energies MBPY

Article

Application of Predictive Feedforward Compensator
to Microalgae Production in a Raceway Reactor:

A Simulation Study

2 3

Andrzej Pawlowski '* (7, José Luis Guzméan , Manuel Berenguel 2, Francisco G. Acien

and Sebastidn Dormido !

1 Departamento de Informatica y Automatica, ETSII, UNED, 28040 Madrid, Spain; sdormido@dia.uned.es
2 Departamento de Informética, University of Almerfa, CIESOL-ceiA3, 04120 Almeria, Spain;
joguzman@ual.es (J.L.G.); beren@ual.es (M.B.)

Departamento de Ingenieria, University of Almeria, CIESOL-ceiA3, 04120 Almeria, Spain; facien@ual.es
*  Correspondence: a.pawlowski@dia.uned.es; Tel.:+34-9-1398-7147

3

Received: 24 November 2017; Accepted: 2 January 2018; Published: 4 January 2018

Abstract: In this work, the evaluation of a predictive feedforward compensator is provided in order
to highlight its most important advantages and drawbacks. The analyzed technique has been applied
to microalgae production process in a raceway photobioreactor. The evaluation of the analyzed
disturbance rejection schemes were performed through simulation, considering a nonlinear process
model, whereas all controllers were designed using linear model approximations resulting in a
realistic evaluation scenario. The predictive feedforward disturbance compensator was coupled with
two feedback control techniques, PID (Proportional-Integral-Derivative) and MPC (Model Predictive
Control) that are widely used in industrial practice. Moreover, the classical feedforward approach
has been used for the purpose of comparison. The performance of the tested technique is evaluated
with different indexes that include control performance measurements as well as biomass production
performance. The application of the analyzed compensator to microalgae production process allows
us to improve the average photosynthesis rate about 6% simultaneously reducing the energy usage
about 4%.
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1. Introduction

Disturbance compensation is a very important aspect that needs to be considered in control system
design for a particular process [1]. In such a case, the control technique should be able to maintain the
controlled variable close to the reference despite the external disturbances that influence the controlled
process. For this reason, most industrial processes need a personalized control scheme to achieve
the performance requirements [2]. From a control system point of view, the process disturbances can
be grouped as unmeasurable and measurable quantities depending on their origin. The measurable
disturbances can be handled by the feedforward structure that can compensate the disturbance before
its effect appears on the controlled variable. However, in many industrial applications, the control
system consists of a feedback controller, since it is able to provide a set point tracking, reduces the
influence of plant-model mismatch as well as compensates for process disturbances [1,3]. Due to this
simple structure, the control system focuses only on one of these issues and provides weak performance
for the other problems [4]. In the classical approach, the feedforward compensator is obtained as
the quotient between the disturbance and the process dynamics. Nevertheless, this structure is
rarely realizable, e.g., due to dead time inversion issues. This problem has been analyzed by several
researchers during the past decades and drives to design more advanced tuning rules for feedforward
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schema [5]. Other approach to measurable disturbance compensation consists in the application of
the MPC (Model Predictive Control) technique. Due to simultaneous solution for feedback as well as
feedforward control, this control technique is frequently used in industrial processes [6,7]. Regarding
the feedforward action, the most relevant advantage of the MPC algorithm is related to the prediction
mechanism that can handle future disturbance information [8,9]. Nevertheless, considering the internal
relationship, the MPC feedforward and feedback co-design needs a compromise, where the design is
oriented considering the most relevant aspects [10,11].

Taking into account all these properties, a new predictive feedforward compensator has been
recently proposed in [12], merging advantages of classical MPC-based solutions. In this case,
the compensator can be easily coupled with any feedback controller and its design is independent of
other elements in the control loop. Moreover, it is also able to consider future disturbance estimations
to improve a disturbance attenuation.

