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Introduction

One of the main problem when facing motion control, and in control in gen-

eral, is the presence of undesired oscillations. These oscillations, which char-

acterize every mechanical system, leads to problems like error in positioning

and di�culty in controlling the sway.

In this thesis, the problem of oscillations is addressed using a very di�used

industrial system for which oscillations are the leading problem: the overhead

crane.

This system, presenting the same con�guration of a pendulum, is char-

acterized by oscillations with very low damping ratios. The presence of this

persistent oscillation during and after the movement makes di�cult the man-

ual control, decreases the accuracy and increases the overall positioning time.

Moreover, considering the fact that most of the payloads moved by gantry

cranes are heavy, a safety hazard is posed by payload pendulation, in partic-

ular in cluttered workspaces.

Various advanced control techniques have been proposed to reduce the

presence of residual oscillations on industrial cranes, and most of them can

be applied to general oscillating systems.

The aim of this thesis is to devise new techniques and to discuss their ap-

plicability with industrial o�-the-shelf components, focusing in particular on

input-output inversion-based techniques and comparing them with the well

known input-shaping ones, also investigating their applicability in industrial

processes. The importance of an accurate model is also addressed, comparing

the results obtained with a simple pendulum model of the overhead crane and

with a more complex double pendulum model. For example, the technique of

dynamic inversion for industrial crane modelled with the double pendulum

model is here presented for the �rst time.

1



2 INTRODUCTION

In Chapter 1, a review of the available techniques for the control of in-

dustrial cranes will be presented. In Chapter 2, both simple and double

pendulum models are derived, along with the analytical form of natural fre-

quencies and dampenings necessary for the implementation of Input Shaping

technique. In Chapter 3 the Input Shaping techniques formulation is pre-

sented, paying particular attention to robust IS techniques. In Chapter 4

an input-output inversion technique is presented for both simple and double

pendulum models of the crane. In Chapter 5 simulations are made using Sim-

scape� Multibody� in order to test the performance of both input shaping

and dynamic inversion techniques in terms of residual oscillations reduction

and robustness. The di�erences in the results using simple and double pen-

dulum models are also investigated through simulations. In Chapter 6 the

setup of the physical system on which the techniques have been tested is pre-

sented, and in Chapter 7 it is explained how the techniques discussed have

been implemented on o�-the-shelf industrial components. In Chapter 8 the

results obtained on the physical system are presented. Finally, in Chapter

8.3 the results obtained through simulations and with the physical system

are analyzed.



Chapter 1

Review of existing control

techniques

In this chapter a review of the existing control techniques for gantry cranes is

presented. For a complete review of the techniques not described below, refer

to [2] and [12]. All the techniques described below take into account planar

movements of gantry cranes and inertial forces only. Control techniques for

gantry cranes can be divided in two main categories: Open-Loop and Closed-

Loop techniques.

1.1 Open-Loop techniques

The main advantage of open-loop techniques is the fact that no sensor is

needed to check the state of the system. As gantry cranes are industrial MHS

(Materials Handling Systems), it is unlikely to �nd sensors already mounted

on the crane, and this is why most of the industrial cranes use open-loop

techniques for the reduction of residual oscillations. A limit to open-loop

techniques is that they rely only on the model of the system, and they are

consequently very sensitive to variations in parameter values about nominal

values and to variations in initial conditions and external disturbances. Also,

they usually rely on linearized models of the crane, and the uncertainties

introduced with the process of modellization and the linearization introduce

residual oscillations that cannot be compensated. Moreover, input shaping

3



4 REVIEW OF EXISTING CONTROL TECHNIQUES

and input-output inversion are based on models that consider a constant

length of the cable, therefore their performance degrades when horizontal

movements and hoisting are combined at the same time.

Input Shaping

The most widely used open-loop technique for residual oscillation reduction is

Input Shaping. The reason for this di�usion is the simplicity of the technique,

as it requires only a basic modelling of the crane, consisting in the measure

of the natural pulses ωn and damping ratios ξ of the crane, values that are

easy to be measured. The controller accelerates the crane in steps of constant

acceleration, and compensates for the oscillation when the sway angle reaches

0. The payload then keeps constant velocity without oscillation until the �nal

position, and the same acceleration pro�le is used to decelerate the crane in

order to obtain zero residual oscillation. The technique can be easily extended

to systems with multiple modes, like in the case of double-pendulum like

overhead cranes, as reported in [30].

The main drawback of input shaping techniques is the high value of the

minimum time required, that has to be greater than half of the period of the

system.

Optimal Control

Optimal control is a model based technique that calculates the inputs in order

to guarantee optimality over parameters like hoisting time and travel time

while avoiding obstacles along the path. The �rst attempts of using optimal

control on gantry cranes did not address the problem of residual oscillations

[8],[5]. [4] a minimization of both residual sway and �nal time is considered,

but the measurement of the states of the crane is required.

Input Output Inversion

An innovative approach to overhead cranes control is represented by input-

output inversion control . The method is based on the transfer function from

the force applied to the cart (or the position of the cart) to the position of the

payload. A desired trajectory of the payload is then de�ned, by satisfying
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some constraints on the order of continuity. The transfer function is then

inverted, and the input corresponding to the desired payload trajectory is

de�ned. A limit of this approach is that it is not possible to impose con-

straints on the input (e.g. limit the acceleration or maximum velocity of the

cart), problem that has been solved in [21] using a the bisection method to

�nd the optimal duration of the movement that satis�es actuators limits.

1.2 Closed-Loop techniques

Closed-Loop techniques , with respect to Open-Loop techniques, have the

advantage of being more robust with respect to model parameters errors.

While errors in open-loop techniques inevitably bring to residual oscillations

that cannot be compensated, Closed-Loop techniques can counteract the in-

surgence of residual oscillations, guaranteeing for most of the cases a steady

state with no residual oscillations at all. The drawback of Closed-Loop tech-

niques is that they require a feedback of the states of the system, which

requires the presence of sensors to measure the oscillations of the crane. The

presence of this kind of sensors is not common on industrial cranes, therefore

the use of Closed-Loop techniques, for most of the cases, require an ad hoc

hardware setup.

Linear Control

Linear Control has been the �rst feedback approach to the control of residual

oscillation of the crane. The system is usually modelled as a simple pendu-

lum, so that the oscillation is fully described by the evolution of the angle

between the vertical and the rope. The angle of oscillation is measured and

a linear controller compensate the oscillations. Feedback control of the oscil-

lations can lead to errors in the correct positioning of the payload. Various

solutions for this problem have been proposed, like the one in [18] where, to

bring the payload to a stop, the trolley decelerates in two stages. The �rst

deceleration stage is a part of the feedback control phase, to suppress oscil-

lations. The second deceleration stage is an input shaping technique used to

bring the load to rest over the target point. In [15] a strategy composed of
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a PI controller to track the trolley position and a PD controller to dampen

the payload oscillations using the motion of the trolley.

Adaptive Control

Adaptive control techniques have been proposed for the feedback control

of cranes oscillations. In particular, gain-sheculing techniques have been

developed in order to take into account the di�erent operative states of the

crane. In particular, in [3] a robust gain-scheduling technique is proposed in

order to compensate the oscillations in emergency situations. In [17, 27, 34] a

gain-scheduling technique is used to compensate oscillations while explicitly

taking into consideration the variable length of the cable.

Fuzzy Logic Control

Fuzzy logic is widely used in machine control. Its main advantage with re-

spect to other alternative control strategies is that the solution to the problem

can be cast in terms that human operators can understand, using words in-

stead of numbers to describe a solution to be taken in a particular operating

condition of the system. This mean that operators experience can be used

to automatize tasks that are already well performed by humans. Fuzzy logic

control has been applied to the control of overhead cranes. In [19, 36, 37] a

predictive fuzzy control strategy to minimize payload oscillations and travel

time is proposed, while moving towards a target point and maneuvering to

avoid obstacles along the paths. The strategy breaks the crane operation

into seven stages and decides which fuzzy control rule to use in each of them,

based on simpli�ed models of the trolley and payload motion. Fuzzy logic

strategies are specially di�cult to tune. The control input is either too high,

which produces cycles of overshoot-undershoot around the target point, or

too low, which produces a very slow and time-consuming approach to the

target point, increasing operating costs. Furthermore, all strategies in the

literature restrict crane operation to a pre-de�ned path [2].
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Model Predictive Control

Thanks to the increasing computational power of modern CPUs in the last

years it has been possible to apply Model Predictive Control (MPC) for

the control of systems with relative rapid dynamics, like overhead cranes.

This techniques is based on the calculation of the input signal by optimizing

a cost function respecting the limits imposed by the model of the system

and by the actuators. The cost function takes into account, with di�erent

weights that have to be set, the contribute of oscillations, transient time and

energy cost. The tune of the weights of the di�erent components of the cost

function is crucial. Unlike optimal control, the optimization process takes

place at every cycle of the control system, and only the �rst value of the input

vector calculated is actually given to the system. On the next control cycle,

the initial conditions are updated with the measured states of the system,

and the optimization process re-executed. For this reason MPC is robust

with respect to errors in model parameters, unlike open-loop techniques like

optimal control. Recently, MPC has been applied to the anti-swing control

of overhead cranes in [13, 28, 35].





Chapter 2

Model of the crane

In this chapter the models of the crane will be presented. First, the crane

will be schematized as a simple pendulum connected with a cart, neglecting

the existence of the hook or the presence of a distributed payload. Then the

equations for the system schematized as a double pendulum will be written.

From the dynamics equations of the nonlinear models a linear state-space

representation will be calculated for both simple and double pendulum mod-

els in order to have easy-to-manage tools for control purposes. The response

of the linearised models will be analyzed and compared with the nonlinear

models in Chapter 5.2.

From the linear model natural frequencies and damping coe�cients will

then be calculated, as they will be used in order to implement Input Shaping

control techniques in Chapter 3.

Finally, from the state space description a series of transfer function will

be written for both simple and double pendulum, giving the mathematical

tools needed in Chapter 4 for the implementation of input-output inversion

techniques.

2.1 Simple pendulum model

An overhead crane, with a �rst approximation, can be schematized as a single

pendulum and a moving cart, as showed in Figure 2.1.

The symbols refer to:

9



10 MODEL OF THE CRANE

Figure 2.1: Scheme of a overhead crane seen as a simple pendulum connected

to a sliding cart. Figure adapted from [24].

u(t) : force applied to the cart;

mC : mass of the cart;

CC : viscous friction coe�cient of the cart;

θ1 angle between the vertical and the cable; between cart and payload;

C1 : viscous friction coe�cient of the �rst cable;

l1 : length of the �rst cable;

m1 : mass of the payload.

In this model the hook and the payload are considered as a single mass

point. Some other approximations that have to be made to ensure a simple

mathematical description of the model are:

� the rope is considered as an in�exible rod;

� compared to the mass of the payload, the mass of the cable can be

neglected;
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� the system moves only on a x− y plan.

The Lagrangian method can be used to �nd the di�erential equations of

the system in Figure 2.1.

The potential energy of the system is a function of the position of the

payload, that is

P = m1gl1(1− cos θ1) (2.1)

Under the assumption that the payload is a material particle, the kinetic

energy of the system is given by

K =
1

2
mC ẋ

2 +
1

2
m1v

2
1 (2.2)

where ẋ is the velocity of the cart and v1 is the velocity of the payload, that

is

v21 = v21x + v21y (2.3)

where

v1x = ẋ+ l1θ̇1 cos(θ1) and v1y = −l1θ̇1 sin(θ1) (2.4)

Given (2.1) and (2.2), the Lagrangian of the system is

L = K − P =
1

2
mC ẋ

2 +
1

2
m1l1v

2 −m1gl1(1− cos(θ1)) (2.5)

The equations of the system dynamics can be calculated using the La-

grangian method, that states that

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi (2.6)

where qi, i = [1...N ] are the variables that represent the N free way of moving

of the system and Qi is the vector of the generalized external forces, which

includes the dissipative forces through Rayleigh dissipation function [9].

The two variables that describe the free ways of moving of the system are

x and θ1. Di�erentiating L with respect to ẋ in (2.5) we �nd

∂L

∂ẋ
= mC ẋ+m1(ẋ+ l1θ̇1 cos θ1) (2.7)
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Di�erentiating (2.7) with respect to time t yields

d

dt

(
∂L

∂ẋ

)
= mC ẍ+m1(ẍ+ l1θ̈1 cos θ1 − l1θ̇1

2
sin θ1) (2.8)

The potential energy of the system does not depend on x, therefore we have

∂L

∂x
= 0 (2.9)

The generalized external forces for the variable x depend on the external

force u(t) and the frictional force, thus

Qx = u(t)− CC ẋ (2.10)

In the same way, di�erentiating (2.5) with respect to θ̇1θ1 yields

∂L

∂θ1
= m1[(ẋ+ l1 cos θ1)l1 cos θ1 + (−l1θ̇1 sin θ1)(−l1θ̇1 sin θ1)]

= m1l1ẋ cos θ1 +m1l
2
1θ̇1

(2.11)

and di�erentiating (2.11) with respect to time we obtain

d

dt

(
∂L

∂θ1

)
= m1l1ẍ cos θ1 −m1l1ẋθ̇1 sin θ1 +m1l

2
1θ̈1 (2.12)

Further, di�erentiating (2.5) with respect to θ1 can have

∂L

∂θ1
= m1[(ẋ+ l1θ̇1 cos θ1)(−l1 sin θ1) + (l1θ̇1 sin θ1)(l1θ̇1 cos θ1)]−m1gl1 sin θ1

= −m1l1ẋθ̇1 sin θ1 −m1gl1 sin θ1

(2.13)

Finally, generalized external forces for the variable θ1 depends on the fric-

tional force, thus

Qθ1 = −C1

l1
θ̇1 (2.14)

Considering (2.8), (2.9) and (2.10) and (2.12), (2.13) and(2.14), from (2.6)

the two equations that describe the dynamics of the system are(m1 +mC)ẍ+m1l1(θ̈1 cos θ1 − θ̇1
2

sin θ1) = u(t)− CC ẋ

m1ẍ cos θ1 +m1l1θ̈1 +m1g sin θ1 = −C1

l1
θ̇1

(2.15)
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2.1.1 Linearized single pendulum model

The model can now be linearized around its sole stable equilibrium point,

that is for θ1 = 0. With the approximations

cos θ1 = 1

sin θ1 = θ1

θ̇1
2

= 0

(2.16)

(2.15) become (m1 +mC)ẍ+m1l1θ̈1 + CC ẋ = u(t)

m1ẍ+m1l1θ̈1 +
C1

l1
θ̇1 +m1gθ1 = 0

(2.17)

Finally, equation (2.17) can be rearranged in a matrix form that is well

known for mechanical systems as

Mẍ + Cẋ +Kx = F (2.18)

where

M =

 m1 +mC m1l1

m1 m1l1

 , C =

 CC 0

0
C1

l1

 ,K =

 0 0

0 m1g

 (2.19)

while

x =

(
x

θ1

)
,F =

(
u(t)

0

)
(2.20)

2.1.2 Linearized state-space representation

De�ning

xss =


x

ẋ

θ1

θ̇1

 (2.21)
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the state-space representation of the system (2.18) is in the formẋss(t) = Axss(t) + Bu(t)

y(t) = Cxss(t),
(2.22)

with

A =


0 1 0 0

0 −CC

mC

gm1

mC

C1

mC

0 0 0 1

0
CC

l1mC
−g(m1 +mC)

l1mC
−C1(m1 +mC)

l21m1mC

 (2.23)

B =



0
1

mC

0

− 1

l1mC


(2.24)

The output of the system is the position of the payload, that is given by

xp = x+ l1 sin θ (2.25)

With the approximation sin θ = θ and (2.25) the matrix C in (2.22) is

C =
(

1 0 l1 0
)

(2.26)

2.2 Double pendulum model

For an overhead crane carrying a payload with a hook with not negligible

mass connected to the payload by mean of a cable of a certain length, a

model based on the simple pendulum in Figure 2.1 could be not appropriate

for control purposes. Another situation for which the simple pendulum is not

su�cient is the case of distributed mass payloads, for which the simpli�cation

of the payload as a single mass point hides the presence of a second way of

vibrating of the system.

A system like the one just described can be schematized as the double

pendulum on a cart in Figure 2.2. The symbols in Figure 2.2 have the same

meaning of the simple pendulum model, except for:
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Figure 2.2: Scheme of an overhead crane, seen as a double pendulum con-

nected to a sliding cart. Figure adapted from [24].
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m1: mass of the hook;

θ2: angle between the vertical and the cable between hook and payload;

C2: viscous friction coe�cient of the second cable;

l2: length of the second cable;

m2: mass of the payload.

Following the same scheme of the simple pendulum case, the potential

energy of the system is

P = m1gl1(1− cos θ1) +m2g[l2(1− cos θ2) + l1(1− cos θ1)] (2.27)

while the kinetic energy is given by

K =
1

2
mC ẋ

2 +
1

2
m1v

2
1 +

1

2
m2v

2
2 (2.28)

where ẋ is the velocity of the cart, v1 is the velocity of the hook, that is,

v21 = v21x + v21y (2.29)

where

v1x = ẋ+ l1θ̇1 cos(θ1) and v1y = −l1θ̇1 sin(θ1) (2.30)

and v2 is the velocity of the payload, that is

v21 = v22x + v22y (2.31)

where

v2x = ẋ+ l1θ̇1 cos(θ1) + l2θ̇2 cos θ2

v1y = −l1θ̇1 sin(θ1)− l2θ̇2 sin θ2
(2.32)

The Lagrangian of the system therefore is

L = K − P =
1

2
mC ẋ

2 +
1

2
m1v

2
1 +

1

2
m2v

2
2 −m1gl1(1− cos θ1)

−m2g[l2(1− cos θ2)− l1(1− cos θ1)]
(2.33)
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The three variables that describes the kinematic of the system are x, θ1

and θ2. The Lagrangian of the system does not depend on the position of

the cart, thus
∂L

∂x
= 0 (2.34)

Di�erentiating (2.33) with respect to ẋ yields

∂L

∂ẋ
= (mC +m1 +m2)ẍ+ (m1 +m2)l1θ̇1 cos θ1 +m2l2θ̇2 cos θ2 (2.35)

and, further di�erentiating with respect to time, we have

d

dt
(
∂L

∂ẋ
) =(mC +m1 +m2)ẍ+ (m1 +m2)l1θ̈1 cos θ1

− (m1 +m2)l1θ̇1
2

sin θ1 +m2l2θ̈2 cos θ2

−m2l2θ̇2
2

sin θ2

(2.36)

The generalized external forces for the cart are

Qx = u(t)− CC ẋ (2.37)

From (2.6), (2.34), (2.36) and (2.37) the �rst equation of the dynamics of

the system is

(mC +m1 +m2)ẍ+ (m1 +m2)l1θ̈1 cos θ1 +m2l2θ̈2 cos θ2

− (m1 +m2)l1θ̇1
2

sin θ1 −m2l2θ̇2
2

sin θ2 = u(t)− CC ẋ
(2.38)

Considering now the second variable θ1, di�erentiating (2.33) with respect

to θ1 yields

∂L

∂θ1
=− (m1 +m2)l1ẋθ̇1 sin θ1 −m2l1l2θ̇1θ̇2 sin(θ1 − θ2)

− (m1 +m2)gl1 sin θ1

(2.39)

Di�erentiating (2.33) with respect to θ̇1 leads to

∂L

∂θ̇1
= (m1 +m2)(l1ẋ cos θ1 + l21θ̇1) +m2l1l2θ̇2 cos(θ1 − θ2) (2.40)

and subsequently with respect to time

d

dt

(
∂L

∂θ̇1

)
=(m1 +m2)(l1ẍ cos θ1 − l1ẋθ̇1 cos θ1 + l21θ̈2)

