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Abstract: Electricity load forecasting, optimal power system operation and energy management
play key roles that can bring significant operational advantages to microgrids. This paper studies
how methods based on time series and neural networks can be used to predict energy demand and
production, allowing them to be combined with model predictive control. Comparisons of different
prediction methods and different optimum energy distribution scenarios are provided, permitting
us to determine when short-term energy prediction models should be used. The proposed prediction
models in addition to the model predictive control strategy appear as a promising solution to energy
management in microgrids. The controller has the task of performing the management of electricity
purchase and sale to the power grid, maximizing the use of renewable energy sources and managing
the use of the energy storage system. Simulations were performed with different weather conditions
of solar irradiation. The obtained results are encouraging for future practical implementation.
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1. Introduction

Microgrids (MG) are integrated energy systems composed of distributed energy resources and
multiple electrical loads operating as an autonomous grid; these can be either parallel to or islanded
from the existing power grid. A microgrid can be considered a small-scale version of the traditional
power grid, its small scale leading to far fewer line losses and lower demand on the transmission
infrastructure. All of these advantages are motivating an increased demand for microgrids in a variety
of application areas such as campus environments, military operations, community/utility systems,
as well as commercial and industrial markets [1]. An MG can provide optimal electricity distribution
to consumers by implementing control strategies. Nowadays, the MG concept focuses primarily on the
integration of distributed renewable energy sources, stationary storage batteries and methodologies
for management and control, as is shown in [2–6].

In the literature, there are several MG methods and applications. In [7], the basic structure
of an MG is presented, and a detailed discussion about MG control techniques is included. In [8],
the authors review the latest documents related to the use of hybrid energy storage systems (HESS),
which facilitate the introduction of renewable energy sources (RES) to MGs. A centralized and
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decentralized control architecture for microgrids and their possible applicability to serve the particular
needs in microgrids are discussed in [9]. In [10], a summary of the available approaches is presented
(system configuration, unit size and control and energy management) along with those currently being
investigated for the optimal design of RES hybrid systems. A decentralized energy management
system based on multi-agent systems theory employing fuzzy cognitive maps for its implementation
is proposed in [11]. In [12], a framework for microgrid energy management, where each agent
is seeking an optimal goal-directed action planning under power consumption, production and
price uncertainties, is proposed, and the optimal scheduling strategy is achieved by using a robust
optimization approach. A multi-objective optimization in order to minimize the energy cost and
greenhouse gas emissions in a hybrid system including photovoltaic (PV), wind, battery storage and
a micro gas turbine is proposed and implemented in [13]; furthermore, in [14], an optimal energy
management of a standalone microgrid under different operational modes is studied; the system
is tested under two different operational policies where microgrid power generation sources work
with and without the battery storage system. Moreover, in [15], a control strategy for the integration
of distributed storage systems in a photovoltaic and micro-current network is developed, which
also includes varying loads. The proposed control allows the maximum use of photovoltaic energy
under different MG operating conditions and provides a smooth transfer between network connection
and isolation. In [16], a strategy based on model predictive control (MPC) is presented, where the
optimization problem has been formulated as a mixed integer linear problem (MILP), the control
algorithm for which has been validated in an MG located at the Center for Renewable Energy Sources
and Saving, in Pikermi-Athens, Greece. On the other hand, in [17], an MPC algorithm in which the
optimization problem has been formulated as a mixed-integer quadratic optimization (MIQP) has
been applied to a microgrid located at the University of Seville, Spain. In [18], the authors compared
the MPC techniques and the hysteresis band (HB) method in energy dispatch within a microgrid. The
main difference between MPC and HB is that MPC guarantees optimality, while HB does not. The
authors conclude that there is a dramatic reduction in the cost of operation using MPC techniques.

MG operating requirements are usually satisfied by a hierarchical control structure [19], where
several authors have shared the idea of considering three levels associated with different time
scales [20,21]. The primary level operates at a fast time scale, maintaining voltage and frequency stability
during changes in the generation or load, or after switching to the island mode. The secondary level
is responsible for ensuring that the voltage and frequency deviations are adjusted to zero after a load
or generation change is produced within the microgrid. This tertiary control is used to control the power
flow between the microgrid and the main grid and for optimal operation over large time scales [22].

The MG’s control loop performance can be improved when disturbance information is available.
This can be done using a feedforward controller based on disturbance estimations, mainly of the
demand and the available renewable energy. There are many methods for estimating energy demand,
and these can be characterized by the prediction horizon length and the selected methodology.
The prediction horizon may vary depending on the application and can be considered as a short-term
forecast for predictions up to 60 min [23,24] or a long-term forecast for hourly, daily and monthly
prediction values [25,26]. On the other hand, disturbances are usually represented as time-series
structures mainly due to their stochastic behavior. Time-series models are one of the ways to estimate
future energy demand values. These models are obtained using past data and are used to estimate
future behavior along a prediction horizon. Time series models are based on the assumption
that modeled data are autocorrelated and characterized by trends and seasonal variations. Thus,
well-known autocorrelated models like autoregressive moving average (ARMA), autoregressive
integrated moving average (ARIMA), autoregressive moving average with exogenous inputs (ARMAX)
and autoregressive integrated moving average with exogenous inputs (ARIMAX) [27] can be used.
Artificial neural networks (ANN) are a different approach for disturbance estimation when the design
is training-based and no statistical conditions are assumed for the source data. Neural networks
(NN) are widely accepted as a technology for predicting time series, offering an alternative way to
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solve complex problems [28]. Neural networks and ARIMA models are often compared in terms
of forecasting capacity. As a tool for nonlinear system identification, the nonlinear autoregressive
with exogenous inputs (NARX) network has been successfully applied to a number of real-world
input/output modeling problems, such as biomedical time series modeling [29], communication
network traffic prediction [30] and energy demand [31].

