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Abstract: Monitoring the greenhouse transpiration for control psgsis currently a
difficult task. The absence of affordable sensors that pewiontinuous transpiration
measurements motivates the use of estimators. In the casmato crops, the availability
of estimators allows the design of automatic fertirrigatjorigation + fertilization) schemes
in greenhouses, minimizing the dispensed water while finifilcrop needs. This paper
shows how system identification techniques can be appliedbtain nonlinear virtual
sensors for estimating transpiration. The greenhouse fesdtlis study is equipped with
a microlysimeter, which allows one to continuously sampketranspiration values. While
the microlysimeter is an advantageous piece of equipmemegearch, it is also expensive
and requires maintenance. This paper presents the deslgieaelopment of a virtual sensor
to model the crop transpiration, hence avoiding the useigkihd of expensive sensor. The
resulting virtual sensor is obtained by dynamical systeemidication techniques based on
regressors taken from variables typically found in a greesk, such as global radiation
and vapor pressure deficit. The virtual sensor is thus baseenmirical data. In this
paper, some effort has been made to eliminate some problssagiated with grey-box
models: advance phenomenon and overestimation. The gemelttested with real data
and compared with other approaches. Better results areelbtaith the use of nonlinear
Black-box virtual sensors. This sensor is based on gloligtian and vapor pressure deficit
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(VPD) measurements. Predictive results for the three nsaatel developed for comparative
purposes.

Keywords: virtual sensor; transpiration; nonlinear model; micrehgeter

1. Introduction

Crop growth is primarily determined by climatic variabldslee environment and the amount of water
and fertilizers applied through irrigation. Thereforentolling these variables allows for control of the
growth. The greenhouse environment is ideal for farmingabse these variables can be manipulated
to achieve optimal growth and plant development. All cropged solar radiation, CQ water, and
nutrients to produce biomass (roots, stems, leaves, and)ftbrough the process of photosynthesis.
During this process, and when the leaves stomata are opemagture the CQ the plant emits water
vapor through the transpiration process. This becomestaltatsthe crop must make to produce dry
matter. Moreover, water is lost through evaporation from $bil. The sum of these water losses is
known as evapotranspiration. The losses must be compengataigh irrigation. Besides, it has
been demonstrated in padded greenhouses with soil covetieghastic blankets that the amount of
evaporation is negligible. This happens when dealing wyttirbponic cultivations1]. According to
this, water should be applied in precise amounts to covey water losses due to crop transpiration.
Excess water would mean an excessive washing out of ferslizn turn, it could lead to contamination
of the subterranean water, or the flooding of the substratunadicular asphyxiation. Otherwise, a
hydric deficit may be provoked if irrigation does not provateugh water. This can lead to a decrease in
production and can even be dangerous for the crop growthcdj@utomatic irrigation control systems
are fundamental tools to supply water to the culture in tiggired amount and frequency. Moreover, as
water is a limited resource in many agricultural areas,noiing productivity through efficient and
adequate irrigation is a basic objective. In order to desiggood automatic irrigation system, the
following questions must be answered: what should the #eqy of the irrigations be, and how much
water should be applied in the irrigation? To answer thessiions, it is necessary to know how much
water should be applied to replenish the losses due to thegdiration during the plant’s respiration.

Measuring the water lost by transpiration is a way of obtajnihe plant's water demand. This
estimation of transpiration in different species grown meenhouses has been developed, e.g., by
Baille et al. [2] for ornamentals, Stanghellinl], Jemaa 3], Boulard {] and Baille P] for tomatoes,
Monteroet al. [5] for geranium crops, Medranet al. [6] for cucumbers, Suagt al. [7] for rose
cultivation, Voogtet al. [8] for chrysanthemums, and Schmidt and Exarch®uf¢r gerbera pots,
among others.

In most of these works, the microlysimeter became the basasorement device to record the water
losses in crops, subtracting the water content in an ingtarty the water content in another instant
(t—1). However, on many occasions, the measurements were nateouns due to the irrigation process
or during the water drainage. Furthermore, it is seldom Usefdrmers since this device is expensive
to acquire and to maintain. From an operational point of yigws important to find alternatives to
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this irrigation system gadget. Thus, virtual sensors basettanspiration become a good option to
reduce total system cost, especially in the agriculturéosechere profit margins are so narrow. Such
virtual sensors must be based on sensors that are typinatigiled in greenhouses for climate control
(temperature, humidity, and solar radiation), therebyiogtg the installations costs.

Virtual sensors become a very efficient and powerful toot ties been successfully used in other
fields [L0O-12]. These sensors utilize models in order to estimate feafuoen low-cost measurements.
Ideally, the virtual sensors should be simple and obtaeftbi the collected data. It should not require
extensive training. Virtual sensors are useful in replggamysical sensors, thus reducing hardware
redundancy and acquisition cost, or as part of the faultotiete methodologies by having their output
compared with that of a corresponding actual sensor. \ligeasors may be developed based on
mathematical models obtained directly from the Physicshefdystem and first principles. In many
cases, such mathematical models are unavailable, or ttest parameter values are unknown, or they
are too complicated to be used. For this reason, the developoh virtual sensors often has to be based
on system identificatioril3).