+m2l1l2θ̈2
2

cos(θ1 − θ2)−m2l1l2θ̇1θ̇2 sin(θ1 − θ2)

+m2l1l2θ̇2
2

sin(θ1 − θ2)

(2.41)
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The generalized forces for the variable θ1 are

Qθ1 = −C1

l1
θ̇1 (2.42)

From (2.6), (2.39), (2.41) and (2.42) the second equation of the dynamics of

the system is

(m1 +m2)l1ẍ cos θ1 + (m1 +m2)l
2
1θ̈1 +m2l1l2θ̈2cos(θ1 − θ2)

+m2l1l2θ̇2
2

sin(θ1 − θ2) + (m1 +m2)gl1 sin θ1 = −C1

l1
θ̇1

(2.43)

Consider the last variable θ2. Di�erentiating (2.33) with respect to θ2

yields

∂L

∂θ2
= −m2l1ẋθ̇2 sin θ2 +m2l1l2θ̇1θ̇2 sin(θ1 − θ2)−m2gl2 sin θ2 (2.44)

Di�erentiating (2.33) with respect to θ̇2 leads to

∂L

∂θ̇2
= m2l1ẋ cos θ1 +m2l

2
2θ̇2 +m2l1l2θ̇1 cos(θ1 − θ2) (2.45)

and further di�erentiating with respect to time, we have

d

dt

(
∂L

∂θ̇2

)
=m2l2ẍ cos θ2 −m2l2ẋθ̇2 cos θ2 +m2l

2
2θ̈2

+m2l1l2θ̈1 cos(θ1 − θ2)−m2l1l2θ̇1
2

sin(θ1 − θ2)
+m2l1l2θ̇1θ̇2sin(θ1 − θ2)

(2.46)

The generalized forces for the variable θ2 are

Qθ2 = −C2

l2
θ̇2 (2.47)

From (2.6), (2.44), (2.46) and (2.47) the third equation of the dynamics of

the system is

m2l2ẍ cos θ2 +m2l
2
2θ̈2 +m2l1l2θ̈1 cos(θ1 − θ2)

−m2l1l2θ̇1
2

sin(θ1 − θ2) +m2gl2 sin θ2 = −C2

l2
θ̇2

(2.48)
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The system of equations composed by (2.38), (2.43) and (2.48) fully de-

scribes the dynamic of the system:

(mC +m1 +m2)ẍ+ (m1 +m2)l1θ̈1 cos θ1 +m2l2θ̈2 cos θ2

− (m1 +m2)l1θ̇1
2

sin θ1 −m2l2θ̇2
2

sin θ2 = u(t)− CC ẋ
(m1 +m2)l1ẍ cos θ1 + (m1 +m2)l

2
1θ̈1 +m2l1l2θ̈2cos(θ1 − θ2)

+m2l1l2θ̇2
2

sin(θ1 − θ2) + (m1 +m2)gl1 sin θ1 = −C1

l1
θ̇1

m2l2ẍ cos θ2 +m2l
2
2θ̈2 +m2l1l2θ̈1 cos(θ1 − θ2)

−m2l1l2θ̇1
2

sin(θ1 − θ2) +m2gl2 sin θ2 = −C2

l2
θ̇2

(2.49)

2.2.1 Linearized double pendulum model

The model can now be linearized around its sole stable equilibrium point,

that is for θ1 = 0 and θ2 = 0. With the approximations

cos θ1 = cos θ2 = cos(θ1 − θ2) = 1

sin θ1 = θ1

sin θ2 = θ2

sin(θ1 − θ2) = θ1 − θ2

θ̇1
2

= θ̇2
2

= 0

(2.50)

(2.49) become


(mC +m1 +m2)ẍ+ (m1 +m2)l1θ̈1 +m2l2θ̈2 + CC ẋ = u(t)

(m1 +m2)l1ẍ+ (m1 +m2)l
2
1θ̈1 +m2l1l2θ̈2 +

C1

l1
θ̇1 + (m1 +m2)gl1θ1 = 0

m2l2ẍ+m2l1l2θ̈1 +m2l
2
2θ̈2 +m2gl2θ2 +

C2

l2
θ̇2 = 0

(2.51)

The system (2.51) can be written in the form

Mẍ + Cẋ +Kx = F (2.52)

where
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M =


mC +m1 +m2 (m1 +m2)l1 m2l2

(m1 +m2)l1 (m1 +m2)l
2
1 m2l1l2

m2l2 m2l1l2 m2l
2
2



C =


CC 0 0

0
C1

l1
0

0 0
C2

l2



K =


0 0 0

0 (m1 +m2)gl1 0

0 0 m2gl2



(2.53)

and

x =

 x

θ1

θ2

 ,F =

 u(t)

0

0

 (2.54)

2.2.2 Linearized state-space representation

De�ning

xss =



x

ẋ

θ1

θ̇1

θ2

θ̇2


(2.55)
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the state-space representation of the system (2.51) is in the formẋss(t) = Axss(t) + Bu(t)

y(t) = Cxss(t),
(2.56)

with

A =



0 1 0 0 0 0

0 −CC

mC

(m1 +m2)g

mC

C1

l21mC
0 0

0 0 0 1 0 0

0
CC

l1mC
−g(m1 +m2)(m1 +mc)

l1m1mC
−C1(m1 +mC)

l31m1mC

gm2

l1m1

C2

l1l22m1

0 0 0 0 0 1

0 0
g(m1 +m2)

l2m1

C1

l21l2m1
−g(m1 +m2)

l2m1
−C2(m1 +m2)

l32m1m2


(2.57)

B =



0
1

mC

0

− 1

l1mC

0

0


(2.58)

The output of the system is the position of the payload, that is given by

xp = x+ l1 sin θ1 + l2 sin θ2 (2.59)

With the approximation sin θ = θ and (2.59) the matrix C in (2.56) is

C =
(

1 0 l1 0 l2 0
)

(2.60)

2.2.3 Two-masses equivalent system for rigid body pay-

loads

Even if until this moment the double pendulum has been referred to as a

model of a crane where both payload and hook have not negligible mass, it

is also a useful model for the study and the control of cranes without hooks

but with payloads with not negligible mass moment of inertia. This kind of
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payload, in fact, can be modeled for control purposes as a two-masses system.

The �rst mass is positioned on the upper extremity of the payload, where it

is attached to the cable, and the other one is opportunely positioned. The

number of variables to be found to correctly develop an equivalent system is

three, corresponding to the mass of both masses and the distance l2 of the

second mass m2 with respect to the �rst mass m1.

For the purpose of this thesis, but without loss of generality, a cylindrical

body with uniformly distributed mass M and length L will be used. The

three equations that permit the calculation the above mentioned variables

are 
m1 +m2 = M

m1
L
2

= m2(l2 − L
2
)

m1(
L
2
)2 +m2(l2 − L

2
)2 = 1

12
ML2

(2.61)

The �rst equation of system (2.61) ensures that the equivalent system has

the same total mass of the cylindrical body, the second one places the center

of gravity at the center of the body and the third one ensures an equivalence

of the centroidal moment of inertia.

By solving system (2.61) the characterizing values for the two-masses

equivalent system are given by
m1 = 1

4
M

m2 = 3
4
M

l2 = 7
12
L

(2.62)

It is to be noted that, by changing second and third equations in (2.61),

a two-masses equivalent system can always be found for a generic rigid body.

2.3 Natural frequencies and dampenings

The pendulum described in previous chapters is a two degrees of freedom

system in the case of simple pendulum and a three degrees of freedom system

in the case of double pendulum. This is a consequence of considering the

cart as free to be moved on the rail, and to be controlled with an applied
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force. This consideration is not valid for the case of industrial cranes, where

external velocity control loops are always present. The systems described

in previous chapters thereby would be useful models when interested in the

control of cart motion. Nevertheless, for the study of natural frequencies and

dampenings the cart will be considered to be perfectly controlled in position,

and therefore the dynamics of the cart will not in�uence the single or double

pendulum (in particular, natural frequencies will not depend on the mass of

the cart).

If the cart is controlled in position, the system loses a degree of freedom

and the di�erential equations of single and double pendulum models can be

simpli�ed. For the simple pendulum, (2.18) becomes

m1l1θ̈1 +
C1

l1
θ̇1 +m1gθ1 = 0 (2.63)

From (2.63) the natural frequency of the double pendulum is

ωn =

√
g

l
(2.64)

The undamped period is therefore

T =
2π

ωn
= 2π

√
l

g
(2.65)

which is known as Christiaan Huygens law for the period [11]. In order to

�nd the damping ratio of the system, we consider the general solution for

(2.63)

θ1(t) = Ceλt (2.66)

Substituting (2.66) in (2.63) leads to

Ceλt
(
m1l1λ

2 +
C1

l1
λ+m1g

)
= 0 (2.67)

As Ceλt is never equal to zero, (2.67) is satis�ed if

m1l1λ
2 +

C1

l1
λ+m1g = 0 (2.68)
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Figure 2.3: Natural frequency of the simple pendulum model with respect to

variations of cable length l1 and mass m1.

.

The solutions of the characteristic equation (2.68) are

λ1,2 =

−C1

l1
±

√
C2

1

l21
− 4l1m2

1g

2m1l1
(2.69)

The value of C1 for which the discriminant of (2.69) is equal to zero is the

critical damping, and is given for

C1c = 2m1l1
√
gl1 (2.70)

The damping ratio is �nally given by the ratio between the damping coe�-

cient of the system and its critical damping, that is

ξ =
C1

C1c

=
C1

2m1l1
√
gl1

(2.71)

The dependence of ωn and ξ from l1 and m1 is shown in Figure 2.3 and

2.4.

Regarding the double pendulum model, under the assumption of a posi-

tion controlled cart and for the study of its natural frequencies and damping

ratios, the system loses a degree of freedom and (2.52) becomes

M∇ẍ + C∇ẋ +K∇x = F (2.72)
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Figure 2.4: Damping ratio ξ of the simple pendulum with respect to varia-

tions of the mass m1 and the cable length l1.

.

where

M∇ =

(m1 +m2)l
2
1 m2l1l2

m2l1l2 m2l
2
2



C∇ =


C1

l1
0

0
C2

l2



K∇ =

(m1 +m2)gl1 0

0 m2gl2



(2.73)

and
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x =

(
θ1

θ2

)
, F =

(
0

0

)
(2.74)

In order to �nd the natural frequencies, consider the undamped system

M∇ẍ + C∇ẋ +K∇x = F (2.75)

Natural frequencies are given by the solution of

det(K∇−ω2
nM∇) = det

(m1 +m2)gl1 − ω2
n(m1 +m2)l

2
1 −ω2

nm2l1l2

−ω2
nm2l1l2 m2gl2 − ω2

nm2l
2
2

 = 0

(2.76)

that is �nding the solution to

aωn
4 + bωn

2 + c = 0 (2.77)

where

a =l1
2l2

2m1m2,

b =− l1l2m2(gl1m1 + gl1m2 + gl2m1 + gl2m2)

c =l1l2m2(g
2m1 + g2m2)

To (2.77) it can be associated

aγ2 + bγ + c = 0 (2.78)

whose solutions are

γ1,2 =
−b±

√
b2 − 4ac

2a
(2.79)

Consequently, considering only the positive solutions, the natural frequencies

of the pendulum are

ω1 =
√
γ1 =

√
−b+

√
b2 − 4ac

2a

ω2 =
√
γ1 =

√
−b−

√
b2 − 4ac

2a

(2.80)
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The dependence of the natural frequencies of the double pendulum (2.51)

on the masses m1 and m2 and cable length l1 and l2 is shown in Figure 2.5.

Here the lengths l1 and l2 vary while the total length l1 + l2 is kept constant

to 6 [m], and also the masses varies varies, keeping the sum of m1 and m2

constant and equal to 20 [kg ].

As observed in [25], due to the low dependence on the mass and the strong

dependence on the cable length, the low frequency of the double pendulum

system is comparable to the natural frequency of a simple pendulum with

mass m1 = m1 +m2 and length l1 = l1 + l2, as shown by Figure 2.6.

In Figure 2.7 the dependence of the two natural periods of the system is

shown.

The calculation of the damping ratios of a multi-modal system requires

the solution of a complex eigenvalues problem. Given the model of the system

in the form

Mẍ + Cẋ +Kx = 0

assume a solution in the form

x(t) = ueλt

The values of λ and u that describe the solution of the system satisfy

(λ2iM+ λiC +K)ui = 0 (2.81)

In the case of underdamped systems, which is always the case of cranes, there

are 2n values of λi, where n corresponds to the number of natural frequencies

of the system, occurring in complex conjugate pairs in the form

λi,i+1 = −ξiωi ± jωi
√

1− ξ2i (2.82)

where ξi is the ith modal damping ratio and ωi is the ith undamped natural

frequency.

In particular, expressing λi as

λi = αi + jβi

then

ωi =
√
α2
i + β2

i (2.83)
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and

ξi =
−αi√
α2
i + β2

i

(2.84)

For a further and more detailed discussion of computational methods for the

numerical determination of complex eigenvalues for natural frequencies and

damping ratios of multi-modal systems see [14].

2.4 Transfer functions

For dynamics inversion methods it will be necessary to obtain some useful

transfer functions. In this section transfer functions between force and pay-

load position, cart position and payload position and between force and cart

position will be explicitly calculated.

2.4.1 Simple pendulum

In order to �nd the relation between the force U acting on the cart and the

payload position XP it is su�cient to consider the state space description

given by matrices (2.1.2), (2.1.2) and (2.26) and to remember the formula to

pass from a state space description to the transfer function:

G(s) = C(Is−A)−1B +D (2.85)

where D is a null matrix in the case of strictly proper systems. The transfer

function therefore is given by

XP (s)

U(s)
=
C1s+ gm1l

2
1

DP1(s)
(2.86)

with

DP1(s) = (l21m1mC)s4 + (Ccm1l
2
1 + C1m1 + C1mC)s3

+(gl21m
2
1 + gmC l

2
1m1 + C1Cc)s

2 + (Ccgl
2
1m1)s

Similarly, by changing matrix C and assigning the value C =
(

1 0 0 0
)

the transfer function from the force U applied to the cart and the position

of the cart XC is given by (2.85) and it has the form

XC(s)

U(s)
=

(l1
2m1)s

2 + C1s+ gl1
2m1

DC1(s)
(2.87)



Transfer functions 31

with

DC1(s) = (l1
2m1mC)s4 + (Ccm1l1

2 + C1m1 + C1mC)s3

+(gl1
2m1

2 + gmC l1
2m1 + C1Cc)s

2 + (Ccgl1
2m1)s

From (2.86) and (2.87) the transfer function between the position of the

cart XC and the position of the payload XP can be obtained as

XP (s)

XC(s)
=
XP (s)

U(s)

U(s)

XC(s)
=

gm1l1
2 + C1s

(l1
2m1)s2 + C1s+ gl1

2m1

(2.88)

Equation (2.88) characterizes also the relation between cart velocity VC and

payload velocityVP . The transfer function where the input is the cart velocity

VC and the output is payload velocity VP can easily be found by integrating

equation (2.88):

XP (s)

VC(s)
=

1

s

XP (s)

XC(s)
=

s+
gm1l21
C1

s(s2 + C1

m1l21
s+ g)

(2.89)

In the case of low damping, such is the case of cranes, the zeroes in the

transfer functions (2.86) and (2.88) are far more rapid than the poles of the

system and they can be simpli�ed without a�ecting the results.

In particular, (2.86) results in

XP (s)

U(s)
=

gl21m1

DP1(s)
(2.90)

with

DP1(s) = (l21m1mC)s4 + (Ccm1l
2
1 + C1m1 + C1mC)s3

+(gl21m
2
1 + gmC l

2
1m1 + C1Cc)s

2 + (Ccgl
2
1m1)s

and equation (2.88) results in

XP (s)

XC(s)
=

gm1l1
2

(l1
2m1)s2 + C1s+ gl1

2m1

(2.91)
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2.4.2 Double pendulum

As in the previous section, transfer functions of the double pendulum model

will be calculated using its state space description, that is, from matrices

(2.57), (2.58) and (2.60). The transfer function between the force U acting

on the cart and the position of the payload XP is given by equation (2.85)

and its given by
XP (s)

U(s)
=
NP2(s)

DP2(s)
(2.92)

with

NP2(s) = (C1C2)s
2 + (C1gm2l2

2 + C2(gl1
2m1 + gl1

2m2))s

+ gl2
2m2(gl1

2m1 + gl1
2m2)

and

DP2(s) =(l1
3l2

3m1m2mC)s5 + (C1l2
3m1m2 + C2l1

3m1mC + C1l2
3m2mC

+ C2l1
3m2mC + Ccl1

3l2
3m1m2)s

4 + (gmC l1
3l2

2m1m2 + gmC l1
3l2

2m2
2

+ C2Ccl1
3m1 + C2Ccl1

3m2 + gl1
2l2

3m1
2m2 + gl1

2l2
3m1m2

2

+ gmC l1
2l2

3m1m2 + gmC l1
2l2

3m2
2 + C1Ccl2

3m2 + C1C2m1 + C1C2m2

+ C1C2mC)s3 + (Ccgl1
3l2

2m1m2 + Ccgl1
3l2

2m2
2 + Ccgl1

2l2
3m1m2

+ Ccgl1
2l2

3m2
2 + C2gl1

2m1
2 + 2C2gl1

2m1m2 + C2gmC l1
2m1

+ C2gl1
2m2

2 + C2gmC l1
2m2 + C1gl2

2m1m2 + C1gl2
2m2

2

+ C1gmC l2
2m2 + C1C2Cc)s

2 + (g2l1
2l2

2m1
2m2 + 2g2l1

2l2
2m1m2

2

+mCg
2l1

2l2
2m1m2 + g2l1

2l2
2m2

3 +mCg
2l1

2l2
2m2

2 + C2Ccgl1
2m1

+ C2Ccgl1
2m2 + C1Ccgl2

2m2)s+ (Ccg
2l1

2l2
2m2

2 + Ccm1g
2l1

2l2
2m2)

The transfer function between the force U acting on the cart and the posi-

tion of the cartXC can be obtained by (2.85) setting C =
(

1 0 0 0 0 0
)
,

yielding
XC(s)

U(s)
=
NC2(s)

DC2(s)
(2.93)

with

NC2(s) = (l1
3l2

3m1m2)s
4 + (C2l1

3m1 + C1l2
3m2 + C2l1

3m2)s
3

+ (gl1
3l2

2m2
2 + gm1l1

3l2
2m2 + gl1

2l2
3m2

2 + gm1l1
2l2

3m2 +C1C2)s
2

+ (C2gl1
2m1 + C1gl2

2m2 + C2gl1
2m2)s

+ (g2l1
2l2

2m2
2 +m1g

2l1
2l2

2m2)
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and

CC2(s) =(l1
3l2

3m1m2mC)s6 + (C1l2
3m1m2 + C2l1

3m1mC + C1l2
3m2mC

+ C2l1
3m2mC + Ccl1

3l2
3m1m2)s

5 + (gmC l1
3l2

2m1m2 + gmC l1
3l2

2m2
2

+ C2Ccl1
3m1 + C2Ccl1

3m2 + gl1
2l2

3m1
2m2 + gl1

2l2
3m1m2

2

+ gmC l1
2l2

3m1m2 + gmC l1
2l2

3m2
2 + C1Ccl2

3m2 + C1C2m1 + C1C2m2

+ C1C2mC)s4 + (Ccgl1
3l2

2m1m2 + Ccgl1
3l2

2m2
2 + Ccgl1

2l2
3m1m2

+ Ccgl1
2l2

3m2
2 + C2gl1

2m1
2 + 2C2gl1

2m1m2 + C2gmC l1
2m1

+ C2gl1
2m2

2 + C2gmC l1
2m2 + C1gl2

2m1m2 + C1gl2
2m2

2

+ C1gmC l2
2m2 + C1C2Cc)s

3 + (g2l1
2l2

2m1
2m2 + 2g2l1

2l2
2m1m2

2

+mCg
2l1

2l2
2m1m2 + g2l1

2l2
2m2

3 +mCg
2l1

2l2
2m2

2

+ C2Ccgl1
2m1 + C2Ccgl1

2m2 + C1Ccgl2
2m2)s

2 + (Ccg
2l1

2l2
2m2

2

+ Ccm1g
2l1

2l2
2m2)s

(2.94)

Finally, the transfer function between cart position XC and payload XP

can be obtained by (2.92) and (2.93):

XP (s)

XC(s)
=
XP (s)

U(s)

U(s)

XC(s)
=
NPC2(s)

NPC2(s)
(2.95)

with

NPC2(s) = (C1C2)s
2 + (C1gm2l2

2 + C2(gl1
2m1 + gl1

2m2))s

+ gl2
2m2(gl1

2m1 + gl1
2m2)

and

DPC2(s) = (l1
3l2

3m1m2)s
4 + (C2l1

3m1 + C1l2
3m2 + C2l1

3m2)s
3

+(gl1
3l2

2m2
2 +gm1l1

3l2
2m2 +gl1

2l2
3m2

2 +gm1l1
2l2

3m2 +C1C2)s
2

+ (C2gl1
2m1 + C1gl2

2m2 + C2gl1
2m2)s

+ (g2l1
2l2

2m2
2 +m1g

2l1
2l2

2m2)

In the case of low damping, such is the case of industrial overhead cranes,

the zeroes in the transfer functions (2.92) and (2.95) are farer from the imag-

inary axis than the poles of the system and can be neglected for control

purposes. In particular, (2.92) results in

XP (s)

U(s)
=
NsimpP2(s)

DsimpP2(s)
(2.96)



34 MODEL OF THE CRANE

where

NsimpP2(s) = g2l1
2l2

2m2(m1 +m2)

and

DsimpP2(s) = DP2(s)

, while (2.95) results in

XP (s)

XC(s)
=
NsimpC2(s)

DsimpC2(s)
(2.97)

with

NsimpC2(s) = g2l1
2l2

2m2(m1 +m2)

and

DsimpC2(s) = DC2(s)

.