This paper studies the effect of using different prediction strategies in a closed-loop control
framework for energy management in a real case study. Methods based on time series and neural
network models are used for the photovoltaic panel energy production and the energy demand
of the load systems (building and greenhouse). The models are identified using real data collected
at a sampling time of 1 min during the years 2014 and 2015. The microgrid optimal energy
management problem is formulated including binary variables in the constraints and solved as mixed
integer quadratic programming (MIQP). In this way, the prediction models are utilized to provide
a feedforward framework, and the usability of the predictions over different prediction horizons
is discussed. It is important to emphasize that feedforward action effectiveness is directly connected
to the predictions’ quality. Significant improvement is obtained for closed-loop system behavior
compared to the case of constant future predictions. Moreover, controller performance is compared
to an ideal case with perfect future predictions, and a discussion is carried out to evaluate the
prediction methods.

The rest of the paper is organized as follows: in Section 2, the microgrid subsystems, the methods
and the performance criteria used to model energy demand and electrical energy production are briefly
shown, and the energy hub’s methodology is also presented; in Section 3, the results and discussions
are shown, and finally, in Section 4, the conclusions are outlined.

2. Materials and Methods

The MG is composed of a photovoltaic system, an electric vehicle whose batteries can be used
as an energy storage system (the use of the electric vehicle is not considered in this paper) and two load
subsystems (a building and a greenhouse). Figure 1 shows the microgrid. Additionally, the microgrid
is connected to the main grid, allowing the purchase and sale of energy when necessary.

MPC 

CONTROL

ELECTRIC VEHICLE 

AND STORAGE 

SYSTEM

PV SYSTEM
UTILITY GRID

GREENHOUSE
CIESOL Building

ENERGY DEMAND

Figure 1. Microgrid.
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2.1. Materials

2.1.1. The Greenhouse

The greenhouse studied in this paper is a multispan ‘parral type’ greenhouse (see Figure 2), with
a surface area of 877 m2, oriented in a N-S direction.

Figure 2. Greenhouse and acquisition data system.

The facilities are situated at the Cajamar Foundation experimental station,‘Las Palmerillas’, in the
El Ejido municipality, Almería, southeastern Spain [32]. The greenhouse has lateral and zenithal
ventilation powered by independent AC motors, an aero-thermo heating system from hot water
pipes fed with biomass, a CO2 enrichment system created from burning biomass, shade nets, as well
as water and nutrient feeding systems. It is equipped with measurement equipment for 52 variables
and is designed to develop identification tests and to implement climate control, fertigation and
electric power strategies. Furthermore, the greenhouse has energy demand sensors (SINEAX M 561)
programmable with an RS-232 interface run on a computer with the appropriate software. In Table 1,
the variables measured and the model of the sensors used are detailed [33,34].

Table 1. Sensory system installed in the greenhouse.

Variable Model

Inside of the greenhouse

Temperature and humidity HMP45a, Vaisala, Finland
Global radiation MRG-1P, ITC, Almeria, España

CO2 concentration UA-06, PRIVA B.V., De Lier, Holanda

Outside of the greenhouse

Temperature and humidity HMP45a, Vaisala, Finland
Photosynthetic Active Radiation PAR Lite

Global radiation MRG-1P, ITC, Almeria, Spain
Wind speed Model 12102, R. M. Young Company, Traverse City, Michigan, USA

Wind direction D-034B-CA, Delta-T Devices Ltd, Cambridge, United Kingdom
CO2 concentration ZFP–DZ, Siemens, Munich, Germany

Rain WS 10 R, JUNG Electro Iberica S.A. Barcelona, Spain
Energy demand SINEAX M 561 with 1, 2 resp. 3 analog outputs



Energies 2017, 10, 884 5 of 24

2.1.2. CIESOL Building

The CIESOL (‘Centro de Investigación en Energía SOLar’) building is a solar energy research
center, which is located inside the Campus of the University of Almería, in southeastern Spain (see
Figure 3). It is distributed over two floors with a total surface area of 1071.92 m2, comprising: six offices,
all with an easterly orientation and located on the ground floor (with the exception of the main office,
situated on the upper floor); eight laboratories facing north (four located on the ground floor devoted to
‘solar chemistry’; and the other four located on the upper floor: two for the ‘Modeling and Automatic
Control unit’ and the other two for the ‘Evaluation of Solar Resources unit’); a plant where a high
efficiency boiler and an absorption machine are located; and finally, the center’s employee rooms,
such as the kitchen and toilets.

Figure 3. CIESOL building.

2.1.3. PV System

The PV system is made up of various sets located on-site at the University of Almería. One of these
(see Figure 4) is located on the sloping roof of the CIESOL building and has the following characteristics:
a total number of 4 modules linked in 3 sets of 14 panels/series, each with a unit capacity
of 222 Wp/panel where the electrical energy produced is in the form of direct current at low voltage,
then converted to alternating current through an inverter at a voltage of 230 V, forming a photovoltaic
field of 9.324 kWp. Table 2 shows the summary and the main electrical characteristics of each module.
The total set at the University of Almería that comprises the PV system considered in this paper forms
a photovoltaic field that can reach 110 kWp.

Figure 4. PV system.
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Table 2. Summary for the PV module.

Module Type A−222P
Peak Power Module (Wp) 222
Inverter model CICLO 3000
Grid connection 3−phase

Electrical characteristics

Electricity power (Watts [W]±2%) 222 W
Number of cells in series 60
Current maximum power point (Imp [A]) 7.44 A
High voltage power point (Vmp [V]) 29.84 V
Short circuit current (Isc [A] ) 7.96 A
Open circuit voltage (Voc [V]) 37.20 V
Temperature coefficient of Isc (α) 2.30 mA

C
Temperature coefficient of Voc (β) 127.20 mV

C
Maximum system voltage [V] 700 V

2.1.4. Batteries

The bank of 6 batteries in the electric vehicle (Figure 5) that have been used in this MG is the
Green Saver model with lead-acid silicone technology. Table 3 shows the summary for one battery.

Figure 5. Electric vehicle and batteries.

Table 3. Main battery features.