The disturbance compensation aspects are also very important in bio-processes, where the control
technique has to reduce the influence of external disturbances [13,14], and this is the case of microalgae
production in raceway reactors. In such a system, the main task of the controller is to compensate for
the influence of external disturbances that affect the photosynthesis rate. The microalgae culture is
influenced by many factors, where the most important variables are related to: solar light viability,
temperature of the medium, dissolved oxygen and medium pH [15]. In this context, a proper
disturbance attenuation could improve the control system accuracy and, as a consequence, the biomass
production performance. The remaining variables of the microalgae cultivation process such as
dissolved oxygen and pH need to be regulated using a proper control system [16]. Both variables,
dissolved oxygen and pH, are characterized by highly changing dynamics (influenced by solar
radiation and photosynthesis rate) and their values should be maintained within optimal values
for each strain. The photosynthesis rate is influenced mostly by solar irradiance, temperature and
pH among others. It is well known that injection of CO, has a strong influence on the pH level
since it affects the growth medium. Moreover, the usage of CO, represents important operational
expense for microalgae culture and its supply excess should be avoided [17]. Taking advantage of this
relationship, the control approach uses the pH value to define the amount of CO; and time instance
for its injection [18,19]. Considering all previously mentioned aspects, the disturbance compensation
scheme can play a decisive role in boosting control performance and improving the rentability in
biomass production process.

In this study, we provide a practical evaluation of a predictive disturbance compensation technique
introduced in [12] in order to highlight the most important advantages and drawbacks of such a
scheme. As was shown in previous works [12,20], the main advantage of such a technique is the
ability to handle the complex dynamics required for perfect disturbance compensation. In the analysis
performed previously, a complete knowledge of the process model was assumed and the future
disturbance signal was known a priori [20]. From the theoretical point of view, these assumptions
allow us demonstrate that predictive feedforward compensator is able to compensate completely the
disturbance before its effect appears on the controlled variable. Nevertheless, this assumption can be
rarely achieved in an industrial control system, where the usage of simplified models is a common
practice. Moreover, the future values of disturbance signals need to be estimated, which also introduces
additional uncertainty resulting in performance degradation. Additionally, in this work, the original
approach based on a GPC (Generalized Predictive Control) algorithm is extended, with a constraints’
handling mechanism in the feedforward controller being a new future and very important aspect
from practical implementation point of view. Moreover, state of the future disturbances required
for predictive mechanism is estimated using a Double Exponential Smoothing (DES) technique that
was proposed in [8] for MPC control techniques where future information on disturbance signal
is required. In the performed study, we use PID and MPC techniques as a feedback controllers
that are coupled with the predictive feedforward compensator to show its influence on the control
performance in two cases. The evaluation is performed on the biomass production process using a



Energies 2018, 11,123 30f17

raceway photobioreactor model developed in [21]. The test bed is built using a first principle raceway
reactor model as a process plant and all controllers are developed using linear model approximations
obtained close to its operating point. This approach considers a plant-model mismatch allowing us
create a realistic control scenario. Taking into account all these features, it is possible to obtain results
similar to those obtained in the real plant. However, the implementation in simulation environments
has the advantage of the repeatability of the external parameters that influence the control system.
In such a way, the changes in production performance depend only on the applied control techniques
and giving measurable changes in biomass production. All the analyzed control systems are evaluated
using control performance as well as biomass production indexes. Additionally, the test bed system is
evaluated in terms of energy usage efficacy.

2. Feedforward Compensators

This section is devoted to introducing the disturbance compensation approaches used in the
performed analysis. First, the classical approach is introduced and combined with a PID controller.
Next, the GPC-based implicit feedback/feedforward structure is described. Afterwards, predictive
feedforward compensator originally introduced in [12] is summarized. Moreover, the previous
approach is extended with constraints handling mechanism and the future disturbance estimation
technique is also provided.

