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Abstract

Under suitable assumptions on the coefficients of the matrix A(x,u) and on the nonlinear term
f(x,u), we study the quasilinear problem in bounded domains Q C RY
—div(A(x,u)Vu) = f(x,u), x€L,
u =0, X €0Q.

We extend the semilinear results of Landesman—Lazer (J. Math. Mech. 19 (1970) 609) and of
Ambrosetti—Prodi (in: A Primer on Nonlinear Analysis, Cambridge University Press, Cambridge,
1993) for resonant problems. The existence of positive solution is also considered extending to
the quasilinear case the classical result by Ambrosetti-Rabinowitz (J. Funct. Anal. 14 (1973)
349). In this case, the result is obtained as a corollary of the previous multiplicity result in the
Ambrosetti—Prodi framework.
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1. Introduction

Let Q C RY be a bounded open set with smooth boundary dQ. We consider here
the boundary value problem
—div(A(x,u)Vu) = f(x,u), xeQ,

u =0, xeon,

(1)
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where A(x,s) := (a;i(x,s)), i,j=1,...,N is a symmetric matrix with coefficients a;; :
Q2 x R — R which are Carathéodory functions (i.e., a;;(x,s) is measurable with respect
to x for all s € R and continuous in s for almost everywhere (a.e.) x € Q). We assume
that there exist positive constants o and f3 satisfying for every (s,¢) € R x RY and a.e.
x € Q,

|A(x,5)] < B, (Ar)
Ax,5)¢ - &= o), (A2)
[A(x,8) — A(x, )| < o(]s — t]), Vs, t€R, (A3)

with @ :R™ — R being some Osgood function, that is,

. . ds
18 not decreasing, (0)=0, =+ o0,
o+ 0(8)
Let f(x,s) be a Carathéodory function satisfying for some positive constants ¢y, ¢z,
that

| f(xe,8)| <cils] +c2, ae xeQ, VseR (fi)

To establish the definition of solution, we consider the usual Sobolev space H; (<)
(endowed with the norm |u| = ||Vu|,) and the space E = Cy(2) of the continuous
functions in Q which vanish on 0Q (endowed with the norm ||u|o = sup,|u|). Thanks
to (A;) and (f)), for a solution of this problem we mean a function u€ H)(Q)NE
satisfying

/ A(x,u)Vu - Vo= / flnup,  YveHy(RQ).
Q Q
We note that hypotheses (Aj—,) mean that the nonlinear differential operator O : Hj(Q)
— H~'(Q) defined by
O(u) = —div(A(x,u)Vu), uec HOI(Q),

is continuous (by (A;)) and coercive (by (A,)). If he H~'(Q), the classical result
by Leray and Lions [23] allows to deduce the existence of a weak solution u of the
problem

Ou)=h, ucH(Q),

i.e., a function u € H}(Q) satisfying
/A(x,u)Vu-Vu:/hu, Yo € H(Q).
Q Q

In addition, under (Aj), by [6, Théoréem 1.3], this solution u« is unique.

As a consequence of this, assuming (A;—3), we can consider the inverse K : H~(Q)
— HJ(Q) of the operator Q. In addition, K is continuous and compact in L*(Q)
(see for instance [4, Remark 2.2]). Moreover, if ¢ > N/2, by De Giorgi—Stampacchia
Theorem (see [15, Theorem II]; [17, Theorem 8.29] or [26, Theorem 7.3]), K maps
the standard Lebesgue space L9(Q) (which norm is denoted by ||u||,) into E. If u€ E,



by (f;) we have that f(x,u)e L9(Q), and consequently K( f(x,u))€ E. This implies
that ®:E — E given by

P(u)=u—K(f(x,u)), uek

is well defined. Solutions of (1) are just the zeros of @ (see for example [4, Lemma
2.4.1]). Therefore, problem (1) can be studied by means of Leray—Schauder degree.
It is shown in [7, Theorem I] that the sub-super-solution method also works in this
framework. On the contrary, the problem does not have variational structure if the
dependence of the matrix A4(x,s) respect to s is nontrivial. Hence, we use only the
available topological techniques to study (1) according to different hypotheses on
the interaction between the asymptotic behavior of f(x,s)/s and the spectrum of a
semilinear eigenvalue problem determined by the asymptotic behavior of the matrix
A(x,s). Specifically, we assume

Iim A(x,s) = Aqo(x) (Ay)

|s]—o00
and that for some ¢ > N/2 there exist positive functions f”, . (x) belonging to L(Q)
such that

lim
s—Foo

M = flo(x), uniformly in x € Q. (£)

We consider the eigenvalue problem
—div(Aeo(x)Vu) = jpu, xe€Q, 5
u = 0, x € 0Q. )
Let {4} be denoting the sequence of associated eigenvalues.

We handle three kinds of problems. The first one is the nonresonant case in which
either 7 o(x) < A1 or Jx < flLoo(x) < /gy for some k€ N. We obtain an slight im-
provement of the previous existence result in [12, Theorem 1] where the author con-
siders the Dirichlet b.v.p. (even with boundary nonzero data) imposing the additional
hypotheses on the existence of limit of V,A(x,s) as |s| tends to + occ.

Next, the resonant case f” (x) = f’ (x) = 4, is also treated. This kind of res-
onant problem at infinity has been extensively studied in the semilinear case. Among
others we can cite here [1,5,8,18,19,21,24]. Extending to the quasilinear case the ideas
in [5,24], we study resonance phenomena by the determination of the side of every
possible bifurcation from (/4;,c0) for a certain one-parameter problem. This allows us
to deduce conditions to assure an a priori bound for solutions on the side where bifur-
cation does not occur. This a priori bound is the only requirement to use compactness
arguments and to prove in a standard way the existence of solution (see [18]). In this
way, we improve the results in [11, Theorem 10] because, in addition to cancel the
assumption about the behavior of V,A(x,s) as |s| goes to + oo, we also avoid the
condition used by the author connecting the infimum rx; of the set consisting by
the first eigenvalue of every eigenvalue problem (associated to every v e L*(Q))

—div(4(x,v)Vu)=ku, xe€Q,
veL*(Q).
u=0, xediQ.

Specifically, in contrast with the cited paper, we do not need to assume that 1| = /.



In the third case we suppose, in addition to (f|— ), that there exists a positive constant
¢ such that for a.e. xeQ

—o< [l < —e<i <ite<floo(x)<i—e<ia, (f3)

obtaining existence and multiplicity results for the one parameter problem
—div(A(x,u)Vu) = f(x,u)+tp, xeQ,

(P
u = 0, xedQ, 2

where ¢ € L*°(Q) is a positive function and 7 € R.

Semilinear problems with nonlinearity having a derivative jumping the eigenval-
ues of the linear part have been extensively studied and this problems are known by
Ambrosetti—Prodi type problems. From the paper by Ambrosetti—Prodi [2], we can cite
for example [9,19] or more recently [14] (see also the references therein). Chabrowski
in [11] and Lefton—Shapiro in [22] handle quasilinear operators, but they again need a
condition about jumping the first eigenvalue of all a class of linear operators, namely
that /7 <w; <A < floo-

By combining degree theory and sub-supersolution method, we obtain the existence
of t* € R such that (P,) has no solution for r > ¢*, has at least one solution for r=r* and
at least two solutions for 1 <¢*. Moreover, for a particular class of matrices 4(x,s), this
multiplicity result is improved by showing the existence of a continuum % of solutions
in R x E that emanates from {/} x E, reaches {t*} x E and then returns again to a
different solution in {¢} x E. We have to point out that, at least for the knowledge of
the authors, the existence of this continuum with D-shape seems to be unknown even
in the semilinear case.