Type SP125-12

Height 242 mm
Width 171 mm
Weight 38, 400 g
Voltage 12 V

Capacity 125 Ah

2.1.5. Microgrid Controller

The MG uses a centralized controller [35] unit, which is responsible for correct process operation.
The objective of this controller is to attend to the demand of the greenhouse and the CIESOL building,
buying as little energy as possible from the main grid. The controller uses car batteries as energy
storage units to optimize energy use during the day.
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2.2. Methods

2.2.1. Hub Methodology

The methodology used in this paper to model the process has been presented in [36,37]. An energy
hub is defined as the interface between energy production, consumers and the transmission line.
From a system standpoint, a hub can be identified as a unit that provides the following features:
(1) power input and output; (2) energy conversion; and (3) energy storage. Some of the main features
of the hub are:

• Within energy hubs, losses occur only in the converter and storage elements.
• If not explicitly mentioned, unidirectional power flow from the inputs to the outputs of the

converters is assumed.
• Power flow through converter devices is characterized by power and energy efficiency only;

no other quantities are used.

The methodology is summarized as follows: a single converter converts, at time instant k,
a generic r input flow uL

r (k) of a generic hub in a p output flow yp(k), where superscript L is associated
with converter input flows. The input-output conversion is defined by the so-called coupling factor γL

p,r,
which correspond to a converter steady-state conversion efficiency between the input and output flows:

yp(k) = γL
p,ruL

r (k) (1)

If we have several converters, it can be written as follows: y1(k)
...

ynp(k)


︸ ︷︷ ︸

yi(k)

=


γL

1,1 · · · γL
1,r

...
. . .

...
γL

p,1 · · · γL
p,r


︸ ︷︷ ︸

ΓL
i

 u1(k)
...

unr (k)


︸ ︷︷ ︸

uL
i

(2)

where ΓL
i is the converter coupling matrix.

From a discrete–time point of view, the internal storage state xi,s at sampling time k + 1 depends
on the state at the previous sample k and on the total exchanged flow ǔE

i,s(k) during the period ∆T
ranging from k to k + 1 sampling, where the values of steady state input-output flow are described by
the relationship:

ǔE
i,s(k) = ei,s(k)uE

i,s(k) (3)

where ei,s(k) is the efficiency of the i, s interface charging/discharging hub, which describes the energy
exchange between the system and the storage. This factor depends on the direction of flow exchanged
as follows:

ei,s =

{
e+i,s i f uE

i,s ≥ 0 (charging)
e−i,s othercase (discharging)

(4)

where e+i,s and e−i,s are the charging and discharging efficiency, respectively [38]. Assuming ǔE
i,s(k)

remains constant during ∆T:

xi,s(k + 1) = xi,s(k) +
∫ k+1

k
ǔE

i,s(t)dt = xi,s(k) + ǔi,s(k)∆T (5)

If we consider several storage systems:
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 xi,1(k + 1)
...

xi,ns(k + 1)


︸ ︷︷ ︸

xi(k+1)

=

 xi,1(k)
...

xi,ns(k)


︸ ︷︷ ︸

xi(k)

+

 ei,1(k)
. . .

ei,ns(k)


︸ ︷︷ ︸

ΛE
i (k)


ǔE

i,1(k)
...

ǔE
i,ns

(k)


︸ ︷︷ ︸

uE
i (k)

(6)

then, a single hub can be represented by the following condensed form:

xi(k + 1) = xi(k) + ΛE
i (k)u

E
i (k)

yi(k) = ΓL
i uL

i (k)
(7)

2.2.2. Performance Criterion

When a certain method is used to estimate process variables, the differences between the estimated
and real values can be employed to evaluate the method. Different statistical indexes can be utilized
to compare the results of the forecasting models [25,39,40]. In this work, the mean square error (MSE),
the root mean square error (RMSE), the mean absolute percentage error (MAPE) and the coefficient of
determination R2 will be used. The MSE is determined by:

MSE =
1
n

n

∑
k=1

(ŷk − yk)
2 (8)

where n is the forecasting horizon, yk is the real signal at time k and ŷ is the estimated signal at time k.
When a zero value is obtained for MSE, it means that the estimator ŷk predicts parameter observations
yk with perfect accuracy.

RMSE is given by the square root of MSE:

RMSE =

√
1
n

n

∑
k=1

(ŷk − yk)2 (9)

MAPE is defined as follows:

MAPE =
100%

n

n

∑
k=1

∣∣∣∣ ŷk − yk
yk

∣∣∣∣ (10)

The coefficient of determination R2 provides a measurement of how well future outcomes
are likely to be predicted by the forecasting method. It is calculated as follows:

R2 =
∑N

k=1(ŷk − ȳ)2

∑N
k=1(yk − ȳ)2

(11)

where ȳ is the arithmetic mean value of the measured signal.

3. System Modeling and Control Algorithm

This section describes the modeling of the plant and the controller to be used. An MPC controller
with linear constraints, whose formulation is detailed in [35], has been utilized in the MG control unit.
To attempt the objectives described in Section 2.1.5, the following variable selection was defined.

3.1. Manipulated Variables

The MG input vector is defined according to:
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u =


u1

u2

u3

u4

 =


PGridPurch
PGridSale
PBATCH

PBATDISCH

 (12)

where PGridPurch and PGridSale are the purchase and sale of energy to the external network and PBATCH

and PBATDISCH are the charging and discharging power of the batteries.

3.2. Disturbance Vector

The external disturbance to the MG is solar irradiation (measured in Wm−2) on the microgrid
solar panels and directly affects the MG energy balance.

3.3. Controlled Variables

The controlled variables vector (system output vector) is defined as:

y =

[
PCIE
Pgh

]T

(13)

where PCIE is the energy demand of the CIESOL building (kW) and Pgh is the greenhouse energy
demand (kW).

3.4. Microgrid Model

The evolution of the microgrid state variable (the state of the batteries’ charge SOCBAT)
is described by the linear model:

SOCBAT(k + 1) = SOCBAT(k) +
ηBATCH · PBATCH (k) · Ts

CBAT
+

ηBATDISCH · PBATDISCH (k) · Ts

CBAT
(14)

where ηBATCH and ηBATDISCH are the charging and discharging efficiency of the battery, respectively.
Ts is the sample time, and CBAT is the battery capacity.

Net power balance (Prem(k)) within MG is considered. Ppv = ηsolar Irrad(k) and Psolar = Ppv. Ppv,
ηsolar and Irrad(k) are, respectively, the energy production of the PV panels, the solar energy conversion
efficiency and the solar irradiation that acts as a disturbance. Figure 6 shows the control diagram.