The purpose of the current study is to develop a virtual setsanfer transpiration from other
easily measured variables. For this purpose, the use of it®lgsimeter as the sensor to calculate
the transpiration must be substituted, due to its high aostdquisition and maintenance. In this
paper, the development of the virtual sensor for trandpimatnakes use of different techniques for
data preprocessing, including the selection of varialiles,construction of appropriate training, the
selection of test sets, the final validation and the perfolceaassessment. The resulting virtual sensor
has been validated and compared with real data and with witeal sensors in the literature, providing
promising results.

The paper is organized as follows: Secti@nshows a background of different sensors used
to take transpiration measurements. The different virgmhsors are shown in the Secti@n
Section4 gives an overview of the greenhouse where the experiments pegformed, and its main
characteristics, as well as the collected experimentad.dafthe main results and discussions are
summarized in Sectiof Finally, the major conclusions are drawn.

2. Crop Transpiration

The irrigation control systems are essential tools to mlewater to the crop in the required amount
and frequency. Moreover, water is a limiting resource in ynagricultural areas. In such places, it
should be a basic objective to optimize their managemenpeodtlictivity through adequate and efficient
irrigation. The proposed control algorithm design (Figliyés a hierarchical control system, consisting
of two levels:

e The control level uses an event-based PI controlld}, [to control when a certain event occurs,
either by time, by variation of a particular climatic varaksuch as radiatioi¥s, ), or by a
particular state crop. A PI controller is used to achievedégpoint of water supplyXoWr)
as it considers the top layer of the architecture.

e The setpoint generation level is based on the greenhousateliconditions, including: (1) vapor
pressure deficit (VPDVy pp), which is a function of the temperature and the relative ialityy
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(2) global radiation, and (3) the state of the crop, measthezligh the Leaf Area Index (LAl,
Xra7). The setpoint is fixed by the user and is defined as the crognation accumulated
(Xer) until an irrigation event occursX(gV). This event could be a determined transpiration
accumulated setpoint or other predetermined conditions.

Figure 1. Irrigation control algorithm.
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The virtual sensor accumulates the amount of water lost &gspiration from the plant’s last
irrigation. This measurement is compared with the fixed amhdlat activates irrigation (setpoint).
The irrigation starts when this fixed value is exceeded, amslfes as soon as the amount of water lost
has been replenished.

A virtual sensor requires an accurate calibration and afibd of the instantaneous transpiration
measurements at each sampling instant. The measuremeangpiration includes direct (observation,
porometer, lysimeteretc), and indirect methods (water budget, energy balaet®). The indirect
methods are more complicated for prediction and verificatibthe transpiration values because of the
meteorological factors involved. The transpiration data e collected through direct methods such as:

e Theporometer{15] allows the determination of the leaf conductivity as anexaf the stomatal
opening and the closing of stomata. It measures the flow adsgas diffusion that takes place
through the stomata. The latest porometers allow compettrecords.

e Thebag method16] collects the water transpired by introducing a branch itearcplastic bag.
The transpired water condenses inside the bag. The total Vet by transpiration corresponds
with the weight of the placed water. The time between measents is undefined, as it depends
on the water collected.

¢ In the cobalt chloridemethod [L7], the transpiration is indicated by a color change of a pigfce
filter paper impregnated with a 3% solution of cobalt chleridt is applied on a leaf and held in
place with a clip. It is blue when dry and pink when wet. Theexpat which the paper changes
color is an indication of the rate of transpiration. This hoet can be used to measure the relative
rates of transpiration of different species.
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e Themicrolysimetef1,4] is used in plants growing in pots completely closed. The{sdare first
weighed before measuring, and then they are weighed aga&ionaenient time intervals. Soill
evaporation is avoided by covering it with waterproof mater This method can be used with
small plants and crops in soilless culture. The resultsgreessed in grams or milliliters of water
transpired per leaf area per unit time.

The microlysimeter is the basic measurement device usedrtonciously record the water losses
in crops. Contrarily, the rest of the described sensors tagasurements at intervals as they modify
the working conditions of the plants. The porometer and ohysimeter are expensive to acquire and
maintain, and are difficult for the farmers to manage.

3. Virtual Sensors

This section is devoted to describing the main features i&etldifferent types of virtual sensors
for transpiration designed to replace the microlysimetethe automatic irrigation system. The aim
of such virtual sensors is to substitute the expensive tyisirmeter in measuring the transpiration and
controlling the irrigation.

Figure 2 shows the input variables of a virtual sensor for crop traaipn: (1) global (solar)
radiation, (2) Vapor Pressure Deficit (VPD), which is a fumctof the temperature (T) and the relative
humidity (RH), and (3) Leaf Area Index (LAI). These variablare measured by two different sensors
typically installed in commercial greenhouses: a psyclat@mfor the temperature and the relative
humidity (VPD), and a pyranometer for the solar radiation.

Figure 2. Virtual sensor scheme.
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The transpiration model needs to calculate the LAl The LA¢asurements are taken in a
noncontinuous way. In this paper, a simplified TOMGRO mod& hdapted to the Mediterranean
conditions is utilized to estimate the LAI. The simplified MGRO model needs the temperature as
the input.
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Based on the architecture of Figutethree different virtual sensors are considered in thigpafhe
first one is based on a pseudo-physical structure. The dtlagesa more empirical structure with linear
and nonlinear behaviors, respectively. All three kindsd®scribed in the following.