Finally, we extend to quasilinear operators the classical semilinear result of Ambro-
setti-Rabinowitz about the existence of positive solution for super-linear ( f/, ., = + 00)
problems. The key idea and novelty here is to embed this problem into the Ambrosetti—
Prodi framework that we have previously studied. Indeed, adding t¢ in the right-hand
side we embed the above problem into an Ambrosetti—Prodi problem. In this case, we
prove that * > 0 and then there exist two solutions for 1 =0, one of them has to be
nontrivial and nonnegative.

The paper is organized as follows. In Section 2 we are concerned with existence of
solutions for both the nonresonant and the resonant problem. In Section 3 we apply all
these results jointly with the sub-super-solution method and a priori estimates in order
to obtain an existence result for the Ambrosetti—Prodi type problem (P;). Section 4 is
devoted to obtain a multiplicity result for (P,) as a consequence of the existence of
a continuum of solutions. Finally, in Section 5 we give the applications to problems
such as Ambrosetti—-Rabinowitz type ones via Ambrosetti—Prodi ones.

2. Resonance for quasilinear operators. Landesman—Lazer results

Before studying resonance phenomena we begin with an existence result for solutions
of (1) in the case in which the nonlinearity f(x,s) does not interact at & oo with the



spectrum of (2). The basic fact to do that will be the existence of an a priori bound
in the E-norm of the solutions. Indeed, we prove the following.

Theorem 1. Suppose that (A—y) and (fi—) are satisfied. Assume also that 1, <
Sliao(X) < g1 for some keN or fl (x) <y, ae. x€Q. Then problem (1) has
at least one solution.

Proof. We prove the theorem by constructing a homotopy from problem (1) to a
semilinear one and using then the invariance property of the Leray—Schauder Degree.
For each s €[0, 1] we consider the matrix Ay (x,u) =sA(x,u)+ (1 — s)Aoo(x), Which
satisfies hypotheses (Aj—4). Let also f(x, u)=sf(x, u)+(1—=8)[ [/ oo (X" + f7 o (x)u™]
(with ¥~ = min{u,0}). We study now the problem
—div(4,(x, u)Vu) folx,u), xeQ,

u = 0, xeoQ.

|

Since A, fulfills condition (Aj), there exist the continuous and compact inverse K :
LXH(Q) — HOI( Q) of the differential operator defined by O,(u) = —div(Ay(x,u)Vu). In
this way, the above problem is equivalent to find zeros of &;:E — E, given by

Ds(u) = u — K[sf(x,u) + (1 — ) oo™ + f1o(x)u™ )] =0.

Claim. There exists R€ Rt such that ®(u) # 0, for every u€E with |ullo =R and
s€[0,1].

Suppose on the contrary that there exist s, € [0, 1] and u,, € HOI(Q) satisfying @y, (u, )=
0 with ||u,|lo — oo. First we note that z, = u,/||u,|| is bounded and thus there exists
z€E HO'(Q) such that, up to a subsequence, z, weakly converges to z. Moreover, z, — z
strongly in LP(Q), p <2* (where 2* is denoting the Sobolev exponent related to
HOI(Q), ie, 2" =2N/(N —2) if N >2 and 2* =0 if N <2), and z,(x) — z(x) a.e.
x € Q. In addition, z, satisfies

/ Ax,,(x» Uy )VZII Vo= (] - SII) [/ f;oo(x )Z: v+ / fl—oo(x)zn_ U]

Q Q Q

f(xa uy)
v

b
o lull
Taking v =z, — z as test function, subtracting fQ Ay (x,1,)Vz - V(z, — z) and using

hypothesis (A,) we have

OCHZ,, - Z”z < / As,,(xv Uy )V(Zn - -7) : V(Zn - -7)
Q

+s, Yo € Hy(Q). 3)

=(1—-s,) |: fzroo(x)z;r(zn —z)+ / f,_oo(x)zlj(zn —z)
Q Q

+Sn M (Zn - Z) - / As,,(x7 Uy )VZ N V(Zn - Z)-
Q

o luall



To prove the strong convergence of z, to z in H (L) it suffices to show that the terms
on the right-hand side of the above inequality converge to zero. In order to see this,
first we observe that, from L”-convergence we obtain that

(1= 52) [/ £z — z)+/f_oo<v>z,, (za—2)| 0.

Regularity theorems (see [15, Theorem II; 17, Theorem 8.29] or [26, Theorem 7.3])
imply that ||u,|| is unbounded and from (f)

EACRTY
o ]

Now, condition (A;) and the Lebesgue Theorem imply the strong convergence of
A, (x,1,)Vz to Aoo(x)Vz in L*(RQ). Since V(z, — z) weakly converges to zero in
LP(Q) we have

/ \"(X u,)Vz-V(z, —z) — 0.

(-7)1 _Z) - O

Sn

Thus, we deduce the strong convergence in H}(Q) of z, to z. To get now the equation
satisfied by z we take limit in (3). First we note arguing as above that

/ A, (x,1,)Vz, - VU — / Aoo(x)Vz -V, Yve HO'(Q).
Q Q

On the other hand, since s, is bounded, using (f;— ) and Lebesgue Theorem we deduce
for every ve Hj(Q2) that

=) / Frs)z o+ (1 5,) / fL @)
Q Q

s, [ L), /fm(x)z v /f_ ().

o ]

Then, the equation satisfied by z is

/Aoo(x)vz.w:/f;OO(x)z+u+/ flo(X)z7r, YoeHy(Q).
Q Q Q

Denoting by y the characteristic function of the set B and taking m(x)=f"_ . (x)y{-<o}
+ /1 o(X)1 (=0}, the equation above means that =1 is an eigenvalue for the weighted
eigenvalue problem

—div(Aoo(x)Vu) = pum(x)u, x€Q,

4)
u = 0, x € o0Q.

Let us denote by {u(m(x))} the sequence of positive eigenvalues for (4) and suppose
that 1 = y;(m(x)) for some j. From the hypothesis on f”, ., either m(x) < 4; (in the
case flioo < /1), or Ap <m(x) < g1 (if A4 < flioo < /g1 for some k = 1). Thus,
it is known (see [13, Proposition 1.12A]) that either

)
i (m(x)) > (7)) = /1—’



or

A 1
= Wil geg1) < pi(m(x)) < pi(Ag) = =
P T

In the first case we have that /; > J; and in the second one that 4; < 4; < 4;;. This
is in both cases a contradiction, which proves the claim.

