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Abstract. Energy and comfort management are becoming increasingly
relevant topics into buildings operation, for example, looking for trade-
off solutions to maintain adequate comfort conditions within an efficient
energy use framework by means of appropriate control and optimization
techniques. Moreover, these strategies can take advantage from predic-
tions of the involved variables. In this regard, visual comfort conditions
are a key aspect to consider. Hence, in this paper an indoor illuminance
prediction model based on a divide-and-rule strategy which makes use
of Artificial Neural Networks and polynomial interpolation is proposed.
This model has been trained, validated and tested using real data gath-
ered in a bioclimatic building. As a result, an acceptable forecast of
indoor illuminance level was obtained with a mean absolute error equals
to 8.9 lux and a relative error lower than 2%.

Keywords: Indoor illuminance prediction - Neural Networks - Predic-
tion model - System identification - Comfort control

1 Introduction

From the beginning, human beings have been bounded to the necessity of energy
both to survive and to satisfy their own needs. This trend has been increasing
according to world population growth and the discovery of new technologies.
Nevertheless, as non-renewable energy sources, such as oil and coal, are more
and more exhausted [4] the integration and use of different energy sources, just
as renewable and non-renewable ones, is taking on special relevance. Further-
more, a model can be defined as sustainable if it is able “to satisfy the actual
needs without compromising the ability of future generations to satisfy their own
needs” [12]. Hence, it can be stated that, at present, the global energetic model
is unsustainable from social, economic and environmental points of view [10].
Therefore, energy efficiency is becoming an increasingly relevant topic which
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has caused the appearance of several regulations which try to reduce global en-
ergy consumption and non-renewable energy sources dependency within main
economic sectors [13].

Buildings sector is currently a major energy consumer. According to the
information provided by Eurostat [14], energy consumption of building sector
represents 38% of global energy consumption. Besides, the most part of it is
originated fundamentally by the use of HVAC (Heating, Ventilation and Air-
Conditioning) and lighting systems. The use of those systems allows to guaran-
tee users’ comfort from thermal and visual points of view [3]. Moreover, assuring
a certain comfort degree has a direct impact on performance, productivity and
users’ health. Thus, energy efficiency and users’ comfort management are raising
great interest in researchers and companies. In fact, some control architectures
are able to manage both objectives [3]. For that reason, it is needed to pre-
dict environmental conditions, that is, indoor temperature, illuminance level,
air quality, etc.

This paper is focused on the development of an indoor illuminance predic-
tion model for an office-room located inside a bioclimatic building, the CIESOL
building. Multiple approaches have been presented in literature for this purpose.
Moreover, it is worthy to highlight these ones: (i) based on scale models; (ii)
based on computer simulations and (iii) based on analytical equations. However,
illuminance level in a room is difficult to be modelled either by analytical equa-
tions, since a lot of variables are involved, or by a scale model mainly due to
the fact that some elements cannot be identically reproduced, such as the main
characteristics of construction materials. In addition, model integration into a
control architecture is a relevant factor to take into account. In this regard, soft-
ware for illuminance level simulation is not feasible, and thus, those methods
become unattractive for addressing this problem.

More in detail, the indoor illuminance prediction model presented in this pa-
per has been developed following a divide-and-rule strategy, and thus, a predic-
tion model based on Artificial Neural Networks (ANN) has been developed [7,
8] to counteract the contributions of daylight into indoor illuminance. In ad-
dition, a polynomial interpolation has been implemented in order to consider
the contribution of adjustable artificial lights into indoor illuminance. Besides,
this prediction model has been used to support the upper layer, that is a set-
points optimizer, of a multilevel hierarchical control system [9]. The complete
illuminance prediction model has been tested using real data from a bioclimatic
building and promising results have been obtained with a relative error lower
than 2%.