3.1. Pseudo-Physical (Grey-Box) Virtual Sensor

Most transpiration estimators are based on the Penman-eifforguation. In 1948, Penman derived
an equation that combined the energy balance and the coménsport of vapor. Afterwards,
this model was adapted by Monteith to estimate actual evapspiration from plants1P]. This
equation essentially combines the equation for heat tearsttween the crop and the mass of the
surrounding air. In this way, various authors have obtamae formulations without satisfactory results
for various crops. The tomato evapotranspiration studi®@ have as a main drawback the estimation
of the leaf stomatal and aerodynamical resistances. tlatigt Bailey [L5] concluded that a layer model
proposed in]] predicts accurately the transpiration in tomatoes. Tlaesleors observed the tomato crop
transpiration £ zr) increases linearly with the radiatiofry,,), the vapor pressure deficiti(»p), and
the wind speed inside the greenhouse. They also pointedhautranspiration can be regulated by not
only humidity but also radiation and wind speed. These sautgas simplified the Penman—Monteith
equation R1]. to describe the transpiratiorX() as a process based on two main variables: the solar
radiation {/s,,) arriving at a particular depth in the canopy plant, and tapor pressure deficity pp
Equation ). The reduced virtual sensor is shown in the following eipunat

C\Xgpr = Vs,Ca+VyppChp (1)

where the coefficient§’, andCz are the parameters dependent on the crop.

In [2], it was observed that the coefficierdfz increases with theX,,;, and, furthermore,
the coefficient adopted different values during the day dweogcillations in stomatal resistance
Equation R). These daily oscillations was corrected with two différparameters for diurnal{s,,)
and nocturnal@z, ) periods.

O\Xpr = eCOXeadV, Cy+ Vppy XpaiCp (2)

where X 7 is the crop evapotranspiratiopr ~2min~"), C) is the latent heat of evaporatiohg/°C),
C}. is the light extinction coefficient for crops (it is relateal the leaf inclination angle and the leaf
arrangement with regard to the Leaf Area Index, and provageimdication of the plant’s efficiency on
intercepting the solar radiation;; 7 is the leaf area inden?m=2), Vi pp is the vapor pressure deficit
(K Pa), andV,, is the global radiation reaching the crdpy’{n2). The coefficients” 4 (unitless) and
Cp (kgm—2h~'kPa~') are constants dependent on the crop. To obtain more reliaslilts of the virtual
sensor, the parametéy; is obtained for diurnal@'sz,,) and nocturnal's,,) periods through calibration.

3.2. Black-Box (Empirical) Virtual Sensors

The identification system tries to solve the problem of cartsing mathematical models of dynamic
systems based on the data they obseB& [inputs u(¢) and outputsy(¢). The goal is to infer the
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relationship between sampled outputs and inputs. Theifaetion process was carried out based on
prior knowledge of dynamic behavior of gaséd][and the behavior of transpiratiori(R,6]). VPD and
global radiation was selected as climatic inputs and thedsA¢rop growth input.

This method is used with the objective of knowing how the dyits of the systems work and
responding to some of the questions raised while drawingpigibcument.

3.2.1. Linear Black-Box Virtual Sensors

The parametric virtual sensors (or black box) are diagraapalcle of representing any system without
having any knowledge about the physical process dynamarsnfetric virtual sensors are not obtained
(at least not completely) from the application of physi@li$. These virtual sensors are constructed
using observations carried out on the system so as to setmmaete value of the parameters. This
value is chosen in such a way that the virtual sensor can aocalate the results to the acquired data.
This process is called identification.

The adjustment of the parameters is the simplest part of ibielgm of identification 23]. Online
identification concerns an algorithm that efficiently udes measured information when it is obtained
from the plant in real time. In this way, it is possible to detihe changes in the dynamics of the system
and adjust the virtual sensor conveniently. Under somaugistances, these methods can be rather
simple (e.g., the method of minimal recurrent squares o@eel in this section).

Figure 3. Graphical user interface of “ident”, a part of the System nideation
Matlab-Toolbox®) [24].
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The black-box virtual sensors are developed using a systentification technique shown i23].
The virtual sensors family contains 32 possible formuladidased on Equatio3); To obtain each
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one of the structures, it is necessary to determine the paljad order as well as the coefficient of the
numerator and the denominator for each transfer func@h [The effects to the inputs, output, and the
disturbances are defined as:

Az)y(t) = FBult —nk) + 53e(t) 3)

where, y(t) is the transpirationy(¢) is the different input variables, andt) is the estimation error.
A(z), B(z),C(z), D(2), E(z), andF(z) represent the polynomials that define the output (transpig
inputs, and the estimation error. The order of the polynbegaations is defined by regressors, where
na outlines the outputsb is the order of the input, andk is the delay of the radiation soI(mkVGR)
and the vapor pressure defi¢itky;,.,,). System ldentification Matlab’s Toolbo24] was used for the
identification process. The ARX, ARMAX, OUTPUT ERROR, BOXNEKINS, and FIR formulations
were tried out. The differences among these virtual serem@she way in which the inputs, outputs
and disturbances are defined with parametric equationsSystem Identification Toolbox of Matl&B
software was used to obtain the virtual sensor. Figushows the main interface of the Toolbox and
the whole process to obtain a virtual sensor. The top of thedidisplays the calibration and validation
process interface, and the bottom shows the output angyscess. The toolbox allows to process
data, estimate the parameters of different types of strestand validate virtual sensors using different
strategies. For the identification process, only the data fthe experiments are required. The data can
be handled in the time domain or frequency domain, and thererpnts can have one or multiple inputs
and/or outputsZ9].