By virtue of the claim and by the homotopy invariance property, we deduce that the
Leray—Schauder degree

deg(®,, Br(0),0) = constant,

where Bg(0) = {u € E/|jullo < R} is the open ball centered at zero of radius R, R > 0.
For s =0 we can compute the above degree and show that it is different from zero.
Indeed, as we have seen in the proof of the claim, since f’ . (x) does not interact
with the spectrum of (2) then 1 is not an eigenvalue of Ko( ', oo (x)u® + 1 o(x)u™).
In this case, it is proved in [20] that

deg(®o, Br(0),0) =(—1)",
where v is the sum of the algebraic multiplicities of the eigenvalues u of the compact
operator Ko(f”, o (x)u™ + f" (x)u~) with 1 < . Consequently, for s =1

deg(®1. Br(0).0) # 0,

which implies that (1) has at least one solution u € E with |luljp <R. O

Next, we consider the easiest case of interaction of the nonlinearity with the spec-
trum. Namely, we are concerned with the resonant problem
—div(A(x,u)Vu) = py(m(x))ym(x)u + g(x,u), x€Q,
(5)
u=0, xe€iQ,
where as in the proof of the previous lemma p;(m(x)) is the first positive eigenvalue
of (4) and g: Q2 x R — R is a Carathéodory function satisfying
. g(x,s)
lim =

|s|] =00 8

0, uniformly in Q. (6)

With respect to m(x), we suppose that it is an L?(Q)-function with Lebesgue measure
[{x € Q: m(x) > 0} >0 (i.e., m(x)" #£0).

We employ the quasilinear extension in [4] of the approach in [5, Theorem 19]
and [24].

This problem can be studied by means of bifurcation theory if we embeds it into
the one-parameter problem

—div(A(x,u)Vu) = Im(x)u+g(x,u), xe€Q,

Q)
u = 0, x € o0Q.

We have to point out that for f(x,u) = m(x)u + g(x,u)/i(m(x)), [fho(x) =
[ oo(x) = m(x) and the claim proved in the proof of the previous theorem means
that gy (m(x)) are the only possible positive bifurcation points from infinity for the

problem (Q;).



The previous theorem also proves that if 1 # py(m(x)) for every k, then (Q;) have
at least one solution.

We prove our existence result for (5), which improves that in [11, Theorem 10]. The
idea here is to analyze carefully the side of every possible bifurcation from infinity at
wi(m(x)). Let us denote by  the positive eigenfunction associated to g (m(x)) with
Y]l = 1. By [4(x,s) — Aoo(x)] < O (respect. [A(x,s) — Aoo(x)] = 0) we mean that the
quadratic form induced by the matrix A(x,s) — Aso(x) is definite nonpositive (respect.
nonnegative).

Theorem 2. Assume conditions (6) and (Ai—s) with the matrix Aoo(x) having C'(Q)-
coefficients. Suppose also that the following condition

a;j(x,5)EC(Q xR), 0<y<l (7)
and

F(xs)=m(x)+ g(x,s) is a C'-function in Q x R,
holds and there exist ¢ > N, 6 €(0,3 — 1/q) and C € LY(Q) such that

lg(x, )| s < C(x), ae x€Q, VseR,
(8)

lim [g(x,$)]|s|” " = pioo(x), ae x€Q.
s—+o0

Then resonant problem (5) has at least one solution, provided that one of the
following conditions holds: either

[A(x,s) — Aso(x)] <0, ae. in Q, VseR,

9)
/P+oo(X)l//27”(X)>0>//)—oo(X)l//%”(X),
Q Q
or
[A(x,8) — Axo(x)] =0, ae. in Q, VseR,
2— ' 2— (10)
/ Proo(M P (x) < 0 < / P oo NP7 (x).
Q Q
Remarks 3.

(1) We note that in the semilinear case, conditions (9) and (10) for ¢g=00 and 6 =1
are in fact the classical Landesman—Lazer conditions (see [21, p. 611]). For the
general g € (0,3 — 1/g) the integral inequality condition in (9) and (10) appear in
[5, Theorems 3,4] (also for semilinear problems).

(2) We have to point out that the regularity assumption on Am(x) + g(x,s) in (7) is
a technical condition to obtain that if u, is an unbounded sequence of solutions
of (Qy,), up to a subsequence, u,/||u,|| converges to =1/ in C&(Q).

Proof. First we note that if (7) is satisfied then, using [17, Theorem 14.17], we have
that K(LY(Q)) C C(‘)(Q) (the subspace of the functions in Co(2) which are C' in Q).
We claim that if (9) holds (respectively (10)) then every possible bifurcation from



(t1(m(x)),00) for the problem (Q;) occurs always to the left (respectively to the
right). Notice that if the claim is proved, using Theorem 1 we can take u, solution
of (Q,,) with py(m(x)) < 4, and 2, — p(m(x)) (respectively 4, < py(m(x))). Since
every possible bifurcation from infinity is to the left, we have that there exists M € R*
such that [Ju,||o < M, and from the compactness of K, there exists u € H}(Q) such that
up to a subsequence, u, strongly converges to u and u is solution of (O, m))), i€,
u is solution of (5), proving the theorem.

The claim is partially proven in [4, Theorem 3.4]. We include here for convenience
of the reader the proof that condition (9) implies that the bifurcation occurs to the left.
Let us argue by contradiction and take a sequence (4,,u,) satisfying

/ A(Cx, u)Vuy, - Vo =/, m(x )u,v + / g(x,u, v,  Vve HOI(Q),
Q Q Q

with 4, — pi(m(x)), 2, = wi(m(x)) and ||uy,|lo — oo.

Dividing by ||uy,]|, using (6) and (7), we deduce that z,=u,/||u,|| converges in Cé(Q)
to Y or —y. Thus, up to a subsequence, every solution u, belongs to the interior of
the cone P of nonnegative functions in C({(Q) or it belongs to —P. Thus, we can take
v =1?/u, as test function in the equation above to get

2
/ A(x,u,)Vu, |2 i Vi — (£> Vu,
Q Uy Uy

Hence we yield that

s An
/ g(x, L{,,)— :/ [A(xa ”n) - Aoo(x):| Vlﬁ ' Vw
Q n Q i (m(x))

— / A(x,uy,) (Vtﬁ — £ Vu,,) . (Vw — EVL{,,> .
Q Up Uy

By the fact that /4, = u (m(x)) we get, applying conditions (A;) and (9), that

0= / |:A(X,L{,,) - LAOO(’C)} VLD ) VLD
Q i (m(x))

- / A(x,uy,) (Vw - i Vu,,) . (Vw - i Vu,,) .
Q Uy Uy

In particular,

2

:i”/ln(x)w2+/(/(X,L{,,)w—.
Q Q Uy

2

03 " / g L.
Q u

n

Using (8) and Fatou Lemma, we obtain that

2
0 = liminf [ g(x,u, )" v > / Proe (W77 >0,
n—oo [ z;’]’ I}
if z, — ¥, and
w2
0 = liminf — / e | - > - / DWW >0,
=00 Q |2n] Q



if z, — —. In both cases we have a contradiction with (9), proving the claim, and
consequently the theorem. [

3. Ambrosetti-Prodi problems

We are interested in this section with the problem of existence and multiplicity of
solution of (P;) in the case that several eigenvalues of (2) are contained in the interval
(f" oo (@), [’ oo(x)) for almost every x € Q. More precisely we study two classes of
nonlinearities f. The first kind of nonlinearity f corresponds to an asymptotically linear
one satisfying (fj—3) (f interacts with the first eigenvalue). In this case we improve the
results in [11] for this quasilinear operators. We consider also nonlinearities f which
interact with all the spectrum. Specifically, we study problem (P;) with nonlinearities
f satistying (f,) and

—o0 < flo(x)<cp <opu< flo(x)=+00, ae xeQ, (f§)

where p denotes the first eigenvalue associated to the Laplacian operator. In addition,
in this case we suppose that there exists i(x) € L°°(Q) and 1 < p < 2* — 1 such that
. (x,s . .

lim Lp) =h(x)>c¢ >0, uniformly in x € Q. (f4)

§—+00 S

We remark explicitly that for the knowledge of the authors the quasilinear problem
(P,) is unknown for this kind of “super-linear” nonlinearities.