It needs to be highlighted that, in this paper, we analyze the disturbance rejection problem in a
process that is affected by dead time. This issue makes the classical feedforward compensator less
effective and a more complex compensator is required. This is due to dead time inversion issues
(see [20] for more details). Moreover, for simplicity, the process, P,;, and the disturbance dynamics, P,
are represented by a first order system with dead time using the following representation:

Ko Ko
Puls) = gare ™ Pols) = pe

2.1. Classical Feedforward Structure for Disturbance Compensation

The block diagram of a classical feedforward disturbance compensation problem is shown in
Figure 1 and consists of a feedback controller C, process Py, a feedforward controller C fF and process
Py, which relates a measurable load disturbance v with the process output y. The remaining signals
are: set point w, control signal u (composed of urr and urp provided by feedforward and feedback
controllers). In this scheme, the load disturbance is fed through a feedforward compensator whose
output is added to the feedback control action. From the process control point of view, the goal of this
structure consists in a feedforward compensator design in a way that the influence of the measurable
disturbance on the controlled process is minimized.

v(t)
ReArY) A
o L out) p & 2O

w(t) & ul(t) u
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Figure 1. Feedback plus feedforward control scheme.
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Using block algebra, it can be seen that the analytical expression for disturbance compensation is
given by:
y _ Pv — Cffpu (1)
v 14+Cp, ’
and, from this expression, it can be observed that the disturbance can be completely attenuated when
C¢r = Py/Py. Nevertheless, the resulting compensator is rarely realizable, since it could contain
unstable or non-causal dynamics, and thus other developments should be investigated.
In a first approach, low-order feedforward and feedback controllers are considered. In this case,
we consider a PI or PID controller as the feedback controller, such that:

1
C(s)=K|[14+ —=+5sT, ], 2
6 =K (1+ 5 T4 @
where K refers to proportional gain, T; is the integral time and T is the derivative time (T; = is set
to 0 if a PI controller is used). Note that, in a real implementation, features like filters, anti-windup
and limitations must be added [1]. In addition, we also assume a low-order feedforward compensator
(a lead-lag filter with a dead time), such that:

1+SBff —L
) =Kiper,e 3)

and K¢y, —1/Bsr, —1/Tfs and Lyf refers to the static gain the zero, the pole and the dead time,
respectively. Note that more complex structures are seldom used [22] in practice.

Taking into account the aforementioned process transfer functions, it is possible to achieve perfect
disturbance compensation by making Kgr = K, /Ky, Byp =Ty, Tsf = To, Ly = —p andp =dy —d,
where d,, is process time delay between input and output, and d, is time delay disturbance and output.

2.2. Generalized Predictive Controller

This section briefly describes the GPC algorithm with intrinsic feedforward capabilities, that is
when the GPC takes explicitly into account the dynamics of the measurable disturbances [23]. As is
well known, GPC consists of applying a control sequence that minimizes a multistage cost function of
the form:

] = 25 [9(t + jlt) — w(t + )] +2/\ [Au(t+j—1)]? (4)

j=N1

where 7(k + j|t) is an optimal system output prediction sequence performed with data known up
to discrete time t, Au(t + j — 1) is a future control increment sequence obtained from cost function
minimization with A = (1 —z~!), Ny and N are the minimum and maximum prediction horizons,
respectively, Ny, is the control horizon and 4(j) and A(j) are weighting sequences that penalize the
future tracking errors and control efforts, respectively, along the horizons. The horizons and weighting
sequences are design parameters used as tuning knobs. The reference trajectory w(k + j) can be the set
point or a smooth approximation from the current value of the system output y(¢) towards the known
reference by means of a determined filter [23]. In Equation (4), the j-step ahead prediction of system
output with data up to time ¢, J(k + j|t), is computed using the following CARIMA model [23]:

Az Dy(t) =z Bz Yu(t —1) +z7%*D(z Ho(t) + %, ()
where v(t) is the measured disturbance at time f, e(t) is a zero mean white noise, A, B and D are
adequate polynomials in the backward shift operator z~! and d, and d,, are the dead time in samples
of the process and disturbance dynamics, respectively. Notice that the effect of the measurable
disturbances is represented in Equation (5) by the term z=4°D(z~!)v(t). Consider a set of N-ahead
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predictions in Equation (5) where different horizons are used for output prediction and disturbance
estimation, N, and future control action, N, respectively [23]. The prediction equation can be
expressed as:

y=Gu+Hv+f f=GpAu(t—1)+HyAv(t)+Sy(t), (6)

where Gp, Hp and S are matrices of polynomials that are used to calculate the contribution to future
process outputs of the past and present values of the process output, disturbance and control signal
values (see [23] for more details). Then, Equation (6) becomes:

y = Gu+ Hv + Gpup + Hpop + Syp, (7)

where u, = Au(t—1), v, = Av(t) and y, = y(t) for simplicity. Hence, the solution of the
GPC controller when no constraints are considered is obtained minimizing | with respect to u,
which leads to:

u=K ' (G'w-G'Sy, — G'Gpu, — G'Hv — G 'H,v,), (8)

where K = Q) + G ' G. Finally, according to the receding horizon strategy, only the first value of u is
computed, Au(t). Hence, if k is the first row of matrix K~!, Au(t) is given by:

Au(t) =kG'w — kG 'Sy, — kG Gpup — kG Hv — kG 'Hyv,. ©9)

This unconstrained control law of the GPC considers knowledge of future measurable
disturbances and references. Notice that an optimization problem must be solved using a quadratic
cost function, when constraints are taken into account since there is no explicit solution [23]. For future
analysis the unconstrained control law (Equation (9)) is used. In consequence, the different terms in
Equation(9) are represented as polynomials in the operator z that multiply considered signals (w(t),
y(t), Au and Av(t)). Thus, Equation (9) can be expressed as:

Au(t) = m(z)w(t) + n(z)y(t) + 1(z)Au(t) + (txf(z) + ap(z))Av(t), (10)

with m(z) = kG p,(z), where p,(z)" = [zt], 242 . ,zutN] n(z) = —kG'S and I(z) =
—kGTGp. Moreover, a, and ay are, respectively, polynomials, including the coefficients of the past
(—kGTHp) and future (—kG "H) values of the disturbance. Depending on the relation between
the disturbance-output dead time d, and the process input-output dead time, d,, such factors are
calculated in different ways. For the configuration analyzed in this work, p > 0 and (nd +d,) > 1,
the a, ¢ polynomials are as follows:

— -1 —(dy+nd—1
ap(z) = ap +ap2" + ol 07 (o )

and the future part has following form:
af(z) = apz =) g umdo)tl g g R (umdo) N,

where nd refers to the degree of the polynomial D from Equation (5). Moreover, polynomials referring
to past a, and future a values of disturbances can be grouped into & = a + a;. Additionally,
the prediction mechanism of the intrinsic compensator can be also used to include future disturbance
estimations, v, through the polynomial a. In such a scheme, the implicit feedforward compensation
is included in control law; however, the disturbance cannot be completely attenuated as was shown
in [9,13]. This is due to the A parameter that is used in the internal structure of the GPC. It was
shown that, for A > 0, the feedforward compensator will never perform as a classical disturbance
compensation structure. The ideal compensator can be obtained only when A = 0, as was shown
in [13]. Nevertheless, the resulting control scheme is characterized by implicit co-design for feedback
and feedforward part and the high bandwidth in the feedback loop, which results in very aggressive
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changes in control signals. Due to the implicit relation between feedback and feedforward actions,
such structure cannot be used as a stand alone disturbance compensator, which limits its applicability.
This particular issue can be addressed with a predictive feedforward compensator that was recently
introduced in [12] and which is summarized in the following section.