3.2.2. Nonlinear Black-Box Virtual Sensors

A nonlinear component was added to the transpiration \irseasor to get better fitting. This
component is introduced as result of the strong nonlinehavier in the system inputs. Moreover,
these nonlinearities add complexity to the virtual sensbnis increase in complexity is not always
translated into higher performance. In System Identificathe mathematical relationships between the
system’s inputs.(t), and outputs,(¢) can be computed. Such outputs, inputs, and nonlinearitees a
introduced in arad hocform, relying ona priori knowledge about the system. An important step in
system identification is to choose a structure, and gewes#dirt testing the simpler structures, and
lower order. The first structure tested, and in the end chasewirtual sensors, was the nonlinear
ARX (4). Also the Hammerstein—Wiener virtual sensor was tried aiitich are very useful in the
case of the nonlinearities affect to sensors, and actyatoch as dead zones or saturatidd][ On the
other hand, Nonlinear ARX (NonARX) is more flexibl24. The general structure for Nonlinear ARX
virtual sensor is26):

wherey(t) is the output variable ibtime; u andy are the different input and output variables (regressors);

andf is the nonlinear function. The current transpiration vakipredicted as a weighted sum of past
values, and current and past inputs values. With such irdbom the equation becomes:
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y(t) = a1, ag, ..., Gnay b1, bay o b [y(t — 1), y(t — 2), ., y(t — na), u(t), u(t — 1), ..., u(t —nb—1)]"
)
wherey(t — 1), y(t — 2), ...,y(t — na), u(t),u(t — 1), ...,u(t — nb — 1 are the regressors, the so-called
delayed inputs and outputs. Nonlinear ARX regressors carotfedelayed input—output variables and
more complex nonlinear expressions of delayed variablé& ronlinearity estimator block maps the
regressors to the virtual sensor output using a combinafioonlinear and linear functions (Figu#é.

Figure 4. The Nonlinear ARX computes the output y in two stag&$§.[ u(t) are the model
inputs, and y(t) are the model outputs.

Nonlinearity Estimator

u Nonlinear
Regressors Function y
. u(t),u(t-1),y(t-1), ... T Tinear "
- "| Function

Available nonlinearity estimators can be selected fromreopg of different structures such as neural
networks, tree-partition networks, wavelet networks aretgwise polynomial approximation. The
nonlinearity estimator block can include linear and nogdinblocks in paralleld4].

4. Greenhouse Environment

The research data used in this work have been obtained freemigouses located in the Experimental
Station of Cajamar Foundation, in El Ejido, in the provinéédtmeria, Spain (243'W, 36°48’N, and
151 m elevation). The crops grows in a multispan “Parraktygreenhouse (Figurg); [18]. The
greenhouse has a surface of 877 (37.8 x 23.2 m), polyethylene cover, automated ventilatia] [
with lateral windows in the northern and southern walls, flagf window in each span, mesh-protected
anti-trips “bionet” of 20x 10 thickness, and night heating applied with a 95 kW hot aatérethat is
programmed to maintain the minimum temperature abové&1Z he greenhouse orientation is east—west
with the crop rows aligned north—south. Cropping condgiand crop management are very similar to
those in commercial greenhouses.

Climatic parameters are continuously monitored within ¢fneenhouse. Outside the greenhouse,
a meteorological station was installed, in which air terapge, relative humidity, solar and
photosynthetic active radiation (PAR), rain detector, dvihirection, and velocity measurements were
taken. The cover temperature sensors were located on tbe daiented to the east (two sensors), and
west (two sensors).

During the experiments, the inside climate variables wése taken, among which stand out: air
temperature, and relative humidity with a ventilated psgateter (model MTH-A1, ITC, Almeria,
Spain), solar radiation with a pyranometer (model MRG-T®;,IAlmeria, Spain), and Photosynthetic
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active radiation (PAR) with a silicon sensor (PAR Lite, Kigfonnen, Delft, The Netherlands). Among
all the climate sensors installed in the greenhouse, onér sadiation and psychrometer was used for
the transpiration virtual sensors.

The daylight air temperature and humidity are controlledhsy top and side windows through the
P1 controller R8]. Potentiometers allow for knowing the window’s positiangach control instant. The
night air temperature and humidity is controlled by the vawd and the heating syste2d. Setpoints
of both systems are established at@4[27], and 14°C for the ventilation and heating, respectively. All
the actuators are driven by relays designed for this task.

Figure 5. Greenhouse facilities used for the experiences performetis work. From
left to right and from top to bottom on the figure: Greenho®®; sensor, Solar and PAR
radiation, Heating system, Solar and PAR radiation indidegreenhouse, and the tomato
crop lines.

All climatic data was recorded every minute with a personamputer. The acquisition
system is formed by two different National Instrument Couotgaeldpoint&connected through
Ethernet protocol.