Figure 6. Microgrid plant model and controller.
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Therefore, the MG can be modeled as a single hub in a condensed form as:

x(k + 1) = Ax(k) + Λu(k)

y(k) = Γu(k) + DIrrad(k)
(15)

where:

A = [1] (16)

Λ = [0 0
ηBATCH · Ts

CBAT

ηBATDISCH · Ts

CBAT
] (17)

Γ = [1 − 1 − 1 − 1] (18)

D = [ηsolar] (19)

3.5. Controller

The controller is designed to perform the energy management of the microgrid under energy
changes during the generation or loads and managing the use of energy storage system. The MPC cost
function is given by:

J =
Np−1

∑
l=0

(ũ(k + l)TQuũ(k + l) + f T ũ(k + l)) +
Np−1

∑
l=0

(x̃(k + l)− x̃re f (k + l))TQx(x̃(k + l)− x̃re f (k + l)) (20)

s.t.

x ≤ x̃(k + l + 1) ≤ x (21)

u ≤ ũ(k + l + 1) ≤ u (22)

ỹ(k + l) = PCIE(k) + Pgh(k) (23)

where l = 0, . . . , Np − 1, Qu and Qx are positive definite weighting matrices, f is a linear function and
Np is the prediction horizon. Regarding the notation “ã” over variables, this is used to denote variables
over the prediction horizon; a and a denote the minimum and maximum allowed values, respectively.
The first term of the objective function (20) has been used for the management of renewable sources
and the purchase/sale of energy from the grid. The weights Qu and f are tuned to minimize the use
of the network and the storage system. In the second term, Qx is tuned to maintain the storage load
around 50% allowing deviations from this value when there is a need to store more energy and use
the stored energy; the minimum charge state allowed in the batteries is 30%. An initial state in the
batteries of 80% has been considered.

To ensure the proper use of the renewable energy sources, to manage the purchase and sale
of electricity to the external network and to use the storage to minimize oscillations between production
and demand, binary variables are introduced to the formula as constraints in the following way:

δGridPurch(k) =

{
1, PGridPurch(k) > 0
0, PGridPurch(k) = 0

(24)

δGridSale(k) =

{
1, PGridSale(k) > 0
0, PGridSale(k) = 0

(25)

δGridPurch(k) + δGridSale(k) = 1 (26)

δBATCH (k) =

{
1, PBATCH (k) > 0
0, PBATCH (k) = 0

(27)
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δBATDISCH (k) =

{
1, PBATDISCH (k) < 0
0, PBATDISCH (k) = 0

(28)

δBATCH (k) + δBATDISCH (k) = 1 (29)

The state space formulation of the hub has been transformed into the mixed logical dynamic (MLD)
formulation considering concepts of propositional calculus and integer linear programming, as shown
in [41]. This formulation makes it possible to include binary variables introduced in a discrete-time
dynamic system in order to describe the evolution of the system’s continuous and logic signals in a
unified model.

The conditions Pj(k) > 0 in Equations (24), (25) and (27) and condition PBATDISCH < 0
in Equation (28) can be associated with a binary variable δj for j = {GridPurch, GridSale, BATCH} and
δBATDISCH , respectively, such that: [

Pj(k) > 0
]
→
[
δj(k) = 1

][
PBATDISCH < 0

]
→
[
δBATDISCH (k) = 1

] (30)

Equation (30) can be expressed by the inequalities:

(M + ε)δj(k)− Pjδj(k) > 0
(m + ε)δBATDISCH (k)− PBATDISCH δBATDISCH (k) < 0

(31)

where
m = min PBATDISCH (k)
M = max Pj(k)

(32)

and ε is a small tolerance (typically the machine precision).
In Equation (24), PGridPurch(k) > 0 gives δGridPurch(k) = 1, which means that the energy

is purchased from the grid and therefore the weight is used on the purchase value, in (25); on the other
hand PGridSale(k) > 0 results in δGridSale(k) = 1, which means that the energy is sold to the grid, and
therefore, the weight is used on the sale value. Analogous analysis is performed for Equations (27)
and (28). Furthermore, Equations (26) and (29) are associated with the exclusive sum (exclusive or),
such that:

[PGridPurch(k)⊕ PGridSale(k)][
PBATCH (k)⊕ PBATDISCH (k)

] (33)

This means that only one action can be performed once, buying or selling energy and charging
or discharging battery energy; moreover, doing neither is not possible.

4. Simulation Results and Discussion

This section presents the results obtained from applying the control and prediction methods.
As already mentioned, the analysis mainly focuses on load prediction, which has been executed with
forecasting steps given minute by minute. The energy demand and production were previously
filtered using the Savitzky–Golay filter [42] in order to preserve initial distribution characteristics such
as the relative maximum and minimum, as well as the width of the peaks. Data from 2014 have been
used to identify the models and during different days of the year 2015 have been used for validation
(see Figure 7). Different scenarios are presented using the proposed controller in order to realize
optimal energy distribution and to observe the contribution made by the prediction models on two
different significant days.
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Figure 7. Distribution of datasets.

4.1. CIESOL Building and PV System

Two models for each system were proposed. Firstly, we compared several combinations of the
autoregressive moving average (ARMA) models using the final prediction error (FPE) [43]; these
models were based on historical energy demand and energy production data. The data used to identify
these models were chosen from data collected over the year 2014. The ARMA model for a single-output
time series is given by the following equation:

A(z−1)y(k) = C(z−1)e(k) (34)

where y(k) is the system output and e(k) is the model error. The ARMA structure reduces to the
autoregressive (AR) structure for C(z−1) = 1 as is mentioned in [43].

The discrete-time polynomials obtained for the CIESOL building energy demand (A1) and for the
energy production of the PV system (A2) are detailed in Appendix A.

