evolution of a room. Moreover,
heat sources like Heating, Ventilation, and Air Conditioning
(HVAC) systems that can heat or cool the room are also usually
present.
Considering the six main dimensions of a parallelepipedal
room, the heat balance between the room and the surrounding
spaces can be described as:

Q =

6∑
i=1

qi =

6∑
i=1

1

Ri
(Tain − Tsi) i = 1 . . . 6 (2)

where Ri [WK−1] is a coefficient that represents the combi-
nation between convection and conduction resistances of the
ith surface, Tsi is the ith surrounding space temperature (that
is, Tsi can be TN , TS , TW , TE , Tf or Tc) and Tain is the
indoor room temperature (all in [K]). The differential equation
that describes the temperature evolution is:

maCpa Ṫain =

6∑
i=1

qi +

m∑
i=7

qi =

6∑
i=1

1

Ri
(Tain − Tsi) +

m∑
i=7

qi (3)

where q1 . . . q6 are the heat flows gained and lost to the
surrounding walls and q7 . . . qm are the exogenous heat sources
like HVAC systems, the direct radiation from the sun, electrical
devices, etc.
The aim is to write a thermal model of the room that requires
simple sensors, that is, based on:

• the measure of temperature of the adjacent rooms;
• the measured heat flow of the exogenous inputs.

Now the model will be rewritten to be suitable for control
purposes. Therefore, the first step is to apply the Laplace
transform to the equation (3). Then, a Tustin bilinear transform
is applied to the continuous transfer function in order to obtain
an ARMAX black-box model [9], that is:

T̂ain(k) =

8∑
j=1

{gj(T(k − j + 1) + ε(k − j + 1)) + pjq(k − j + 1)}

(4)
where T̂ain is the estimated value of the indoor air temperature,
ε denotes the measurement noises and gj and pj , j = 1, . . . , 8
are vectors of suitable coefficients. The unknown parameters
estimation can be done with the application of the Matlab
function called armax; this function minimizes a robustified
quadratic prediction error criterion by using an iterative Gauss-
Newton algorithm [10]. This method is applied on (4) to
determine all the gj and pj unknown parameters. Even though
this equation is a direct consequence of the thermodynamical
equations, during all the passages the parameters have lost
their physical meaning, in fact such ARMAX models are
defined black-box models.
More specifically, the estimation methodology consists in
estimating an initial set of parameters with the data collected
in the first day of operations. Then, a recalibration procedure
is applied to the model if the model accuracy is no more
satisfactory. Details of this procedure as well as practical issues
are given in [9].
It is worth stressing at this point that the computational
complexity of the model is quite low. In order to keep it as
simple as possible, the only exogenous inputs that have been
adopted are the temperature of the fancoil air (which can be
substituted in general with the output of the feedback tempera-
ture controller), the solar radiation, and the temperatures of the
air of the adjacent rooms. In the particular case of the CIESOL
building (see Section III) these latters have been substituted
with the temperatures of the walls of the considered room,
as they were the only available sensors. However, it has to
be noted that the employed method is virtually the same (see
Section III).

B. Nonlinear Model based on First Principles of Thermody-
namics

In order to obtain a nonlinear first principles model, the
existing relations among the elements which compose the
room and between them and the environment have been
modeled by means of heat and mass transfer laws. More
concretely, a model has been developed using the so-called
“Heat Balance Method” described by [11]. Furthermore, it
has been subjected to the following assumptions: (i) the room
has been considered to be composed of seven elements: indoor
air, walls, windows, shading system, HVAC system, people
and electrical appliances; (ii) the air inside the room has
been considered as a perfect mix, that is, it is supposed that
the air temperature inside the room is uniform in the whole
room [12]; (iii) it has been supposed that the surfaces of the
room have a uniform temperature, similar wave irradiance



and a one-dimensional heat conduction process; The physical
characteristics of the different elements of the room, with
the exception of the indoor air, has been assumed to be
constant. As a consequence, the indoor air temperature has
been modeled by means of a differential equation based on
mass and heat transfer principles as it is shown in [13].
This system has a set of nine unknown parameters whose
values have been determined by means of a specific calibration
methodology. The values obtained for these parameters after
the calibration process are the same along the whole year.
More specifically, the calibration methodology is a cascade
process consisting of, in an initial approach, a brute force
sequential search to estimate a first approximation for the
unknown parameters, and then, the use of evolutionary al-
gorithms to obtain the final value. In particular, in order to
obtain the initial approximation of the unknown parameters,
different tests for each one of the involved processes have been
performed all around the year. In this context, it has been
necessary to separate the room into elemental systems and
different tests have been performed with the aim to separately
determine the influence of each element in the indoor temper-
ature. Each one of these tests has been performed in several
days of a certain season of the year. Afterwards, and based
on the reference values of the guidelines provided by [11],
the first approximation of the unknown parameters has been
calculated by using a brute force sequential search algorithm.
Subsequently, a search technique based on genetic algorithms
has been used to determine the final value of the unknown
parameters. It appears that the overall modeling methodology
considers almost all the physical issues involved in the process
but it is quite complex to implement in practical cases and the
obtained model can be too computational demanding to be
employed in a real-time controller.