For the growth model, it was necessary to know the evolutideaf area index. It was determined
through the leaf area measurements of each plant removéibioass task, the pruning, and deleafing
were also taken into account. The biomass was made up of aickest sampling of five randomly
selected plants every 21 days, duration accorded in thenags@rotocol. The choice of 21 days is
twofold: first, it was the sufficient amount of time to find gribwdifferences; and second, it helped to
avoid the elimination of too much vegetal stuff in the greamde which could end in a modification in
the climate or transpiration measurements.
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The biomass process was measured against: number of neafearda, number of fruits per bunch,
fresh and dry weight of leaves, stem, and fruits. The plartera and fruits were introduced into a
drying oven where they remained for 24—-48 h (depending ophle@ological state) at a temperature of
65 °C. Based on this, the dry matter of leaves, stems, and friassdetermined by analytical balance.
The matter of leaves and secondary stems pruning came fsetacted plants for biomass while kept
in production; once removed from the plant, the fresh andadrght was taken, such as the biomass. In
the case of pruning, stems and leaves are measured sepdBatél the bare and the pruning are carried
out for the leaf area index measures, executed, as in theasgrthrough electronic planimeter (Delta-T
Devices Ltd).

Microlysimeter was the system chosen to take the transmiraneasurement in the present
paper (LL8]; Figure 6). The device consists in two electronic weighing scalesected to a personal
computer. The first (150 kg 1 g, Sartorius) records the weight of a bag with six plantd, asupport
structure. The second weighing scale (20k®.5 g, Sartorius), which follows the first, measures the
weight of the drainage from the substrate bag. This systesrbkean developed by theutomation,
Electronics, and Robotics Research Group at the Univedijdmeiia.

Figure 6. Lysimeter installed in the greenhouse for the transpirat@lculation.

Six Plants Scale

-

R Drainage Scale [

The transpiration is calculated as the weight differendevéen two consecutive time-instants. The
six plants scale is required for this calculation. Moreo¥éie two scales system, microlysimeter, allows
for knowing when irrigation begins by changes in weight a¢ ttrop unit, as well as knowing when
drainage starts (balance of drain) and when both end. Asisksd above, an increase in the weight of
the scale with the growing unit indicates that irrigatiors fi@gun. The process that follows is drainage
warned by the heavy increase in the drainage scale, whose@nd be indicated through the weight
stabilization. From that time, the crop scale would stagiago measure the weight loss (transpiration).
During the process of irrigation drainage, the value ofgparation is considered as constant, taking the
value of transpiration of the moment immediately precedimggirrigation beginning.
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5. Results and Discussions

5.1. Transpiration Measurements Validation

An important step was to validate the calculation of cropgaration for each of the cycles, seeing
that this data corresponds to the transpiration of the ctdpa time. For this issue, five trays with
twelve plants were installed and evenly distributed thiaug the greenhouse so as to make their mean
representative of the entire crop. The trays consisted ofliags of substrate with six plants in each
bag, which gives us a total of twelve plants per tray and 6hédntire test. All trays had drainage
connected to a bucket whose sample was collected daily aatfme hour. Thus, the average value of
these buckets were taken daily to calculate the real draindgvo differently located droppers were
selected to collect daily irrigation amounts in the grearg® the final value was estimated from the
average of both measures. With data from the drainage amnd tihe droppers, the daily measured
consumption was calculated and compared with accumulagy tlanspiration from the data every
minute, obtaining the graphs (Figurésand 8) for the two selected cycles (spring—summer 2008 and
autumn—winter 2008—-2009, respectively).

Figure 7. Testing the values of transpiration measured with dailyscomption data in an
autumn-—winter cycle. It represents the daily accumulagetspiration and the daily average
of the five trays with twelve plants consumption measuresent
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Figure 8. Testing the values of transpiration measured with dailyscomption data in a
spring-summer cycle. It represents the daily accumulagadpiration and the daily average
of the five trays with twelve plants consumption measuresent
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As shown in the graphs, daily and accumulated transpiraiimmst exactly match, according &
of the regression. In conclusion, transpiration data dated from the balance system gives a closer idea
of the values of real transpiration. Results of regressimwsa high R value and a slope with a value
close to one, obtaining a graph of estimated and measuradssapproaching a 1:1 line, which would
mean that for an instant”, a value of transpiration very close to real plant consuoptvas obtained.

5.2. Virtual Sensors Calibration

Once the transpiration values were obtained, the next séspsearching a substitution of this system
with transpiration virtual sensors based on Penman—MibneiM). The equation combines the energy
balance with the vapor convective transport. In the lastgjedifferent physical and pseudo-physical
virtual sensors (grey-box) based in the P-M equation haga beveloped and tested by different authors.
For this paper, the pseudo-physical P-M simplification ps®al by ] was chosen because of the good
results obtained by6] for pepper crops in the same conditions. In this paper.algeod results were
obtained by fitting the parameters differentiating sumnred winter seasons and with the different
crop development stages. Furthermore, a delay is repodttebn measured and predicted values
for some particular conditions. The causes of the obserety/dvere explored and a climate variables
dependency was found as other authors assg@9). On the other hand, the proposed black-box
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dynamic virtual sensors would be used to design events lmastditirrigation controller. In order to use
a modern control algorithm, the use of dynamic virtual senganed system identification techniques
and are presented as an alternative to physical or pseugiephvirtual sensors. The proposed virtual
sensors incorporate the dynamics of transpiration andheilbf varying complexity, beginning with
linear black-box virtual sensors fitted to data. Nonlineigiual sensors based in system identification
was tried out obtaining good results. Nonlinearities wélibtroduced in aad hocform, relying ona
priori knowledge about the system.