The rest of the paper is organised as follows. In Section 2, a description of
visual comfort concept and the facilities where the study has been conducted
are presented. In Section 3, a model for illuminance level estimation is defined,
while in Section 4, results for model validation are shown and discussed. Lastly,
in Section 5, main conclusions and future works are summarised.
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2 Scope of the Research: Visual comfort and CIESOL

Visual comfort can be defined as “A subjective condition of visual well-being in-
duced by the visual environment” [6]. Therefore, to reach an appropriate visual
comfort sensation it is needed to consider the properties of the visual environ-
ment, such as: illuminance level and its distribution, colour of light, glare, etc.
The most recommendable values for these properties can be determined from
international standards [6]. In this paper, it has been considered that a visual
comfort condition can be achieved by means of an appropriate indoor illumi-
nance level. Therefore, three key elements must be taken into account: natural
light, artificial lighting and shading devices.

On the other hand, The CIESOL (http://www.ciesol.es) is a research centre
on solar energy located inside the Campus of University of Almeria, in the South
East of Spain. Furthermore, this centre was built under some bioclimatic criteria
(such as specific insulation depending on the orientation or HVAC systems based
on solar cooling). The building itself has a total surface of 1071.91 m? distributed
into two floors. Moreover, every room is monitored by a network of sensors,
whose data is stored through an acquisition system, and controlled by means
of some actuators, e.g HVAC systems, automated windows or shading devices.
Data related to meteorological conditions, such as solar radiation, temperature
or humidity, is collected and stored as well.

The model proposed in this paper has been obtained for a characteristic
room of CIESOL building, where all the data were gathered, henceforth called
L6. This room, with a total surface of 76.8 m3 (4.96 m x 5.53 m x 2.8 m), is
located in the first floor of the building and faces north, a moreover, it is de-
limited by two similar laboratories. It has a single window located at north wall
covering 4.49 m? (2.15 m x 2.09 m). L6 is fully equipped with sensors and ac-
tuators which make possible an effective comfort control [3]. More in detail, L6
is equipped with automatic window and blind which can be operated from a re-
mote computer. In addition, as artificial lights it counts with fluorescent lamps
whose intensity can be regulated by applying a voltage between [0, 10] V.

3 A Neural Network Model for indoor illuminance of an
office-room

To estimate users’ visual comfort inside a room, it is required to use a prediction
model of indoor illuminance. To do that, it is worthy to mention that indoor
illuminance is influenced by two main factors: (i) Natural light through win-
dow, which depends on global, diffuse or direct radiation, outdoor illuminance
and window’s parameters, and (ii) Artificial lighting which can be obtained as
a function of indoor lights and lamps. Furthermore, to obtain an accurate illu-
minance prediction model, it is needed to take into account the geometry of the
room and its main constructive characteristics. Nevertheless, the procedure to
determine these parameters is a very complex task and, sometimes, even impossi-
ble. Therefore, an indoor illuminance prediction model in a room could be highly
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inaccurate if those parameters are not well characterised. For this reason, in this
paper a black-box prediction model based on ANN has been obtained. The elec-
tion of ANN approach has been motivated by the complexity of the problem and
the principal features of ANNs: self-adaptive, fault tolerance, learning, flexibility
and real time response [1,2, 5].

More in detail, the black-box model presented in this paper has been defined
using a divide-and-rule strategy by considering that artificial and natural lighting
are unrelated, but an additive phenomena. Besides, artificial lighting can easily
be modelled by means of a polynomial interpolation since they depend only
from the input voltage applied to the regulate their intensity. On the contrary,
contributions due to natural light depends on a huge variety of factors that can
handily be managed by an ANN. The architecture proposed for the black-box
model can be observed in Fig. 1.
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Fig. 1. Model architecture based on a divide-and-rule strategy.

The procedure to obtain the ANN forecasting model could be summarized as
follows: (i) selection of inputs for the indoor illuminance prediction model; (ii)
construction of the training, validation and testing data sets; (iii) establishment
of ANN paradigms, that is, its architecture and structure; and (iv) training,
implementation and evaluation of the indoor illuminance prediction model.