Chapter 3

Input Shaping

Among open-loop control techniques to generate non-oscillatory response in

overhead cranes the most popular one is the Input Shaping, initially theorized

in the late '50s in [32] and [6] and formalized later in [29]. This technique

exploits the superposition principle for linear systems, shaping the input

command in order to generate a series of superposed outputs which sum

generates a non-oscillatory response. Usually, a nominal desired pro�le of

velocity or position is given, and the input is shaped thanks to the knowledge

of some key features of the system, i.e. natural frequencies and damping.

3.1 Mathematical formalization of the method

The most simple oscillatory system can be modeled as a second order system,

which impulse response is given [16] by

y(t) =

[
A

ωn√
1− ξ2

expωn(t−t0)

]
sin(ωn

√
1− ξ2(t− t0)) (3.1)

where A is impulse amplitude, ωn is the system natural frequency and ξ is

the damping. The impulse response (3.1) is shown in Figure 3.1.

Exploiting the superposition principle for linear systems, the response to

two impulses is the sum of two responses in the form (3.1) can be written

like

B1 sin(αt+ φ1) +B2 sin(αt+ φ2) = Aamp sin(αt+ ψ) (3.2)

35
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Figure 3.1: Impulse response of a second order system with ωn = 1 and

ξ = 0.3.

where

Aamp =
√

(B1 cosφ1 +B2 cosφ2)2 + (B1 sinφ1 +B2 sinφ2)2

ψ = tan−1
(
B1 cosφ1 +B2 cosφ2

B1 sinφ1 +B2 sinφ2

)
(3.3)

Generalizing (3.2) for the case of N impulses we �nd

Aamp =

√√√√(
N∑
j=1

Bj cosφj)2 + (
N∑
j=1

Bj sinφj)2

φj = ωn

√
(1− ξ2)tj

(3.4)

with

Bj =
Ajωn√
1− ξ2

e−ξωn(tN−tj)

φj = ωn

√
1− ξ2(t− tj)

(3.5)

where tj is the instant of time when the impulse j is given as an input to the

system.

To have a non-oscillatory response, the amplitude Aamp has to be equal
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Figure 3.2: Transposition of 2 vectors on a vector diagram

to zero. This yields toB1 cosφ1 +B2 cosφ2 + ....+BN cosφN = 0

B1 sinφ1 +B2 sinφ2 + ....+BN sinφN = 0
(3.6)

that, given (3.5), can be written as
∑N

j=1Aje
−ξωn(tN−tj) sin(tjωn

√
1− ξ2) = 0∑N

j=1Aje
−ξωn(tN−tj) cos(tjωn

√
1− ξ2) = 0

(3.7)

3.2 Vector diagrams approach

Another way to approach the input shaping technique is through vector dia-

grams, as in [31]. Representing the impulses with polar coordinates r and θ,

the sum of the responses can be calculated as a vectors' sum. An impulse on

a vector diagram can be represented by setting r equal to its amplitude Aj

and its phase φj = ωntj. Figure 3.2 show the transposition from time domain

graphic representation and vector diagrams. In the case of null damping, the

amplitude R of the vectorial sum of the impulses in Figure 3.3 is proportional

to the amplitude of residual vibration. It is moreover important to observe

that, once the resultant vector is found, a single impulse with same ampli-

tude θr and with a phase of θ = θr + π is enough to ensure a zero residual

vibration.
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Figure 3.3: Sum of two impulses contribution with vector diagrams.

Following the rules for vectorial sum, the resultant from a series of N

vectors is given by

Ar =

√√√√(
N∑
j=1

Ajx)
2 + (

N∑
j=1

Ajy)
2

θr = tan−1

(∑N
j=1Ajx∑N
j=1Ajy

) (3.8)

where Ajx = Aj cos θj and Ajy = Aj sin θj. Note that(3.8) correspond to (3.4)

written in with polar coordinates.

By introducing the e�ects of damping, the representation of impulse vec-

tors must be modi�ed. First of all, damped natural frequency substitutes

the natural frequency, so that the phase of impulses become

θj =
√

1− ξ2ωntj (3.9)

where ξ is the damping coe�cient. Finally, the amplitude of the impulses

must decrease dynamically with time depending on the value of ξ:

Aj(t) = Aje
−ξωn(t−tj) (3.10)

Substituting (3.9) and (3.10) in (3.8) equation (3.7) can be found again.
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Figure 3.4: Two-impulse IS method.

3.3 Two-impulse input shaping

The simplest input shaping method, and by far the most di�used in in-

dustry, is the two-impulse input shaping, also called Zero-Vibration (ZV )

shaper. Here, two impulses are given as inputs to the system, generating

two oscillatory responses which cancel each other. Solving system (3.7) for

N = 2 yields the solution shown in Figure 3.5: two impulses at time t1 = 0

and t2 = ∆T of amplitude

A1 = A
1

1 +K
, A2 = A

K

1 +K
(3.11)

where A is a scaling factor and

K = e
− ξπ√

1−ξ2

∆T =
π

w0

√
1− ξ2

(3.12)

Two-impulse input shaping is graphically illustrated in Figure 3.4, both in

time domain and on a vector graph. It can be noted the intuitiveness of the

representation of the method with the representation on vector graphs.

The series of two impulses can be organized in a vector of amplitudes and

times as

ZV =

[
Ai

ti

]
=

 1

1 +K

K

1 +K
0

π

ωd

 (3.13)

with ωd = ωn
√

1− ξ2 damped natural frequency of the system.
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Figure 3.5: Graphical representation of two-impulse input shaping.

3.4 ZVD and ZVDD

As will be shown in Chapter 3.5, ZV method ensures zero residual oscillation

if the system natural frequency is exactly equal to the one of the model, but

its performances degrade rapidly in case of modelling errors. To increase

the robustness of the shaper, the number of impulses can be increased. By

adding an impulse to ZV shaper, other conditions have to be included, as

system (3.7) gives just two equations, while with three-impulse input require

solving �ve unknown parameters,A1, A2, A3, t2, t3. Two more equations are

required, and can be introduced as shown in [10] by making the derivative of

the constraint system (3.7) with respect to natural frequency of the system

equal to zero, that is adding the constraint
∑N

j=1Ajtje
−ξωn(tN−tj) cos(tjωn

√
1− ξ2) = 0∑N

j=1Ajtje
−ξωn(tN−tj) cos(tjωn

√
1− ξ2) = 0

(3.14)

A speci�c solution to constraints (3.7) and (3.14) is

ZVD =

[
Ai

ti

]
=

 1

1 + 2K +K2

2K

1 + 2K +K2

K2

1 + 2K +K2

0
π

ωd

2π

ωd

 (3.15)

The three-impulse shaper is also called Zero Vibration and Derivative (ZVD).

Further increasing the robustness, another impulse can be added, and a

vector of amplitudes and times for the four impulses can be found by adding
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to (3.7) and (3.14) the condition of null second derivative of (3.7) with respect

to natural frequency of the system, �nding

ZVDD =


Ai

ti

 =


1

DZV DD

3K

DZV DD

3K2

DZV DD

K3

DZV DD

0
π

ωd

2π

ωd

3π

ωd

 (3.16)

where

DZV DD = 1 + 3K + 3K2 +K3 (3.17)

Theoretically, robustness can be further increased by adding impulses and

de�ning ZVDDD, ZVDDDD, etc. methods. Nevertheless, every impulse

added increase the total time of control by half of the damped period.

3.5 Robustness and Extra Insensitive shapers

All the methods seen guarantee zero residual vibration after the last impulse

if the natural frequency and its damping are arbitrarily well estimated. By

adding constraints of zero-derivatives, derivative methods are naturally more

robust with respect to model errors, as shown in Figure 3.6.

The drawback of increasing robustness by forcing to zero high order

derivatives is that the total time of the series of impulses increase. An al-

ternative is to relax the request of zero residual vibration for ω = ωn and

allowing the residual vibration to a determined percentage of the unshaped

response �nal oscillation. This can be achieved by changing time and am-

plitude values of derivative methods, but the same total control time of a

derivative method with equal number of impulses.

For example, a shaper of this type with three impulses, called Extra In-

sensitive (EI) shaper has

EI =

[
Ai

ti

]
=

A1 1− (A1 + A3) A3

0 t2
2π

ωd

 (3.18)
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Figure 3.6: Robustness of di�erent Input Shaping methods [33].

with

A1 =0.24968 + 0.24962Vtol + 0.80008ξ + 1.23328Vtolξ+

+ 0.49599ξ2 + 3.17316Vtolξ
2

A3 =0.25149 + 0.21474Vtol − 0.83249ξ + 1.41498Vtolξ+

+ 0.85181ξ2 − 4.90094Vtolξ
2

t2 =
2π

ωd
(0.49990 + 0.46159Vtolξ+

+ 4.26169Vtolξ
2 + 1.75601Vtolξ

3 + 8.57843V 2
tolξ−

− 108.644V 2
tolξ

2 + 336.989V 2
tolξ

3)

(3.19)

where Vtol is the maximum residual percentage vibration for ω = ωn.

In the same way, EI shapers with four and �ve impulses can be built,

called respectively Two-hump EI and Three-hump EI shapers. Coe�cients

for the values of impulses' amplitudes and times can be found in [33]. In

Figure 3.7 a comparison between ZV shaper and EI shapers is depicted.

Input shaper robustness to errors in damping follows very similar trends,

as shown in [33], in Figure 3.8 and in Figure 3.9.
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Figure 3.7: Robustness of Extra Intensive shapers [33].

Figure 3.8: Robustness of ZV and ZV derivatives shapers to damping errors

[33].

Figure 3.9: Robustness of Extra Intensive shapers to damping errors [33].
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Figure 3.10: Convolution between a general signal and an impulse sequence.

For a complete survey on robust input shapers see [33].

3.6 Using Impulse Input Sequences to Shape

Inputs

Until this moment only inputs constituted by sequences of impulses have

been considered. In most of the cases it is not possible to use this kind

of input for a general system for control purposes. This section presents a

method for using the sequences derived above to generate arbitrary inputs

with the same vibration-reducing properties, as shown in [29].

The vibration reduction is simply accomplished by convolving any desired

input to the system together with the impulse sequence in order to yield

to the shortest actual system input that makes the same motion without

vibration. The result of a convolution between an arbitrary signal and an

impulse sequence is shown in Figure 3.10. The sequence, therefore, becomes

a pre�lter for any input to be given to the system. This pre�lter is the

"Input shaper" block in Figure 3.11, which shows the typical structure of an

IS pre�lter added before a feedback control loop. The resulting time penalty

delay due to the convolution equals the length of the impulse sequence, thus

a more robust sequence imply a more signi�cant time penalty. The choice of

which method between the ones seen and the others presented in [33] depends

on project robustness requirements.
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Figure 3.11: Input Shaper pre�lter block added before the feedback control

loop.

3.7 Input shaping for multi-mode systems

Until now, only systems with a single vibrational mode have been considered.

However, the system studied on this thesis is at least a two-mode system.

Fortunately, input shaping technique can easily be generalized to multi-mode

systems. As a matter of fact, exploiting linear systems proprieties, it is

possible to demonstrate [29] that di�erent impulse sequences can be found

to deal with every vibrational frequency of the system, and the convolution

of these sequences is su�cient to move the system without residual vibration

on any of its modes.

A drawback of this solution is that the resulting time penalty is given by

the sum of the sequences lengths. Another solution is presented, that consists

in solving a system containing all the constraints related to every vibrational

mode. For example, if the four equations used to generate the sequence of a

ZVD shaper were repeated for two di�erent frequencies on a two-mode sys-

tem, a system of eight equations would result and could be solved for four

unknown impulse amplitudes and times (plus the �rst, arbitrary impulse),

yielding a �ve-impulse sequence. The resulting sequence has four fewer im-

pulses than the result of convolving the two independent sequences, and is

always shorter in time. At any rate, this solution is rarely used in appli-

cations, because involves the explicit solution of high order systems, while

convolution of simple impulse sequences is computationally simple and, as

shown in previous chapters, the calculation of impulse sequences is easily

parametrized with ωn and ξ.
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3.8 Input shaping for single and double pendu-

lum systems

Input shaping is a widespread technique for residual vibration reduction in

industry, due to its simplicity. In fact, it is not necessary to have an accurate

model of the system, but it is su�cient to know its natural frequencies that

can be evaluated in a number of way. For the purposes of this thesis, once

that the system has been modelled as a single or double pendulum, natural

frequencies can be calculated as shown in Chapter 2.3, and the application

of input shaping technique is direct.



Chapter 4

Input-output inversion

Even if the input-shaping is the most widely used technique in industry,

another open-loop control for residual vibration reduction has been demon-

strated to be competitive and implementable with o�-the-shelf industrial

components [26].

Input-output inversion technique (also called dynamic inversion tech-

nique) is a two-step method based on the dynamic inversion of the model

of minimum phase systems. First, a desired output trajectory has to be

calculated. This trajectory must satisfy some conditions for being an achiev-

able output function; speci�cally, a certain order of continuity is required,

depending on the system to be controlled, and a �nite transition time τ is

also required. A good form for output's trajectory is the polynomial one

[22]. Secondly, the dynamic of the system is inverted, and the input signal

is calculated in such a way that the corresponding response of the system is

the desired output function.

In this chapter a method for a stable simpli�ed input-output inversion

will be presented. The method will be tested by means of simulations and

by applying it for the control of the double pendulum crane discussed in

Chapter 2.

47
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4.1 Mathematical formalization of the method

Consider a general linear system with transfer function

G(s) = k1
Y (s)

U(s)
= k1

sm + bm−1s
m−1 + ...+ b1s+ b0

sn + an−1sn−1 + ...+ a1s+ a0
(4.1)

with ρ = n−m its relative order. First, a desired output function has to be

built, then the inversion of the dynamics will be mathematically formulated

and �nally the input corresponding to the de�ned output will be found in a

closed form.

4.1.1 Form of the desired output

In order to have zero residual vibration and a �nite transition time τ from

ya to yb, the desired output function ȳ(t) has to satisfy the conditions

ȳ(t) = ya for t ≤ 0

ȳ(t) = yb for t ≥ τ
(4.2)

In order not to have undesirable oscillation for 0 ≥ t ≥ τ ȳ(t) must be also a

monotone function. For sake of simplicity but without loss of generality and

thanks to the proprieties of linear systems, the system (4.1) will be considered

with a gain equal to one, and ya = 0, yb = 1.

De�ning

B ={(u(.), y(.)) ∈ P × P : Dny + an−1D
n−1y + ...+ a0y

= k1(D
mu+ bm−1D

m−1u+ ...+ b0u)},
(4.3)

as the set of all the possible input-output couples of the system (4.1), the

following proposition is valid:

Proposition 1 Consider a couple (u(.), y(.)) ∈ B. Then u(.) ∈ C l ⇐⇒
y(.) ∈ Cρ+l, with l ∈ N+.

As it is shown in [22] that the polynomial form is suitable for the output,

ȳ(t), given conditions (4.2), will have the form
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y(t) =


0 t ≤ 0

c0 + c1t+ ..+ c2k+1t
2k+1 0 < t < τ

1 t ≥ τ.

(4.4)

Coe�cients ci can be found by imposing continuity conditions at t = 0 and

t = τ on ȳ(t) and its derivatives until the derivative of order k:y(0) = 0, Dy(0) = 0, ....Dky(0) = 0

y(τ) = 1, Dy(τ) = 0, ....Dky(τ) = 0
(4.5)

Proposition 1 gives an useful tool for the choice of k, as 2k + 1 has to be

greater of the relative order of system 4.1.

A couple of propositions about the solution of system (4.5) [22], here cited

without demonstration, give us the form of ȳ(t):

Proposition 2 The linear system (4.5) admits a unique solution for any

τ ∈ R+ and any k ∈ N.

Proposition 3 The unique solution of system (4.5) is given by

ȳ(t, τ) =
(2k + 1)!

(k! )2τ 2k+1

∫ t

0

υk(τυ)kdυ, t ∈ [0, τ ] (4.6)

Equation (4.6) is a monotone function, which guarantees the absence of oscil-

lations during the transient. The integral in (4.6) can be analytically solved

giving the output function in the form

ȳ(t, τ) =


0 t ≤ 0

(2k+1)!
k!τ2k+1

∑k
i=0

(−1)k−i
i!(k−i)!(2k−i+1)

τ it2k−i+1 0 < t < τ

1 t ≥ τ.

(4.7)

An example of a possible representation of ȳ(t, τ) is shown in Figure 4.1.

The smoothness of the transient depends on the value of k.
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Figure 4.1: Desired output ȳ(t)

4.1.2 Input-output inversion

Under the assumption of a system with gain equal to 1, assumption that can

be done without loss of generality thanks to the properties of linear systems,

the system (4.1) can be written as

G(s) =
Y (s)

U(s)
=
βms

m + βm−1s
m−1 + ...+ β1s+ 1

αnsn + αn−1sn−1 + ...+ α1s+ 1
. (4.8)

Therefore, knowing the form of the output in (4.7) and with the model in

(4.8), the desired input can be obtained by inverting (4.8) as

U(s, τ) = G−1(s)Ȳ (s, τ) (4.9)

By polynomial division transfer function division it is

G−1(s) = γρs
ρ + γρ−1s

ρ−1 + ...+ γ1s+ γ0 +H0(s) (4.10)

where

H0(s) =
δ0,m−1s

m−1 + δ0,m−2s
m−2 + ...+ δ0,0

βmsm + βm−1sm−1 + ...+ β1s+ 1
(4.11)

is the zero dynamics of the system, which is strictly proper.

De�ning η0(t) = L−1[H0(s)] the impulse response of the system, from

(4.9) and (4.10), the following Proposition can be demonstrated [22].

