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Abstract—The ocean covers over 70% of the surface of our
planet and plays a key role in the global climate. Most ocean cir-
culation is mesoscale (scales of 50–500 km and 10–100 days), and
the energy in mesoscale circulation is at least one order of mag-
nitude greater than general circulation; therefore, the study of
mesoscale oceanic structures (MOS) is crucial to ocean dynam-
ics, making it especially useful for analyzing global changes.
The detection of MOS, such as upwellings or eddies, from satel-
lites images is significant for marine environmental studies and
coastal resource management. In this paper, we present an object-
based image analysis (OBIA) system which segments and classifies
regions contained in sea-viewing field-of-view sensor (SeaWiFS)
and Moderate Resolution Imaging Spectro-radiometer (MODIS)-
Aqua sensor satellite images into MOS. After color clustering
and hierarchical data format (HDF) file processing, the OBIA
system segments images and extracts image descriptors, produc-
ing primary regions. Then, it merges regions, recalculating image
descriptors for MOS identification and definition. First, regions
are labeled by a human-expert, who identifies MOS: upwellings,
eddies, cool, and warm eddies. Labeled regions are then classi-
fied by learning algorithms (i.e., decision tree, Bayesian network,
artificial neural network, genetic algorithm, and near neighbor algo-
rithm) from selected features. Finally, the OBIA system enables
images to be queried from the user interface and retrieved by
means of fuzzy descriptors and oceanic structures. We tested our
system with images from the Canary Islands and the North West
African coast.

Index Terms—Automatic recognition, fuzzy logic, image
retrieval, moderate resolution imaging spectro-radiometer
(MODIS), object-based image analysis (OBIA), ocean satellite
images, sea-viewing field-of-view sensor (SeaWiFS).

I. INTRODUCTION

O BJECT-BASED image analysis (OBIA) is a recently pro-
posed technique [1] used to analyze satellite images.

It focuses on semantic information, partitioning remote sens-
ing imagery into meaningful image objects and setting their
relationships using contextual and spectral information [2].
The purpose of OBIA systems is to automatically or semi-
automatically emulate the interpretation of a human-expert.
Nevertheless, the success of object-based classification strongly
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depends on the quality of segmentation stage results [3], as
explained below.

The study of mesoscale oceanic structures (MOS) is crucial
for ocean dynamics, making it especially useful for analyz-
ing global change [4]–[7]. Mesoscale refers to the range of
phenomena in a predominant spatial scale approximately one
to ten times the baroclinic Rossby radius with a concomitant
time scale of one to ten inertial periods. This encompasses
approximate ranges of 10 to several hundred kilometers and
time periods of 1 day to several weeks [8]. Color ocean satel-
lite images provide a large-scale view of biological processes.
Sea-viewing field-of-view sensor (SeaWiFS) of chlorophyll-a
(OC) and Moderate Resolution Imaging Spectro-radiometer
(MODIS)-Aqua of chlorophyll-a and sea surface temperatures
(SST) are an important resource for the study of the ocean
environment [9]–[11].

The OBIA systems [1] go further than classical techniques in
which the classification is carried out after segmentation. The
main goal is to find objects of interest from primary segmented
objects, by employing the knowledge of a human-expert [12].
It also involves the use of specific segmentation techniques for
each object class [13]. In our case, merging takes into account
the particular characteristics of each MOS and the knowledge
of human-experts on the subject.

The morphological and contextual variability of the MOS
make the use of OBIA systems crucial. Some authors have
already used OBIA systems for analyzing scenarios with high
spatio-temporal variability [14]–[16]. We have a wide time
range with images from 1997 to 2013 with clouds partly
covering MOS.

The OBIA satellite imaging techniques [1] make use of a
set of descriptors enabling objects of interest in images to be
described and labeled. Low-level descriptors (area, centroid,
invariant moments, etc.) give morphologic descriptions of an
object as well as its location. Nevertheless, they do not give
enough contextual information, and more importantly, they do
not deal with spectral information (temperature and chlorophyll
levels compared to the surroundings), which is crucial for MOS
identification [17]. The expert knowledge of oceanographers is
therefore required. Furthermore, because fuzzy logic is the best
choice for overcoming this problem [18], we use fuzzy descrip-
tors in our OBIA system to be able to include the knowledge of
a human-expert’s identification of MOS.