5.2.1. Grey-Box Virtual Sensor

The calibration of the virtual sensor of transpiration megd by P] were performed with two
different seasons: one in spring, in 2005 (Tal)e and the other in autumn—winter, in 2006—2007.
For the calibration of the spring—summer cycle, all the dgtinered during the months of February and
July 2005 was used. In contrast, in the case of the winteecybk data used was from August 2006
to February 2007. The parameters were determined usingative sequential algorithm to minimize
the least square error criterion between the real and timaisd transpiration (Montecarlo algorithms).
The second phase of the calibration process was based itigalgerithms to fix the final parameters.
The values obtained from the extinction ratio of the radia{C'x), 0.64 for spring—summer cycles and
0.6 for autumn—winter, matched the results obtained by oth#roas in the autumn—winter cycle, with
equivalent closeness, who obtained an extinction ratio63. [1] determined a value of 0.64 to cultivate
the tomato, §] obtained values 0f).63 to cultivate the cucumber. For most horticultural crops in
greenhouses, the values @f ) fluctuate between.4 and0.8 [6]. Values obtained from parameters
Cy,Cp, andCp, are different for both groups of crop cycles to which havernbesderred, obtaining
values in the spring cycle fo€'4,Cgs,, and Cp, of 0.49,11.2, and8.28 respectively, and for the
autumn—winter cycle, the same parameters obtained valigs”'s,,, andCp,, of 0.3,18.7, and8.3,
respectively. The next table shows the results of the @iffeparameters calibration:

Table 1. Results of the calibration in spring—summer and autumntexrgeasons.

Seasons Ca Cp, Cpy, Cg
Autumn—winter| 0.3 18.7 &85 0.6
Spring—summer 0.49 11.2 8.28 0.64

In general, the values obtained from the ratio fell withie thterval of values obtained by distinct
authors, and gathered b§({]. A good behavior in the dynamic was observed in the virteals®r, even
though there is a small overestimation of the estimatedegabpposite those measured in the start and
the end of the crop seasons. Even though this overestinatadiy exists, it does not reach a significant
level, with which in the first analysis it could be concluddwhit correlation would not be necessary,
though it is recommended. The presence of a phenomenon kaswlelay, which is translated to an
advancement of the dynamics of the estimated values fororezd, was also demonstrated, as other
authors have also previously assertégA9)).



Sensor012 12 15258

To calibrate grey-box virtual sensor described in sectlec{ion3.1), a growth model is required
to try out the LAI estimations. The simplified model Tomgd#] rises as an option to remove the
complexity of the full virtual sensor proposed 8] and make them available to online control systems
while retaining their physiological characteristic3?]. The parameter that influence the dynamics
of the X, 4; was calibrated and validated, first by/g and later by B3] in the same greenhouse for
tomato crops.

5.2.2. Linear Black-Box Virtual Sensors

To obtain a virtual sensor, it was necessary to choose twapgrof transpiration data to try out in
the system identification toolbox. One group from spring 20@&s taken for identification, resulting
in a total of 53,490 data. For identification validation, 380) data from winter 2004 was used. The
remaining data was used to obtain the virtual sensor’'shiétia The black-box virtual sensor cannot
contain data with time slots without data. For this reasaonalker groups of data are used. The
Table 2 shows the virtual sensors that have been obtained. More 10 structures were tested,
leaving to validation two ARX virtual sensors and an ARMAXtuial sensor. In this case, LAl was not
introduced into the system as an entry. The reason for thisaisthe rate of leaf area index remains
constant in the same day, lacking the dynamic of remainipgtinariables.X; 4; was used to divide
the crop cycle in different intervals, from O to 0.7 , from @071.5, and above 1.5m§mpm*2 ). For the

soil

division, it is easy to change the LA, for instance, by dafgsrgplanting (DAP), or others time units.

Table 2. Results of the calibration in spring—summer and autumnterviseasons. Where
LAl is the Leaf Area Index (dimensionlessi); is the parametric equation’s order that defines
the outputsnb is the order of the inputjc is the error order; andk the delay of the radiation
solar(nky, ) and the vapor pressure defiitkys, ., ).

LAl interval | Virtualsensor na nb nc rnkrs nk"vep
0.7 or lower ARX450 4 5 0 0
0.7to 1.5 ARX540 5 4 0 0
1.5 or higher| ARMAX 55240 5 5 2 4 0

The main problems encountered in the static virtual sensorsaught to be corrected by using
dynamic virtual sensors, such as the overestimation thapdres with low values of leaf area index
and underestimation in very high values, as well as the poesef a phenomenon, which is translated
in an advancement of the real dynamics over the estimateeval

5.2.3. Nonlinear Black-Box Virtual Sensors

The first processing step was to eliminate the middle and tretids of inputs and outputs. It is
worth noting thatX; ,; was not introduced into the system as an entry, because dharea index
remains constant on the same day and lacks the dynamics mgdvariable. To reach this conclusion,
many tests with the Matlab toolbox were realized. FiPst,,; was introduced in the virtual sensor as
a regressorX4;(t — 7)), obtaining a bad fix in the output. A regressor based on thatémn of solar
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radiation reaching a given depth in canop¥](Equation ¢)) was tried out, but with the same results,
such results was the expected:
VGRe(*CkXLAI) (6)

where "¢x is the global radiation reaching the crop/{n2), —C is the extinction coefficient of
radiation (unitless), and; 4, is the leaf area inde¢n?,,,m_ ). As noted above, LAl remains constant
during a chosen day as the paramétér), which means the regressor is constant during a day, demendi
exclusively on the radiation.