Proposition 4 Consider y(t, τ) de�ned by (4.7). Provided that k ≥ ρ − 1

then

u(t, τ) =γρD
ρy(t, τ) + γρ−1D

ρ−1y(t, τ) + ...+ γ0y(t, τ)

+

∫ t

0

η0(t− υ)y(υ, t)dυ, t ≥ 0.
(4.12)
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holds.

Therefore, the input corresponding to the desired output can be calcu-

lated by a sum of the derivatives of the output multiplied by the coe�cients

obtained by polynomial division in Equation (4.10), plus the integral of the

zero dynamics.

Even if other choices are possible for the output function, a polynomial

function like the one in equation (4.7) can be easily derived, and the form of

its derivatives is

Dαȳ(t, τ) =


(2k+1)!
k!τ2k+1

∑k
i=0

(−1)k−iτ i(2k−i+1)
i!(k−i)!(2k−i+1)(2k−i+1−α)!τ

it2k−i+1−α 0 < t < τ

0 ELSEWHERE

(4.13)

Moreover, the form of the desired output can be further simpli�ed in

the case of low-damped systems [20]. In those cases, where the process

dynamics is dominant with respect to the zero dynamics, the zero dynamics

can be neglected and the desired output does not contain an integral that

would cause a post-action. This simpli�cation is applicable in the case of

industrial cranes where the zeroes due to the friction on the cables occurs

at a much higher frequency with respect to the poles of the system. The

absence of an integral part on the output function also means that no post-

action is required, that means that the control task ends with the end of the

load's movement, simplifying the applicability of this technique on o�-the-

shelf industrial components.

4.2 I/O inversion of crane dynamics

Following the method mathematically described in Chapter 4.1, the dynamics

of the crane will now be inverted in order to �nd an appropriate input func-

tion for residual oscillation free motion. A number of di�erent approaches can

be chosen for the inversion. In particular, under the assumption of perfect

tracking on cart motion, the transfer function between the position (velocity)

of the cart and the position (velocity) of the payload (2.88) and (2.95) can be
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Figure 4.2: Control scheme for position control with force feedforward.

inverted and obtaining the trajectory of the cart. When a perfect tracking

is not possible, that is in all real systems, a solution that helps during the

tracking of the trajectory found is the inversion of the transfer function be-

tween the force to be applied to the crane and the position of the cart (2.87)

and (2.93). Once the torque corresponding to the desired trajectory of the

cart has been found, it can be given as a feedforward torque signal to the

motors.

Thanks to the low values of C1 and C2, for control purposes the system

will be considered as an undamped one, avoiding the explicit calculation of

the convolution of the zero dynamics and the post action, as said in Chapter

4.1.2.

In Figure 4.2 the position control scheme used for the control of he over-

head crane is presented, with the feedforward force signal.

In Figure 4.3 the velocity control scheme used for the control of he over-

head crane is presented, with the feedforward force signal. In both the

schemes G1(s) is the transfer function between the force applied to the cart

and the velocity of the cart, while G2(s) is the transfer function between the

velocity (position) of the cart and the velocity (position) of the payload.

4.2.1 Simple pendulum

Here the control laws necessary for the control of a simple pendulum system

will be calculated. As the motion of a crane can be controlled in both velocity
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Figure 4.3: Control scheme for velocity control with force feedforward.

and position, two di�erent inversions can be made: the �rst one between

the velocity of the cart and the velocity of the payload and the second one

between position of the cart and the position of the payload.

Velocity control

First, the velocity law of the cart will be explicitly found in order to obtain an

oscillation-free velocity of the payload in a time τ . Then the corresponding

torque to be applied will be calculated, in order to provide a feed-forward

to the motor. Then the polynomial corresponding to the oscillation-free

movement of the payload from a point to another will be found and inverted.

The �rst law found is the cart velocity with respect to a desired payload

output velocity. By inverting (2.88) we obtain

Ginv =
1

g
s2 +

C1

gm1l21
s+ 1 (4.14)

, while (4.12) and (4.13) for the case of simple pendulum gives

VP (τ, q, t) =
6q

τ 5
t5 − 15q

τ 4
t4 +

10q

τ 3
t3 (4.15)

Choosing k = 2, that is the lowest value possible in order to guarantee a

form of the velocity of class C0, the form of the velocity of the cart is given

by

Vc(t) =
1

g
V

(2)
P (τ, q, t) +

C1

gm1l21
VP (τ, q, t) + 1 (4.16)
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where q and τ are respectively the desired �nal velocity and the transient

time to reach that velocity, the only two free parameters of the polynomial

law.

In order to �nd the feedforward expression for the force, equation (2.90)

has to be derived (adding s to the numerator) and then inverted, obtaining

Ginv =
mC

g
s3 +

CCm1l1
2 + C1m1 + C1mC

gl1
2m1

s2+

gl1
2m1

2 + gmC l1
2m1 + C1CC

gl1
2m1

s+ CC

(4.17)

Then, following the steps seen in the previous passage, the polynomial of the

torque is given by

Fv(t) =
mC

g
V

(3)
P (τ, q, t) +

CCm1l1
2 + C1m1 + C1mC

gl1
2m1

V
(2)
P (τ, q, t)+

gl1
2m1

2 + gmC l1
2m1 + C1CC

gl1
2m1

V
(1)
P (τ, q, t) + CCVP (τ, q, t)

(4.18)

While with equation (4.16) it is possible to move the cart in order to

have a residual oscillations free movement of the payload, equation (4.18)

gives the form of the theoretical force to be applied to the cart in order

to obtain the velocity shape in (4.16), to be added as a feedforward signal

directly to the motor responsible for the movement of the cart. This solution,

in all the cases when it is implementable, guarantees improved tracking of

the trajectory, with the result of lower residual oscillations of the load.

Position control

It is also possible to control the cart in position, this time using the param-

eters q and τ as the desired �nal position and the transient time. As the

transfer function (2.90) identi�es both the relation between cart and pay-

load positions and velocities, the inverse of the transfer function will also be

the same. The form of the polynomial that describes the trajectory of the

cart can be calculated by (2.90) and (4.12), setting the value of k = 3, that

is the lowest value that guarantees the trajectory to be C1. The obtained

polynomial trajectory of the payload has the form
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XP (τ, q, t) = −20q

τ 7
t7 +

70q

τ 6
t6 − 84q

τ 5
t5 +

35q

τ 4
t4 (4.19)

The resulting trajectory to be followed by the cart can be therefore written

as

Xc(t) =
1

g
X

(2)
P (τ, q, t) +

C1

gm1l21
XP (τ, q, t) + 1 (4.20)

The corresponding force feed-forward signal can be calculated by inverting

(2.90), obtaining the polynomial

Fx(t) =
l1

4m1
2mC

g
X

(4)
P (τ, q, t)+

l1
2m1

(
CCm1l1

2 + C1m1 + C1mC

)
g

X
(3)
P (τ, q, t)+

l1
2m1

(
gl1

2m1
2 + gmC l1

2m1 + C1CC
)

g
XP

(2)(τ, q, t)+

CC l1
4m1

2XP
(1)(τ, q, t)

(4.21)

4.2.2 Double pendulum

As seen for the case of single pendulum model, here too two controls are

possible: velocity and position.

Velocity control

Following the same steps of the previous chapters, the analytical form of the

trajectories for both velocity and position control can be found. For the sake

of brevity, the explicit polynomials will not be reported here, but they will

be expressed instead as functions of the derivatives of the trajectory of the

payload de�ned by equation (4.7).

Given equation (2.97) and setting k = 4 in (4.7), the inverse of the transfer

function between velocity of the cart and velocity of the payload is

Ginv = P1s
4 + P2s

3 + P3s
2 + P4s+ P5 (4.22)
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where

P1 =
l1l2m1

g2(m1 +m2)

P2 =
C2l1

3m1 + C1l2
3m2 + C2l1

3m2

g2l1
2l2

2m2(m1 +m2)

P3 =
gl1

3l2
2m2

2 + gm1l1
3l2

2m2 + gl1
2l2

3m2
2 + gm1l1

2l2
3m2 + C1C2

g2l1
2l2

2m2(m1 +m2)

P4 =
C2gl1

2m1 + C1gl2
2m2 + C2gl1

2m2

g2l1
2l2

2m2(m1 +m2)

P5 =
g2l1

2l2
2m2

2 +m1g
2l1

2l2
2m2

g2l1
2l2

2m2(m1 +m2)

and the desired velocity pro�le results

VP (τ, q, t) =
70q

τ 9
t9 − 315q

τ 8
t8 +

540q

τ 7
t7 − 420q

τ 6
t6 +

126q

τ 5
t5 (4.23)

From (4.22) and (4.23), the function of the cart velocity in order to reach

a velocity q in a time τ is

Vc(t) =P1V
(4)
P (τ, q, t) + P2V

(3)
P (τ, q, t) + P3VP

(2)(τ, q, t)+

P4VP
(1)(τ, q, t) + P5VP (τ, q, t)

(4.24)

where

P1 =
l1l2m1

g2(m1 +m2)

P2 =
C2l1

3m1 + C1l2
3m2 + C2l1

3m2

g2l1
2l2

2m2(m1 +m2)

P3 =
gl1

3l2
2m2

2 + gm1l1
3l2

2m2 + gl1
2l2

3m2
2 + gm1l1

2l2
3m2 + C1C2

g2l1
2l2

2m2(m1 +m2)

P4 =
C2gl1

2m1 + C1gl2
2m2 + C2gl1

2m2

g2l1
2l2

2m2 (m1 +m2)

P5 =
g2l1

2l2
2m2

2 +m1g
2l1

2l2
2m2

g2l1
2l2

2m2(m1 +m2)

In the same way, by inverting the derivative of equation (2.96), the poly-

nomial expression of the feedforward force corresponding to (4.24) is given

by

Fv(s) =
1

g2
(P1s

5 + P2s
4 + P3s

3 + P4s
2 + P5s+ P6) (4.25)
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where

P1 =l1
5l2

5m1m2
3mC

P2 =l1
2l2

2m2
2(C1l2

3m1m2 + C2l1
3m1mC + C1l2

3m2mC+

C2l1
3m2mC + CC l1

3l2
3m1m2)

P3 =l1
2l2

2m2
2(gmC l1

3l2
2m1m2 + gmC l1

3l2
2m2

2 + C2CC l1
3m1+

C2CC l1
3m2 + gl1

2l2
3m1

2m2 + gl1
2l2

3m1m2
2 + gmC l1

2l2
3m1m2+

gmC l1
2l2

3m2
2 + C1CC l2

3m2 + C1C2m1 + C1C2m2 + C1C2mC)

P4 =l1
2l2

2m2
2(CCgl1

3l2
2m1m2 + CCgl1

3l2
2m2

2 + CCgl1
2l2

3m1m2+

CCgl1
2l2

3m2
2 + C2gl1

2m1
2 + 2C2gl1

2m1m2 + C2gmC l1
2m1+

C2gl1
2m2

2 + C2gmC l1
2m2 + C1gl2

2m1m2 + C1gl2
2m2

2+

C1gmC l2
2m2 + C1C2CC)

P5 =l1
2l2

2m2
2(g2l1

2l2
2m1

2m2 + 2g2l1
2l2

2m1m2
2 +mCg

2l1
2l2

2m1m2+

g2l1
2l2

2m2
3 +mCg

2l1
2l2

2m2
2 + C2CCgl1

2m1 + C2CCgl1
2m2+

C1CCgl2
2m2)

P6 =l1
2l2

2m2
2(CCg

2l1
2l2

2m2
2 + CCm1g

2l1
2l2

2m2) + l1
2l2

2m1m2

The form of the force polynomial in time is given by substituting in (4.25)

the various sn with the derivative of order n of (4.23), that is

Fv(t) =P1V
(5)
P (τ, q, t) + P2V

(4)
P (τ, q, t) + P3V

(3)
P (τ, q, t)+

P4V
(2)
P (τ, q, t) + P5V

(1)
P (τ, q, t) + P6VP (τ, q, t)

(4.26)

where P1, ..., P6 have the same values as in (4.25).

Position control

Setting now k = 5 in equation (4.7), that is having a trajectory of the payload

described by

XP (τ, q, t) =− 252q

τ 11
t11 +

(1386q)

τ 10
t10 − 3080q

τ 9
t9 +

(3465q)

τ 8
t8

− 1980q

τ 7
t7 +

(462q)

τ 6
t6

(4.27)
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and considering (2.97), the trajectory of the cart given the �nal position q

and the transient time τ is given by

Xc(s) =P1s
4 + P2s

3 + P3s
2 + P4s+ P5 (4.28)

where

P1 =
l1l2m1)

g2 (m1 +m2)

P2 = +
C2l1

3m1 + C1l2
3m2 + C2l1

3m2

g2l1
2l2

2m2 (m1 +m2)

P3 =
gl1

3l2
2m2

2 + gm1l1
3l2

2m2 + gl1
2l2

3m2
2 + gm1l1

2l2
3m2 + C1C2

g2l1
2l2

2m2 (m1 +m2)

P4 =
C2gl1

2m1 + C1gl2
2m2 + C2gl1

2m2

g2l1
2l2

2m2 (m1 +m2)

P5 =
g2l1

2l2
2m2

2 +m1g
2l1

2l2
2m2

g2l1
2l2

2m2 (m1 +m2)

The trajectory of the cart is therefore given by

Xc(t) =P1X
(4)
P (τ, q, t) + P2X

(3)
P (τ, q, t) + P3X

(2)
P (τ, q, t)+

P4X
(1)
P (τ, q, t) + P5XP (τ, q, t)

(4.29)

where P1, ..., P5 have the same values as in (4.31).

Inverting now equation (2.96) the force to be applied as a feedforward

signal to the cart in order to obtain trajectory (4.28) is given by

Fc(s) =
1

g2l1
2l2

2m2 (m1 +m2)
(P1s

6 + P2s
5 + P3s

4P4s
3 + P5s

2 + P6s)

(4.30)
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where

P1 =l1
3l2

3m2m1mC

P2 =C1l2
3m1m2 + C2l1

3m1mC + C1l2
3m2mC + C2l1

3m2mC + CC l1
3l2

3m1m2

P3 =gmC l1
3l2

2m1m2 + gmC l1
3l2

2m2
2 + C2CC l1

3m1 + C2CC l1
3m2+

gl1
2l2

3m1
2m2 + gl1

2l2
3m1m2

2 + gmC l1
2l2

3m1m2 + gmC l1
2l2

3m2
2+

C1CC l2
3m2 + C1C2m1 + C1C2m2 + C1C2mC

P4 = + CCgl1
3l2

2m1m2 + CCgl1
3l2

2m2
2 + CCgl1

2l2
3m1m2 + CCgl1

2l2
3m2

2+

C2gl1
2m1

2 + 2C2gl1
2m1m2 + C2gmC l1

2m1 + C2gl1
2m2

2 + C2gmC l1
2m2+

C1gl2
2m1m2 + C1gl2

2m2
2 + C1gmC l2

2m2 + C1C2CC

P5 =g2l1
2l2

2m1
2m2 + 2g2l1

2l2
2m1m2

2 +mCg
2l1

2l2
2m1m2 + g2l1

2l2
2m2

3+

mCg
2l1

2l2
2m2

2 + C2CCgl1
2m1 + C2CCgl1

2m2 + C1CCgl2
2m2

P6 =CCg
2l1

2l2
2m2

2 + CCm1g
2l1

2l2
2m2

The feedforward force signal corresponding to trajectory (4.27) is there-

fore given by

Fc(t) =
1

g2l1
2l2

2m2 (m1 +m2)
(P1X

(6)
P (τ, q, t) + P2X

(5)
P (τ, q, t)

+P3X
(4)
P (τ, q, t)P4X

(3)
P (τ, q, t) + P5X

(2)
P (τ, q, t) + P6X

(1)
P (τ, q, t))

(4.31)





Chapter 5

Simulations

In order to prove the performance of the di�erent techniques described in

the previous chapters a useful tool is simulation. In this chapter all the

techniques will be applied to the control of both simple and double pendulum

models built inside Simulink environment thanks to Simscape� Multibody�,

a multibody simulation environment for 3D mechanical systems.

First it will be shown how to model a double pendulum system with

the library Simscape Multibody, and the model will be used to show the

correctness of the linearized model obtained in Chapter 2. Then the control

techniques seen in Chapters 3 and 4 will be used to move the crane and their

performance will be compared in terms of residual oscillations and robustness

with respect to parameter variations.

Finally, a double pendulum will be controlled with all the techniques

5.1 Simscape� Multibody� model

Even if MATLAB® is a useful tool to work with di�erential equations, like

the ones that describe the pendulum dynamics, it is not easy to simulate a

generic model with variable inputs. Simulink® is a software, integrated with

MATLAB, explicitly designed for simulation purposes, that provides a graph-

ical editor, customizable block libraries, and solvers for modelling and sim-

ulating dynamic systems. A useful library for the simulation of mechanical

systems is Simscape� Multibody�, which provides a multibody simulation

61
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Figure 5.1: Model of a double pendulum on a cart in Simscape�Multibody�.

environment for 3D mechanical systems.

Simscape� Multibody� has been used to model a crane like a double

pendulum on a cart, as shown in Figure 5.1. First, it is necessary to insert

three blocks:

a World Frame, which de�ne the absolute coordinates of the system

a Solver Con�guration block which sets the parameters for the solution

of the di�erential equations related to the model

a Mechanism Con�guration block which sets mechanical and simula-

tion parameters that apply to an entire machine, like, for example,

the direction and the magnitude of the gravitational �eld.

Then it is possible to connect to the World Frame a series of blocks like

Rigid Transform which apply a rotation and a translation of coordinates

between its input and its output

Prismatic and Revolute Joints which permit the motion of the following

parts of the body in a determined direction. Some options allow to

control the motion of the joints (like shown in Figure 5.1, where the

position of the prismatic joint is controlled through the variable xc)

Solids which are the only objects to have proprieties like mass and inertia.

The result is the model of a mechanical system described by its geometri-

cal and physical proprieties and, by de�ning the proprieties of the surround-

ing environment, it is possible to accurately simulate its behaviour without
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Figure 5.2: Frame of the animation provided by Simscape Multibody simu-

lation.

the need of writing the equations of the dynamics. A useful tool provided by

Simscape Multibody is the possibility to see an animation of the system that

represent its movement during the simulation. A frame of the animation for

the case of the double pendulum is presented in Figure 5.2.

5.2 Validation of the linear model

In this section the linear models of the pendulum, obtained in Chapter 2,

will be validated comparing its free dynamics with the nonlinear Simscape

model one.

The validation of the linearized model will be done just for the case of

the double pendulum. In fact, the double pendulum is the most sensible one

with respect to model errors and having a sensitive dependence on initial

conditions, being the most simple example of chaotic system. The simple

pendulum instead can be linearized obtaining an accurate model for small

angles.

To do so, the free evolution of both linearized and Simscape models is
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Figure 5.3: Comparison between the free evolution of the complete model

(red line) and the linearized one (blue line) in a simulation lasting 25 seconds.

Angles are measured in radians, positions in meters.

analyzed giving the same initial conditions, that is,

x =

 x

θ1

θ2

 =

 0.314

0

0

 , ẋ =

 ẋ

θ̇1

θ̇2

 =

 0

0

0

 (5.1)

In particular, the data used for testing the model are shown in Table 5.1.

The results of the simulations are shown in Figure 5.3. It can be seen that

the linear model follows the free evolution of the nonlinear model for the �rst

seconds. After a while the errors due to the approximations introduced with

the linearization make the evolution of the two systems diverge. It has to be

noted that the linearization has low in�uence on the natural frequencies of

the system as the position of m2 keeps being comparable between the two

models. The linearized model can be used for control purposes, but it has

to be noted that the use of feedforward techniques, like input shaping and

input-output inversion, is highly dependent on the accuracy of the model, so

that the di�erences seen in the comparison of the two models in Figure 5.3

will lead to the presence of small residual oscillations.



