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José Carmona
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Abstract

In this paper, we study the Ambrosetti-Prodi and Ambrosetti-Rabinowitz
problems. We prove for the first one the existence of a continuum of solu-
tions with shape of a reflected C (⊃ -shape). Next, we show that there is a
relationship between these two problems.

1 Introduction

In the early seventies, Antonio Ambrosetti wrote in collaboration with Giovanni
Prodi [3] and Paul H. Rabinowitz [4] two of the most seminal papers in the theory
of Nonlinear Functional Analysis. Both of them have become key-stones in the
study of the existence and multiplicity of solutions for nonlinear P.D.E.

The problem considered in [3] is

−∆u = f(u) + h, x ∈ Ω,
u = 0, x ∈ ∂Ω, (1)

where f is, roughly speaking, a nonlinearity whose derivative crosses the first
eigenvalue associated with the Laplacian operator with zero Dirichlet boundary
condition. By using their abstract result, they are able to describe the exact
number of solutions in terms of h .
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On the other hand, in [4], using the Mountain Pass Theorem, the authors prove
the existence of a positive (nontrivial and nonnegative) solution for the problem

−∆u = f(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω, (2)

where, roughly speaking, f is a superlinear nonlinearity ( lim
u→+∞

f(x, u)
u

= +∞)

with f(x, 0) = 0 a.e. x ∈ Ω and zero derivative with respect to u at zero.
These problems are known in the literature respectively as “Ambrosetti-Prodi”

and “Ambrosetti-Rabinowitz” problems. Given the large amount of papers written
on this subject , it is an almost impossible task to give an original look of them.
However, at least, our wish is to convince the reader that these “Ambrosetti prob-
lems” are not so different as they seem.

The ideas rely on the study of some quasilinear extensions of the results in
[5] (see also [6]). Indeed, in [5] we study the case of a non-variational differen-
tial operator, while in [6] the p -laplacian operator (p > 1) is considered. The
intrinsic difficulties of the considered quasilinear equations are the reason for hav-
ing developed there a new bifurcation approach to the Ambrosetti-Prodi problem.
Moreover, we deduce from it the quasilinear Ambrosetti-Rabinowitz result, unify-
ing in this way those two classical results. As a tribute to the pioneering works by
Ambrosetti et al. we devote this note to a survey of these results in the simpler
semilinear case. We remark explicitly that, in this case, the interest is to give a
new perspective in applying the Leray-Schauder topological degree, in conjunc-
tion with the remarkable a priori bound of B. Gidas and J. Spruck [16], instead of
variational methods. The interested reader can see [5] for the more complicated
non-variational quasilinear case.

Acknowledgement: Both authors are partially supported by D.G.E.S. Minis-
terio de Educación y Ciencia (Spain) n. BFM2003-03772.

2 Continua of solutions for Ambrosetti-Prodi type
problems

In [3] (see also [2]), A. Ambrosetti and G. Prodi, using some results on the global
inversion of differentiable mappings between Banach spaces, proved the following
existence result for (1). In order to state it, we denote by {λk} the sequence of
eigenvalues for the Laplacian operator with zero Dirichlet boundary condition.

Theorem 2.1 (Ambrosetti-Prodi, 1972) Let Ω ⊂ RN be a bounded domain
with C2,α -boundary (0 < α < 1) and let f ∈ C2(R) satisfy:

(i) f(0) = 0 ,

(ii) f ′′(s) > 0 for every s ∈ R ,
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(iii) lim
s→−∞

f ′(s) = f ′(−∞) < λ1 < f ′(+∞) = lim
s→+∞

f ′(s) < λ2 .

Then, there exists a connected and closed C1 -manifold, M , of codimension 1 in
C0,α(Ω) such that C0,α(Ω) \ M has exactly two connected components, A1, A2

with the following properties:

(a) if h ∈ A1 , the problem (1) has no solution in C2,α(Ω) ,

(b) if h ∈ A2 , it has exactly two solutions in C2,α(Ω) ,

(c) if h ∈M , it admits a unique solution in C2,α(Ω) .