This virtual sensor was also evaluated by using an estimdi2@ as a function of the inside
temperature and the relative humidity. Despite this estonathe virtual sensors obtained with these
two variables show no improvement compared with those ikl only using VPD. In the end, the

radiation and the vapor pressure deficit remain as the unmgugs.

Table 3. Results of the nonlinear virtual sensor calibration:is the parametric equation’s
order of outputs;nb is the order of the input; andk is the delay of the solar radiation
(nkv;,,) and of the vapor pressure defiGitkys, ., ).

Virtual sensor| na nb nkv,, nkvypp
NOnNnARX2230 | 2 2 4 1
NOnARX4430 | 4 4 4 1

In order to obtain the number of terms in the regressors,neessary to obtain a model to try out
different combinations. In addition to the number of ternb$ained, the nonlinearities were estimated
through different possibilities: wavelet network, treetpgesmns, and sigmoid network. Of all these tested
ways to obtain the nonlinearities, the wavelet network gaeebest fit joining a nonlinear block and a
linear block. Table8 shows the parameters of the resulting virtual sensor.

This virtual sensor was obtained with prediction aim.

5.3. Virtual Sensors Validation

All available data (more than one million for each varialdi@s been used for the validation. In
total, nine different spring—summer and autumn—wintessea were used. Figur8s10andl11 show
an example of the results obtained in the validation prooéslse grey-box, as well as the linear and
nonlinear dynamic virtual sensors in the different cyclHse validation of the virtual sensors can be seen
in Figure9. The presence of delay is demonstrated in Fidudeln the end, Figurd1l samples a day
detailed with the three virtual sensors. In some instartbesystem dynamics is not well captured by the
virtual sensors, as happens in Figdf This is caused by the difficulty in calculating the tranapon
by using the microlysimeter. Furthermore, as Figdishows, the transpiration behaves similarly to the
sunlight: rising in the morning, lowering in the afterno@md remaining almost constant at night.

The grey-box virtual sensor shows good dynamics. A smallestenation exists in the start and the
end of the crop seasons but does not reach a significant {eiklwhich in the first analysis it could
be concluded that a correlation would not be necessarypuath it is recommended. Furthermore,
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Figure 10 shows the delay phenomenon, which characterizes the aslveemt of the virtual sensor
dynamics over the underlying physics, as other authors asserted (,29)).

Figure 9. Five days in 2005 spring.
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Figure 10. One full day with delay in the autumn—winter of 2007-2008.eTiigure starts
at midnight.
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Figure 11. One full day in 2008 spring.
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One of the characteristics of the calibration of linear andlmear black-box virtual sensor is that
the first validation is done during the identification, sirtlse trial and error processes must be done to
choose the virtual sensor. Figur@sl0andl11 show that both black-boxes follow the dynamics of the
tomato crop transpiration, presenting some adjustmeril@nts in nocturnal areas. The problem of
night setting is not of interest because it is sought. Thatrtiginspiration estimated through the virtual
sensor obtains values higher that the pseudo-physicabiséifgs overestimation is remarkable, but it is
not very important for the final result, due to the fact thatmitranspiration measurements are very low
in comparison with the daylight ones. The transpiratioroi®sy, in fact, that it is difficult to take it with
the microlysimeter, due to its 1 g sensor precision.

Moreover, this dynamic virtual sensor does not show thecguaiion phenomenon, as is evident in
the static virtual sensor. It is the resistance of the pleandpiration resulting in a delay of about the
same processes that produce it, graphically shown as aedkdaryion on transpiration estimated.

For all the seasons included in this work (from the autumr0i@£to the autumn in 2008-2009), the
virtual sensor’s goodness was obtained (the calibratias@es are marked within the tables). This
goodness for a data series is calculated through the minimaan square error (MMSE). In all cases,
the dynamic virtual sensor obtained good results (MM8&Eb), as can be seen in the three validation
errors (see Tablé and Figurel?2).

Tables5, 6 and7 show a full review of the errors of each model.
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Table 4. Virtual sensor error comparison, in gAmin—.

Season Samples Grey-box Linear Black-box Nonlinear Black-box teiwal
A-w 2004-2005| 104, 831 0.395 0.316 0.305 [0,9.40]

S-s 2005« 125,704 0.355 0.320 0.310 0, 12.87]
A-w 2005-2006| 164, 790 0.485 0.308 0.296 [0,9.60]

S-s 2006 89,000 0.416 0.332 0.358 [0,10.27]
A-w 2006-2007| 104,817 0.457 0.440 0.421 [010.73]

S-s 2006 149, 807 0.543 0.421 0.428 [0,11.33]
A-w 2007-2008| 123,657 0.557 0.380 0.364 [0, 10.30]
S-s 2008 132,654 0.493 0.418 0.396 [0,11.90]
A-w 2008-2009| 106,855  0.472 0.434 0.456 [0, 10.45]

Figure 12. Virtual sensor error comparison, minimum mean square @rrgm-—2min—".
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Table 5. Grey-virtual sensor error calculation in gAmin=1.