Additionally, for the same periods and minimizing the MSE, we evaluated several combinations
of the NAR neural network multilayer perceptron using the Levenberg–Marquardt algorithm. These
combinations included networks with different numbers of hidden layers, different numbers of units
in each layer and different types of transfer functions. The chosen configuration consisted of one
hidden layer with 11 and 10 neurons for CIESOL and the PV system, respectively, and a hyperbolic
tangent sigmoid transfer function within this layer, defined by the equation:

f (n) =
1− e−n

1 + e−n (35)

where n is the weighted input of the hidden layer and f (n) is the output of the hidden layer. For the
output layer, a log-sigmoid transfer function was selected (36), and eight and six neurons for CIESOL
and the PV system were used, respectively.

f (n) =
1

1 + e−n (36)

In order to evaluate prediction accuracy, these models were evaluated for predictions with 5,
10 and 15 horizon samples. Figure 8 and Table 4 show the obtained results.
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Figure 8. Results from 5 June 2015 for the ARMA model and the neural network model with a (a) 5-,
(b) 10- and (c) 15-sample prediction horizon for the CIESOL building; and with a (d) 5-, (e) 10-
and (f) 15-sample prediction horizon for the PV system. ( ) Measured, ( ) ARMA model,
( ) NN model.

For the CIESOL building, one can observe that both models (ARMA and NN) produced good
performance; however, it can also be observed that the NN model better approximated the peak
demand and showed better results for all sample horizons. One can see that the neural networks
method is able to capture sudden changes, whereas the ARMA method only follows the trend.
The lower MSE, RMSE and MAPE values of the NN model for all horizons show that it is better than
the ARMA model; furthermore, the R2 is the square of the sample correlation coefficient between the
real samples, and their predicted values-values close to one are desired. The resulting R2 values for
this analysis are satisfactory, with the NN model presenting higher values than the ARMA model.
However, for a 15-sample prediction horizon, one can observe that a substantial change exists for that
of the 10-sample prediction horizon in both models; that is, both models are able to follow the trend,
but the energy demand peaks have not been captured.

Table 4. Performance indexes for the prediction model of the CIESOL building and the PV system with
5-, 10- and 15-sample prediction horizons.

Subsystem Indexes 5 Samples 10 Samples 15 Samples

ARMA NN ARMA NN ARMA NN

MSE 0.313 0.291 2.174 2.002 5.893 4.949
CIESOL RMSE 0.559 0.539 1.147 1.415 2.427 2.224
Building MAPE 0.594 0.582 1.601 1.481 2.587 2.332

R2 0.986 0.987 0.908 0.915 0.751 0.791

MSE 3.653 3.524 5.364 5.010 6.6523 6.468
PV RMSE 1.911 1.877 2.316 2.238 2.554 2.543

system MAPE 8.576 8.115 12.126 11.213 15.189 13.448
R2 0.997 0.997 0.996 0.996 0.995 0.995

Conversely, for the photovoltaic system, the best results derived from the neural network model
for all sample horizons. Moreover, one can see that the two models produce a small predicted signal
delay when clouds are passing. Nevertheless, the neural network model provides the best performance
according to Table 4 with smaller differences compared to the ARMA model, in which the absolute
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percentage error measurement shows that the best forecasting accuracy is provided by the NN model
(this does not exceed 13.5% for the 15-sample horizon). One can also observe that, when there
is a substantial change in radiation, both 15-sample prediction horizon models take longer to follow
the process dynamics. In contrast, there is no great change in the 10-sample prediction horizon.

4.2. The Greenhouse

The energy demand has been considered as a MISO (multi-input single-output) system, where
inside temperature, v1(k), outside temperature, v2(k), inside relative humidity, v3(k), global radiation,
v4(k), blower, u1(k), pump heating, u2(k), zenithal ventilation, u3(k), and lateral ventilation, u4(k),
were the input variables, and energy demand, y(k), was the output variable. All greenhouse variables
were measured with a sampling period of 1 min. In order to calculate future predictions, the future
inputs were considered as known; however, these inputs can be estimated by other prediction models.
A model based on Bayesian networks was presented in [34] considering these variables, where the
energy demand was classified into four classes. One of the main problems when considering energy
demand classes is that information is lost about the real demand values.

In this paper, the real value of the energy demanded is represented; meaning energy information
is not lost when defining it within classes. It has been observed that energy demand behavior in the
greenhouse was that of low energy demand during the spring-summer and high energy demand during
the autumn-winter. This is because during the spring-summer, there is no crop, and the cultivation
period occurs during the autumn-winter, when a controlled temperature inside the greenhouse has to
be maintained using different heating systems due to the low overnight temperatures. Accordingly,
four models were proposed, an autoregressive with external input (ARX) model and one based on
neural networks for the autumn-winter season, as well as an ARX model and an NN model for the
spring-summer season. To identify the spring-summer models, we considered data from 22 February
2014–21 September 2014. For the autumn-winter season, data from 22 September 2014–21 February
2015 were chosen.

Several ARX models were performed. An ARX model was observed as follows:

A(z−1)y(k) =
α1,β1

∑
i=1

z−dBi Bi(z−1)ui(k) +
α2,β2

∑
i=1

z−dDi Di(z−1)vi(k) +
ε(k)

∆
(37)

Using Akaike’s Information Criterion (AIC) [44], better dynamic behavior adjustment was presented
to the real system, where α1 = 4 and α2 = 5 for the autumn-winter model and β1 = 6 and β2 = 10 for
the spring-summer model were used, respectively.

The discrete-time polynomials obtained for the autumn-winter season (A3) and for the
spring-summer season (A4) are shown in Appendix A.

On the other hand, to find the optimal network architecture, several combinations of NARX
neural network multilayer perceptron were evaluated using the Levenberg–Marquardt algorithm
minimizing the MSE. These combinations included networks with different numbers of hidden layers,
different numbers of units in each layer and different types of transfer functions.

A configuration was chosen consisting of a hidden layer with 11 and 12 neurons for the
autumn-winter season and spring-summer season, respectively, along with a hyperbolic tangent
sigmoid transfer function in this layer, defined by (35). For the output layer, a linear transfer
function was selected with eight neurons for the autumn-winter season and eight neurons for the
spring-summer season.

Figure 9 shows the one-day forecasting results during the autumn-winter and the spring-summer
season of 2015 using a prediction horizon of 5, 10 and 15 samples. The results are summarized
in Table 5. The changes in energy demand during the autumn-winter season were more abrupt than
in the spring-summer season, meaning the models obtained for the autumn-winter season had a greater
prediction error compared to the spring-summer season models.
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Figure 9. Results for one day during the autumn-winter season from the ARX model and the neural
network model with a (a) 5-, (b) 10- and (c) 15-sample prediction horizon; and for one day during
the spring-summer with a (d) 5-, (e) 10- and (f) 15-sample prediction horizon for the greenhouse.
( ) Measured, ( ) ARX model, ( ) NN model.