The main tools are the sub-super-solution method and the Leray—Schauder degree.
Some a priori bound on ¢ and on the E-norm of the solutions will be useful.

Lemma 4. Assume that (Ay2.4) hold. Suppose also that either
(i) conditions (fi—) hold,
or
(i) A and f satisfies (Asz), (f2), (f]), (f4), (7), and for some positive constants
¢, 20,

[f(,8)| <cals|+c, aexeQ, VseR™. (f)

Then solutions of (P;) are uniformly bounded in compact sets of ¢, i.e. for every
compact interval I' C R, there exists ¢ € R such that every solution « € E of (P;) with
t €I satisfies

[u(x)] <¢, VxeQ.

Proof. Let us begin with the proof in the case that assumptions of item (i) are satisfied.
Suppose on the contrary that u, is a solution of (P, ) with 7, bounded and ||u,]|o — oc.
Using that ¢,/||u,|| converges to zero and similar arguments to those in the proof of
Theorem 1 we deduce that z, = u,/||u,|| strongly converges to a solution z € H}(Q)



of (4) with =1 (m(x) = f" (X)11z<0} + froo(X)){z>0y). This means that 1 is an
eigenvalue for this weighted eigenvalue problem. However, we claim that this is a
contradiction. Indeed, since m(x) < 4y, it is known (see [13, Proposition 1.12 A]) that
the sequence of positive eigenvalues p;(m(x)) satisfies

2
pi(m(x)) > pi(42) = /1—/

Thus, pj(m(x)) > 1 for every j > 2. Therefore if u=1 would be an eigenvalue, it would
be i (m(x))=1. Using that the nonzero eigenfunctions associated to the first eigenvalue
do not change sign we would obtain that either m(x) = f7 (x) or m(x) = f7 o (x).
In the first case we would have that

. A
1 Lool@) = pa(m()) > i) = 7= = 1.
Similarly in the second one we would have that

([ oo (x)) = pu(m(x)) < 1.

In any case we would reach a contradiction, proving that ;=1 is not an eigenvalue
for (4) and consequently the lemma in the case of item (i).

In the second case, when the conditions of item (ii) are satisfied, we divide the proof
into two steps. In the step 1 we prove that every solution of (P;) is bounded from
below. The second step is devoted to prove that they are also bounded from above. Let
u be a solution of (P,) with € TI'. Let us denote during all the proof by ¢ a positive
constant, independent of ¢ and u (possibly different between steps).

Step 1. First we prove the existence of a uniform bound in the Hj(Q2)-norm of the
negative part of solutions of (P;). Indeed, taking v=u" as test function in the equation
satisfied by u and using (A;) we have that

| |2 </A(x,u)VuVu_ :/f(x,u)u_ +t/ ou”.
Q Q Q

Observe that from hypotheses (f]) and (f]) we get
fx,s)=¢C1s— ¢, ae xeQ, VseR™,

with ¢; < ou. Thus, we deduce, using Poincaré and Cauchy—Schwartz inequalities, that

du P <& / W+ / |+ 1 / ol \—||u 12+ el

where, since €T, we can take ¢z = 1//u(||@]l2 sup,cr {|t]} + &[Q["?). Hence, we
have ||u~|| < ¢esp/(ope— €1 ). Using this estimate we prove the existence of a bound for
||t~ lo. In order to do that we consider for every k € R™ the function Gj given by

s+k s<—k
Gi(s)=4 0 —k <s <k

s—k s>k



Thus, taking v = Gy (u~ ) as test function in the equation satisfied by u and using (A;)
we obtain that

oc/ IVGr(u)]> < /A(X,U_)VG/((U_)'VGk(”_)
& Q
= /A(x, u)Vu - VGr(u™)
Q

=/, (f(xu™ )+ 19)Gi(u™),
Q

where Q; = {x € Q: u(x) <—k}. Taking into account that there exist a positive constant
C such that

|L/.(X7S)+ﬂp| < C|S|a Vs < —/"7
we deduce from above that
oc/ IV Gi(u™ ) <C/ lu™||Gr(u™ ).
o ol
Using now the Sobolev and Hélder inequalities we get that for some new constant C
and r > 2N/(N + 2)

|Ge(u)|3 < Cllu ||| Gr(u™) —Ur=1/27),

5+ (meas Q)"

Notice now that for every h =k, |Gy(u™)| = h — k in Qy, this implies that
(h — k)(meas Q,)"" < C|ju~||(meas Q) ~V/r=127),
or equivalently that
Cllu~||> (meas Q)" —1-2"/"
(h—k)*

Therefore we can apply Stampacchia Lemma to deduce that

meas Q;, <

(i) if > N/2 then u~= € L>°(Q) and |ju"|jo < c[ju™ ||,
(ii) if 7 =N/2 then u~ € L(Q) for s €[1,00) and [[u~ ||} < ¢+ |Ju” ||},
(i) if r < N/2 then u™ € L¥(Q) for s = 2*r/((2 — 2*yr — 2*) — & and arbitrary small
5> 0. Moreover, |[u~ || < ¢+ ¢/ |ju||? 7220,

Since u e L* (Q) and 2* > 2N/(N + 2) we can argue as above for ry = 2*. Thus, if
N < 6 we conclude by item i). In the case N =6 we use item ii) to choose 1| > N/2
and after repeating the argument we lie in the item i) and conclude again. Finally, in
the case N > 6 we can take

2*’,. N
r = m — ()] > 1.
As before, if ; = N/2 we conclude easily. In other cases we take
2*1"] 9
) — ()2.

T 22 +2¢



Arguing by iteration, we can conclude after a finite number of steps. Indeed, in other
cases, we have that r, is bounded, where r, is defined in the recurrence form

ro = 2%,
2*r,
(2 —2%)r, + 2%
where lim,_, o, d, = 0. Moreover, r, is increasing and therefore it is convergent and
the limit » € (2%, N/2] satisfies
2%y
T2 2 ) 120

Iyl = — Opt1-

r

ie., 2*r = (2 — 2*)r* +2*r, which is a contradiction, proving the cla~im.
Step 2. Let us suppose (Step 1) that |u~| < ¢, denote v=u+c = 0, f(x,5)=f(x,5—¢)
and A(x,s) = A(x,s — ¢). Thus, v satisfies

—div(A(x,0)Vo) = f(x, v)+tp, x€Q,
vo= ¢ x €09,
with 7 satisfying (f3).
We observe that the result in [4, Theorem 5.11] remains valid for solutions of the

equation with bounded Dirichlet data instead of zero Dirichlet data. This result gives
the existence of ¢ € R™ such that v(x) < ¢é Vx € Q, ie., u is bounded from above. O

Let us denote by ¢ the solution of the problem
—div(Adoo(x)Vu)= ¢, x€Q,
u=0, xediQ.