3.1 ANN Inputs and Size

Firstly, it is required to determine which are the key parameters that affect the
model distinguishing between daylight and artificial lighting contributions. More
concretely, the inputs selected for the model which represent the natural light
contribution have been: date, hour, outdoor illuminance, diffuse and global radi-
ation, blind state (open/close). Date and hour variables are significant since they
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provide to the ANN information about how solar path changes along the year.
In addition, outdoor illuminance and diffuse and global radiation also provide
information about the outdoor environmental conditions. To simplify the ANN
model, an static model is assumed, that is, the current output does not depend
on past outputs. In addition, the geometrical characteristics of the room have
been also neglected, so an average workplace in L6 has been selected for data
gathering. Finally, in order to achieve an appropriate performance, some limits
have been established over these inputs, see Table 1.

Table 1. List of input variables for the ANN model

Variable Unit Measurement range
Date — 1, 366]

Hour - [0,1]

Outdoor illuminance [lux] [0, 56977]

Diffuse radiation W/m?| [0, 758]

Global radiation {W/m% [0, 1281]

Blind state — {0,1}

In addition, the inputs chosen to model the artificial lighting contribution
have been the lamp state (on/off) and the voltage applied to regulate them.

3.2 Data-Sets Construction

To estimate an accurate ANN model to predict the influence of daylight into
indoor illuminance, it is required the availability of an appropriate set of his-
toric data. In this paper, a data set composed by 57000 measurements which
encompasses from March to July has been used. To obtain this data set, sev-
eral tests using the available actuators in L6 have been performed in order to
gather all the dynamics needed to determine an ANN with a good performance.
More information about the instrumentation used to acquire them can be found
in [3]. Furthermore, this data set has been divided into three different data sub-
sets which have been used to train, validate and test the ANN model. The first
data subset which can be denoted as Training Data Set encompasses 75% of
total measurements and it is used to estimate ANN parameters through the
Levenberg-Marquardt optimization algorithm [11]. The second data subset, Val-
idation Data Set, includes 20% of total data points and it is employed to measure
ANN generalization, and thus, to prevent over-training. Finally, the Testing Data
Set utilizes 5% of total measurements and it is an independent data subset used
to determine the ANN performance after training process. Concretely, the Test-
ing Data Set is composed of data selected in order to encompass different types
of environmental conditions and situations which can appear in an office room,
see Table 2.

3.3 Architecture and Structure Selection

As it has been mentioned previously, an ANN model acts as a black-box model,
and thus, it is not necessary to acquire a deep knowledge about the modelled
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Table 2. Description of the Testing Data Set

Samples Date Type of day Test

1—650 March, 31st Clear day Blind test

651 — 825  April, 5th  Clear day Blind test

826 — 1080 April, 11th Clear day Blind and variable lamps’ voltage test
1081 — 1220 July, 10th  Clear day Variable lamps’ voltage test

1221 — 1420 July, 14th  Clear day Constant lamps’ voltage test

system since ANN approach is able to determine the existing relationship among
inputs and outputs by using historical data. As it is well known, an ANN is
composed of an input layer, one or more hidden layers and one output layer [10].

In this paper, to establish the appropriate number of hidden layers and neu-
rons a sensitivity analysis and an optimization process considering time of train-
ing and results accurateness have been performed. At the end, this paper pro-
poses an ANN indoor illuminance prediction model based on daylight contribu-
tion with two hidden layers, each of which is composed by 12 neurons and a
sigmoid activation function.

4 Results and Discussion

The proposed indoor illuminance prediction model has been validated using real
data from L6 room in CIESOL building. As it was emphasized before, this model
is composed of an ANN used to predict the contribution of natural light and a
polynomial interpolation in order to deal with artificial lighting contribution.
Firstly, an overview of the results obtained for the ANN illuminance prediction
model is presented. Afterwards, the validation of the polynomial interpolation
developed to counteract the effect of artificial lights into indoor illuminance
model has been included. At the end, reader can find validation results for the
complete illuminance prediction model presented in Section 3. For goodness-of-fit
evaluation, Mean Absolute Error (MAE) index has been used, see Eq. (1), where
y; represents the real data gathered at L6 and g; shows the results provided by
the ANN model.