Predictive Feedforward Compensator

From the previously presented approaches, it can be deduced that the analyzed solutions provide
some advantages and also drawbacks. In [12], it was found that advantages of previously introduced
schemes can be merged using a predictive feedforward compensator that is derived from the GPC
algorithm with implicit feedforward action using a specific algorithm configuration. It was shown that
an improved disturbance compensator can be obtained by setting the error in the feedback structure
equal to zero. This assumption can be confirmed by the GPC control law provided in Equation (8).
Taking into account that the set point is set to w(j) = y(t) forj =t+d+1,...,t +d + N, and the
system is in a steady state, then u, = Au(t — 1) = 0. Equation (8) representing control law results in:

u=(Q)y+G'G) (-G "Hv — G Hpo,). (11)

Following this equation, a typical feedforward compensator structure can be obtained only when
A = 0 (as shown previously) and, as a consequence, Q) = 0 results in:

u= -G 'Hv -G 'Hpo,, (12)

where H and Hj, refer to future and past disturbances, and G is the process dynamics. Then, it results
in a common feedforward structure where the disturbance dynamics are divided by the process
dynamics with a reversed sign. In the case when future disturbance are known, the first term in
Equation (12) is also considered, v(t + j) forj =t +d+1,...,t +d + N. In such a case, it is possible
to use the predictive mechanism for disturbance compensation for a wide range of systems, including
those with inversion problems. Moreover, the developed scheme can be easily used with different
feedback controllers, since it only focuses on the disturbance compensation.

Future Disturbance Estimation

In previous works, [8,9,24], a study of different forecasting techniques was performed in order
to extend the functionality of the MPC approach. The availability of the future signal values are
used to improve the prediction mechanism accuracy, which results in better performance of the MPC
controller [9]. The previous studies show that relatively lowest prediction errors were reached using
the Double Exponential Smoothing technique and therefore this forecasting method was also used in
the study performed in this work.

The Double Exponential Smoothing (DES) technique is characterized by two equations:

Sk = ¢xr + (1 — ¢)(Sx—1 + bx_1), (13)

b = ¥(Sk — Sk—1) + (1 —7)bx_1, (14)

where x; is actual signal value, Sy is the unadjusted forecast, by is the estimated trend, ¢ is the
smoothing parameter for data, and - is the smoothing parameter for trend. The one sampling instance
ahead prediction is obtained by £;,1 = S + by and the m— sampling periods forecast is obtained
usign £y, = Sk + mby. The initial values for S; and by were set to Sy = x1 and by = (x1 + x2 + x3)/3
as recommended in [8,9]. Moreover, the values for ¢ and y € (0,1) can be obtained via optimization
techniques as described in [8].
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Control Signal Saturation Constraints

Due to its operation principles, the predictive feedforward compensator is able to handle the
constraints into the optimization procedure. As shown perviously, the analyzed compensator is
derived from GPC structure and keeps the ability to handle the process constraints in an independent
way. This characteristic is important from a practical point of view since, in a classical feedforward
compensator, this issue is not considered. Nevertheless, due to the fact that feedforward compensator
works as an independent block from the main feedback control loop, it is necessary to take into account
the value of the control signal computed by the feedback controller. In such a way, the available change
in the control action is determined and considered in the optimization procedure.

Due to the physical limitations of control signal (actuator saturation limits, t,,;, < u(t) < thyax),
it is necessary to include this data into an optimization procedure, where control signal u(f — 1) =
upp(t — 1) 4+ upp(t — 1) considers the part that corresponds to the feedback controller upp and upr from
the feedforward compensator. In a general way, these constraints can be expressed as RAu < ¢ where:

R = ;€ ,

| Ny —lu(t—1)
T | ugy A+ lu(t —1)
and T is N x N lower triangular matrix of ones, 1is a vector, 1 X N of ones. In such a way, saturation
limits can be expressed as a function of inequalities on control signal increments:

Tty < TAu+ u(t — 1) < lupygy.

3. Microalgae Production in a Raceway Reactor

The experimental raceway reactor used for modelling purposes is located at experimental station
“Las Palmerillas” (Almeria, Spain—property of CAJAMAR Foundation). The modelled reactor has
100 m? surface area and is composed of two 50-m long (1 m wide) channels forming U-shape bends
(see Figure 2) [25]. The reactor operates at a constant depth (0.2 m) to provide desired performance
and considering power consumption issues. Resulting reactor volume is 20 m3
photobioreactor facilities can be set up to use different carbon dioxide sources in order to provide
a flexible platform to evaluate different systems and techniques. Nevertheless, for the modelling
purposes, the plant was configured to use flue gases.