Inspired by some ideas for semilinear problems contained in the paper by McKenna—
Walter [25] we prove the following lemma.

Lemma 5. Assume that (A—y), (fi—) with ¢ > N, are satisfied and that the coeffi-
cients of Aeo are of class C'. For each 0 <& < 2,2\ 9|13/ 22ll¢ll2 + 2| ¢ll2 there
exists t, € R such that for every t < t, and L €[0,1], the problem

—div((24(x, 1) + (1 — DAso(x))Vu) = Af(x,u) + top, x€Q,

u=0, xedQ,
has no solution in 0B\, (td) = {u € Hy(Q): |lu — ]| = |t]e}.
Proof. We argue by contradiction and suppose that there exist sequences 7, € R with

ty — —0o0, 1, €[0,1] (up to a subsequence we can assume that 1, — A€[0,1]) and
u, € HY(Q) with [Ju,/t, — ¢|| = ¢, satisfying that

—div((4pA(x,up) + (1 = 23)Aoc(x))Vuy) = 75 f (X, 1) + 1.

From the fact that ||u,/t, — ¢|| =¢ we can deduce that z, =u,/t, is bounded. Moreover,
we know that [ju,|l¢ — oo, since in other cases z, — 0 and so 0 € B,(¢) which is



impossible because from the Poincaré inequality

2141
s < VRl ——lPle o
VRl T+ 2nars < 19l ve

(Poincar¢ inequality) < ||¢]|.

On the other hand, there exists z€ HJ(Q) such that (up to a subsequence) z, —
z weakly in HJ(Q), strongly in L*(Q) and z,(x) — z(x) a.e. x € Q. Arguing as in
Theorem | we deduce the strong convergence of z, to z. Consequently ||z — ¢|| =e.

Dividing by ¢, the equation satisfied by u, and taking limits we deduce from (Ay4)
and (f3) that z satisfies the following equation:

—div(Aoo(x)Vz) = Jm(x)z + ¢,

where m(x) = f" ()1 z<0} + foo(¥)){z>0y. We claim now that z is nonnegative.
Indeed, this is a consequence of taking z~ as test function in the equation satisfied by
z to obtain from (f3) that

Alz7)5 < /Aoo(x)vz.vz* :z/;n(x)(z* )2+/ 0z~
Q Q Q

= ,1/ ]"’700()6)(2_)2 —|—/ Qpz~ < /1/11||z_||§,
Q o

which implies that z— = 0, proving the claim.

As a direct consequence of the claim we have that m(x) = f", (x).

We take now ¢ as test function in the equation satisfied by z and z as test function
in the equation satisfied by ¢, obtaining that

/Aoo(x)Vz Vo= /1/ oo (X)z¢ +/ 0P
Q Q Q

/AOO(X)V(/) -Vz :/Z(p.
Q Q

This implies, since 4o, (x) is symmetric, that

/ pz = /1/ Shoo(X)zgp + / 0.
Q Q Q

Using now the Holder inequality and (f3) we have that
lol2llz = ¢z = / op(z—¢)= i/ S o)z = 24y / 2.
Q Q Q

Since ||z — ¢||=¢, we can write z= ¢ + ¢z with ||z||=1. Thus, applying the Poincaré
inequality to the above one, we get

Hsz/z¢
Q

and

o
G
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Poincaré i lity) = [|¢]]5 — e ——.
(Poincaré inequality ) = ||¢||5 JE
sl _h
AR5 = eanllpll A2
On the other hand, z is a positive super-solution for the problem
—div(Aoo(X)Vu) = Af" (¥, x€Q,

u=0, xeoQ.

This implies 4 <

We also find a sub-solution for this problem of the form w = dip, with § < 1//;.

Note that since z # ¢, A # 0. Moreover, we can choose ¢ small enough to conclude

that w < z. The method of sub and super-solution allows to deduce the existence of

a nonnegative and nontrivial solution for it. As a consequence of this 4 is the first
eigenvalue, p;(f” oo(x)) for the above weighted eigenvalue problem.

Since f” (x) < Z,, it is known that
” a
W(fliae)=A> () = o’

which is a contradiction with the fact that 1 < i—' O

Theorem 6. Assume (A—;), (fi—s). Suppose also that the coefficient functions of
Aoo(x) are of class C', and that for a.e. x€Q, f(x,-) is increasing. Then there
exists t* € R such that

(1) (P,) has at least two solutions for t <t*,
(2) (P;) has at least one solution for t < t*,
(3) (P,) has no solution for every t > t*.

Proof. Let us denote S = {r € R: (P;) admits a solution}. First we prove that S is not
the empty set. In order to do that we use Leray—Schauder degree. Let ¢ < ¢, (where ¢,
is given by Lemma 5) and @,(u) =u — K(tp + f(x,u)). By the homotopy invariance
of the Leray—Schauder degree, Lemma 5 implies that

deg(Ps, Byy(19),0) = deg(l — Ki(t), Bjyo(1¢),0) = 1,

where K, is the inverse operator of —div(A4.o(x)Vu). Then there exists a solution of
(P;) in B (t¢). This means that the interval (—oo,;) is a subset of S.

The following step is to observe that S is an interval (unbounded from below).
Indeed, if £ € S then there exist a solution u € E of (P;). Since u is a super-solution for
(P;) with ¢ < t, the sub-super-solution method allows to conclude that (—oco,7] C S
provided that we are able to find a sub-solution of (P, ) less than u for every ¢/ <¢. In
order to prove the existence of such a sub-solution we observe first that, since (fj—3)



are satisfied, for every d; < A; we deduce the existence of C € R* such that
f,s)=d0s—C, ae xeQ, VseR. (11)
Let us denote
I(t,x,8) = to + min{ f(x,u), d;5s — C}.

By Theorem 1 with f(x,s)=[(¢',x,s) and f’ (x)=0, f’ _(x)=0,, we can take a
solution u of

—div(4(x,u)Vu) = It xu), xcQ,
u = 0, xe€oQ.

Thanks to (11) and the comparison theorem in [7] , u is sub-solution of (P}). Finally,
since I(¢',x,s) < '@ + f(x,u) we have that

—diV(A(X, ﬂ)vﬂ) = [(tlvxa H) < t/(/) + f.(xv LI) < - diV(A(.X, M)lel)

by the comparison principle we yield u < u, proving the existence of a sub-solution
and thus that S is an interval.