Season Samples Max error Mean Error o AE interval
A-w 2004-2005| 104,831 2.12 0.395 0.491  [0,9.40]
S-s 2005« 125,704 3.65 0.355 0.500 [0, 12.87]
A-w 2005-2006| 164, 790 2.79 0.485 0.740  [0,9.60]
S-s 2006 89, 000 3.01 0.416 0.747  [0,10.27]
A-w 2006—-2007| 104,817 2.86 0.457 0.598 [0, 10.73]
S-s 2007 149, 807 3.28 0.543 0.812 [0,11.33]
A-w 2007-2008| 123,657 2.92 0.557 0.602 [0, 10.30]
S-s 2008 132, 654 3.44 0.493 0.612 [0, 11.90]
A-w 2008-2009| 106, 855 3.16 0.472 0.581 [0, 10.45]
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Table 6. Empirical (black-box) virtual sensors error calculatiorgi m2min—!.

Season Samples Max error Mean Error o AE interval
A-w 2004-2005| 104, 831 1.42 0.305 0.398  [0,9.40]
S-s 2005« 125,704 2.56 0.310 0.406 [0, 12.87]
A-w 2005-2006| 164, 790 241 0.296 0.392  [0,9.60]
S-s 2006 89, 000 2.21 0.358 0.607 [0, 10.27]
A-w 2006—-2007| 104,817 2.75 0.421 0.576  [010.73]
S-s 2006 149,807 1.98 0.428 0.639  [0,11.33]
A-w 2007-2008| 123,657 2.02 0.364 0.523 [0, 10.30]
S-s 2008 132, 654 2.21 0.396 0.498 [0, 11.90]
A-w 2008-2009| 106, 855 2.69 0.434 0.512 [0, 10.45]

Table 7. Nonlinear virtual sensor minimum mean square error ingmin—1,

Season Samples Max error Mean Error o AE interval
A-w 2004-2005| 104, 831 1.21 0.316 0.387  [0,9.40]
S-s 2005« 125,704 2.33 0.320 0.407 [0, 12.87]
A-w 2005-2006| 164, 790 2.19 0.308 0.410  [0,9.60]
S-s 2006 89, 000 2.42 0.332 0.601 [0, 10.27]
A-w 2006—-2007| 104,817 2.75 0.440 0.579  [010.73]
S-s 2006 149, 807 1.96 0.421 0.657  [0,11.33]
A-w 2007-2008| 123,657 2.02 0.380 0.539 [0, 10.30]
S-s 2008 132,654 2.20 0.418 0.496 [0, 11.90]
A-w 2008-2009| 106, 855 2.40 0.456 0.519 [0, 10.45]

6. Conclusions

Significantly, the research was conducted over three yé&ars, total of eight cycles of cultivation
in those which took the different climatic and physiologdicariables of a tomato crop. All data were
taken at intervals of one minute to give approximately over million input data for each variable. The
main objective, as noted at the beginning of this paper, imflement the virtual transpiration sensor
of tomato crops for the design of irrigation controllersr Bos occasion, we had a measurement system
based on transpiration weighing the difference that oconra scale from one moment to the next, and
to measure water loss with a good approximation.

The next task was to seek a virtual sensor that would rephecgyistem based on the weight difference
caused by the loss of water by the crop. One was based on sehsdrare typically installed in
greenhouses: temperature, humidity, and solar radiafil¢re aim is to reduce total installation costs
and to avoid the constant maintenance that the scales eequir

After preliminary assessment of some of these virtual ssn$tonlinear ARX had a better fit and,
in the end, was the best election for the irrigation virtiesor proposed. This virtual sensor had good



Sensor012 12 15264

results in the calibration and validation of the virtual sen An average error of 5%, for all cycles
taken, shows how the choice of this virtual sensor was sstidesHowever, it also presents some
problems, such as the overestimation at night which occOrs.the other hand, linear and nonlinear
black-box virtual sensors have demonstrated the abserecachfance phenomenon. It was translated to
an advancement of the dynamics of the estimated valuesdbones.

System identification techniques were chosen to obtain ardiawvirtual sensorM atlab®software
package was a good option to work with the identification meghes. A large number of different
nonlinear dynamic virtual sensors structures was testelde proposed dynamic for virtual sensors
require only two inputs, global radiation and vapor pressigficit, thus eliminating the inclusion of
the X ;. This virtual sensor presents the possibility of using nmoa®ntrol algorithms that cannot be
used with the grey-box sensor.

As summary:

e Grey-box virtual sensor has a good fixing as advantage, buestisadvantages such as the
overestimation at different moments of the year, a highaal ferror result, and the advance
phenomenon.

e The black-box virtual sensors obtain better results and alfows the elimination of the
grey-box problems: advance phenomenon and overestimafinroverestimation only appears
during nocturnal periods.

o Nonlinear black-box had the best results.

This paper has dealt with the transpiration from an indakpoint of view, as a process in which
there are entries and exits. The crop itself, and some aspéthte climate inside the greenhouse, are
considered disturbances affecting the dynamics. Thisssthié focus away from the strictly agronomic,
agronomy classic, which studies the exchanges that ocdireigreenhouse by static virtual sensors
based on fundamental principles, without including theeysdynamic effect.
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