Thus, a precise description of the number of solutions of (1) is given. This result
has been the motivation of a very large amount of works on the number of solutions
of b.v.p. with nonlinearities f(x, u) whose derivative jumps the first eigenvalue
λ1 or higher eigenvalues. It would be impossible to give here a complete list of
references, but, at least, we wish to cite some of the most classical ones and we
refer the reader to the surveys by D. G. de Figueiredo [11, 12] for a more extensive
list. In [8], M. S. Berger and E. Podolak write the function h as h = tϕ+ h̃ , where
t ∈ R , ϕ is a positive function and h̃ is orthogonal to ϕ in L2(Ω). Existence
and multiplicity of solutions are described in terms of the values of t . Fixed point
theory is applied by H. Amann and P. Hess in [1] and also by S. Fučik, [14] who
introduces the term jumping nonlinearity. In particular, in [1] f : Ω × R → R is
a continuous function such that there exist positive functions f ′±∞(x) ∈ L∞(Ω)
satisfying

lim
s→±∞

f(x, s)
s

= f ′±∞(x), uniformly in x ∈ Ω. (3)

The result in [1] states:

Theorem 2.2 Suppose that ϕ ∈ C0,α(Ω) with ϕ > 0 in Ω . Assume also (3) and
that there exists a positive constant ε such that for a.e. x ∈ Ω

f ′−∞(x) < λ1 − ε < λ1 < λ1 + ε < f ′+∞(x) < λ2 − ε < λ2. (4)

Then, there exists t∗ ∈ R with the following properties:

(a) if t > t∗ , the problem

−∆u = f(x, u) + tϕ, x ∈ Ω,
u = 0, x ∈ ∂Ω. (Pt)

has no solution.

(b) if t = t∗ , it has, at least, one solution.

(c) if t < t∗ , it admits, at least, two solutions.
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A different approach based on Morse theory was given by H. Berestycki [7].
We must mention also the papers by D.G. de Figueiredo and S. Solimini [13] and
K.C. Chang [10] where the case of subcritical superlinear nonlinearities jumping
all eigenvalues λk , i.e. satisfying for some ε > 0

f ′−∞(x) < λ1 − ε < f ′+∞(x) ≡ +∞, a.e. x ∈ Ω, (5)

is considered. The main tool in [13] is the Mountain Pass Theorem, developed for
the Ambrosetti-Rabinowitz problem. Indeed, they prove that one solution of (Pt)
can be obtained by the sub- and super-solution method. As clarified by H. Brézis
and L. Nirenberg [9], such solution is a local minimum with respect to the H1

0 (Ω)-
topology of the associated Euler functional. Then, the second one is obtained
by application of the cited Mountain Pass Theorem (provided that, in addition,
the nonlinearity f satisfies the technical Ambrosetti-Rabinowitz condition [4] for
the standard Palais-Smale condition). We remark also that the case of a critical
superlinear nonlinearity is studied in [9] by using this variational technique.

As far as we are concerned the motivation of our results lies in the study
of some quasilinear elliptic equations ([5] and [6]). Other works for quasilinear
Ambrosetti-Prodi problems are [17, 18]. The particular difficulties of these do not
allow to extend the previous ideas and, consequently, we have developed a new
approach based on proving the existence of a continuum of solutions with ⊃-shape
(see Remark 2.7). We consider the two classes of cited nonlinearities, i.e. either
the case in which the asymptotically linear nonlinearity f satisfies (3) and (4) or
the superlinear case of nonlinearities satisfying (3) and (5). In addition, in this
case, we suppose that there exists h(x) ∈ L∞(Ω) and 1 < p < 2∗ − 1 such that

lim
s→+∞

f(x, s)
sp

= h(x)c > 0, uniformly in x ∈ Ω. (6)

Here 2∗ stands for the Sobolev critical exponent, i.e. 2∗ = 2N/(N −2), if N ≥ 3,
while 2∗ = +∞ , provided N = 2.

The proof of the result applies the sub-super-solution method and the Leray-
Schauder degree in conjunction with the following a priori bound on the C0(Ω)-
norm of the solutions.

Lemma 2.3 Let ϕ ∈ L∞(Ω) be a positive function. Suppose that either

(i) conditions (3) and (4) hold,

or

(ii) f satisfies (3) , (5) and (6) .

Then the solutions of (Pt) are uniformly bounded in compact sets of t , i.e., for
every compact interval Γ ⊂ R , there exists c ∈ R such that every solution u of
(Pt) with t ∈ Γ satisfies

|u(x)| ≤ c, ∀x ∈ Ω.

Remark 2.4 We remark that, in the case of superlinear nonlinearities satisfying
Assumptions (ii), the above a priori bound is an easy extension of the result by
B. Gidas and J. Spruck in [16].
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Proof. In the case of assumptions (i), the proof is standard [2]. We prove the
lemma if (ii) holds. First we show that, given a compact real interval Γ, there
exists a positive constant c such that

u(x) > −c, x ∈ Ω, (7)

for every solution u of (Pt) with t ∈ Γ. In order to prove this a priori bound, we
observe that taking u− ≡ min{u, 0} as test function in the equation satisfied by
u , and by using hypothesis (5), we get an uniform bound in the H1

0 (Ω)-norm of
u− . Consider now, for each k ∈ R , the function Gk given by

Gk(s) =

 s+ k, if s ≤ −k,
0, if − k < s ≤ k,
s− k, if k < s.