Now we prove that S is bounded from above. Suppose on the contrary that u, would
be a solution of (P,,), with #, — 4+ 00. Since [’ (x) <cy < /A <co < f/o(x), let
us consider d; < A; < J, satistying (11) for every s € R and

f(x,8) =05 —C, ae x€Q, VseR,

for some C > 0. Taking v=y (the normalized eigenfunction associated to 4;) as a test
function in the equation satisfied by u,, adding and subtracting 4, fQ u, we deduce
from above that

tn/ P < / [A(x,uy) — Aoo(x)] Vi, - Vihy — (02 — 44 )/ upn + / Cy.
Q Q Q Q
Similarly, using (11) we obtain that
tn/ (P‘//l < [A()C, L’n) *Aoo(x)] v”n : v‘//l - ((Sl - /11 )/ L’n‘//] +/ C‘//l
Q Q Q Q

Since (07 — A N0, — A1) < 0, we have that either the term (d; — 4, )fQ upp <0 or
(02 — 21) [ umpy < 0. Hence we yield to

; / _ / A, 1) — AoV ity - Vit + / o
Q Q Q

< 2B lunll ]l + Cllpa s

Therefore, since #, is unbounded, we have that u, is unbounded. Using the same
arguments in the proof of Theorem | we have that z, = u,/||u,|| strongly converges to
a function z EHOI(Q). Thus, from (A4) we deduce that

b own < / A6 1) — Aoo(¥)] V2 - Vit +
Q

unll Jo

— | CYy — 0,
unll Jo



i.e., t,/||uy]] — 0. In this case the equation satisfied by z is (4) with u=1 (m(x) =
SlocC) =<0y + flhoo(X)Z1z50}). In the proof of Lemma 4 is proved that this is a
contradiction, proving that S is bounded from above.

To conclude the items (2) and (3) it suffices to show that S is closed. To this end
let {#,} be a sequence in S converging to t € R. For every #,, let u, be a solution of
(Py,), ie. u,=K(f(x,u,)+1,¢). By Lemma 4, ||u,|| is bounded and from the compact-
ness of K we deduce that—up to a subsequence—u,, strongly converges to a solution
of (P).

We have just proved items (2) and (3). With respect to the item (1), since S =
(—00,*], only remains to find another solution of (P;), for every t<t*. Take t < f, <
t* < t;. We can prove using (A;) that there exists R € R™ such that Byyo(tp) C Br(0)
and (Lemma 4) for every solution u of (P, ), with ¢/ €[t,#;], we have that ||u|| < R.
In addition, since #; > ¢*, the equation @;(u)= 0 has no solution and thus

deg(®;,,Br(0),0) = 0.
Using again the homotopy invariance property of the Leray—Schauder degree we have
deg(®,, Br(0),0)=0, V' €[tt]
In particular,
deg(®;, Br(0),0) = 0.
Then from the excision property we have that
deg(! — ®;,Br(0) \ Bjy,(1¢),0) = deg(/ — @, Bz(0),0)
—deg(l — @, B)(1¢),0) = —1,
i.e. there exists a second solution of @,(u)=0 in Bg(0)\ B (1), which together with

the first one found in By, (7)) implies item (1). [

Next we study the case where the nonlinearity f crosses all eigenvalues of (2). This
is the case when we impose f to satisfy (f;). We have the following.

Theorem 7. Assume that (A\—s) and (f,), (£)), (f4) hold. Assume also (7) and that
f(x,-) is increasing for a.e. x € Q. Then, there exists t* € R such that

(1) (P,) has at least one solution for t < t*,
(2) (P;) has no solution for every t > t*.

Proof. The proof follows the outline of the previous one. We use the same notation:
S = {teR: (P;) admits a solution}. In order to prove that S is nontrivial, it suffices
to find #, € R such that (P, ) admits a super-solution. Indeed, arguing as in Theorem 6
we can find a well-ordered sub-solution and the method of sub-super-solution (see
[7, Theorem 1]) allow to deduce that in this case #, € S. In order to find #, we follow
closely the ideas in [11]. For each j > 0, define M; = sup{|f(x,s)|: x€Q, s<[0,/]}.
By [17, Theorem 8.16] there exists a positive constant ¢ such that ||w|o < ¢||b||n+1



for every solution w of
div(A(x,w)Vw) = b, xeQ,
u = 0, xed,
with b € LNT1(Q). Let d=(j/cM; ¥ > 0 and choose open sets Q, Q in the following

way:
Q CQ| Cchf-?zCQ,

with Lebesgue measure |Q — Q| < 6. We consider a continuous function b in Q such
that

bh(x)=0, VxeQ,

0<hx)<M;, Vxed\Q,

b(x) = M;, VxeQ\ Q.
For such b, let it be a solution of the above problem. Using & ~ as test function we
easily deduce that 7 — = 0 and we have that i > 0. Then,

1 1
0 <it(x) <cllb|lver S eMi(|Q — Q|NF1) < cMjoN+T < j, ae xeQ

and by definition of M;, f(x,i(x)) < M; a.e. in Q. Choosing now fy) <0 such that
M; 4+ to < 0 in €, then

—div(A(x,i)Vit) = b= bX{Q\QQ} + bX{QZ}
= Mjza\ay + (M +09) 11
= M; + thp

= f(x,it) + thop,

i.e. &7 is a super-solution for (Py,).

The proof that S is a closed interval unbounded from below is the same as
Theorem 6. The main difference is to prove that S is bounded from above. In or-
der to do that we argue by contradiction and suppose that there exists a solution u,, of
(P,,) with t, — 4 0o. Let denote by A(u,) the first eigenvalue for the problem

—div(4A(x,u,)Vv)y = 1w, xeQ,
v = 0, X € 0Q,

and Y, one positive eigenfunction associated to A(u,). Recall that (A;—) imply that
o < Muy) < fu.

Now we observe that since (f>), (fj) (thus, (f]) is deduced from the regularity of f
and (fy) are satisfied, we can use (11) for 6 > au. Taking w =1, as test function in
the equation satisfied by u,, for 6 = i, we have that

/1(“11)/ (/)n“n = / A(x, 1, )Vuy, 'V(/)n:/f(x7L/ll)(/)/1+tll/ (P(/)n
Q Q Q Q

> fu / bputy — C / bn + ta / QP
Q Q Q



Analogously, for 6 = apu

/1(1/1,,)/ ¢Ilull > al"'/ (pnun - C/ (f);z “l‘tn/ (/)(pw
Q Q Q Q

Since (A(u, ) — o) (A(u, ) — fu) < 0, we obtain from the above inequalities that —C fQ
Un + ty o @Y < 0. Thus, 1, < C [,/ [, . Moreover, by the Poincaré inequality
we have that 7, < c1/ [, oYn/|[Yn]l. We claim now that [, oy /|[ys| is away from zero.
Otherwise, passing to a subsequence if necessary, it converges to zero. On the other
hand, /||y is bounded in HJ}(Q) and consequently there exists z € H} (L) such
that—up to a subsequence—,/|[u|| — z = 0 strongly in L*(Q). By (A1—),

2
L |l < B
P Auy) Il ], — ACun) — op

Therefore z # 0, and the Lebesgue Theorem implies that

Joomen = %

Thus jQ @z =0, which is a contradiction, proving the claim.