Table 5. Performance indexes for the greenhouse prediction model with 5-, 10- and 15-sample
prediction horizons.

Season Indexes 5-Samples 10-Samples 15-Samples

ARX NN ARX NN ARX NN

autumn-winter

MSE 0.797 1.126 6.655 7.639 19.305 21.101
RMSE 0.893 1.061 2.579 2.764 4.393 4.593
MAPE 11.334 23.235 34.146 65.026 48.953 106.51

R2 0.990 0.986 0.919 0.907 0.767 0.745

spring-summer

MSE 0.028 0.028 0.215 0.259 0.661 1.032
RMSE 0.167 0.170 0.463 0.509 0.813 1.016
MAPE 5.344 8.231 13.98 22.081 26.098 40.723

R2 0.985 0.985 0.890 0.867 0.663 0.473

The resulting values of R2 for this analysis are satisfactory for both models with a 5- and 10-sample
prediction horizon; however, one can see that for a 15-sample prediction horizon, the coefficient R2

is below 0.7 for the spring-summer season. For the autumn-winter season, the ARX model values
are 0.990, 0.919 and 0.767, compared to the NN model values of 0.986, 0.907 and 0.745 for the 5-, 10- and
15-sample prediction horizons, respectively. Furthermore, for the spring-summer season, the ARX
model values are 0.985, 0.890 and 0.663 against the NN model values of 0.985, 0.867 and 0.473 for the
5-, 10- and 15-sample prediction horizons, respectively. Consequently, the ARX models give better
results than the NN models for both seasons.

4.3. An Optimal Distribution Using the Proposed Controller

The predictive controller previously presented in Section 3 has been applied to the MG. The results
presented in this section were obtained considering the following conditions:

• The simulation used real data collected for a sunny day and a day with passing clouds.
• Three similar sets of batteries that can reach a total capacity of C = 20 kWh and a charging

ηBATCH = 0.8 and discharging ηBATDISCH = 0.7 efficiency, respectively, and 10 similar greenhouses,
such as those presented in the materials section, were considered.
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• The cost involved in the degradation of the batteries has been considered constant. In addition,
the maintenance cost of the photovoltaic system has not been considered.

• It is considered to maintain the state of charge of batteries at 50% throughout the day.
• Figure 10 shows the energy demand profiles for both types of day.
• The cost function weights (20) were adjusted using simulations.
• The proposed controller was applied to the microgrid. The aim of the controller is to perform

the energy management of the microgrid during changes in generation or loads. The controller
was implemented in MATLAB [45] using the YALMIP [46] toolbox and the CPLEX [47] solver.

• The simulations were performed using a control horizon of Nc = 5 samples and a prediction
horizon, which varied from 6 to 15, (Np = 6, 7, . . . , 15).
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Figure 10. Total energy demand for a ( ) sunny day and a ( ) day with passing clouds.

In order to verify the contributions of the models presented in Sections 4.1 and 4.2 to the predictive
control techniques, three different scenarios have been considered in this paper:

(i) Perfect information: Scenario 1 is performed assuming that the real data of demand (PCIE and Pgh)
and energy production (Ppv) are known.

(ii) Imperfect information: Scenario 2 is performed using the best forecasting models of demand (the
NN model for PCIE and the ARX model Pgh) and energy production (the NN model for Ppv).

(iii) No Information: Scenario 3 is performed assuming that future values are not known and predictive
models for demand (PCIE and Pgh) and energy production (Ppv) are not used. This means that the
predictions are considered constant along the prediction horizon.

Figures 11 and 12 show the behavior simulations for the electrical energy distribution and the
SOC in Scenario 2 on a sunny day and a day with passing clouds for a prediction horizon of 6, 10 and
15 samples, respectively. One can see that, as the prediction horizon grows, there are larger fluctuations
in the variables PGridPurch

, PGridSale
, PBATCH and PBATDISCH , causing greater effort from the batteries and

resulting in more energy being bought and less energy being sold. Figures 11d–f and 12d–f show how
the SOC of the batteries tries to stay around its reference for a sunny day and for the day with passing
clouds, respectively. Furthermore, one can observe that the lower prediction horizon has a greater
variation range during the day. As can be seen, the three scenarios for both days have been realized
trying to maintain the same level (50%) of the SOC throughout the day and considering the design
of the controller; this has been done with the aim of observing the contribution of prediction models.
However, depending on the controller design, the results may vary. In the design of the controller,
it could be required that at the end of the day, the SOC tries to maintain a different reference level.
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Figure 11. Sunny day case. (a–c) Optimal energy distribution where ( ) Psolar, ( ) PGridPurch
, ( )

PGridSale
, ( ) PBATCH and ( ) PBATDISCH and (d–f) state of charge of the batteries. Results with

a 6- (a,d), 10- (b,e) and 15-sample (c,f) prediction horizon.
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Figure 12. Cloudy day case. (a–c) Optimal energy distribution where ( ) Psolar, ( ) PGridPurch
,

( ) PGridSale
, ( ) PBATCH and ( ) PBATDISCH and (d–f) state of charge of the batteries. Results with

a 6- (a,d), 10- (b,e) and 15-sample (c,f) prediction horizon.

In addition, small differences can be observed by considering the total sum of each manipulated
variable during the day (see Tables A1 and A2 in Appendix B and Figure 13), where the trend of the
variables is shown; these trends indicate in a generalized way that as the prediction horizon increases,
more energy is bought and less energy sold, while there is less energy charging and less energy being
discharged into the batteries.

Furthermore, it can be observed that on the sunny day, Scenario 2 generated better results than
Scenario 3 for a horizon prediction of 6–11; while for a prediction horizon of 12 and above, it is evident
that Scenario 3 is closer to Scenario 1. Conversely, on the day with passing clouds, with a prediction
horizon of 6–13, Scenario 2 presents better results than Scenario 3.
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Figure 13. Total energy (kW) used on a sunny day (a,c,e,g) and a day with passing clouds (b,d,f,h)
where ( ) is Scenario 2 and ( ) is Scenario 3.