The use of ontologies for ocean satellite image classification
is studied in [19] and their practical use for handling elements
present in images and MOS is shown. Some other publica-
tions [20], [21] use ontologies to solve semantic mismatching
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Fig. 1. MODIS-Aqua-SST scene (2003-03-24). (a) Original SST image in grayscale. (b) Ocean structure map where upwellings have been colored in pink for
visualization (1), upwelling filaments (Cape Blanc) in yellow (2), warm eddies in blue (3), and wakes (west of La Palma) in red (4).

and heterogeneity in this field. We make use of ontologies for
natural descriptions of MOS, and they are mainly used in the
retrieval stage to provide the human-expert with a common
language.

Many studies have reveal that SeaWiFS (OC) and MODIS-
Aqua-OC sensor chlorophyll images and MODIS-Aqua-SST
temperature sensor images are a suitable choice for MOS [7],
[9]–[11], primary production [5], and global change [4] any
place in the world. In [6], the authors analyze data from chloro-
phyll images for a 10-year period, comparing them with data
collected in situ. They also compare results with different sen-
sors, finding highly correlated coefficients. In our work, we
used images from three sensors (SeaWiFS, MODIS-Aqua-OC,
and MODIS-Aqua-SST sensors) and analyzed the MOS identi-
fied, finding the advantages of some types of images over others
for each type of structure.

This paper presents an OBIA system for segmenting and
classifying regions in SeaWiFS and MODIS-Aqua sensor satel-
lite images into MOS. The system is able to process thousands
of images, identifying MOS in them. The system facilitates
batch loading of images for this purpose, decompressing and
extracting information from HDF files. An essential element
of the OBIA system is the definition of an MOS ontology for
two reasons. First, the ontology provides descriptors for MOS:
upwelling, wakes, eddies, etc. Secondly, the ontology assigns
(clusters of) colors to the MOS names. After a preprocess-
ing stage (i.e., smoothing filter and histogram equalization),
the OBIA system segments images (i.e., thresholding and
edge detection), and extracts image descriptors, automatically
forming primary regions. Region descriptors are spectral, mor-
phological, and contextual features which we describe using
a fuzzy ontology. The ontology includes fuzzy descriptors for
vague concepts like big, small, cold, far, near, etc. Then it
merges regions, recalculating image descriptors. The training
process from merged regions and selected descriptors uses
learning algorithms (C 4.5, Naive-Bayes, MLP, K-NN, and
NNge). Finally, the OBIA system enables images to be queried
from the user interface and retrieved by means of fuzzy and
MOS ontologies.

A. Ocean Phenomena

Our study area is in the Canary Islands and northwest coast of
Africa (see Fig. 1). In this area, there are many MOS throughout
the year. Many works have described the MOS in this area [8],
[22]–[25].

A coastal upwelling is mainly due to wind that causes
cold bottom water to reach the surface. They occur when
dense cold water at the bottom of the ocean rises to the sur-
face near the coast, transporting nutrients, and increasing the
development and proliferation of phytoplankton. The water is
colder on the bottom than surface water and rich in nutri-
ents. Typically, the transition between the upwelling and other
surface water is often sharp [8]. These upwellings occur reg-
ularly along the North West African coast (see Fig. 1) and
others like the Peruvian, Californian, and SouthAfrican coasts,
among others, where wind conditions are suitable. The anal-
ysis and prediction of upwellings, for which satellite images
are also a powerful tool, are very important to commercial
fishing.

There are some mesoscale cross-shore structures along the
upwelling front called upwelling filaments which are tongue-
shaped cold upwellings. They are important coast to the open
ocean nutrient carriers often found near capes [26] (e.g., off
Cape Ghir or Cape Blanc) (see Fig. 1).

Eddies are highly morphologically and contextually variable
structures. They may appear rounded near islands or in the
open ocean. In cool eddies, cold nutrient-rich water rises to the
surface [25], while warm eddies (see Fig. 1) drag water with
organic material to the ocean floor and keep in the warm sur-
face. Eddy water differs from the surrounding water in salinity
and temperature and can also travel long distances for long peri-
ods of time without mixing with the surrounding water [23],
[24]. The cool (cyclonic) eddies are created by calm wind con-
ditions, while warm (anticyclonic) eddies are formed under
stronger wind conditions.

Wakes are warm oceanic structures associated with islands
[8], [23]. In our study area, these structures are generated by
the obstacle formed by the Canary Islands and the predominant



1258 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 3, MARCH 2015

Fig. 2. OBIA system components.