The claim allows to deduce that there exist some positive constant ¢, such that
Jo @/ ||l > c2. Therefore, 1, < c1/ [, @yn/|[Ynll < c1/c2, which contradicts that 7, —
+o0. O

4. Continua of solutions for Ambrosetti—Prodi problems

We assume in this section that the nonlinearity f is a C'-function satisfying (f,—3)
and the matrix 4 satisfies the following condition:

A(x,s) = a(s)A(x), VseR, (As)
with 4(x) := (a;;(x)) a positive definite matrix with continuously differentiable coeffi-
cients a;;(x) in Q and a: R — R a C'-function satisfying

0<hk =infa(s) <k =supa(s) < + oo.

sER SER
Note that in this case, conditions (A|—) hold. We improve the results of the pre-

vious section by proving the existence of continua in the set ¥ = {(Lu)eR X E: u
solution of (P;)}. In order to do that we begin with an abstract result

Lemma 8. Let E be a Banach space and T :R x E — E a compact operator. Let us
denote by X the set of pairs (tLu) € R X E such that u is a solution of

u—T(tu)=0. (ITy)
Let U be a bounded subset in E, such that (I1,) has no solution on oU for every
t €la,b). Assume also that (Ilp) has no solution in U. Let Uy C U such that (I1,)

has no solution on U, and deg(I — T(a,-),U;,0) # 0. Then there exists a continuum
C in X such that

CA(U x{a}) #0,  CNU\U) x {a}) #0.



Proof. Let us use the following notation:
S ={(t,u)€[a,b] x U: u solution of (I1,)},

o ={a} xU )N,
#B={a} x(U\U))NY.

Since (ITj) has no solution in U, and .% is compact, we can consider that & C [a,s]x U
for some s € (a,b).

We argue by contradiction and suppose that the lemma is false. By a topological
lemma of Whyburn [27] (see also [16, Lemma 29.1]) there exist K., Ky disjoint
compact sets containing, respectively to .o/ and 4, such that =K ,UK». We can take
Ns a o-neighborhood of K, such that dist(Ns, K») > 0. Therefore the Leray—Schauder
degree is well defined in (N;), = {uc U/(t,u) € N5} for all € [a,b]. Moreover, by
homotopy invariance we have that

deg(/ — T(t,-),(Ns):,0) = constant
and consequently,
deg(/ — T(t,),(Ns)a» 0) = deg(/ — T(1,-), (N5 )5, 0).

On the other hand, since N; N Ky = (0, we have that there is no solution of (II,) in
(Ns)a \ Uy and thus

deg(! — T(1,),(N5)a,0) = deg(! — T(1,-), U;,0) # 0.
Since (Ns), =0, we also have that deg(/ — T(¢,-),(Ns)»,0)=0. Hence we have reached

a contradiction, proving the lemma. [

Let ¢: R — R be defined by

a(s)= /S a(t)dt.
0

From the chain rule, u is a solution of (P;), i.e.,
/a(u)A(x)Vu'Vv: f(x,u)L?th/ v, VUEHO'(Q),
Q Q Q
if and only if w = d(u) satisfies
/A(x)Vw-Vu:/f(x,u)v—i—t/(/)u, VUEHO'(Q),
Q Q Q
i.e., w=d(u) verifies
—div(A(x)Vw) = f(x,u)+tp, x€Q,
wo = 0, xe Q.
We give here a result, proved in [4, Lemma 5.15] with slight less generality.
Lemma 9. Suppose that f € C'(Q x R). Let i€ C}(Q) be a super-solution of (P,)

and u € C({(S_?) be a solution of (P;) such that i = u and it Z u. Then, it(x) > u(x) in
Q and a(1)dii/on < a(0)du/dn on 0Q.



Remark 10. Similarly if u € Cé(f)) is a sub-solution of (P;) and u € C, (}(Q) is a solution
of (P;) such that u <w and u # u, then u <u in Q and a(u)du/dn > a(u)ou/on
on 0Q.

Proof. Assume that i7 is a super-solution and u is a solution of (P;) with & > u, i # u.
Let us define

k:max{

Observe that for fixed x € Q, the function f(x,s)+ t¢ + kd(s) is nondecreasing in
s € [u(x),i(x)]. Thus,

-
L (w.s)/ats)
[0

cxeQ, u(x) <s < L?(x)} .

—div(A(x)Va(i)) + ka(i) = f(x,i) + to + ka(i)

= f(xu)+to + kda(u) = —div(A(x)Va(u)) + ka(u).
Denoting w = d(it) — d(u) we obtain that
—div(A(x)Vw) + kw = 0.
Using that &7 # u, the strong maximum principle implies that
0<w=ad(u)—alu) in Q

and

NA(1T) — A 011 al
W@ —dw) _ iy 0y <o i oo
on on on

Moreover, since @ is strictly increasing we obtain & > v in Q. O

In the theorem below we use Lemmas 8 and 9 to assure that, for matrices satisfying
(As), (P;) has at least two solutions for every ¢ < ¢*, * given by Theorem 6.

Theorem 11. Let f he a C'-function satisfying (fr—3). Assume that A satisfies (As)
with limg_ oo a(s) = limg_,_ oo a(s). Then for every ty < t* = sup{t € R: (P;) admits
a solution} there exists a continuum € in X satisfying that

(1) [t,t*] C Projr 6.
(2) For every t €[ty,t*), Projg 6 contains two distinct solutions of (P;).

Proof. First we note that from Lemma 4, for every fixed ¢, > t* > 1y, there exists
R e R* such that |lu|]| < R for every solution u of (P,) with 7€ [#,#].



For every he H~'(Q), let us denote K(/) the unique solution of the problem

—div(4(x)Va(u))

h, xe€Q,
0, xediQ.

u

Thus the operator K maps H~'(Q) into H(Q). In addition, by using Theorem 9.15
in [17] and the Morrey Theorem, we have that for ¢ > N, K(L4(Q)) C Cé(Q).

Hence, denoting by &, the map ®,(u) = u—K( f(x,u)~+1¢p), and using the homotopy
invariance of degree,

deg((ﬁ,,B,.(O), 0) =constant, V¢ €[ty 1], Vr = R,

where B,(0) denote the open ball in C'(Q). Since problem (P; ) has no solution, we
deduce that the above degree is zero provided ¢ = ;. Thus

deg(®,,B,(0),0)=0, Vi€ [to, 1], Vr=R.

Let u* be the solution of (P;«) given by item 2 of Theorem 6. Recall that «* is a
super-solution of (P;) for every 7€ [f,¢") and it is not a solution. Moreover, arguing
as in Theorem 6, there exists a sub-solution u,, < u* of (P, ) which is not a solution.
Clearly, u;, is also a sub-solution and no solution for (P;) if ¢ € [#,¢*). Consider the
set

ot ou  Cu
1) w00 U s ) A
O=queCy(Q) uy <u<u' in Q;— < — < — on .
on  0n on

Lemma 9 implies the nonexistence of solutions of (P;) on ¢C¢ (boundary taken in
COI(S_?)). In particular, there is no solution in the boundary of ¢ NB,(0) (» = R) which
means that the degree of @, is well defined in this set.

We claim now that there exists » > R, such that

deg(®,, 0 N B,(0),0) = 1.