Thus, taking v = Gk(u−) as test function in the equation satisfied by u we obtain
that ∫

Ω

|∇Gk(u−)|2 =
∫
Ωk

(f(x, u−) + tϕ)Gk(u−),

where Ωk ≡ {x ∈ Ω : u(x) < −k} . From (5), there exists a positive constant C
such that

f(x, s) + tϕ ≥ Cs, ∀s ≤ −k, ∀t ∈ Γ.

We deduce from above that∫
Ω

|∇Gk(u−)|2 ≤ C
∫
Ωk

|u−||Gk(u−)|.

Using now the Sobolev and Hölder inequalities, we get for some new constant C
and r > 2N/(N + 2),

‖Gk(u−)‖22∗ ≤ C‖u−‖r‖Gk(u−)‖2∗(meas Ωk)(1−1/r−1/2∗).

(For r ≥ 1, we are denoting ‖ · ‖r the usual norm of the Lebesgue space Lr(Ω)).
Notice now that for every h ≥ k , |Gk(u−)| ≥ h− k in Ωh , which implies that

(h− k)(meas Ωh)1/2∗ ≤ C‖u−‖r(meas Ωk)(1−1/r−1/2∗),

or equivalently that

meas Ωh ≤
C‖u−‖2∗r (meas Ωk)(2∗−1−2∗/r)

(h− k)2∗
.

Using ideas of Stampacchia [19], we deduce the existence of a positive constant c
such that ‖u−‖∞ ≤ c , for every solution u of (Pt) with t ∈ Γ. Therefore, (7) has
been proved.
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On the other hand, denote v = u + c ≥ 0 and f̃(x, s) = f(x, s − c). Thus, v
satisfies

−∆v = f̃(x, v) + tϕ, x ∈ Ω,
v = c, x ∈ ∂Ω.

We observe that the result in [16] remains true for solutions of the equation with
bounded Dirichlet data instead of zero Dirichlet data. This result gives the exis-
tence of c̃ ∈ R+ such that v(x) ≤ c̃ , for every x ∈ Ω, i.e. u is bounded from
above. �

We need also the following abstract theorem about the existence of a ⊃-shaped
continuum. The proof can be found in [5].

Lemma 2.5 Let E be a Banach space and T : R × E → E a compact operator.
Let us denote by Σ the set of pairs (t, u) ∈ R× E such that u is a solution of

u− T (t, u) = 0. (8)

Let U be a bounded subset in E , such that (8) has no solution on ∂U while
t ∈ [a, b] . Assume also that, for t = b , (8) has no solution in U . Let U1 ⊂ U
such that, for t = a , (8) has no solution on ∂U1 and deg(I − T (a, ·), U1, 0) 6= 0 .
Then there exists a continuum C in Σ such that

C ∩ ({a} × U1) 6= ∅, C ∩ ({a} × (U \ U1)) 6= ∅.

Now, we prove the main result of this section.

Theorem 2.6 Let ϕ ∈ L∞(Ω) be a positive function and let f : Ω× R −→ R be
a C1 -function satisfying either

i) conditions (3) and (4) ,

or

ii) conditions (3) , (5) and (6) .

Then t∗ ≡ sup{t ∈ R : (Pt) admits a solution} is finite and for every t0 < t∗

there exists a continuum C in Σ ≡ {(t, u) ∈ R × C1
0 (Ω) : u solution of (Pt)}

satisfying that

1. [t0, t∗] ⊂ ProjR C .

2. For every t ∈ [t0, t∗) , ProjC1
0 (Ω)

[
C ∩ ({t} × C1

0 (Ω))
]

contains two distinct
solutions of (Pt) .

Remark 2.7 We observe that, roughly speaking, the continuum C of solutions
in R × C1

0 (Ω) emanates from {t0} × C1
0 (Ω), reaches {t∗} × C1

0 (Ω) and then, it
turns left to meet a different solution in {t0}×C1

0 (Ω) (⊃-shaped continuum). As
a consequence,

1. (Pt) has, at least, two solutions for t < t∗ ,
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2. (Pt) has, at least, one solution for t ≤ t∗ ,

3. (Pt) has no solution for every t > t∗ .

Proof. Let us denote S ≡ {t ∈ R : (Pt) admits a solution} . First we show that S
is not the empty set. This relies upon two facts [12]:

• (Pt) has a supersolution for some t ∈ R ,

• given a supersolution, u , of (Pt) for some t ∈ R , there exists a subsolution
u of it, such that u < u in Ω.