NE winds. This interaction causes very thin tongues of hot,
nutrient poor water (as compared to the surrounding water) to
form close to the southwest islands (see Fig. 1). These struc-
tures are shown in Fig. 1(a) in an equalized MODIS-Aqua
SST-scene and are classified in Fig. 1(b).

B. Structure of the Paper

Section II describes the OBIA system: image processing,
descriptor extraction, merging, classification, and retrieval of
regions and the main implementation elements. Section III ana-
lyzes the classification results, and in addition, a comparison of

different sensors and classifiers is included. Finally, conclusion
and suggestions for further improvement are presented in
Section IV.

II. OBIA SYSTEM

In this paper, we present the OBIA system developed in our
research group. The OBIA system input is satellite images from
a public server. For our study area, we used the ocean color
website [27]. The output is a set of labeled objects from the
satellite images. The OBIA system structure is shown in Fig. 2.
The general process is divided into several steps.
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1) Previsualization and HDF processing: Analyzes HDF
files and verifies the cloudiness in the study area.
It includes download, decompression, and information
extraction from HDF files.

2) Color clustering: Sets up the MOS ontology—MOS
names and color clusters are mapped to each MOS
name. The output of the color clustering is a color
table.

3) Preprocessing: A set of image quality improvement tech-
niques.

4) Segmentation: The process dividing the image into
regions of interest. This includes region merging
and descriptor extraction. A human-expert selects pri-
mary regions and the system merges and recalculates
descriptors.

5) MOS classification: The human-expert labels the regions
with one of the MOS ontology names. Learning
algorithms are used for classification from selected
descriptors.

6) Image retrieval: The processed images can be queried
using the MOS and Fuzzy ontology concepts as
vocabulary.

Fig. 2 also shows that our OBIA system handles the follow-
ing databases.

1) Spatial image database: The HDF input data.
2) Region database: This includes region data—spectral,

morphological and contextual features, the assigned
labels, and information about the original and pro-
cessed images. Some features are fuzzy descriptors which
represent SST and OC level as well as size and distance
to continent and islands.

3) Image database: Stores preprocessed, segmented and
original images.

These steps are describe in more detail below.

A. Color Clustering

The human-expert defines the MOS ontology. Basically,
starting from a table of color names in the image, he selects
colors and assigns them to an MOS name. The MOS ontology
consists of mapping color clusters to MOS names. MOS names
are used in the image retrieval stage.

For instance, Table I is the original color table used in
SST MODIS sensor images. The RGB color/color column is
assigned to a temperature interval in the temperature column.
Fig. 3 shows examples of color clustering. The choice of the
best color cluster in this case depends on the ocean temperature,
which is represented by the colors in the image. Fig. 3 shows an
example of cold water. In this case, clustering from light lilac
to lime green, which identifies colors in Table I from light lilac
to lime green, i.e., image processing considers this whole range
of color as dark blue [Fig. 3(c)] merges the upwelling with the
surrounding water. Clustering from light lilac to dark purple,
considers this whole range of color as dark purple [Fig. 3(d)]
is a good option, but cannot detect the upwelling as a whole
region. Pairwise clustering, which means that consecutive col-
ors are identified two by two [Fig. 3(e)] is the best. The other
MOS, which are wakes, are also detected.

TABLE I
ORIGINAL MODIS SENSOR SST IMAGE COLOR TABLE

We have shown some clustering colors, but the system can
create as many as the human-expert requires, and therefore,
results are optimal for each case.

B. Preprocessing

This step improves image quality. For this purpose, noise
(i.e., wrong pixels and small regions) is removed. The
smoothing filter uses a double median filter applied to the
grayscale image. The mean gray values for each range are
shown in Table I. This reduces the computational cost. The out-
put is a preprocessed BMP grayscale image stored in the image
database.

C. Segmentation

1) Primary Region Segmentation: The image is segmented
into primary regions using classical segmentation techniques
[28] such as thresholding and edge detection. Some of
these regions are labeled directly, but others, especially the
upwellings, are merged in the region merging step (see Fig. 2).
The input image is a gray scale image. The thresholding algo-
rithm returns an image in which region pixels represent an
interval. Then, a morphological opening algorithm is applied to
smooth the contour, remove holes, and separate regions. After
thresholding, edge detection is applied to recover the contour of
the regions and their contents. The output is a segmented BMP
image with primary regions, stored in the image database.