IS techniques simulation 65

Table 5.1: Parameters of the model used in simulations.

Model data

mC 100 [kg]

m1 10 [kg]

m2 10 [kg]

l1 3 [m]

l2 3 [m]

CC 0.1 [Ns
m

]

C1 3 [Nms
rad

]

C2 3 [Nms
rad

]

ω1 1.49 [ rad
s

]

ξ1 0.002

ω1 3.39 [ rad
s

]

ξ2 0.004

5.3 IS techniques simulation

As mentioned in Chapter 2 and Chapter 3 all the theory needed for Input

Shaping control has been developed. From Chapter 2.3 the natural frequen-

cies and damping coe�cients are parametrized and can be used in simulation.

The convolution of a signal with a series of N impulses is equal to the

sum of N scaled signals delayed in time. While with o�-the-shelf industrial

hardware it is hardly probable to have an easy way to implement a convolu-

tion between signals, to scale and delay a signal is a basic task. Instead of

using the convolution block, available in Simulink, for IS technique a series

of delay and gain blocks has been used. The input signal is elaborated in two

blocks (Figure 5.4): each block scale and delay the signal according to the

corresponding natural frequency ωn and damping coe�cient ξ. The structure

of the blocks depend on the kind of input shaping technique used, but the

basic idea is the same. The blocks receive in input the damped periods of

the system and its damping coe�cients and elaborate the input signal ac-

cordingly to the chosen technique. In Figure 5.5 the implementation of ZV

technique is shown. First, coe�cient K is calculated accordingly to equation
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Figure 5.4: Subsystem used to shape the input signal of the System.

(a) Calculation of K, A1 and A2.
(b) Scaling and delaying of the signal.

Figure 5.5: Implementation of ZV IS for a single frequency.
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(3.12) and the amplitude of the two impulses is calculated following equation

(3.11) (Figure 5.5a). Then, inside the block named as convolution (Figure

5.5b), the signal is scaled and delayed. This process is repeated on two dif-

ferent stages, one for each frequency of the system. The implementation of

the other techniques follows the same scheme, changing the calculation of

amplitudes and delays.

Depending on how the cart is controlled, the driving signal can be both

a velocity ramp or a position setpoint to be reached. Typically, in order not

to stress the mechanical of real systems, the input signal is built through a

series of ramps that, in the case of position control, have to be �ltered in

order to obtain a non-impulsive acceleration pro�le.

In Figure 5.6 a comparison between IS techniques is made through sim-

ulation. A position reference, corresponding to a ramp going from a null

position to 3 [m] in 0.5 [s ], is given as an input to the cart. The input is

manipulated by IS blocks and it is given to the Simscape Multibody model.

The position of the payload is than calculated, plotted and compared to the

position of the cart in order to check the magnitude of residual oscillations.

The �gure shows that IS techniques reduces the residual oscillations, that

are not greater than 0.05 [m], while the oscillations corresponding to the

non-shaped input exceed the 3 [m]. It can be observed how performance in

terms of oscillation reduction increases with the total transient time of the

technique for ZV techniques. With EI techniques, even if transient times are

equal to the ones of ZVD and ZVDD, the performance in terms of oscillations

reduction is reduced, as they allow an oscillation up to 5% of the unshaped

case. Anyway, as demonstrated in Chapter 5.5, EI shapers are more robust

than ZV ones.

Usually, on industrial environments, overhead cranes are manually con-

trolled by the operator in velocity, and not in position. When the operator

pushes the command button, the cart starts accelerating until it reaches a

predetermined velocity and keeps moving until the command button is re-

leased. It is thereby interesting to simulate the performance of Input Shaping

techniques also with velocity controls.

The most common velocity pro�le used for the control of industrial mecha-

tronic machines is the trapezoidal one, characterized by an initial phase with
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Figure 5.6: Comparison between all IS techniques presented. The top graphic

represent the shape of the position reference after the shaping, the graphic

at the center the position of the payload and the bottom one the di�erence

between the two graphics, that is the oscillation of the payload with respect

to a frame attached to the cart. In the last graph the residual oscillation

produced by the unshaped signal is not reported.
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constant acceleration, a second phase with constant velocity and a third

phase of constant deceleration after which the cart stays put.

In order to check the entity of the oscillations in simulation the di�erence

between the position of the cart and the position of mass m2 has been made.

The results of velocity control simulations are shown in Figure 5.7

5.4 Input-output inversion technique simulation

It has been also possible to test input-output inversion technique through

simulation. In this chapter the passages followed for the simulation of input-

output inversion control on a double pendulum will be described. The sim-

ulation for the simple pendulum case follows the same scheme.

First, the state space matrices A and B are built according to (2.57) and

(2.58). Then, by changing the matrix C, the transfer functions described in

Chapter 2.4.2 are found. The form of the desired polynomial is symbolically

written as in equation (4.6), as well as its derivatives of order α (equation

(4.13)).

The desired transfer function (depending on the kind of control desired,

in position or velocity) is inverted and expressed as a polynomial in s plus

a transfer function representing the zero-dynamics of the system. The zero-

dynamics of the system is ignored because its contribute is negligible if the

system is lowly damped [20].

Following the passages of Chapter 4.2.2 the trajectory (velocity pro�le)

of the cart and the feedforward force signal are found in the interval [0, Tf ]

and then extended in [Tf ,∞].

The trajectory (velocity pro�le) of the cart is then given as input to the

model developed in Simscape and the output, corresponding to the horizontal

position of the payload, is then analyzed.

An example of the results of a simulation of position control is shown in

Figure 5.8, with a total movement time of 5 second, a total displacement

of 10 meters and the same model parameters used in the previous chapter.

In Figure 5.8a the cart and payload trajectories are plotted. In Figure 5.8b

the feed-forward force is reported, and in Figure 5.8c the di�erence between

the theoretical trajectory of the payload and the output of the model is
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Figure 5.7: Comparison between all IS techniques presented applied to ve-

locity control. The top graphic represent the shape of the velocity reference

after the shaping, the graphic at the center the velocity of the payload and

the bottom one the di�erence between the position of the cart and the posi-

tion of the mass m2, that is the oscillation of the payload with respect to a

frame attached to the cart. In the last graph the residual oscillation produced

by the unshaped signal is not reported.
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Figure 5.8: Simulation of position control using input-output inversion on a

double pendulum.
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shown. The magnitude of the residual oscillations is comparable with the

ones obtained using ZV IS technique, if the transient time τ is set as half of

the two periods sum. In Figure 5.8d the oscillation of the payload is reported,

calculated as the di�erence between payload and cart horizontal position. In

Figure 5.8e and 5.8f the trajectory of angles θ1 and θ2 is shown.

In Figure 5.9 the results of a velocity control simulation example are

shown, with a set �nal velocity of 10 [m/s ] and a transient time of 5 [s ].

The script used to inverse the dynamics is reported in appendix.

5.5 Robustness of the techniques to parameters

variation

The most important drawback of feedforward control techniques is their

strong dependence on the accuracy of the model of the system on which

they are based. In fact, IS technique �lter the input based on the natural

frequency and the damping of the system. These parameters are not always

available with the desired precision, and they can change, and not only be-

tween a movement and the other (for example thanks to a change in the mass

of the payload), but also during a single movement, for example in the case

of the crane when the payload is lifted. Input-output technique is strongly

dependant on the system as it explicitly invert the model mathematical de-

scription.

It is therefore utterly important to check how these techniques vary their

response when model parameters change, such as variation in payload mass

and cable length, that are the variables that are are most likely to change in

an industrial crane.

In this chapter only results for the double pendulum case will be reported,

for the robustness of this techniques in the case of simple pendulum has

already been studied in many publications (e.g. [33]).

In order to test the robustness of the techniques a series of simulations for

every technique has been executed. In particular, starting from the values

listed on the table in Chapter 5.2, the values of l1 and m2 have been varied

on a linear grid, varying l1 in the interval [1.2, 6] meters every 0.6 [m] and m2
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Figure 5.9: Simulation of velocity control using input-output inversion on a

double pendulum.
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in the interval [4, 20] kilograms with steps of 1 [kg ]. The entity of residual

oscillations has been measured by checking the maximum horizontal distance

of the payload from the position of the cart over a su�ciently long period of

time after the transient of the cart was ended. In this way, the oscillation

can be measured both in position and velocity control mode. The maximum

oscillation has been saved for every simulation and then plotted in order to

compare the robustness of the di�erent techniques.

The surfaces representing the robustness of the techniques are shown in

Figure 5.10. The robustness of the techniques does not change between posi-

tion (left graphs) and velocity (right graphs) control. The graphs have been

grouped in order to have all the techniques that requires the same amount

of transient time together. Input-output inversion technique transient time

has been scaled in order to be comparable with input shaping techniques.

For a transient time of
T1 + T2

2
, where T1 and T2 are the damped periods

of the system, input-output inversion techniques is slightly more robust than

IS, and ensures a better performance in the case of a perfect model too (Figure

5.10a and 5.10b). With a transient time equal to the sum of the two periods,

ZVD and EI techniques are implemented, along with input-output inversion

technique (Figure 5.10c and 5.10d). While input-output inversion technique

appears to grant better performances when the model is accurate, it is less

robust than ZVD IS and Extra-Insensitive IS. In fact, as expected, EI allows

small oscillations when the model is perfect, put is the most robust of the

techniques. In Figure 5.10e and 5.10f the techniques that introduce a delay

equal to 1.5 times the sum of the damped periods are plotted, i.d. ZVDD and

EI two-hump, along with input-output technique with equal transient time. It

can be seen that input-output works better than the others when the model is

perfect, but its performance rapidly deteriorate with uncertainties in model

parameters. ZVDD technique shows good performance over a wide range

of uncertainties, keeping residual vibrations low. Two-hump EI technique

appears to be less performing, but this is only due to the allowed oscillations

of 5%, that guarantees a robustness over a range that exceed the range of

uncertainties simulated, and that could be lowered for this reason to a value

of 2%.

During the control of a single movement in industrial cranes it is unlikely
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Figure 5.10: Maximum di�erence between cart and payload position showing

the robustness of various feedforward technique with respect to changes in

model parameters. The nominal parameters for which feedforward signals

have been built are l1 = 3 [m] and m2 = 10 [kg ].
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Figure 5.11: Maximum value of angle θ1 showing the robustness of various

feedforward technique with respect to changes in model parameters. The

nominal parameters for which feedforward signals have been built are l1 = 3

[m] and m2 = 10 [kg ].
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Figure 5.12: Maximum value of angle θ2 showing the robustness of various

feedforward technique with respect to changes in model parameters. The

nominal parameters for which feedforward signals have been built are l1 = 3

[m] and m2 = 10 [kg ].
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Figure 5.13: Robustness of the implemented techniques with respect to

changes in the length of l2.

for the mass to change, and it has anyway proven (Figure 5.10) that the

techniques are generally very robust with respect to payload mass changes.

On the other hand, the lifting of the payload is a common maneuver during

its movement, and a change of the cable length is more likely to happen. It

is therefore interesting to focus on how robust techniques are in the control

of industrial cranes with respect to changes in the length l2. A comparison

of this kind of robustness is shown in Figure 5.13.

5.6 Simple VS double pendulum model

For most of the industrial applications, it is enough to model the system as

a simple pendulum. This reduces the time spent to build the mathematical

model of the crane. In fact, it is enough to measure the length of the cable,
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the mass of the payload and the damping ratio of the main oscillation to

easily calculate all the variables of a simple pendulum model.

By the way, some applications may require a major suppression of residual

oscillations. For example, in the case of repetitive movements such is the

case of assembly chains, the variables of the model do not change and it

is reasonable to spend a little more time and resources to have a double

pendulum model of the system, granting reduced residual oscillations with

respect to a simple pendulum model. Moreover, for payloads transported

in a assembly chain, CAD models are usually available, and the physical

characteristics needed to calculate a more accurate model for the crane are

usually retrievable from there.

Other applications for which a double pendulum model can lead to great

improvements in terms of increased residual oscillations reduction are all

the applications where the payloads have important moment of inertia with

respect to an horizontal axis perpendicular to direction of movement of the

crane, such is the case of the concrete cylinder used in Chapter 8, and in

general all the applications where an hook of non-negligible mass is used.

To justify what is written above, some simulations have been performed

in order to prove the di�erences between simple and double pendulum model-

based techniques applied to a system with an hook of non-negligible mass

and a payload. The tests have been made on a double pendulum model,

with a total mass m1 + m2 = 20 [kg ] and a total length l1 + l2 = 6 [m].

The values of m1 and l1 have been varied, keeping total length and mass

constant, and input output inversion and ZV input shaping techniques with

single and double pendulum models approximations have been tested for both

velocity and position control. For the simple pendulum model, the mass of

the payload is set equal to the sum of the two masses of hook and payload,

that is equal to 20 [kg ], while the length of the cable is set equal to the

distance between the cart and the center of gravity of the system composed

by the hook and the payload.

In Figure 5.14 the results from simulation on velocity and position control

with input output inversion technique are reported. For the velocity, a �nal

velocity of 3 [m/s ] is set, with a transient time of 6 [s ]. For position control, a

total displacement of 20 [m] is carried out in a total time of 6 [s ] with input-
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output inversion techniques using both simple and double pendulum models.

It can be seen that the improvements introduced by the double pendulum

model are signi�cant, in particular when the mass of the hook is greater than

the one of the payload and when the distance between hook and cart is smaller

than the one between payload and hook. This makes sense, because as the

distance between hook and payload increases, the simpli�cation of both as a

single mass becomes more and more inaccurate. Moreover, as can be seen in

Figure 5.14, when the hook has a mass greater than the payload mass, the

accuracy of the simple pendulum model decreases, as the system can not be

approximated anymore as a system with a predominant low frequency.
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Figure 5.14: Comparison between residual oscillations using simple and dou-

ble pendulum models in input-output inversion techniques in position (on the

left) and velocity (on the right). The �rst four graphs present the maximum

oscillations of angles θ1 and θ2, while the latter ones the residual oscillation

of mass m2 calculated as the di�erence between payload and cart position.





Chapter 6

Experimental set-up

In order to test the techniques developed in the previous chapters on a real

system, a scaled model of an industrial overhead crane has been used. In this

chapter the whole system will be presented. In Chapter 6.1 the mechanical

part will be illustrated. The system is the same developed and used in [26],

to which some changes have been made. In particular, a second motor has

been added for the lifting of the payload. In order to accentuate the presence

of a second way of vibrating the payload has been substituted: instead of the

sack used in [26] a cylindrical concrete block has been used. In Chapter 6.2

the o�-the-shelf industrial hardware used will be presented, and in Chapter

6.3 a description of the control scheme will be shown.

6.1 Mechanical part and model parameters

The scaled model of an industrial crane can be seen in Figura 6.1. The

bearing structure consists in �ve square steel tubes with a side of 150 [mm], a

length of 2.5 [m] and a width of 5 [mm]. Connecting the top of the structure a

sliding guide is present, which sustain the sliding cart. Mounted on the sliding

cart there is the second motor, responsible for the lifting of the payload,

consisting in a cylindrical concrete block, with a diameter of 80 [mm] and a

length of 872 [mm]. The weight of the guide is 45 [kg ], the one of the sliding

cart is 5 [kg ], the motor and the mechanical structure needed for it to be

�xed to the cart together weight approximately mC = 38 [kg ], while the two

83
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Figure 6.1: Picture of the system used to test the control techniques.
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(a) (b)

(c)

Figure 6.2: 6.2a Distributed payload, consisting in a concrete cylinder. 6.2b

Distributed payload, consisting in two di�erent iron discs. 6.2c hook plus

pointmass payload.

payloads used weight between 9.8 and 8.35 [kg ].

The discussed techniques have been tested on two di�erent con�gurations.

On the �rst con�guration, a distributed payload consisting of a chylin-

drical concrete block has been used. While the length of the cable that

connects cart and payload can vary by actuating the motor, the length of l2

of the double pendulum model of the system and the masses m1 and m2 can

be found using the equivalent system for distributed payloads presented in

Chapter 2.2.3 applied to the distributed payload reported in Figure 6.2a. In

particular, using (2.62) with the measured mass and length of the payload,

the results are: 
m1 = 2.45 [kg]

m2 = 7.35 [kg]

l2 = 0.581 [m]

(6.1)

For the purpose of testing the techniques, length l1 has been �xed to a value

l1 = 1.120 [m] for the case of distributed payload.

The second con�guration consists in an hook of not negligible mass, which

is represented by a disc of mass m1 = 4.57 [kg ], and a payload consisting in

a disc with mass m2 = 3.78 [kg ], as shown in Figure 6.2b. Both hook and
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Figure 6.3: Mechanical structure of the system.

payload can in this case be modelized as a masspoints.

The square consisting in the yellow tubes in Figure 6.3 and the guide are

sustained by the green tubes, which sustain the whole weight of the struc-

ture. In order to ensure stability and sti�ness to the structure four other

rectangular steel tubes has been added to counteract the bending moments.

Thanks to the oversized dimensions of the tubes and the hyperstaticity of the

system the structure can be considered as rigid. As proof of this approxima-

tion, a numerical example has been reported in [26] with very conservative

conditions.

The top of the structure is composed by a recirculating ball bearing guide,

with a length of 2.5 [m]. The cart is actuated by a motor through a gearbox

and a power transmission belt. The linear friction coe�cient of the cart,
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Figure 6.4: Scheme of the lifting system.

calculated in [26], is CC = 85 [Ns/m].

One of the possible future works on this system is the study of control

techniques on time-variant systems, and for this reason a second motor has

been added to vary the length of the cable through the lifting of the payload.

A study of forces and inertia has been made, and the supporting system

has been changed from the setup used in [26], adding a second motor and

two pulleys. A scheme of the new part is shown in Figure 6.4. For a deeper

review of the lifting system, see [7].

The two motors, the one that actuates the sliding of the cart and the one

which lifts the payload, are both brushless motors. The model of the two

motors is the same, that is B&R 8LSA34.ee030�gg-0, like the one shown in

Figure 6.5a. Being brushless motors they can satisfy requirements of high

precision positioning with fast dynamics, such is the case of the system built.

The main speci�cations of the motor are listed in Table 6.1. The motors are

equipped with Endat absolute multi-turn encoders. The main advantage of

EnDat encoders is that there is no need for an initial homing procedure of

the system when it is turned on. The absolute position of the motor is saved

when the system is turned o�, and when it is turned on the actual position is

known even if the motor has been moved for more than one turn (up to 4096

turns). Both the motors are equipped with a planetary gearboxes, with a

gear ratio of 1:10, like the one shown in Figure 6.5b. The main speci�cations

of the gearboxes are reported in Table 6.2.

The last parameters needed in order to apply the techniques seen to the

crane are the natural frequencies and the dampings. It is possible to calculate



88 EXPERIMENTAL SET-UP

Nominal velocity 3000 [rpm]

Nominal torque 1.4 [Nm]

Nominal power 440 [W ]

Nominal current 0.96 [A]

Nominal stall torque 1.5 [Nm]

Stall current 1.03 [A]

Maximum Torque 6 [Nm]

Maximum current 4.43 [A]

Maximum angular acceleration 100000 [rad/s2]

Maximum velocity 12000 [rpm]

Torque constant (Kt) 1.46 [Nm/A]

Stator resistance 32.3 [Ω]

Stator inductance 73.12 [mH]

Electrical time constant 2.26 [ms]

Thermal time constant 35 [min]

Moment of inertia 0.6 [kgcm2]

Weight 2.89 [kg]

Table 6.1: Motor nominal speci�cations.