The flue gas used for pH control was taken from industrial heating boiled (diesel-fueled with the
average gas composition was: 10.6% CO;, 18.1 ppm CO, 38.3 ppm NOx, and 0.0 ppm SO3). In this
operation scheme, exhaust gas was refrigerated to the environment temperature and stored in a 1.5 m?
pressure tank (compressed to 2 bar) with automatic regulation of pressure. The compressed flue gas was

. The raceway

supplied to the reactor through a 150 m pipeline of 40 mm diameter. Finally, the injection system uses
the solenoid on/off valve and input flow was measured with a digital flow meter (detailed infirmation
for raceway setup can be found in [17,25]). The injection instant as well as aperture time is provided
by the control algorithm used for pH control.

Taking into account the limitation of the actuation system that is used in the pilot-scale raceway
reactor, it is necessary to convert the continuous control signal into the on/off actions of solenoid
control valve. To this end, the PWM (Pulse Width Modulation) technique is used to translate the signal
provided by the controller into a train of pulses with modulated width. The value of the pulse width
is determined by the control system and can vary between 0 and 100%. Moreover, the modulation
frequency was set to 0.1 Hz being optimal for the main controlled variable. The next section summarizes
the raceway reactor modelling that is presented based on the development from [21].
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Figure 2. Raceway reactor. (a) scheme (top and side view); (b) modelled experimental facilities.

3.1. Raceway Reactor Dynamics and Models

The culture growth can be modelled as a function of the photosynthesis rate. The main parameter
that determines the photosynthesis rate is the available light, based on external irradiance, culture
characteristics and reactor geometry [26,27]:

To(t,x) = #(tt’)x)hu — exp(—KoCy(t, )h), (15)
where t is the time, x the space, Ij is the solar irradiance on an obstacle-free horizontal surface, K, is
the extinction coefficient, Cy, is the biomass concentration, and # is the liquid height on the channels.

The available average irradiance is correlated with the photosynthesis rate by a hyperbolical
function as proposed in [28]. This function is completed by adding the rest of the factors that limit
the microalgal growth (under sufficient conditions of nutrients). Thus, the influence of the pH culture
value and dissolved oxygen of the culture have been modeled as described in [15]:

PO Iav(t, X)n
P t _ 1 _ 2,max
0, (t, %) = ( as)KiexP(Iav(t, x)m) + Iy (t, x)"

(- (©4)

where Pp, is the photosynthesis rate (oxygen production rate per biomass mass unit), Pp,, is the
maximum photosynthesis rate for microorganisms under the culture conditions, # is the form exponent,
and the term in the denominator is the irradiance constant, which increases as an exponential function
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of average irradiance, K; and m being form parameters of this relationship, Ko, is the oxygen inhibition
constant and z is a form parameter. For the pH influence on the photosynthesis rate, B;, B, are
the preexponential factors and Cj, C; the activation energies of the Arrhenius model. Furthermore,
a constant respiration rate Rp, was included in order to represent the respiration phenomenon,
and a solar distributed factor a5 as the shadow projection on the perpendicular axis of the reactor walls.
The pH value of the culture is related to other species such as dissolved carbon dioxide, [CO;],
carbonate, [HCOj ], or bicarbonate, [CO?] by several equilibrium equations, as can be seen in [29],
the balance of one of them being necessary to obtain predictions of pH along time and space. In this
work, the total inorganic carbon concentration, [Cr], is modelled taking into account the photosynthesis
process performed by the microalgae culture, and the transport phenomena due to the recirculation
of the culture along the raceway. Assuming constant velocity, v, and constant cross-sectional area
obtained by the multiplication between the liquid height, i, and the channel width, w:
wha[CT] (t,x) _ _whva[CT] (t,x) + wh Pco, (t,x)Cb(t, x)
ot dx Mco, (17)
+ whKjaco,, ([CO3](t, x) — [CO(t, X)),

where Pco, is the carbon consumption rate, Kiaco,, is the mass transfer coefficient for CO,, and Mco,

is the molecular weight of carbon dioxide. The total inorganic carbon, [Cr], is related to the carbon

dioxide concentration in the liquid phase [CO;] and the equilibrium concentration in the gas phase

[CO;]. The equilibrium concentration can be calculated, according to Henry’s law, taking into account
the CO; properties in the air.