2) Descriptor Extraction: A number of numerical, spectral
(OC and SST), morphological (size), and contextual (distance)
descriptors are calculated for each primary region segmented.
Some of these are fuzzy descriptors. The main morphologi-
cal descriptors (also called low-level features) are shown in
Table II. Some of the morphological descriptors (invariant
moments, quotient of major and minor bounding ellipse axis,
etc.) are invariants of affine transformations. As a result, the
regions can be recognized despite rotations, translations, or
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Fig. 3. Color clustering applied to MODIS-SST image (2009-05-18). (a) Ocean color website image. (b) Image colored using the original color table. (c) “From
light lilac to lime green.” (d) “From light lilac to dark purple.” (e) Pairwise clustering.

TABLE II
LOW-LEVEL REGION DESCRIPTORS

scale changes over the image. These descriptors are stored in
the region database along with the processed image data (name,
date of capture, sensor, etc.).

There are a number of fuzzy descriptors, which are essential
to the region merging phase and also serve as the query lan-
guage for image retrieval. These fuzzy descriptors define a fuzzy
ontology of vague concepts. The fuzzy descriptors are shown in
Table III. Each fuzzy descriptor has a number of vagueness val-
ues. For instance, distance to island can be near, medium, or far.
Each value has a degree of membership, i.e., a certain region is

TABLE III
FUZZY ONTOLOGY

near an island by a certain degree (i.e., a value of [0,1] interval).
Degree of membership is defined by a triangular distribution.

3) Region Merging: The human-expert selects the primary
regions to be merged. He can use fuzzy descriptors to find them.
A region bounding box is used to merged the regions. The
largest region contained in the bounding box is called the base
region, as shown in Fig. 4(a). This is followed by an iterative
process which starts by merging the base region with another
region and rebuilds the bounding box, forming a new one that
includes both. The bounding box keeps growing until no more
regions can be merged in it. The resulting region is the merged
region. All descriptors are recalculated for this new region and
stored in the region database, as well as the BMP image with
the merged region, which is stored in the image database.

It should be mentioned that a set of valid merged regions
are needed for identifying MOS. This requires optimal ini-
tial segmentation into primary regions, i.e., a small number of
solid well-defined regions. It facilitates regions growing into
significant merged regions and identification of MOS from the
surrounding ocean.

Fig. 4 shows an example of region merging in a SeaWiFS
image (2000-12-11). The upwellings here are very large struc-
tures, which are often partially covered by clouds that fragment
the region. Whenever these primary regions are close to each
other, they can be merged into one new region which will be
labeled as an MOS. In this example, primary regions are col-
ored yellow, while the merged region is colored by the system
in pink for emphasis.

D. MOS Classification

We have selected several classifiers based on their low
computational cost and good results reported in the litera-
ture. The selected classifiers are decision tree, Bayesian net-
work, artificial neural network, K-nearest neighbor algorithm,
and improved K-NN algorithm based on genetic algorithms.
The C4.5 algorithm generates a decision tree developed by
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Fig. 4. Region merging. SeaWiFS image (2000-12-11). (a) Primary region 1 (yellow) part of upwelling close to the islands. (b) Primary region 2 (yellow) part of
upwelling. (c) Merged region (pink) whole upwelling.

TABLE IV
LABELED MOS AND SENSORS

SW, SeaWiFS (OC); M-OC, MODIS-Aqua-OC; M-SST,
MODIS-Aqua-SST.

Quinlan [34]. C4.5 builds decision trees from a set of train-
ing data, using entropy. The Naive Bayes classifier [35] is the
simplest Bayesian network model. It assumes that given the
class, all descriptors are independent of each other. Multilayer
perceptron (MLP) [36] is an artificial multiple-layer neural
network, which uses back-propagation to classify different
regions. K-NN (K-nearest neighbors classifier) [37] assigns the
region to its nearest neighbor’s class. NNge [38] is a K-NN
algorithm based on genetic algorithm non-nested generalized
exemplars (which are hyper-rectangles used as if-then rules).

The numbers of labeled MOS for each sensor are summa-
rized in Table IV. There are only a few cool eddies, warm
eddies, and wakes because of the cloudiness in the study area
and the size of the structure class.