Gear ratio 1 : 10

Nominal output torque 15 [Nm]

Maximum output torque 24 [Nm]

Moment of inertia 0.06 [kgcm2]

Weight 0.9 [kg]

Table 6.2: Main parameters of the gearbox.
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(a) B&R 8LSA34.ee030�gg-0 motor. (b) Particular of the planetary gearbox.

Figure 6.5: Motors and gearboxes used for the motion of the cart and the

lifting of the payload

Figure 6.6: Logarithmic decrement of a second order system.
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the dampenings through experimental measures using the logarithmic decre-

ment. Referring to Figure 6.6, the logarithmic decrement δ can be calculated

as

δ = ln

(
X0

X1

)
(6.2)

and, for the general case of non-consecutive peaks,

δ =
1

k
ln

(
X0

Xk

)
(6.3)

Given

δ = ξωnTs (6.4)

, where Ts is the dumped period de�ned as

Ts =
2π

ωs
=

2π

ωn
√

1− ξ2
(6.5)

then

δ =
2πξ√
1− ξ2

(6.6)

and �nally, by inverting (6.6), we have

ξ =
δ√

(2π)2 + δ2
(6.7)

In order to obtain the values ξ1,2 for the model, the �rst and second

natural frequencies of the payload have been excited manually, and the angle

θ1 measured, giving the results shown in Figure 6.7 for the con�guration of

distributed payload.

From (6.3), (6.7) and the data in Figure 6.7, the following damping ratios

have been calculated:

ξ1 =0.003

ξ2 =0.038
(6.8)

The undamped frequencies can be found by using (2.80) with the pa-

rameters found or by checking the damped period Ts in Figure 6.7 and by

inverting Ts. From the model, we �nd

ω1 =2.48 [rad/s ]

ω2 =9.81 [rad/s ]
(6.9)
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Figure 6.7: Trajectory of θ1 after excitations of 6.7a the �rst natural fre-

quency and 6.7b the second natural frequency. The ordinate represents the

value returned by the ADC, an unsigned integer.

The values of the coe�cients C1 and C1 that returns the values of (6.8)

given (6.9) by solving (2.84) can be approximated as

C1 =0.1 [Nms/rad ]

C2 =0.4 [Nms/rad ]
(6.10)

Following the same process, the parameters for the con�guration of hook

and payload are

ξ1 =0.004

ξ2 =0.05

ω1 =2.47 [rad/s ]

ω2 =5.54 [rad/s ]

C1 =0.15 [Nms/rad ]

C2 =0.7 [Nms/rad ]

(6.11)

Summarizing, the parameters that fully describe the model of the crane

are reported in Table 6.3 for the con�guration with distributed payload, and

in table 6.4 for the con�guration with hook and masspoint payload.

In Figure 6.8 the zeros and poles are plotted in a logarithmic scale for

both distributed and hook and mass payloads used. It can be seen how the



92 EXPERIMENTAL SET-UP

mC 38.0 [kg]

m1 2.45 [kg]

m2 7.35 [kg]

l1 1.12 [m]

l2 0.581 [m]

CC 85 [Ns/m]

C1 0.1 [Nms/rad]

C2 0.4 [Nms/rad]

ω1 2.48 [rad/s]

ω2 9.81 [rad/s]

ξ1 0.003

ξ2 0.038

Table 6.3: Parameters of the crane model with distributed payload.

mC 38.0 [kg]

m1 4.57 [kg]

m2 3.78 [kg]

l1 1.03 [m]

l2 0.86 [m]

CC 85 [Ns/m]

C1 0.15 [Nms/rad]

C2 0.7 [Nms/rad]

ω1 2.47 [rad/s]

ω2 5.54 [rad/s]

ξ1 0.004

ξ2 0.05

Table 6.4: Parameters of the crane model with hook and mass payload.
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zeros are far faster than the poles and can therefore be neglected for control

purposes.

6.2 Electrical components

In this section the electrical components of the system will be presented. As

shown in Figure 6.9, four B&R o�-the-shelf industrial products have been

used in order to control the motors and to acquire signals. A PLC, marked

with the number 1 in Figure 6.9, computes the main code and communicates

with the other modules. In particular, it communicates through an HUB

with a PC platform (used for programming, debugging and data acquisition)

and with a Power Panel, from which the operator can set parameters and

send commands to the system. Even if the trajectories to be followed are

built by the CPU, an ACOPOS servo driver, marked with number 4 in Fig-

ure 6.9, receives the setpoint sent by the PLC and control the movements of

the motors. Servo drive and PLC communicate through ETHERNET POW-

ERLINK, a deterministic open protocol introduced by Austrian automation

company B&R in 2001.

6.2.1 PLC

The PLC used mounts a INTEL-compatible Celeron 650 CPU, with a cycle

time up to 200 [µs] and runs a multitasking real time OS named Automation

Runtime (see Chapter 6.3.2). In Figure 6.10 a of the PLC is presented. The

ROM memory of the PLC consists of a removable compact �ash memory.

The PLC has two Ethernet ports that support POWERLINK and Ethernet

communication, two USB ports and a RS232 interface module. Moreover

X2X native communication is supported. The PLC is powered with 24 [V ]

by an external module, marked in Figure 6.9 with the number 2, which is

powered by a general 220 [V ] alternate current power supply. Some I/O

modules have been added to the standard PLC con�guration, in order to be

able to acquire data from external sensors (e.g. sensors like potentiometers

or mechanical limit switch). In particular, a module for 12 digital inputs is

present, along with a 12 digital outputs module, a 2 analog inputs and a 2
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(a) Zeros and poles with the distributed payload.
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(b) Zeros and poles with the hook and mass payload.

Figure 6.8: Poles and zeros of the system with the payloads used. The zeros

can be neglected for control purposes, due to their fast dynamics.
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Figure 6.9: B&R Electrical components used.

Figure 6.10: B&R X20CP1486



96 EXPERIMENTAL SET-UP

Figure 6.11: B&R Power Panel 4PP320_1043_31

analog output modules.

6.2.2 Power Panel

In order to create an interface from the operator to the system a B&R Power

Panel has been used. The panel used is a 10.4" resistive touch screen, like the

one shown in Figure 6.11, connected to the PLC using Ethernet protocol by

means of an HUB. The screen is programmed with the visualization section

of the Automation Studio B&R proprietary software. The power panel has

its own compact �ash in which are stored the informations needed to handle

the interface, and it is powered with 24 [V ] by the the same external module

that powers the PLC.

6.3 Control scheme and components

In this section the control part of the system will be presented. First, the

servo driver used will be shown, presenting the B&R proprietary control

scheme implemented inside the driver. Then, an overview of the operating

systems and IDE used will be shown. Finally, the main program that imple-
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Figure 6.12: B&R ACOPOS 8V1010.50-2

ments the motion of the cart following the techniques seen in the previous

chapters will be discussed.

6.3.1 Servo driver

The servo driver used to control the motion of the motors is an ACOPOS

8V1010.50-2, like the one shown in Figure 6.12. It is provided with a POW-

ERLINK interface, used to communicate with the PLC, and a AC120 plug-in

module to communicate with the EnDat encoder of the motor. The driver

runs a NC operating system; it directly communicates to a part of the pro-

gram implemented on the PLC, the NC Manager, which provides the driver

with some parameters, called ParID, in order for example to tune internal

control loops.

The internal control scheme operated by the servo driver is shown in

Figure 6.13. It is a cascade control scheme, with an internal current loop, an

intermediate velocity loop and an external position loop. The parameters of

the controllers of the two outer control loops (that have a PID structure) can

be set by the user modifying particular ParIds. The inner one, the current

loop, is closed to external tuning.

Figure 6.14 shows the internal control schemes of the position and velocity
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Figure 6.13: Internal control scheme of the ACOPOS servo driver [1].

control loops, and focuses on the scheme that shows how it is possible to insert

a torque feedforward signal to the driver.

The outer position control runs with a cycle time of 400 [µs] and use a PI

controller equipped with an anti-windup part to avoid integral overcharges.

The output of position controller (v_set) is the sum of the signal calculated

after the PI controller and the anti-windup and a value called "v_feed"

resulting from a prediction block.

The velocity loop works at 200 [µs] and follows the same pattern of the

position one. A PI control with anti-windup is used. The feedback signal is

a velocity, usually noisy, and it is thereby �ltered by a low-pass �lter. It is

also possible to provide a feedforward torque signal.

The inner one is a torque control loop, with the possibility to compensate

Coulomb and viscous friction and with a block that specify the entity of the

motor's load. The torque is then converted to current by means of a block

that uses the characteristic curve of the motor used on the project.

6.3.2 Automation Runtime

Automation Runtime is the proprietary real time operating systems ran by

B&R components. It can run on every CPU-based hardware produced: PLC,

industrial PCs and Power Panels. This OS allows the CPU to run tasks with

di�erent priorities in a deterministic way. Every task has its priority and its
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Figure 6.14: Scheme of position, velocity and torque control loops.
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cycle time of execution, but it can also allow some "tolerance" in the respect

of this cycle time, depending if the task is more or less critic. The main

feature of Automation Runtime are the following ones:

� Guaranteed highest possible performance for the hardware being used

� Runs on all B&R target systems

� Makes the application hardware-independent

� Applications can be easily ported between B&R target systems

� Cyclic system guarantees deterministic behaviour

� Con�gurable jitter tolerance in all task classes

� Supports all relevant programming language such as IEC 61131-3 and

C

� Extensive function library conforming to IEC 61131-3 as well as the

expanded B&R Automation library

6.3.3 Automation Studio

Automation Studio is a proprietary software for programming all the compo-

nents provided by B&R. Automation Studio is an IDE that support all the

programming languages of IEC 61131-3 standard:

� Instruction List (IL)

� Structured Text (ST)

� Ladder Diagram (LD)

� Function Block Diagram (FBD)

� Sequential Function Chart (SFC)

Moreover, Automation Studio supports three other languages:

� ANSI C
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� B&R Automation Basic

� Continuous Function Chart (CFC)

Automation Studio allows to develop the software part of the project

independently from the hardware components; it also support simulations,

so that the project can be tested before being transferred to the hardware.

A tool that would have facilitate the implementation of the technique that is

available in Automation Studio is the "B&R Automation Studio Target for

Simulink" that allows the auto-coding and the transfer of Simulink schemes

inside the project. This strongly facilitate and accelerate the process of

programming model-based applications and rapid prototyping, particularly

when the model's scheme are already available on Simulink. For the purposes

of this thesis the schemes and blocks used in Chapter 5 could have been used.

By the way, the function blocks that implement the techniques seen have been

programmed by scratch to show the applicability in industrial environments,

even without having access to Mathworks or B&R particular licenses for

auto-coders

For more informations about Automation Runtime and Automation Stu-

dio see [1].

6.3.4 The main program

In this section the structure of the main control implemented in Automation

Studio's environment will be discussed. The main program structure is based

on a standard B&R Finite State Machine for industrial machines, modi�ed

in order to meet the needs of the application. Once again, this also shows

how the techniques can be easily applied to industrial application.

The core of the program is the code inside the task named asMovePosNeg,

which manages the coordination of the cart's movements. Other tasks are

present, e.g. for the management of the external sensors or the visualization.

All the techniques studied have been developed in Function Blocks (writ-

ten in ANSI C or Structured Text) and included in exportable libraries, so

that they can be easily exported to other projects. The implementation of

those Function Blocks will be discussed in greater detail in Chapter 7.
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Figure 6.15: Simpli�ed scheme of the Finite State Machine used.

The main program is written in ANSI C and the Finite State Machine is

implemented with a switch statement where every case consists in a single

state of the FSM graphically represented in Figure 6.15. Actually, what

is reported in Figure 6.15 is just a simpli�cation of the complex of di�erent

states implemented, as will be discussed in Chapter 7, but is a more schematic

representation of the program's real �ow.

Below a brief description of every operative state of the machine is given.

In Step IDLE the PLC waits the command to switch on the power to the

servo driver and start the motion. It is a safe state, where the cart does not

have applied torque. When the PLC is turned on it automatically goes in

Step IDLE, and it returns to Step IDLE from STEP_ERROR after the reset or

when the operator decide to stop the actual movement through STEP_DONE.

When the CPU in Step IDLE receives the activation command from the

Power Panel it activates the loops of the servo driver and the motors are
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activated. Subsequently, the machine goes to STEP_WAIT_COMMAND, where

it wait for operative commands. From STEP_WAIT_COMMAND the machine

can go to any of the possible operative states described below.

There are two di�erent ways of moving the cart in position without us-

ing the control techniques described. Both relative and absolute position

can be given to the machine. In case of relative movements, the machine

goes in STEP_MOVE_ADDITIVE and the cart accelerate and decelerate with

the setted values till the setted value of velocity for the total displacement

given by the operator. In case of absolute movements, the machine goes in

STEP_MOVE_ABS and the cart goes to the absolute position given by the op-

erator with setted accelerations and velocity. The cart can also be moved in

velocity: the cart moves with setted velocity until the dedicated command

button is released. This task is carried out by STEP_MOVE_VELOCITY.

Regarding intelligent velocity control, all Input Shaping techniques seen

in Chapter 3 have been implemented. Depending on the command sent by

the operator, the control of the cart can be done with Zero Vibration IS

(STEP_IS_ZV), Zero Vibration and Derivative (STEP_IS_ZVD), ZVDD In-

put Shaping (STEP_IS_ZVDD) and with Extra-Insensitive techniques with

three or four impulses (STEP_IS_EI and STEP_IS_EI_2_HUMP). Inverse

dynamics velocity control is carried out by STEP_DYN_INV and by

STEP_DYN_INV_TORQ depending on the presence or not of torque feedfor-

ward.

As for intelligent position control, a desired displacement and transient

time can be set, and the motion can be done both with inverse dynamics

techniques (STEP_DYN_INV_POS) that directly invert the position and uses

torque feedforward and with Input Shaping techniques (STEP_IS_POS), for

which a trajectory has to been shaped. More details on the implementation

of this technique are presented in Chapter 7.1.2.

If, for any reason, the operator decides that the movement has to be ter-

minated and that the motor has to be deactivated, the machine can go from

any operative state to STEP_DONE, from where it reach again STEP_IDLE.

In case of internal errors (e.g wrong setted parameters), when the set

velocity/acceleration exceeds the setted values or when the operator press

the red emergency button, the machine goes to STEP_ERROR. In order to
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return to operative states the errors have to be expressively acknowledged

by the operator.

6.4 Product code of used components

As already done in [26], here the product codes for the industrial components

used for the experimental set-up. This will facilitate future modi�cations of

the set-up itself.

� Brushless motors: 8LSA34.ee030�gg-0, B&R;

� Planetary gearbox: 8GP40-060hh010klmm, B&R;

� PLC: X20CP1486, B&R;

� Digital inputs module: X20DI9371, B&R;

� Digital outputs module: X20DO9322, B&R;

� Analogical inputs module: X20AI2622, B&R;

� Analogical outputs module: X20AO2622, B&R;

� Power Panel: 4PP320.1043-31, B&R;

� Servo drivers: Acopos1010.50-2, B&R;

� Power supply: Power Supply 1100, B&R;



Chapter 7

Controller implementation

After having developed the theory in Chapter 3 and Chapter 4 and having

simulated the techniques in Chapter 5, here the control techniques for the

elimination of residual oscillations will be implemented on industrial o�-the-

shelf components and applied on a real system, described in Chapter 6.

First the implementation of input shaping techniques will be shown for

both the cases of velocity and position control, along with the generation of

the trajectory to be shaped.

Then the implementation of Input-Output inversion will be presented,

showing how the results found in Chapter 4 have been applied to the control

of the crane. Both velocity and position control will be presented, along with

the force feedforward signal calculus.

In Figure 7.1 the main HMI control page is shown, divided in all the parts

that use di�erent control techniques.

7.1 input shaping

There are two possible ways to control the movement of an industrial over-

head crane. The most common one is the velocity control. With velocity

control, the operator pushes a button and the crane accelerates and starts

moving with a setted velocity in the desired direction. When the operator

releases the button, the crane decelerates and stops its motion. The second

way an industrial crane can be controlled is in position. When the command

105
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Figure 7.1: Main control page.

is given, the crane follows a given trajectory and reach the setted position.

Both velocity and position control are matter of interest in industrial re-

search, as the �rst one is used when a human operator is directly controlling

the payload, while the second one is used for example in fully automated

warehouses.

As already explained, it is utterly important to avoid residual oscillations,

both in case of velocity and position control. input shaping techniques for

residual oscillations minimization can be applied in any case. In fact, the

system natural frequencies and dampenings do not change depending on the

way the system is controlled.

7.1.1 Velocity control

In the case of velocity control, an acceleration pro�le has to be given to the

system in order to de�ne the law of motion to be followed during the transient

between the moment the button is pressed and the moment the cart reach

the desired constant velocity. A constant acceleration law of motion has been



input shaping 107

Figure 7.2: Shape of velocity control used. ta and td are the acceleration and

deceleration time.

chosen to characterize this transient, for it is the easiest way to de�ne the

acceleration between null and constant velocity, and also because is the law

of motion that takes full advantage of the acceleration limits of the motor.

The velocity control pro�le can thereby be de�ned as

v(t) =


0, if t ≤ 0

at, if 0 < t < Vs
a

Vs, if t ≥ Vs
a

(7.1)

where Vs is the operating speed and a the acceleration, and the command

button is pressed at t = 0. When the button is released, the cart deceler-

ates until it stops. The pro�le described by (7.1), with the addition of the

deceleration part just described, is shown in Figure 7.2.

Equation (7.1) has been expressed in ST code in Automation Studio as a

function, requiring as parameters acceleration a, �nal velocity Vs and time t

and returning the value v(t).

For the implementation of the �ve input shaping techniques seen �ve

di�erent Function Blocks have been built. Since IS techniques require the

scaling and delaying of the input signal, an internal circular bu�er in the form

of a vector of �oats has been initialized inside every Function Block used.



108 CONTROLLER IMPLEMENTATION

Care must be taken in the dimension of the vector. In fact, every element

of the vector memorize a sample of the signal. Given the sampling time (in

our case corresponding to the cycle time of the main task), the dimension

of the bu�er has to be enough to memorize at least a number of samples

corresponding to half of the period of the system for ZV, a whole period for

ZVD and EI techniques and a period and a half for ZVDD and EI two hump.

Every Function Block requires as input parameters a natural frequency,

correspondent damping coe�cient and the sample of the input signal to be

shaped. Inside the Function Block the parameterK is calculated using (3.12)

and then used to calculate the amplitudes of the impulses to be convolved

with the input signal. For ZV the amplitudes are given by (3.13), for ZVD

by (3.15) and for ZVDD by (3.16). For EI and EI two hump the coe�cients

are calculated as reported in [33], choosing a maximum residual oscillation

of Vtol = 5%.

The input signal sample is stored inside the circular bu�er and the counter

is updated. The output of the function is updated multiplying the current

sample for A1, the sample corresponding to t2 taken from the circular bu�er

for A2 and so on. If the system has two or more natural frequencies, two IS

Function blocks can be connected in series, with the same structure used in

simulation (see Figure 5.4).

When a command button inside the section marked with 1 in Figure 7.1

is pushed, the state machine goes from the state STEP_WAIT_COMMAND to

the state in Figure 6.15 that manages the corresponding techniques. Actu-

ally, four di�erent states for every techniques have been created. Two states

coordinates the movement in one direction, one for the acceleration and the

constant velocity movement and one for the deceleration, and other two coor-

dinates the movement in the other direction. For example, when the button

for velocity control in left direction with ZV �lter is pushed, the machine

goes to state STEP_LEFT_IS_ZV, which, keeping track of the time, calls the

ramp function in order to generate a setpoint corresponding to (7.1). The

two ZV function blocks are then called, giving the current value of the ramp

as input of the �rst block, and the output of the �rst block as input to the

second block. The output of the second block is then set as reference to

ACOPOS servo driver.
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Figure 7.3: Example of velocity control.