1 n
MAE = — Yi — Ui 1

P (1)
Figure 2 presents the results obtained for the ANN illuminance prediction
model to counteract daylight effect using the Validation Data Set. As it can be
observed, error is primarily distributed on a range of +2 lux with an average of
0.2 lux, revealing a good behaviour of the ANN. Besides, a MAE index equals
to 1.2 lux, that is 0.4%, and a standard deviation of 2.1 lux have been obtained.
In addition, Fig. 3 depicts a regression analysis, that is, a representation of
the existing relation between real and estimated data. Ideally, a y = x line
represents the best performance of the ANN (regression coefficient, R = 1).
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Hence, a regression coefficient R = 0.999 proves a reasonably acceptable ANN
prediction model.
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Fig. 2. Validation of the ANN model to counteract natural light effect

In Fig. 4, a validation of the polynomial interpolation for artificial illumi-
nance and its maximum absolute error for voltages comprised between [0, 10] V
is shown. As can be observed, error becomes bigger at lower voltages as there are
some non-linearities. Even so, these errors can be considered tolerable mainly
due to the following reasons: (i) normal operating conditions imply high voltages
as an input because of selected set-points; (ii) MAE index is equal to 6.2 lux
(2.2%) with a standard deviation of 3.7 lux.

Finally, regarding the validation of the complete illuminance prediction model,
the model’s output has been calculated as an aggregation of natural and artificial
illuminance predictions. Figure 5 shows the validation results obtained by using
the Testing Data Set presented in Section 3.2. The upper graph in Fig. 5 depicts
the evolution of indoor illuminance for both real data gathered in L6 (in blue)
and the results provided by the complete model (in red). Besides, the lower graph
shows the error. It can be observed that the error is primarily concentrated in a
420 lux range with an average error equals to —4.1 [uz is observed, pointing out
some negative trend. In addition, MAE index is equal to 8.9 lux and standard
deviation of 7.6 lux. These values can be considered negligible since the total
range of the Testing Data Set is equal to 513 luz, that is, a relative error equals
to 1.73%. In this concern, the performance of the proposed prediction model is
considered to be suitable for the addressed problem, as two main phenomena
were neglected and have become the main source of error: (i) non-linearities ob-
served for low voltages operating conditions in artificial illuminance model, (ii)
settling time in artificial illuminance model, as dynamics are not instantaneous.
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Fig. 5. Results provided by the complete illuminance prediction model for the Testing
Data Set

Thus, this approach supposes a trade-off solution combining simplicity and speed
for modelling. Table 3 shows a summary of the results obtained and discussed

in this section.

Table 3. Summary results obtained for the Testing Data Set

Model Range [lux] MAE [lux] Rel. error [%] Std. dev. [lux]
ANN model [0,310] 1.2 0.4 2.1
Polyn. interpolation  [10, 298] 8.2 2.2 3.7
Complete model [0,513] 8.9 1.7 7.6

5 Conclusions and Future Works

In this paper, an illuminance prediction model for an office room has been devel-
oped, so that it could be integrated into the upper layer (set-points optimizer)
of a multilevel hierarchical control system. A quick and accurate implementa-
tion of such estimator was needed. For that, an innovative approach - following
divide-and-rule strategy - has been presented as a methodology for constructing
an illuminance model composed by two main inputs: natural light model, based
on ANN, and artificial lighting model, based on polynomial interpolation. This
approach enables to simplify ANN inputs, in order to optimize ANN training,
both from time and necessary data points of view.

Illuminance modelling can become a huge challenge as lots of variables are in-
volved. In this regard, this paper presents a simple, fast and potentially adaptable
methodology, that allows to work from a black-box model perspective, making
these variables transparent for the user. However, some information is missed,
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concretely differences between workplaces in the office, as geometrical parame-
ters are neglected.

The performance of the proposed model has been tested along different days
from March to July and, as it was shown within Section 4, the obtained results
are promising. More in detail, the model is able to estimate illuminance level with
a relative error of 1.7% for the studied range ([0,513] lux). These results show
that ANN models are flexible and versatile options to consider when dealing
with such kind of dynamics.

However, the model is currently able to accurately estimate illuminance for
the period of the year from March to July, it should be capable to make whole-
year predictions though. As future works, a 12-month period training has to be
accomplished.
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