Indeed, fixed 7 € [1, t*] we take

k:max{

and define the truncated function f in the following way:

0f -
(q;(x,s), a(s)|: x€ Quy(x) <s < u*(x)}
ds

_](-(X, ulu(x )) + kd( LI;U(X)) ]f S < LI;“(X ))
frs)=< flx,s)+kd(s) if 1, (x) <5 < u'(x),
o u*(x)) + kda(u*(x)) if s = u*(x).



Observe that f(x,s)+ t¢ is bounded and nondecreasing in the s variable. Consider
now for every 1€ H~'(Q) the unique solution u = Th of the problem

—div(A(x)Vd(u)) + ka(u) h, xeQ,

u = 0, xediQ.

This defines an operator T:H~'(Q) — HO'(Q). Since the function f’(x,s) + to is
bounded, by [17, Theorem 9.15] and the Morrey Theorem, we know that 7( f(x, -)+1¢)
is bounded in C'(Q). Let

ro = sup{|| T(f(x,v) + 1)lerg): vE c'(Q)}

and choose 7 > max{R,ro}. From the definition of 7 we have that f(x, Uy ) + top <
f(v)+ip < f(x,u*)+t*¢ for every ve Cj(Q) and consequently, Lemma 9 leads to

{T(f(x,v) + 1@): vECHD)} C €N B.(0).

Now, pick y € ® N B,(0) and consider the compact homotopy, H(s,u)=sT( (f (x,u)+
tp))+(1—s)y, 0 <s < 1. Since ONB,(0) is a convex set and the equation u=H(1,u)
has no solution on Jd@ N B,(0) we have that u # H(s,u) for all u€dO N B,(0) and
s €[0,1]. Therefore,

deg(/ — T(f(x,") + 1¢), 0 N B,(0),0) = deg(I — ), € N B,(0),0) = 1.
Noting now that ‘f(x, v(x)) = f(x,v(x)) + kd(v(x)) for every ve ¢ N B,(0), we yield
deg(éh (C m B,(O),O) = deg(] - T(f(x, ) + t(/))a @ m B,(O),O) = 17

proving the claim.

Choose now R; > R in such a way that ¢ C Bg, (0). In order to use Lemma 8 we
take [a,b] = [to,t1], U = Bg,(0) and U; = O N B,(0). Notice that (P;) has no solution
in 0Bg,(0) for every ¢ € [t,t,] and (P, ) has no solution in Bg,(0). Note also that we
have just proved that deg(/ — T'( f (x,")+tp), N B,(0),0)=1. In consequence we can
apply Lemma 8 to deduce that there exist a continuum % in X such that

EN(ONB(0)x {to})#D
and
% N ([Br(0)\ €N B,(0)] x {to}) # 0.

Moreover, using Lemma 9 it is possible to prove that (P;) has no solution on ¢0NB,(0)
for every € [ty,t*). Thus, due to the connection of 4, we deduce from above that
% intersects 00 N B,(0) x {t} with € [ty,t*] if and only if ¢+ = ¢*. This proves that
the projection on E of this continuum contains at least two solutions of (P,) for every
t € [ty,t"), proving the theorem. [

With the same proof, but using item (ii) of Lemma 4 instead of item (i) of this
lemma, we can handle the case of “super-linear” nonlinearities:



Theorem 12. Let [ be a C'-function satisfying (f2), (f]) and (fy). Assume that A
satisfies (As) with img_ o0 a(s) = limg__oo a(s). Then, for every ty < t* = sup{t €
R: (P;) admits a solution} there exists a continuum € in X satisfying that

(1) [to,t*] C Projr €.
(2) Projg € contains two distinct solutions of (P;) for every t € [ty, t*).

5. Ambrosetti-Rabinowitz problems via Ambrosetti—Prodi problems

In this section we see how to apply the results obtained in Sections 3 and 4 in order
to obtain the quasilinear extension of the Ambrosetti—-Rabinowitz result (see [3]) of
existence of positive solutions. More precisely, let us consider a Carathéodory function
f:Qx R" — R*Y such that f(x,0)=0 a.e. x € Q, satisfying (f;) and

i f(x,s)
im

s—0F N

=7y <ou, uniformly x € Q. (fs)

We are interested with the existence of nontrivial and nonnegative (positive) solutions
of the problem (1) for this kind of nonlinearities. Let f: Q2 x R — R the extension of
f given by
frs) = flxs™), xeQ
Notice that by the maximum principle, every nontrivial solution of
—div(A(x,u)Vu) = f(x, u), xeQ,
u = 0, X €00,

is a positive solution of (1). In this way, the search of positive solutions of (1) is
reduced to look for nontrivial solutions of (12). Since the extension / satisfies clearly
conditions (] ;) and (f; 4;5), problem (12) lies into the “super-linear” Ambrosetti—Prodi
framework (problem (P;) with / =0 and any ¢). Applying Theorem 12 we prove

(12)

Theorem 13. Assume that A satisfies (As) for some positive function a with limg_, | o
a(s) =limg_,_oa(s). Suppose also that f is C'(Q x R"), satisfies (fys), and f(x,-)
is increasing for a.e. x € Q. Then problem (1) has at least a positive solution.

Proof. The outline of the proof is the following. First (step 1) we embed the problem
into a one parameter problem (P;) for a suitable chosen function ¢. Next (step 2) we
use the results in the previous sections proving that t* defined in Theorem 6 is strictly
positive.

Step 1. Choice of ¢.

In [10] it is proved that for every r > O there exists a positive solution u, € P of
the problem

—div(A(x,u, )Vu,) = u, xeQ,
u. = 0, xeon,

with op < . < pu and ||u,llo < cr, for some positive constant c.



We claim that there exists € R" such that . > f(x,u.)/u. ae. x€Q. Indeed,
from (f5) there exist 6 € R™ and y; €(y,op) such that f(x,s)/s <7y, provided s < d.
Choosing r < d/c we have that ||u||o < 0, thus

S ur)

U,

<y <ou<p, aexeQ
which proves the claim.
Taking now ¢ € (0, 1, — v1) we get
—div(A(x, u )Vu, ) = wu, = f(x,u.) + tu,,
i.e., u, is a super-solution of
—div(A(x,u)Vu) = f(x,u) +tu, x€Q,
u = 0, x €.

Let us choose ¢ =u,, and recall that ¢ € C(;(Q). To set the framework of the previous
sections we embed (1) into the one parameter problem

—div(A(x,u)Vu) = f(x, u)+tp, xe€Q,

u = 0, X € Q.

(Py)

Step 2. Let us denote S = {teR: (P,) admits a solution}. From step 1 we know that
@ is a super-solution of (P,,), for some 7, > 0. Arguing as in Theorem 6 there exists u
sub-solution of (P, ) with u < ¢. The sub- super-solution method allows to deduce that
(P,U) has at least one solution. Therefore, 0 < #y € S and consequently 0 < 7*, where
7 =sup S is given by Theorem 12 applied to the problem (P,). Moreover, item (1) of
that theorem shows the existence of at least two solutions of (Py), or equivalently the
existence of two nonnegative solutions of (1). Taking into account that (f5) implies
that zero is solution of this problem, we deduce that there exists at least one positive
solution of (1). O
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