When the button is released, the machine goes to a state that coor-

dinates the deceleration. In the case of ZV, the machine goes to state

STEP_DEC_LEFT_IS_ZV. The setpoint of the velocity loop is a negative

ramp, going from Vs to zero with the desired deceleration, �ltered through

two ZV Function Blocks.

Every time the machine enters a state in which input shaping Function

Blocks are used, the circular bu�er of the corresponding Function Blocks

must be re-initialized to zero.

In Figure 7.3 an example of velocity control is shown. For this example,

the system periods have been set to T1 = 3s and T2 = 1.5s At time t = 0s the

user pushes the button, and the ramp function generates the velocity pro�le

corresponding to the yellow line. At time t = 6.75s the button is released and

the velocity returns to zero following the same ramp pro�le. The yellow line

is �rst �ltered with ZV technique with a period of T1, generating the blue

pro�le. This blue pro�le is the input of the second �lter, which �lter with

period T2, and the output, corresponding to the orange line, is the velocity

reference for the physical system.

7.1.2 Position control

As already said, input shaping techniques can be used also in the case of

position control.

First, a reference trajectory must be de�ned. Even if many choices are

possible, a trapezoidal motion results convenient, as it is characterized by
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Figure 7.4: Trapezoidal velocity pro�le used in position control. T1 and T2

are the delays due to the shapers.

the same shape in velocity as the on used in the previous chapter (see Figure

7.2). In fact, the total displacement corresponds to the integral of the curve.

For the position the setpoint is absolute, and set on the Power Panel,

where the total movement time is also de�ned. When the button in the

section marked with 2 in Figure 7.1 is pushed,the actual position of the cart

is read, a relative position setpoint is calculated and the machine goes to state

STEP_CYCLIC_POSITION_IS. Here a Function Block is used to calculate the

setpoint for every instant of time.

Lets take a look to Figure 7.4. In order to complete the movement of the

cart in the desired time, the input trajectory has to take into account the

delay introduced by the shapers. In particular the input trajectory has to

end at time Ttot−T1−T2, where Ttot is the total time of the movement setted,

and T1 and T2 the delays introduced by the shapers. T1 and T2 depends on

the technique used. As already seen, for ZV the delay correspond to half the

damped period, for ZVD and EI to a whole damped period and for ZVDD

and EI two hump to a period and a half.

Given the accelerations (assume for simplicity that acceleration and de-

celeration have the same value a), the acceleration time is given by

Ta = Td =
Vs
a

(7.2)

where Vs is now unknown. The velocity can be found by equalizing the

integral of the trapezoid in Figure 7.4 to the displacement x corresponding
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to the di�erence between �nal and initial position, that is by solving

Vs(Ta + Td)

2
+ Vs(Ttot − T1 − T2 − Ta − Td) = x (7.3)

and, by replacing (7.2) in (7.3),

− 1

a
V 2
s + Vs(Ttot − T1 − T2)− x = 0 (7.4)

Solving (7.4) leads to

Vs1,2 =
a

2
(Ttot − T1 − T2)±

√
(Ttot − T1 − T2)2 − 4

x

a
(7.5)

which makes sense only with the minus. In fact, with the plus a null

displacement would lead to a positive velocity.

Now that Vs is known, the velocity pattern in Figure 7.4 can be described

as

v(t) =



0, if t ≤ 0

at, if 0 < t ≤ Vs
a

Vs, if Vs
a
< t ≤ (Ttot − T1 − T2 − Vs

a
)

Vs − at, if (Ttot − T1 − T2 − Vs
a

) < t < (Ttot − T1 − T2)

0, if t ≥ (Ttot − T1 − T2)

(7.6)

A velocity pro�le like (7.6) can be easily implemented in a function using

conditional statements like if/elseif, and could be given as setpoint to

the velocity control loop of the ACOPOS. However, in this way the position

control loop would be open, and there would be no certainty of the cart to

have reached the desired position, because the velocity tracking error would

not be compensated.

A solution to this problem is to integrate analytically (7.6) obtaining the

corresponding trajectory, plotted in Figure 7.5, and then to close the position

control loop with the trajectory found. If possible, equation (7.6) can be used

as a feedforward velocity signal.

By integrating (7.6) the trajectory is described by
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Figure 7.5: Trajectory obtained by integrating the trapezoidal velocity pro�le

in Figure 7.4. T1 and T2 are the delays due to the shapers.

x(t) =



0, if t ≤ 0

1
2
at2, if 0 < t ≤ Vs

a

1
2
aT 2

a + Vs(t− Ta), if Vs
a
< t ≤ (Ttot − T1 − T2 − Vs

a
)

1

2
aT 2

a + Vs(Tconst)

+ Vs(t− Tconst − Ta)−
1

2
a(t− Tconst − Ta)2,

if (Ttot − T1 − T2 −
Vs
a

) <

t < (Ttot − T1 − T2)

x, if t ≥ (Ttot − T1 − T2)
(7.7)

where Tconst = Ttot − T1 − T2 − 2Ta.

The trajectory de�ned by (7.7) is implemented in a Function that re-

ceives the total displacement x, the acceleration value a, the total time of

the movement Ttot, the entity of the delays caused by the shapers T1 and

T2 and the time t and returns the value of the position corresponding to

the trajectory in Figure 7.5 at time t. This function is cyclically called in

STEP_CYCLIC_POSITION_IS and the output is given as input to a Function

Block implementing one of the input shaping techniques seen, accordingly to

T1 and T2 values setted. For the application ZV technique has been chosen,

as it is the one that leads to the smallest delay, thereby allowing the set of

small total time Ttot. The output of the �rst IS Function Block is set as input

to the second IS Function Block, following the scheme in Figure 5.4, and the
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Figure 7.6: Position control scheme, with velocity feedforward signal.

output of the this second FB is set as reference trajectory to the external

position control loop. By deriving the shaped output, or by using 7.6 �ltered

by other 2 FBs, the shaped velocity can be used as a feedforward signal for

the internal velocity loop control, as shown in Figure 7.6.

7.2 Input-output inversion

The second technique implemented is the input-output inversion. As seen in

Chapter 4, it consists in �nding a mathematical model of the system in the

form of a transfer function, de�ning a desired trajectory of the output and

then inverting the model, in order to �nd the corresponding input trajectory.

The dynamics inversion of the crane has already been treated in Chapter 4.2,

so this section will focus on its implementation on industrial components.

In particular, the implementation will regard only the dynamics inversion

of a the crane modelled with a double pendulum for a series of reasons. First,

the implementation of simple pendulum input-output inversion has already

been treated in [26] on the same experimental set-up. Moreover, a simple

pendulum model would not be appropriate for the description of the system,

because the payload has been modi�ed with respect to the set-up used in

[26] and is now distributed, therefore it cannot be approximated as a mass

point. As shown in Chapter 5.6, the approximation of the system as a simple

pendulum model would lead increased residual oscillations. The values of

m1, m2 and l2 are reported in (6.1).

As in the case of input shaping, both velocity and position control will

be implemented.
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7.2.1 Velocity control

In order to control the velocity of the payload, the user has to push a button

on the panel, one of the two contained inside the section marked with 3 (for

velocity control loop only) and 4 (for velocity control loop plus torque feedfor-

ward) in Figure 7.1, and the machine goes from state STEP_WAIT_COMMAND to

what corresponds to STEP_DYN_INV in Figure 6.15. In analogy with what

seen with the implementation of input shaping control, STEP_DYN_INV is

composed by two di�erent states, one for the acceleration and the constant

velocity movement and one for deceleration.

The velocity pro�le of the cart is implemented inside a Function Block.

It receives as input �nal required velocity q (in the form of the di�erence

between initial and desired velocity), transient time τ , the parameters that

de�ne the model (m1,m2, l1, l2) and �nally the time t. The polynomial (4.24)

that gives the velocity of the cart at time t is calculated and returned as

output.

Optionally, also the force to be applied to the cart can be calculated

with (4.25). It can then converted in torque and scaled according with the

transmission and given as feed forward signal to the inner torque control

loop.

Every cycle time the Function Block is called inside state STEP_DYN_INV

with a time t incremented of 0.8[ms], corresponding to the cycle time of the

task, and the output of the function block is set as setpoint to the velocity

control loop and, if available, as feedback to the inner torque control loop.

When time t exceed transient time τ , the polynomial has �nished the

transient, and the FB returns the �nal value for the velocity for every t > τ .

When the button is released, the FB is called with di�erent values for

initial and �nal velocity, and a the polynomial is built in order to have a

�nal velocity equal to zero. The feedforward torque signal is also calculated.

An interval of time equal to τ after the button has been released, that is

when the cart is still, the machine return to state STEP_WAIT_COMMAND.

An example of the velocity pro�le during a movement in velocity mode

is shown in Figure 7.7.
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Figure 7.7: Velocity pro�le of the cart compared with the velocity pro�le of

the payload. At time t = 0 the button is pressed, and at time t = 2 the

operating speed is reached. At time t = 4 the button is released, and the

payload decelerate till it reaches v = 0.



116 CONTROLLER IMPLEMENTATION

7.2.2 Position control

Input-output inversion technique can be exploited also in the case of position

control. A setpoint position is given, along with the total time for the move-

ment; a trajectory for the cart is found so that the payload moves from initial

to �nal position with a polynomial trajectory and zero residual oscillation.

In section 5 of Figure 7.1 both movement time and absolute �nal po-

sition can be set. When the button is pushed, the machine goes from

STEP_WAIT_COMMAND to state STEP_DYN_INV_POS. Here a Function Block

is cyclically called, receiving as input the parameters of the model (m1,m2, l1, l2...),

initial and �nal position, total time for the movement τ , and actual time t.

The Function Block returns the position and torque feedforward signal of

the cart corresponding to time t. The FB is executed cyclically and time t

is increased every time by the cycle time equal to 0.8 [ms ].

When time t exceeds τ the cart and payload have both reached the set-

point position, and the machine returns to state STEP_WAIT_COMMAND.
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Figure 7.8: Example of trajectory of the payload and cart for a displacement

of 10 meters in 3 seconds. Below, the corresponding feedforward force signal.





Chapter 8

Experimental results

In order to validate the applicability of Input-Shaping and Input-Output

inversion techniques to industrial systems, the results obtained controlling

the system described in Chapter 6 are here reported.

The techniques tested on the system are the input-output inversion ant

the ZV input shaping. As reported in Chapter 7, also ZVD, ZVDD, EI and

EI two-hump have been implemented on the control system, but the results

are not reported as they are well represented by the results shown in Chapter

5.

Firstly, it will be shown how the measures have been taken. Secondly,

Both position and velocity control will be analized by reporting the residual

oscillations of the system, for both the case of distributed payload and the

case of hook and payload.

8.1 Measuring system

In [26] a potentiometer has been used to collect the value of the angle θ1

with reference to a simple pendulum model. In this thesis, which focuses

in the possible advantages of the use of a double pendulum model, a simple

potentiometer is not enough to fully describe the kinematic of the system.

In fact, it is necessary to measure both angles θ2 and θ1 in Figure 2.2 to have

all the information needed about the residual oscillation of the payload.

In order to do so, image processing has been used. A re�ex camera has

119
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been used to record the oscillation of the payload after a movement, along

with a reference picture of the payload taken when the payload is still.

Two di�erent markers, constituted by black painted dots, have been ap-

plied at the extremities of the payload. The reference picture and the video

frames have been analized with Matlab. By binaryzing the grayscaled frames

accordingly to a threshold level, the two regions of pixels corresponding to

the markers have been isolated and labeled. By �nding the mean of all the

pixels inside the region of a marker, the center of the marker is found.

A third point corresponding to the center of rotation of angle θ1 is calcu-

lated by extending the segment identi�ed by the center of the two markers

by a value of pixels corresponding to the number of pixel of the segment itself

multiplied by the ratio of the length l1 and l2 in the physical system, with

reference to Figure 2.2.

This third point is �xed, as the residual oscillations are measured when

the cart �nishes its movement.

The video recording the residual oscillation is then analized frame by

frame. Once the center of the markers is found, the segments linking the two

markers and the upper marker with the �xed point calculated during cali-

bration are confronted with the segments found during calibration. Function

atan2() gives the values of angles θ1 and θ2.

In Figure 8.1 two frames are shown, one from calibration and one from

the recorded oscillation.

The scripts used for image processing of the acquisitions are reported in

Appendix B.

8.2 Distributed payload

For position control, the benchmark test for the techniques is a movement

of 1.2 [m] in a time τ . In order to show the increased performance when

using one of the techniques implemented with respect of a non-controlled

movement, the payload has been moved also without any kind of residual

oscillation reduction technique and its oscillation measured.

For the control, both inverse dynamics and input shaping techniques have

been used. In particular, the applied techniques have been used based on
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(a) Frame for calibration. (b) Frame from oscillation record.

Figure 8.1: Two di�erent frames that show 8.1a the initial calibration from

a frame with steady payload and 8.1b a frame taken from a video recording

the oscillation of the payload, compared with the position at the steady state

(yellow line).
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both simple and double pendulum model, in order to compare the di�erences

in results and advantages of using one model or the other.

The movement has been executed for τ = 4 and τ = 3 seconds using

input-output inversion technique, and with τ = 4 [s ] using input shaping

techniques. The reason why input shaping has not been used with τ = 3 [s ]

is that input shaping techniques require a motion time greater than the sum

of the two semiperiods.

The graphs show the angle θ1, which is a good indicator of the entity of

the main vibration mode of the system, and the di�erence θ2 − θ1, which

is a good indicator of the second mode, and the displacement of the second

marker from the equilibrium position.

The graphs on the left side include the data from the movement without

the use of anti residual oscillations techniques, while the graphs on the right

shows the particular of the results using input shaping and input-output

inversion techniques.

Figure 8.2 shows the residual oscillation after a movement with a transient

time of τ = 4 [s ]. By the graphs on the left it can be seen that all the

techniques provide much smaller residual oscillations with respect to the

movement without the use of advanced control techniques.

By comparing the graphs on the right, input shaping and input-output

inversion appear to be comparable in the term of residual oscillation. The

input-output inversion technique based on the double pendulum model does

not improve the performance with respect to the simple pendulum model

based one. Regarding for input shaping techniques, the technique that ex-

plicitly takes into consideration the second frequency of the system decreases

the oscillations with respect to the one that just consider the main natural

frequency.

In Figure 8.3 the results for the movement of 1.2 [m] with a transient

time of τ = 3 [s ] are shown. The absence of input shaping technique is due

to the fact that the transient time τ = 3 [s ] is smaller than the sum of the

periods of the system, therefore input shaping cannot be implemented. The

graphs show that there is an e�cient reduction of the residual oscillations

with respect to the uncontrolled case. Moreover, the double pendulum model

case increases the performance with respect to the simple pendulum model
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Figure 8.2: Residual oscillations after a displacement of 1.2 [m] in a time of

τ = 4 [s ] with the distributed payload. On the left, the results obtained with

residual oscillation reduction techniques are compared with the oscillation

introduced by the movement without the use of advanced techniques. On

the left, the results using those techniques are compared.
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based one. The increasing in performance that comes with using the double

pendulum model is enhanced when the movement is rapid, as the energy is

concentrated at higher frequencies and the contribute of the second way of

vibrating is more signi�cant.

For the velocity control, a movement at a velocity of q = 500 [mm/s ] is

used to test the techniques. The value of the acceleration is set to a = 3000

[mm/s2] when using the input shaping technique, obtaining the most rapid

movement possible with this setup with IS techniques, corresponding to τ =

1.79 [s ]. A input-output inversion technique allows also faster transient with

respect to IS, as it does not depend on the periods of the system, a transient

time of τ = 1.2 [s ] has also been tested.

The movements are executed by bringing the velocity of the payload to

the set velocity q with and without the techniques discussed in a time corre-

sponding to τ . Then, when the set velocity has been reached, the payload is

decelerated using the same technique used for the acceleration until it stops.

The residual oscillations are then measured as exposed in Chapter 8.1.

It has to be noted that this is not the most e�cient way of measuring

residual oscillation for velocity control. In fact, after the �rst phase of accel-

eration, residual oscillations are already present on the system, and those are

the oscillations that should be measured, as done in Chapter 5. The oscil-

lations after the deceleration depends on both the oscillation introduced by

acceleration and deceleration, and in particular on the phase between those

two oscillations. The total residual oscillation, being a sum depending on

the phase of the two oscillations introduced by velocity control transients,

could be greater or smaller depending on the time the deceleration command

is given. A measure with the moving cart like the one in Chapter 5 is not

possible with the actual setup.

In Figure 8.4 the results for velocity control with a transient time of

τ = 1.79 [s ] are shown. From the graphs on the left it can be seen that

the use of input shaping and input-output inversion techniques reduces the

residual oscillation with respect to the case where no advanced technique is

used. By analizing the graphs on the right the results show a reduction of

the second way of oscillating with the use of the double pendulum model

using input shaping with respect to the simple pendulum case, leading to a
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Figure 8.3: Residual oscillations after a displacement of 1.2 [m] in a time of

τ = 3 [s ] with the distributed payload. On the left, the results obtained with

residual oscillation reduction techniques are compared with the oscillation

introduced by the movement without the use of advanced techniques. On

the left, the results using those techniques are compared.
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Figure 8.4: Residual oscillations after a movement at velocity q = 500 [m/s ]

in a time of τ = 1.79 [s ] with the distributed payload. On the left, the

results obtained with residual oscillation reduction techniques are compared

with the oscillation introduced by the movement without the use of advanced

techniques. On the left, the results using those techniques are compared.
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reduction of the residual oscillations. For input-output inversion, the results

are comparable.

In Figure 8.5 the results for velocity control with a transient time of

τ = 1.20 [s ] are shown. For this case only input-output inversion is imple-

mentable, as the total transient time is smaller than the sum of the semiperi-

ods of the system. As expected, residual oscillation are reduced considerably

with the use of techniques discussed. The reduction of the oscillations is not

as visible as in the case of τ = 1.79 [s ], due to the fact that the faster the

movement is, the greater the acceleration become, leading to bigger angles,

and the approximation introduced for the linear model are less accurate.

Observing the graphs on the right, the double pendulum model based input-

output inversion decreases the oscillations due to the second way of vibrating,

but the residual oscillations are comparable. This is due to a third way of

oscillating of the crane. In fact in this test the payload oscillate around the

vertical axis. Even if the oscillation of the center of mass of the payload is

reduced, the position of the marker rotates around the it.

8.3 Hook and masspoint payload

Here the discussed techniques for residual oscillations reduction will be ap-

plied on the system that simulates the case of an hook of not-negligible mass

and a payload that can be modelized as a masspoint. The fact that the mass

of the hook used is even greater than the mass of the payload lead to an

increased importance of the second way of oscillating in the residual oscilla-

tion. For this reason, the performance of double pendulum based techniques

should be notably better than with the simple pendulum model ones.

In Figure 8.6 the residual oscillations after a movement of 1.2 [m] with

a transient time of τ = 4 [s ] are shown. As expected, the residual oscilla-

tions are reduced when input shaping and input-output inversion are used.

Moreover, from the graphs on the right, it can be seen how the use of a

double pendulum model and the explicit compensation of the second way

of vibrating of the system lead to enhanced performance. For both double

pendulum model based IS and input-output inversion residual oscillations

are considerably decreased with respect to the results in the case of the use
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Figure 8.5: Residual oscillations after a movement at velocity q = 500 [m/s ]

in a time of τ = 1.20 [s ] with the distributed payload. On the left, the

results obtained with residual oscillation reduction techniques are compared

with the oscillation introduced by the movement without the use of advanced

techniques. On the left, the results using those techniques are compared.
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Figure 8.6: Residual oscillations after a displacement of 1.2 [m] in a time of

τ = 4 [s ] with the system composed by hook and payload. On the left, the

results obtained with residual oscillation reduction techniques are compared

with the oscillation introduced by the movement without the use of advanced

techniques. On the left, the results using those techniques are compared.
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of simple pendulum models.