Indeed, by means of the sub and super solution method, this implies that S is a
closed interval unbounded from below. Moreover, the usual trick of multiplying by
one positive eigenfunction associated to λ1 leads to the nonexistence of solution
for t >> 0 large enough and thus S is bounded from above. This means that the
supremum of the closed interval S is attained. Denote

t∗ ≡ supS = maxS.

We now prove the existence of the continuum of solutions. First we observe
that, from Lemma 2.3 jointly with some regularity results, if t0 < t∗ < t1 , there
exists R > 0 such that ‖u‖C1 < R for each solution u of (Pt) with t ∈ [t0, t1] .
Denote by Φt the map Φt(u) ≡ u − (−∆)−1(f(x, u) + tϕ). Using the homotopy
invariance of Leray-Schauder degree and that problem (Pt1) has no solution, we
get

deg(Φt, BR(0), 0) = deg(Φt1 , BR(0), 0) = 0, ∀t ∈ [t0, t1],

where BR(0) denotes the open ball in C1
0 (Ω) of radius R centered at zero.

Let u∗ be a solution of (Pt∗). Observe that u∗ is a super-solution of (Pt)
for every t ∈ [t0, t∗) and it is not a solution. Moreover, as it has been mentioned
above, there exists a sub-solution ut0 < u∗ of (Pt0) which is not a solution. Clearly
ut0 is also a sub-solution and no solution for (Pt) if t ∈ [t0, t∗). Consider the set

U1 = {u ∈ C1
0 (Ω) : ut0 < u < u∗ in Ω,

∂u∗

∂n
<
∂u

∂n
<
∂ut0
∂n

on ∂Ω} ∩BR(0).

The strong maximum principle implies the nonexistence of solutions of (Pt) on
∂U1 if t < t∗ (see [15]). Hence, the degree of Φt is well defined in this set U1 . In
addition, by using the results in [11],

deg(Φt, U1, 0) = 1, ∀t ∈ [t0, t∗).

Applying Lemma 2.5 with E = C1
0 (Ω), [a, b] = [t0, t1] and U = BR(0), we

deduce the existence of a continuum C in Σ such that

C ∩ ({t0} × U1) 6= ∅,

and
C ∩ ({t0} × [BR(0) \ U1]) 6= ∅.

In particular, the continuum C crosses {t} × ∂U1 , for some t ∈ (t0, t∗] . It has
been observed that this is possible if and only if t = t∗ . This concludes the proof.
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3 Ambrosetti-Rabinowitz via Ambrosetti-Prodi

Let us consider a C1 -function f : Ω× R+ → R+ such that f(x, 0) = 0, (x ∈ Ω),
satisfying (6) and

lim sup
s→0+

f(x, s)
s

≤ γ < λ1, uniformly x ∈ Ω. (9)

We are interested in the existence of positive solutions for the b.v.p.

−∆u = f(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω. (10)

As usual, we can assume that f is extended to all of Ω×R by setting f(x, s) = 0
for s < 0. Notice that by the maximum principle, every nontrivial solution of (10)
with the extended nonlinearity is positive.

Since f satisfies conditions (3), (5) and (6), problem (10) fits into the “super-
linear” Ambrosetti-Prodi framework (problem (Pt) with t = 0 and any ϕ). As
an easy application of Theorem 2.6, we deduce

Theorem 3.1 Let f ∈ C1(Ω×R+) satisfy (6) and (9) . Then problem (10) has,
at least, one positive solution.

Proof. To apply the framework of the previous sections we embed (10) into the
one parameter problem

−∆u = f(x, u) + tϕ1, x ∈ Ω,
u = 0, x ∈ ∂Ω. (Qt)

Observe that this problem is (Pt) with ϕ = ϕ1 . From Theorem 2.6, let t∗ denote
the supremum of all t ∈ R such that (Qt) has solution. The proof is concluded
if we prove that t∗ > 0. Indeed, if this is done, that theorem (see also item 1.
(with t = 0) of Remark 2.7) shows the existence of, at least, two solutions of (Q0),
or equivalently, the existence of two nonnegative solutions of (10). Taking into
account that zero is solution of this problem, we deduce that there exists, at least,
one positive solution of (10).

In order to prove that t∗ > 0, we use the sub-super-solution method. First,
we note that u = 0 is a subsolution of (Qt) for every t > 0. Thus, we only have
to find a positive supersolution of (Qt), for some t > 0. This is easily deduced

as follows. From (9), we take δ small enough such that
f(x, δϕ1)
δϕ1

≤ λ1 − δ , for

every x ∈ Ω. Then

−∆(δϕ1) = λ1δϕ1 ≥ f(x, δϕ1) + δ2ϕ1,

This means that δϕ1 is a super-solution of (Qt) with t = δ2 > 0 concluding the
proof.
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