Fig. 5 shows examples of segmented regions where the
labeled regions are colored by the system in pink color for
emphasis. Colors from yellow to red (considering this whole
range of color as red) were clustered in the OC images
(Fig. 5). These figures show how different MOS structures
are. Upwellings in this area are large, elongated and close
to the continent in both OC and SST images [Fig. 5(a)].
According to the color tables, upwellings in SST images
are represented by blue-purple and dark green, while in OC
images, upwellings are usually represented by red, except
when they are emphasized in pink.

Upwelling filaments are elongated structures, starting from
an upwelling and extending out to sea [Fig. 5(b)]. The color is
usually the same as the color of the upwelling they come from,
and although their size varies, they are usually medium-sized or
small. Eddies are rounded and small. Cool eddies (cyclonics)
have a higher chlorophyll concentration and are colder than
the surrounding water [Fig. 5(c)]. Warm eddies (anticyclonic)
have a lower chlorophyll concentration and are warmer than

the surrounding water [Fig. 5(d)]. Wakes are similar to warm
eddies but small, elongated and close to islands [Fig. 5(e)].

E. Image Retrieval

In this image retrieval step, the user can search for images in
the image database by any of several different criteria, and the
OBIA system retrieves them by means of the region database
descriptors and information about images. Images can be
retrieved by date, sensor, etc. More sophisticated queries use the
MOS and fuzzy ontologies for the region and image databases.
For instance, images containing a wake, an upwelling, etc., can
be retrieved using the MOS ontology, or a query can ask for a
wake in an OC image using the fuzzy ontology
<<A Region with “Near an Island” membership greater than

or equal to 0.5 and “Small” membership greater than or equal
to 0.7>>
<<A Region with “Low chlorophyll concentration” mem-

bership greater or equal to 0.4 or “Very low chlorophyl
concentration” membership greater than or equal to 0.1>>

F. OBIA Implementation

The OBIA system was implemented using the Java, C, and
SQL programming languages. In particular,

1) Java is used for implementing the user interface as well
as for handling HDF. Java Swing and HDF libraries are
used for this.

2) SQL is embedded in Java by means of the Java SQL
library.

3) C is used to perform image processing by means of the
OpenCV library.

The user interface (see Fig. 6) includes a menu that creates
Java panels with different elements.

Once an image is selected, a query interface panel appears
[see Fig. 6(a)]. The query interface makes it possible to retrieve
regions by means of fuzzy descriptors via SQL. Merging
and labeling are possible for selected regions [see Fig. 6(b)].
Finally, the system also enables the image database to be
queried for comparing MOS from different sensors.

III. ANALYSIS AND RESULTS

We tested our OBIA system with 212 satellite images of the
Canary Islands and the Northwest African coast (the geographic
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Fig. 5. Segmented and labeled regions (pink) in SeaWiFS sensor images. (a) Upwelling 2002-01-24. (b) Upwelling filament 2004-01-29. (c) Cool eddy 2004-07-09.
(d) Warm eddy 2004-11-22. (e) Gran Canaria island wake 2004-03-17.

Fig. 6. OBIA system. (a) Query panel. (b) Merging and ableling apnel.

center of the Island is 28.2◦N and 16.4◦W). Of them, 92
images are chlorophyll images [Chl-a quantity contained in the
ocean (OC)] adquired from the SeaWiFS sensor on board the
Orbview-2 satellite (1.1 km resolution), for 1997–2004. These
images are derived from merged local area coverage (MLAC)
products [27]. The MLAC products consolidate all of the LAC
from different receiving stations available for the same orbit, in
geographic regions with multiple high resolution picture trans-
missions (HRPT) stations. Overlapping scenes are evaluated to
adquire a single best image without duplication. The MLAC
product was chosen because it generates high-quality L2 level
images, including radiometric calibration and geometric correc-
tion. The other 120 images are from the MODIS-Aqua sensor
on board the Aqua satellite (1.1 km resolution), for 2003–2013
and divided into 61 chlorophyll and 59 sea surface temperature
(SST) images. These images are derived from L2 level local
area coverage (LAC) products [27].

A total of 365 MOS were detected of which 284 MOS cor-
respond to upwellings or parts of upwellings (when clouds
keep parts of upwellings from being merged), 44 upwelling
filaments, 10 cool eddies, 4 warm eddies, and 23 wakes.