In Figure 8.7 the residual oscillations after a movement of 1.2 [m] with

a transient time of τ = 3 [s ] are shown. The input shaping technique has

not been implemented because the time τ is smaller than the sum of the

two periods. As expected, the residual oscillations is reduced when using

input-output inversion techniques with respect to the uncontrolled case. The

graphs on the right show that the improvement in performance introduced

by the use of a double pendulum model is signi�cant.

In Figure 8.4 the results for velocity control with a transient time of

τ = 1.81 [s ] are shown. τ = 1.81 [s ] is the minimum time for the input

shaping technique to be implementable, given a set velocity of 500 [m] and

an acceleration of 3000 [mm/s2]. From the graphs on the left it can be seen

that the use of input shaping and input-output inversion techniques reduces

the residual oscillation with respect to the case where no advanced technique

is used. By analizing the graphs on the right, the high frequency of the system

is better compensated with the double pendulum model based techniques,

which have better performances in residual oscillation reduction.

In Figure 8.5 the results for velocity control with a transient time of

τ = 1.20 [s ] are shown. With τ = 1.20 [s ] input shaping technique is no

longer implementable. Again, the use of input-output inversion techniques

signi�cantly decreases the residual oscillations. By comparing the results

shown on the right side graphs, the improvements using a double pendulum

model are visible.
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Figure 8.7: Residual oscillations after a displacement of 1.2 [m] in a time of

τ = 3 [s ] with the system composed by hook and payload. On the left, the

results obtained with residual oscillation reduction techniques are compared

with the oscillation introduced by the movement without the use of advanced

techniques. On the left, the results using those techniques are compared.
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Figure 8.8: Residual oscillations after a movement at velocity q = 500 [m/s ]

in a time of τ = 1.81 [s ] with the system composed by hook and payload. On

the left, the results obtained with residual oscillation reduction techniques

are compared with the oscillation introduced by the movement without the

use of advanced techniques. On the left, the results using those techniques

are compared.
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Figure 8.9: Residual oscillations after a movement at velocity q = 500 [m/s ]

in a time of τ = 1.20 [s ] with the system composed by hook and payload. On

the left, the results obtained with residual oscillation reduction techniques

are compared with the oscillation introduced by the movement without the

use of advanced techniques. On the left, the results using those techniques

are compared.





Conclusions

In this work the available strategies for the anti-swing control of overhead

cranes have been investigated, with a particular focus on input shaping and

input-output inversion techniques. Moreover, a new control strategy, con-

sisting in the double pendulum model-based input-output inversion, and the

advantages it brings in e�ciently reducing residual oscillations have been in-

vestigated. The simple and double pendulum models of an overhead crane

have been developed, and input shaping and input-output inversion tech-

niques have presented. The techniques have been implemented on the models

of simple and double pendulum cranes, and the robustness of the techniques

has been tested by means of mathematical simulations, along with the im-

provement introduced with the use of the double pendulum model. The

techniques developed have been implemented with o�-the-shelf components

in order to prove the feasibility of the use of those techniques in industrial

processes. The physical system on which the techniques have been tested has

been presented and modelled, and the results obtained with the use of dif-

ferent techniques are compared in the graphs of Chapter 8. In this chapter a

brief comparison between the two open-loop techniques used is exposed and

enriched by the results obtained. The improvements due to the use of a more

complex model are also addressed. Finally, future possible developments of

the project are presented.

Input shaping and input-output inversion are two of the most promising

techniques for the open-loop control of overhead cranes. The other open-loop

that has been presented in Chapter , that is optimal control, is rarely used,

due to its computational requirements and the di�culty to set a priori the

weights of the cost function. The strong advantage of input shaping tech-

niques is represented by the simplicity of its implementation in industrial

135
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o�-the-shelf components and by the basic model required, that is nominally

the knowledge of natural frequencies and damping ratios. While input shap-

ing is by far the most widely di�used in the industrial �eld, it still presents

some insurmountable limitations. The use of input shaping introduces a de-

lay in the command signal that depends on the period of the system. In

particular, as reported in Chapter 3, ZV techniques introduce a delay of half

the period of the system, while more robust techniques like ZVD, ZVDD,

and EI introduce delays up to one period and a half. This delay represents

a serious issue in the anti-swing control of overhead cranes, in particular for

small displacements where the operator cannot wait for a period of the sys-

tem (that can easily be in the order of seconds for industrial overhead cranes)

to see the results of its actions. Input-output inversion, on the other side,

does not have limits on the transient time τ . Moreover, limits can be added

in order to minimize motion time τ under the respect of actuators limits [23].

With this work, the validity of input-output inversion as an e�cient tech-

nique for anti-swing control of overhead cranes has been proven. The com-

parison between the robustness of input shaping and input-output inversion

techniques shows that input-output inversion has the same robustness of ZV

techniques when the motion time of the two techniques are set to be equal,

with the advantage that input-output inversion τ can be easily increased, ob-

taining an increased robustness, almost comparable to robust input shaping

techniques. Moreover the transient time τ can also be decreased under the

limits of input shaping, providing the possibility to obtain a more aggressive

control technique.

With the possibility of choosing the aggressiveness of the control by

changing a single parameter, input-output inversion is a valid alternative

to input shaping for the control of the crane.

Moreover, it has been shown that both input shaping and input-output

inversion techniques can be implemented in o�-the-shelf industrial compo-

nents. The disadvantage of the input-output inversion technique, that is

the complexity of modelling the system, has been overcome by presenting

the mathematical model and obtaining a single polynomial function that de-

scribe the trajectory of the cart with system parameters that can be easily

measured (lengths of the cables, masses of payload and hooks and damp-
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enings). In particular these functions are: (4.16) for velocity control of the

simple pendulum crane, (4.20) for the position control of the simple pendu-

lum crane, (4.24) for the velocity control of the double pendulum crane and

(4.28) for the position control of the double pendulum crane.

The e�ectiveness of the techniques presented has been proven by means of

both simulations and physical experiments. In particular, the use of the pre-

sented techniques has been shown to be e�ective in the reduction of residual

oscillations in all the cases. By comparing the results obtained in Chapter

8, the use of a double pendulum model has been advantageous particularly

in the case of the presence of a prevalent mass positioned in the hook, and it

has been more e�cient in the cases of rapid movements (see Figure 8.7). The

use of the double pendulum model is therefore justi�ed particularly in the

case of rapid movements with small payloads. In all the other cases the small

improvements in performance could not justify the use of a more complex

model, and particularly in the case of input shaping, where the presence of

a second natural period increase the delay introduced in the control signal.

Even if the techniques tested with this thesis have proved to be e�ective,

some problems remain unsolved.

One of the main characteristic of an industrial crane is the ability of

hoisting the payload, ability that is very important in particular in the case

of clustered workspaces, where the hoisting is used to avoid obstacles along

the path. The open-loop techniques tested in this thesis are based on a

model of the crane with a �xed length of the hoisting cable. Being open-loop

techniques, the hoisting of the payload during the trajectory would lead to

residual oscillations. Depending on the velocity of the hoisting and on the

motion time, a solution is to use ZVD, ZVDD or EI techniques, that have

been shown to be very robust with respect to changes in the length of the

cable (see the �gures in Chapter 5). In some cases, more robust techniques

could not be implementable or su�ciently e�cient, because more robustness

also means increased motion times and therefore increased operative costs.

A future development of this thesis could be the study of a time-variant

model of the crane, where the parameter l1 is considered as a function of time.

Once the model has been obtained, following the guidelines of the input-

output inversion, a techniques should be developed to permit the hoisting of
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the payload during the trajectory.

Another possible extension of this thesis is the implementation of closed-

loop techniques. As presented in Chapter , many closed-lopp techniques

have peen proposed in literature for the anti-swing control of overhead cranes.

Closed-loop techniques are more robust to changes in model parameters with

respect to open-loop ones, and the hoisting of the payload can be explicitly

taken into account (e.g. with a gain-scheduling approach). The reason why

closed-loop techniques are not the standard for the control of overhead cranes

is the lack of sensors for the feedback of the states (position of the payload,

or oscillation angle) in industrial o�-the-shelf overhead cranes.

A future, possible study is the integration between image processing and

feedback control techniques. In this thesis, image processing has been used

only to get the oscillations data from the experiments. The increasing compu-

tational power of CPUs has made possible the real-time processing of frames,

that means that information from cameras can now provide a feedback to

systems with relatively fast dynamics. In the last years a growing interest

has born in the �eld of vision feedback control of overhead cranes [12].
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Appendix A

Dynamic Inversion Script

The script used for the inversion of double pendulum dynamics in the case of

position control is reported here. The script can be easily changed in order

to use it for velocity control.

1 %% Script for dynamic inversion

2 q_r=10; %Total displacemente

3 tau_r=5; %Total time for the movemend

4 syms m1 m2 g mC l1 l2 Cc C1 C2 s real

5

6 Matrici_SS_con_smorzamento %building A and B, SS matrices of the

system

7 C=[1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0];

8 I=eye(6);

9 transfer=C*inv(I*s-A)*B;

10 X2_U=simplify(transfer(1)+transfer(2)*l1+transfer(3)*l2); %TF

between

11 % force applied to the cart and position of the payload

12

13 %% TF between force applied to the cart and its velocity.

14 C=[0 1 0 0 0 0];

15 Vc_U=simplify(C*inv(I*s-A)*B);

16

17 %% TF between position of the cart and position of the payload

18 G=simplify(X2_U*inv(Vc_U)*s);

19 [N,D]=numden(G);

20 N=collect(N,'s');
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21 N=coeffs(N,s,'all');

22 G=simplify(N(end)/D);

23 G_inv=collect(inv(G),s);

24

25 %% m2 symbolic polynomial trajectory

26 n=5;

27 syms t tau q real

28 aux=0;

29 for r=0:n

30 aux=aux+((-1)^(n-r)*tau^r*t^(2*n-r+1)/...

31 (factorial(r)*factorial(n-r)*(2*n-r+1)));

32 end

33 x_2= q*factorial(2*n+1)/(factorial(n)*tau^(2*n+1))*aux;

34 x_2=collect(x_2,t);

35

36 %% derivatives of order alpha of the trajectoy

37 syms alpha real

38 aux=0;

39 for r=0:n

40 aux=aux+((-1)^(n-r)*tau^r*t^(2*n-r+1-alpha)*factorial(2*n-r

+1)...

41 /(factorial(r)*factorial(n-r)*(2*n-r+1)*factorial(2*n-r

+1-alpha)));

42 end

43 deriv_x_2=q*factorial(2*n+1)/(factorial(n)*tau^(2*n+1))*aux;

44

45 %% polynomial of cart position after inversion

46 coeff_inv=coeffs(G_inv,s,'all');

47 derivative_order=length(coeff_inv)-1:-1:0;

48 derivatives_vector=subs(deriv_x_2,alpha,derivative_order);

49 x_c=simplify(sum(coeff_inv.*derivatives_vector)); % parametric

cart position

50

51 %% Substitution of model's paramenters inside symbolic cart

trajectory

52 dati_sistema; % defining the parameters of the

model

53 t_r=linspace(0,tau_r,200);

54 x_c=subs(x_c,[m1 m2 l1 l2 mC g q tau Cc C1 C2],...

55 [m1_r m2_r l1_r l2_r mC_r g_r q_r tau_r Cc_r C1_r C2_r]);

56 x_c=subs(x_c,t,t_r);
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57 x_c=double(x_c);

58 t_r=linspace(0,3*tau_r,600);

59 x_c=[t_r;x_c q_r*ones(1,400)]'; % explicit cart trajectory

60

61 %% Substitution of model's paramenters inside symbolic payload

trajectory

62 t_r=linspace(0,tau_r,200);

63 x_2=subs(x_2,[m1 m2 l1 l2 mC g q tau],...

64 [m1_r m2_r l1_r l2_r mC_r g_r q_r tau_r]);

65 x_2=subs(x_2,t,t_r);

66 x_2=double(x_2);

67 t_r=linspace(0,3*tau_r,600);

68 x_2=[t_r;x_2 q_r*ones(1,200) q_r*ones(1,200)]';

69

70 %% Inversion between payload trajectory and force for

feedforward

71 [N,D]=numden(X2_U);

72 N=collect(N,'s');

73 N=coeffs(N,s,'all');

74 X2_U=simplify(N(end)/D);

75 X2_U_inv=collect(inv(X2_U),s);

76

77 coeff_inv=coeffs(X2_U_inv,s,'all');

78 derivative_order=length(coeff_inv)-1:-1:0;

79 derivatives_vector=subs(deriv_x_2,alpha,derivative_order);

80

81 U_FF=simplify(sum(coeff_inv.*derivatives_vector)); %

feedforward force

82

83 %% Substitution of model's paramenters inside symbolic force

signal

84 t_r=linspace(0,tau_r,200);

85 U_FF=subs(U_FF,[m1 m2 l1 l2 mC g q tau Cc C1 C2],...

86 [m1_r m2_r l1_r l2_r mC_r g_r q_r tau_r Cc_r C1_r C2_r]);

87 U_FF=subs(U_FF,t,t_r);

88 U_FF=double(U_FF);

89 t_r=linspace(0,3*tau_r,600);

90 U_FF=[t_r; U_FF zeros(1,400)]'; %explicit force feedforward

signal
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Appendix B

Image processing for experimental

results

In order to calculate angles θ1 and θ2 image processing has been used, as

reported in Chapter 8.1.

B.1 process_oscillations(�lename_calib, �lename_data)

The main function is process_oscillations(�lename_calib, �lename_data).

It receives the location of the videos for calibration and with the actual oscil-

lations. It has a �rst part of calibration, where the �xed point corresponding

to the position of the cart is also found. Then the data video is analized, and

for every frame the markers are found and the angles calculated.

1 function []=process_oscillations(filename_calib, filename_data)

2 close all

3 clc

4 warning off

5

6 vlimits=[1 1080];

7 hlimits=[1 1920];

8 n_punti=2;

9 soglia_livello_bw=0.07;

10 i=1;

11
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12 %% CALIBRATION

13 v_calib=VideoReader(strcat(filename_calib,'.MOV'));

14 v_calib.CurrentTime=v_calib.Duration/2;

15 A=readFrame(v_calib);

16 %FINDING MARKERS

17 points=find_npoints(A,vlimits,hlimits,n_punti,soglia_livello_bw)

18 points_calib=points;

19 %SHOWING IMAGE

20 A=rgb2gray(A);

21 A=insertMarker(A,round(points(:,:)),'circle','size',19);

22 A=insertShape(A,'Line',round([points(1,:),points(2,:)]),'

LineWidth',5);

23 imshow(permute(A,[2,1,3]));

24 pause(0.001)

25 %% FINDING FIXED POINT

26 distance=1180/790;

27 fixed_point=points(1,:)+(points(1,:)-points(2,:))*distance;

28 verticale=fixed_point-points(1,:);

29

30 %% Analizing data video

31 v = VideoReader(strcat(filename_data,'.MOV'));

32 load(strcat(filename_data,'_init'));

33 v.CurrentTime=init_time;

34 while hasFrame(v)

35 video(:,:,:,i) = readFrame(v);

36 frame_time(i)=v.CurrentTime;

37 i=i+1

38 end

39 i=1;

40 for i=1:length(frame_time)

41 %while frame_time(i)<=5.56

42 aux=video(:,:,:,i);

43 points(:,:)=find_npoints(aux,vlimits,hlimits,n_punti,

soglia_livello_bw);

44

45 A=video(:,:,:,i);

46 A=insertMarker(A,round(points(:,:)),'circle','size',19,'

color','r');

47 A=insertShape(A,'Line',round([points(1,:),points(2,:)]),'

LineWidth',5,'color','r');

48 imshow(permute(A,[2,1,3]));
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49

50 % finding angles

51 a=fixed_point-points(1,:);

52 x1=a(1);

53 y1=a(2);

54 b=points(1,:)-points(2,:);

55 x2=b(1);

56 y2=b(2);

57

58 angle_1(i) = wrapTo360(atan2d(a(1)*verticale(2)-a(2)*
verticale(1),a(1)*verticale(1)+a(2)*verticale(2)));

59 angle_2(i) = wrapTo360(atan2d(b(1)*verticale(2)-b(2)*
verticale(1),b(1)*verticale(1)+b(2)*verticale(2)));

60

61 % angle conditioning to have continuous signals

62 if angle_1(i)>180

63 angle_1(i)=angle_1(i)-360;

64 end

65

66 if angle_2(i)>300

67 angle_2(i)=angle_2(i)-360;

68 end

69

70 if angle_2(i)>150

71 angle_2(i)=angle_2(i)-180;

72 end

73

74 pause(0.001)

75

76 end

77

78 save(strcat(filename_data,'_angoli'),'angle_1','angle_2','

frame_time')

79 end

B.2 �nd_npoints(A,vlimits,hlimits,n_poits,threshold)

process_oscillations(�lename_calib, �lename_data) uses function

�nd_npoints(A,vlimits,hlimits,n_poits,threshold) to �nd the center of the
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markers. This function convert to black&white a region of the picture A de-

termined by the limits vlimits and hlimits accordingly to a threshold. Then

it labels all the regions of connected points, isolates the n largest ones (two

in the case of two markers) and calculate the center of those regions.

1 function [punti] = find_npoints(A,vlimits,hlimits,n_poits,

threshold)

2 h1=vlimits(1);

3 h2=vlimits(2);

4 w1=hlimits(1);

5 w2=hlimits(2);

6

7 % transform the desired region of the frame in B&W with a

treshold and filling holes

8 Abw=im2bw(A(h1:h2,w1:w2,:), threshold);

9 Abw=imcomplement(Abw);

10 Abw= imfill(Abw,'holes');

11

12 % find all teh connected regions of points

13 [L,n]= bwlabel(Abw,8);

14

15 % get only the n largest regions

16 vect=zeros(n,2);

17 for m=1:n

18 vect(m,1)=length(find(L==m));

19 vect(m,2)=m;

20 end

21

22 [values, order] = sort(vect(:,1),'descend');

23 vect = vect(order,:);

24 %fin the center of the regions

25 for l=1:n_poits

26

27 [r,c]=find(L==vect(l,2));

28 r=mean(r);

29 c=mean(c);

30 punti(l,:)=[c+hlimits(1)-1,r+vlimits(1)-1];

31 end

32 end
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Resumen/Abstract

GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL, 2016/2017

One of the main problem when facing motion control, and in control in 
general, is the presence of undesired oscillations. These oscillations, 
which characterize every mechanical system, leads to problems like error 
in positioning and difficulty in controlling the sway.
In this thesis, the problem of oscillations is addressed using a very 
diffused industrial system for which oscillations are the leading problem: 
the overhead crane.
This system, presenting the same configuration of a pendulum, is 
characterized by oscillations with very low damping ratios. The presence 
of this persistent oscillation during and after the movement makes 
difficult the manual control, decreases the accuracy and increases the 
overall positioning time. Moreover, considering the fact that most of the 
payloads moved by gantry cranes are heavy, a safety hazard is posed by 
payload oscillation, in particular in cluttered workspaces.
Various advanced control techniques have been proposed to reduce the
presence of residual oscillations on industrial cranes, and most of them 
can be applied to general oscillating systems.
The aim of this thesis is to devise new techniques and to discuss their 
applicability with industrial off-the-shelf components, focusing in 
particular on input-output inversion-based techniques and comparing 
them with the well known input-shaping ones, also investigating their 
applicability in industrial processes. The importance of an accurate 
model is also addressed, comparing the results obtained with a simple 
pendulum model of the overhead crane and with a more complex double 
pendulum model.
The technique of dynamic inversion for industrial crane based on a 
double pendulum model is here presented for the first time.
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