III. THE CIESOL BUILDING

The CIESOL building is a reference research center on solar
energy, situated in the Campus of the University of Almerı́a,
in the southeast of Spain (see [13] for details). In order to
calibrate and validate the models proposed in this paper, a
typical room of this building has been selected. This room
is situated on the top floor of the CIESOL building between
two rooms with analogous characteristics. More specifically,
it has north orientation, a total volume of 76.8 m3 and a
window of 4.49 m2 located in the north wall. Besides, it is
characterized by the presence of a huge diversity of sensors (air
temperature, air velocity, plane radiant temperature, humidity,
etc.) and a wide set of actuators, such as a fancoil, a shading
system and a window opening/closing system, that are used
in general to control users’ comfort. In particular, there is a
plane radiant temperature sensor for each wall, therefore for
the black-box model temperatures of the walls of the room
have been employed instead of the temperatures of the adjacent
rooms (as well as for the first principles model, where these
have been already explicitly considered). In fact, the technique
described in Section II-A can be straightforwardly applied in
this case by substituting the term 1/Ri in (2) and (3) with

hiAi where hi [Wm−2K−1] and Ai [m2] are, respectively,
the convective coefficient and the area of the ith wall surface.

IV. RESULTS AND DISCUSSION

The obtained models have been validated by using the
following three new datasets collected in different periods of
the year, in order to verify the effectiveness of the modeling
strategies under several circumstances and, in particular, with
different outdoor conditions (cold, warm and hot weather,
taking into account the geographical position of the building).
Actually, while the same first principles model has been
employed for all the datasets, the ARMAX model has been
recalibrated for the third dataset (by using the data collected in
the three days before the period of the validation set) because
the results were not satisfactory. Indeed, this confirms the need
for the black-box model to be recalibrated when the season
changes (note that the original model has been calibrated
during the winter while the third validation dataset has been
collected during the hot season).

• Validation dataset 1 (cold weather). This test was per-
formed between 12th and 22nd of December in 2013 un-
der different environmental conditions. It contains some
periods when the room was empty and others with the
presence of its usual occupants. Besides, along this test
some controlled experiments have been performed using
the actuators available inside the room, that is, the HVAC
system and the window. The results provided by this
validation test are shown in Fig. 1. The real variable (mea-
sured inside the typical room of the CIESOL building) is
plotted in blue, the results provided by the first principles
model in red, and finally, the results obtained from the
ARMAX model in green.

• Validation dataset 2 (warm weather). This test was per-
formed between 4th and 10th of March in 2013 under
similar conditions: windows and door were closed, with
several disturbances due to the inputs and outputs of
people and the blind was open. Hence, this dataset
also contains some periods when the room was empty
and others with the presence of its usual occupants. In
addition, one of the main characteristics of this dataset is
that it is an intermediate period, and thus, there was no
need of using any actuator. The results provided by this
validation dataset can be observed in Fig. 2 where the
same colors of the previous case have been employed.

• Validation dataset 3 (warm/hot weather). This test was
performed between 10th and 12th of May in 2013 under
varying conditions. As in the previous validation datasets,
it contains some periods where the room was empty and
others with the presence of its usual occupants. Moreover,
along this test some controlled experiments using the
actuators available inside the room have been performed.
More specifically, on the 10th of May the HVAC system
was used, and the window was opened several times
on 11th and 12th of May. The results obtained from
validating the proposed models with this validation set
are shown in Fig. 3.
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Fig. 1. Results of validation dataset 1.
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Fig. 2. Results of validation dataset 2.

Even if both models can describe the real system accurately,
the first principles model has a better performance in two of
the three tests, namely Test 1 and Test 2 which are the ones
with the greatest range and the largest number of samples.
In Test 3 the black-box ARMAX model is simulating the
evolution of the room temperature with a smaller error because
of the retuning performed in the previous days. Summarizing,
the general worst performance in simulating the evolution of
the system provided by ARMAX model is balanced by the
difference between the computational times; the first principles
model is always at least 50 times slower than the other
one. Indeed, the computational time for the execution of the
proposed models with each one of the three validation tests
(performed with a computer with an Intel Core i3 processor
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Fig. 3. Results of validation dataset 3.

at 3.30 GHz, 4 GB of memory and Windows 7 as operating
system) are, respectively, 1.2 s, 0.76 s, 0.40 s for the ARMAX
model and 104.14 s, 64.49 s, 28.59 s for the first principle
models.

V. CONCLUSIONS
This paper has compared the performance of two completely

different approaches to solve the same temperature modeling
problem. The first principles model has the advantage to have
a clear physical meaning and therefore, after having been
properly calibrated, it can describe effectively the behavior
of the real system in all the different periods of the year.
On the contrary, the black-box modeling approach is a faster
way to describe the same system and, thanks also to an
online parameters self-calibrating technique, can reach a good
approximation level. Both of these models can be used in high
level optimal controllers, the first principles model is a better
representation of the real system while the ARMAX model
can be useful when a real-time implementation is needed.
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