To observe the differences in Scenario 2 and Scenario 3 compared to Scenario 1, the average
absolute error ∆ was used. This index is given by:

∆ =
1
n ∑

k
|Pk − P̂k| (38)
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for k = {GridPurch, GridSale, BATCH , BATDISCH}.
For the optimal distribution of energy, it is a priority to have less energy purchased (PGridPurch

),
more energy sold (PGridSale

) and to have greater use of the batteries; that is to say, in terms of charging
(PBATCH ) and discharging (PBATDISCH ), but with less fluctuations. Consequently, a prediction horizon of
eight and six yields the best results on the sunny day and the day with passing clouds, respectively,
using Scenario 2; this is shown in Figure 13 and Table 6, where ∆1,2 and ∆1,3 show the performance
of Scenario 2 compared to Scenario 1, and Scenario 3 compared to Scenario 1, respectively.

Table 6. Index ∆ of the performance for the differences between Scenarios 2 and 3 on a sunny day and
a day with passing clouds.

Day ∆
Prediction Horizon (Min)

6 7 8 9 10 11 12 13 14 15

Sunny ∆1,2 4.92 3.27 1.92 8.45 5.70 2.95 3.04 8.32 3.51 7.56
day ∆1,3 6.17 3.40 8.12 8.82 11.24 12.60 1.66 1.93 2.15 2.02

Day with ∆1,2 1.25 6.61 7.18 15.49 10.16 13.41 12.46 6.95 10.23 8.55
passing clouds ∆1,3 4.68 10.01 9.83 17.06 17.60 18.91 18.54 13.69 6.68 3.30

As shown in Figure 13 and Table 6, for the sunny day up to horizon 11, Scenario 2 gives better
results, whereas starting from horizon 12, the best choice is Scenario 3. The same analysis can be carried
out for the cloudy day, where the changing point is horizon 14. Regarding the energy exchanged with
the main grid, it is possible to conclude that, for Scenario 2 with small prediction horizons, the controller
decided to sell more energy than it did with longer horizons, when compared to Scenario 3. This is due
to the fact that predictions are better with smaller horizons and are degraded as the horizon increases.
It is important to point out that, in this particular case, the amount of energy sold to the main grid is
low due to the small amount of excess power from the solar panels; this can be raised by increasing the
PV panels’ nominal power. This MG change can provide a more profitable economical operating point.

5. Conclusions and Future Works

This work presents the use of different time series forecast and neural network methods to obtain
energy demand and energy production estimations. In addition, a controller has been proposed
to optimize the use of renewable energies in a microgrid; this controller has also been proposed
to regulate battery use, where charging and discharging of the battery system is allowed to oscillate
around a desired load value. Furthermore, the contribution of short-term model prediction has been
verified for optimal energy distribution (based on MPC) in an MG. As can be observed, although the
differences are minimal, the use of short-term prediction models provides an improvement on the
optimal distribution of energy for prediction horizons of less than 12 min on the sunny day and less
than 14 min on the day with passing clouds.

In future work, the use of the electric vehicle will be considered as a vehicle connected to the
grid (V2G). Furthermore, prediction models will be recalibrated to improve horizon predictions
over 15 min; moreover, uncertainties will be considered of the PV system and load demand using
the probability density function (PDF) of solar radiation and the normal distribution function for
prediction purposes. We will propose a secondary level controller over a slow time scale (1 h). The aim
is to carry out an economic optimization where the purchase and sale prices (e/kWh) of energy are
considered; these prices vary hourly according to the daily market. Another important topic is to deal
with the stochastic nature of prediction errors using probabilistic constraints.
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Appendix A. ARIMA Models for the CIESOL Building, the Photovoltaic System and
the Greenhouse

For the CIESOL building and the photovoltaic system, ARMA-type models have been calculated.
The polynomials of the ARMA model for the CIESOL building are:

ACIE(z) = 1− 0.7436z−1 − 1.952z−2 + 1.304z−3 + 1.189z−4 − 0.7466z−5 + 0.059z−6

− 0.1033z−7 − 0.1601z−8 + 0.2462z−9 + 0.0057z−10 − 0.2231z−11 + 0.0506z−12

+ 0.1216z−13 − 0.0127z−14 − 0.0353z−15

CCIE(z) = 1 + 0.97z−1 − 0.8596z−2 − 0.9302z−3 + 0.014z−4 − 0.0020z−5 + 0.0060z−6

+ 0.0137z−7 − 0.0023z−8 + 0.0064z−9 + 0.0145z−10 − 0.0022z−11 + 0.0057z−12

+ 0.0138z−13 − 0.0023z−14 − 0.9932z−15 − 0.9551z−16 + 0.857z−17 + 0.9356z−18

(A1)

whereas the polynomials for the PV system are:

Apv(z) = 1− 3.264z−1 + 4.55z−2 − 4.613z−3 + 4.43z−4 − 3.706z−5 + 3.049z−6

− 2.695z−7 + 2.638z−8 − 2.439z−9 + 1.595z−10 − 0.7346z−11 − 0.4916z−12

+ 1.597z−13 − 1.226z−14 + 0.3109z−15

Cpv(z) = 1− 1.09z−1 + 0.3057z−2 − 1.278z−3 + 0.5316z−4 + 0.0166z−5 + 0.9545z−6

− 0.9729z−7 + 1.479z−8 − 1.004z−9 + 0.8663z−10 − 0.7941z−11 − 0.2833z−12

− 0.4224z−13 + 0.8239z−14 − 0.18951z−15 + 0.4131z−16 − 0.3577z−17 − 0.2445z−18

+ 0.3576z−19 − 0.117z−20

(A2)

On the other hand, for the greenhouse, two ARX models have been calculated: one for the
autumn-winter season and the other for the spring-summer season. The following ARX model
polynomials are for the autumn-winter season:
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Aghaw(z) = 1− 2.915z−1 + 3.393z−2 − 1.99z−3 + 0.4226z−4 + 0.1896z−5 − 0.1z−6