We analyzed a batch of images taken by different sensors
with our OBIA system, for each sensor, separately, and also by
grouping regions into three categories: OC sensors (SeaWiFS
and MODIS-OC), MODIS sensors (MODIS-OC and SST),
and all together (SeaWiFS, MODIS-OC, and MODIS-SST).
Table V shows the accuracy rates achieved by the different
classification algorithms and Table VI summarizes the descrip-
tors selected for each test. Tenfold cross-validation was used

TABLE V
MOS CLASSIFICATION (%)

SW, SeaWiFS (OC); M-OC, MODIS-Aqua-OC; M-SST, MODIS-Aqua-
SST; SWOC, SeaWiFS (OC)+MODIS-Aqua-OC; MOD, MODIS-Aqua-
OC+MODIS-Aqua-SST; ALL, OC+SST.

for all tests. A correlation-based feature selection algorithm
(CFS) [39] was used for descriptor selection in classification.
The CFS algorithm returns a descriptor ranking with a per-
centage of relevance. This percentage indicates the degree of
relevance (around 100%) or irrelevance (around 0%) of the
descriptor to classification. The selection criterion is to choose
all the descriptors with over 60% relevance, in each case. It pro-
vides a good accuracy rate when there are a small number of
features. The results of each test are given in Fig. 7–12. In each
figure, we show the accuracy rate for each classifier and MOS.
In our experiments, the use of the same descriptors reduces the
accuracy rate in the classification process.

The SeaWiFS sensor test cases included 122 upwellings, 23
upwelling filaments, 8 cool eddies, 2 warm eddies, and 3 wakes.
Fig. 7 shows that the NNge algorithm had the best accuracy rate
of over 30%, in all cases, including warm eddies and wakes
(even though there were only a few wakes). The accuracy rate
with this algorithm was 96.84%. As expected, accuracy rates
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TABLE VI
SELECTED DESCRIPTORS

SW, SeaWiFS (OC); M-OC, MODIS-Aqua-OC; M-SST, MODIS-Aqua-
SST; SWOC, SeaWiFS (OC)+MODIS-Aqua-OC; MOD, MODIS-Aqua-
OC+MODIS-Aqua-SST; ALL, OC+SST.

Fig. 7. Accuracy rates for SeaWiFS sensor (OC).

Fig. 8. Accuracy rates for MODIS-Aqua-OC sensor.

were best for upwellings (100% in most cases). This is because
upwellings are well differentiated from other structures, and
because of the large number of test cases. Upwelling filaments
also had a high accuracy rate (over 80% in most cases) for the
same reasons as upwellings.

The MODIS-OC sensor test cases included 79 upwellings,
14 upwelling filaments, 1 cool eddy, 1 warm eddy, and 1 wake.
In Fig. 8, the best accuracy rates were found with the MLP, K-
NN, and NNge algorithms. In this case, the accuracy rate for
cool eddies, warm eddies and wakes was 0% due to the number
of test cases. The accuracy rate was 96.88%. Again, upwellings

Fig. 9. Accuracy rates for MODIS-Aqua-SST sensor.

Fig. 10. Accuracy rates for SeaWiFS (OC) and MODIS-Aqua-OC sensors.

Fig. 11. Accuracy rates for MODIS-Aqua-OC and SST sensors.

Fig. 12. Accuracy rates for SeaWiFS (OC), MODIS-Aqua-OC, and SST
sensors.

had the best accuracy rate (100% in most cases), followed by
upwelling filaments (90% in most cases).

The MODIS-SST sensor test cases included 83 upwellings,
7 upwelling filaments, 1 cool eddy, 1 warm eddy, and 19 wakes.
In Fig. 9, the best accuracy rate was with the K-NN algorithm.
Again, due to the number of eddies in the test cases, results were
worse. The accuracy rate is 96.4%. Upwelling accuracy rates
are again the best. Here, wake rates outdid upwelling filaments
(90% in most cases).

The OC sensor (SeaWiFS and MODIS-OC) test cases
included 201 upwellings, 37 upwelling filaments, 9 cool eddies,
3 warm eddies, and 4 wakes. In Fig. 10, the best accuracy
rates were with the C4.5 algorithm, with over 65% in all cases,
including warm eddies and wakes, even though there were
only a few test cases. The accuracy rate was 96.46%. This set
of test cases is larger, making higher accuracy rates possible.
Upwellings, upwelling filaments, and wakes have the top rates.