Bghaw ,1(z) = −0.1962z−1 + 0.4546z−2 − 0.4098z−3 + 0.1528z−4

Bghaw ,2(z) = 0.1267z−1 − 0.3108z−2 + 0.2828z−3 − 0.1001z−4

Bghaw ,3(z) = −0.0002z−1 + 0.0018z−2 − 0.0006z−3 − 0.0009z−4

Bghaw ,4(z) = 0.0001z−1 − 0.0003z−2 + 0.0004z−3 − 0.0002z−4

Dghaw ,1(z) = −0.0239z−1 + 0.0332z−2 − 0.0138z−3 + 0.0095z−4

Dghaw ,2(z) = 0.02717z−1 − 0.01532z−2 + 0.003681z−3 − 0.007235z−4

Dghaw ,3(z) = 7.922× 10−5z−1 − 0.0003z−2 − 3.396× 10−5z−3 + 5.072× 10−5z−4

Dghaw ,4(z) = 0.0003z−1 − 4.948× 10−5z−2 + 0.0001z−3 − 0.0002z−4

(A3)

whereas the following ARX model polynomials are for the spring-summer season:

Aghss(z) = 1− 2.358z−1 + 1.858z−2 − 0.4943z−3

Bghss ,1(z) = −0.0130z−1 + 0.0129z−2

Bghss ,2(z) = 0.0069z−1 − 0.0068z−2

Bghss ,3(z) = 0.0005z−1 − 0.0005z−2

Bghss ,4(z) = 2.979× 10−5z−1 − 2.927× 10−5z−2

Dghss ,1(z) = 0.1169z−1 − 0.0792z−2

Dghss ,2(z) = 0.0218z−1 + 0.0223z−2

Dghss ,3(z) = −2.021× 10−5z−1 + 2.122× 10−5z−2

Dghss ,4(z) = 3.331× 10−5z−1 − 2.913× 10−5z−2

(A4)

Appendix B. Distributed Energy for Prediction Horizons from 6–15 min

Table A1. Energy (kW) distributed for prediction horizons from 6–15 min with separation intervals of
1 min on a sunny day.

� Total Prediction Horizon (Min)

Energy 6 7 8 9 10 11 12 13 14 15

Psolar 34,021 34,021 34,021 34,021 34,020 34,021 34,021 34,021 34,021 34,021
PGridPurch 63,609 63,737 63,907 64,058 64,153 64,248 64,333 64,398 64,457 64,506

1 PGridSale 2261 2260.6 2256.2 2269.9 2250.8 2249.5 2257.1 2255 2256.3 2256.5
PBATCH 1250 1294.6 1287.5 1265.5 1210.7 1150.5 1101.8 1062.1 1017.7 980.2

PBATDISCH 3980.1 3895.9 3714.6 3555.8 3386.9 3230.3 3103.7 2997.2 2894.9 2808.7

Psolar 34,021 34,021 34,021 34,021 34,021 34,021 34,021 34,021 34,021 34,021
PGridPurch 63,606 63,741 63,909 64,044 64,160 64,247 64,328 64,396 64,451 64,496

2 PGridSale 2259.6 2264.4 2258.1 2256.3 2258.7 2248.3 2252.3 2251 2253.4 2246.9
PBATCH 1256.8 1295.3 1285.8 1268.4 1214.3 1145.8 1103 1049.5 1024.2 985.2

PBATDISCH 3987.8 3896.7 3712.6 3559.1 3390.9 3225.4 3105 2982.9 2901.5 2814.3
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Table A1. Cont.

� Total Prediction Horizon (Min)

Energy 6 7 8 9 10 11 12 13 14 15

Psolar 34,021 34,021 34,021 34,021 34,021 34,021 34,021 34,021 34,021 34,021
PGridPurch 63,604 63,733 63,911 64,043 64,161 64,254 64,335 64,399 64,456 64,504

3 PGridSale 2257 2256.8 2258.1 2255.3 2260.8 2258.3 2256.4 2254.8 2254.8 2252.4
PBATCH 1257.4 1297.3 1275 1262.4 1223.2 1166.9 1105.2 1059.4 1019.1 980.2

PBATDISCH 3988.5 3899 3700.2 3552.3 3401.1 3249.2 3104.9 2993.3 2899.1 2807.1

Table A2. Energy (kW) distributed for prediction horizons from 6–15 min with separation intervals of
1 min on a day with passing clouds.

� Total Prediction Horizon (Min)

Energy 6 7 8 9 10 11 12 13 14 15

Psolar 30,291 30,291 30,291 30,291 30,291 30,291 30,291 30,291 30,291 30,291
PGridPurch 62,453 62,615 62,781 62,923 63,024 63,111 63,175 63,222 63,265 63,299

1 PGridSale 4082.5 4101.2 4092.4 4102.3 4094 4092.8 4081.4 4065.3 4054.2 4042.3
PBATCH 1275.3 1287.6 1268.8 1267.8 1245.4 1224.7 1197.4 1174.4 1154.2 1136.6

PBATDISCH 4008.9 3877.6 3684.7 3551 3419.9 3310.3 3207.9 3121.8 3047.9 2984.1

Psolar 30,291 30,291 30,291 30,291 30,291 30,291 30,291 30,291 30,291 30,291
PGridPurch 62,455 62,607 62,776 62,901 63,025 63,098 63,154 63,208 63,256 63,302

2 PGridSale 4084.1 4093.8 4089.1 4081.2 4097.9 4081.4 4062.8 4052.4 4046.9 4046.9
PBATCH 1276.1 1292.7 1278.4 1276.5 1261.8 1238.2 1202.4 1174.5 1165.7 1149.1

PBATDISCH 4009.8 3883.5 3695.7 3560.9 3438.6 3325.8 3213.7 3122 3061.1 2998.4

Psolar 30,291 30,291 30,291 30,291 30,291 30,291 30,291 30,291 30,291 30,291
PGridPurch 62,456 62,601 62,774 62,900 63,008 63,088 63,153 63,206 63,260 63,296

3 PGridSale 4086.5 4087.9 4087.8 4080 4080.5 4071.9 4060.3 4049.8 4050.7 4040.5
PBATCH 1280.6 1293.4 1282 1278.2 1264.5 1239.6 1212 1185.4 1162.8 1140.7

PBATDISCH 4015 3884.3 3699.8 3562.8 3441.6 3327.3 3224.6 3134.4 3057.8 2989

� = scenario.
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