The MODIS OC/SST sensor test cases included 162
upwellings, 21 upwelling filaments, 2 cool eddies, 2 warm
eddies, and 20 wakes. In Fig. 11, the best accuracy rate was with
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the MLP algorithm. For the same reasons as for the MODIS-OC
and MODIS-SST tests, accuracy was the worst for eddies (0%).
The accuracy rate was 97.1% and over 90% for upwellings,
upwelling filaments, and wakes in most cases.

The SeaWiFS and MODIS OC/SST sensor test cases
included 284 upwellings, 44 upwelling filaments, 10 cool
eddies, 4 warm eddies, and 23 wakes. In Fig. 12, the best accu-
racy rate of over 60% was with the NNge algorithm in all cases,
including warm eddies (with a small number of test cases).
The accuracy rate was 96.99%. Since we used the full set of
test cases here, the accuracy rates are over 60% in most cases,
except for warm eddies, the smallest set of test cases, which had
only 70% accuracy with the NNge algorithm.

From Table V, the following conclusions may be arrived
at. The accuracy rate is over 95% in most cases, and up
to 97% in some cases. The best algorithm on the aver-
age is NNge (96.01%). These test results reinforce our idea
that improvement in segmentation by color clustering and
region merging makes better automatic classification possible.
Analyzing the descriptors we have selected (Table II), two
of them are present in all the tests: BoundingBox_height and
Continent_distance_near. Both are essential to MOS classifica-
tion. Size and closeness to continent are crucial in distinguish-
ing upwellings from other structures.

The results show that our system is able to process satellite
images for regions labeling with a high accuracy rate. The MOS
ontology not only provides an MOS vocabulary but also a set of
color names to be clustered and mapped into one of the MOS.

In our study area, the upwelling is defined as a large elon-
gated region, near a continent with a lower sea surface temper-
ature and higher chlorophyll concentration than the surrounding
sea. In most cases, upwelling candidates are fragmented by
clouds, but segmentation based on region merging is able to
rebuild the whole structure. In other cases, such as small regions
(wakes or eddies), primary segmentation is enough.

Our system uses a relational database to store information
about images (i.e., descriptors) and labeled objects in images.
The system is equipped with a query interface that makes it
possible to retrieve processed images by means of the MOS and
fuzzy ontologies. Queries can be described in terms of the MOS
ontology, or using vague fuzzy ontology concepts, enabling a
degree of membership to be assigned to vague concepts. Images
can be compared showing image features to be analyzed.

IV. CONCLUSION AND FUTURE WORK

This paper presented an OBIA system that segments and
classifies regions of interest contained in satellite SeaWiFS and
MODIS-Aqua sensor images. An automatic process extracts
segmented regions from images which are semi-automatically
merged and labeled by a human-expert. Classification is
achieved by learning algorithms. Ontologies are used for
retrieval.

We have shown that there is a correlation between SST and
OC images in MOS detection. The tests reveal that SST images
are better for detecting wakes. For identifying upwellings, SST
and OC both offer good results. For other MOS structures,
the set of test cases should be larger for reliable conclusions.

Our aim was to improve image segmentation and, using human-
expert knowledge, the OBIA system is able to detect MOS
structures regardless of whether SST or OC is used. In OC
images, we are still unable to identify all the MOS, but those
identified were reliable.

The system proposed has several weaknesses. The first one is
that the number of images that has to be analyzed to find candi-
dates for MOS identification may be quite large. For example,
from an initial batch of 1000 images, only 400 may be valid.
Our system includes a filter that discards images either out-
side of the area of study or off-center, and images with too
much noise (e.g., clouds). The second is the effort required to
obtain good segmentation from the color clustering selected.
It forces segmentation to be iterated, clustering by several dif-
ferent colors. Successful segmentation should provide a small
number of solid, well-defined primary regions in which regions
are distinguished from the surrounding ocean.

For further research, we plan to include another large vol-
ume of data from other sensors to identify possible trends or
changes in chlorophyll concentration or sea surface tempera-
ture by analyzing the morphology, movement, and evolution of
MOS. In addition, we would like to predict MOS movement by
analyzing their displacement, routing, and the time it takes for
them to disappear. We would also like to use the system to ana-
lyze North Atlantic and North Pacific images that have the same
ocean current and wind conditions, as well as MOS. Finally, we
plan to fully automatize the system when a suitable training set
is available.
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