Regarding dissolved oxygen concentration, a homologous balance can be established as follows:

wha[oz] (t,x) _ 7whva[02} (t,x) . thOz (t,x)Cb(t, x)
ot ox Mo, (18)

+ whKiq0,, ([03](t x) = [0a](t %)),

where Py, is the photosynthesis rate (oxygen production rate per biomass mass unit), Mo, is the
molecular weight of oxygen, Kj,0,_is the volumetric gas-liquid mass transfer coefficient for oxygen at
the channels, and ([O;] — [O,]) is the driving force. The equilibrium concentration in gas phase [O3] is
calculated as a function of the oxygen concentration in the gas phase based on Henry’s law.

Analogous mass balances are applied at the paddle-wheel and the sump of the reactor, bearing in
mind that these parts can be represented by ODE (Ordinary Differential Equation) expression.
In addition to the liquid phase, the sump is designed to incorporate carbon dioxide by means of
CO;, injections in gaseous form, and remove dissolved oxygen accumulated into the channels by air
injections. Therefore, mass balances on the gas phases are needed to include these phenomena in the
model. Since the nitrogen molar flow can be considered constant because its solubility is approximately
zero, the balances presented in this paper are formulated by relations from the rest of gases to nitrogen
molar ratio. Owing to oxygen, the next balance (19) can be established:

dYOnpu(t) Quas |
ilt - Vs(l —ggs(t)) (YOZ,out(t) - YOZ,m(t)) (19)
~ Kuaop, 220t 2= 0) 1681 1) — (03],

yNz Es(t)

where V,,,,; is the molar volume under reactor conditions (pressure and temperature), Yo, is the oxygen
to nitrogen molar ratio in the gas phase, which is defined at the inlet and outlet of the sump, and yy, is
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the nitrogen molar fraction. For the carbon dioxide, an analogous mass balance can be defined (20),
where Y0, is the carbon dioxide to nitrogen molar ratio in the gas phase:

dYCOzlout(t) _ qus
dt EERACEEND)

~ Kinco, ij’ “;‘g;)(”)uco;m ~ 1COA)() ).

(YCO2,0ut(t) — YCO2,in(t))
(20)

3.2. The pH Control System—~Process Model, Control Design and Implementation

For the GPC-based controllers design, a linear model for the controlled process is required. In the
analyzed system, the pH value is affected mainly by CO; injections and CO; uptake as a function
of photosynthesis. The injected CO, makes a possible formation of carbonic acid, which decreases
the pH value. On the contrary, the gradual increase in pH is provoked by the photosynthesis process
where CO; is consumed and O; is produced. As a consequence, the changes in solar irradiance result
in photosynthesis rate variation, which affects the medium pH value. In the presented approach, it is
considered that pH culture is the process output, the aperture of injection valve is the process input
and solar irradiance is the measurable system disturbance. Such a relationship can be characterized by
simplified linear models [14,30].

The raceway reactor pH process was modelled using a linear reduced-order model. The model
structure is developed considering distribution of the actuators and sensor, the reactor architecture
and dominant dynamics in measured data. The developed model relates the carbon dioxide injections
(input variable) with pH (output variable) and is given by following structure [14,30]:

o kl —trs kr
pH(s) = rTlSe u(s) + T s 00 (21)
——
Py P,

where pH is the culture medium pH, u is the control variable, and v is the solar radiation. A first
term, Py, relates the pH level to CO; injections, t,, refers to a time delay between the CO; injection
point and the pH measure point. The P, term captures the solar radiation effect on pH value.
Through process identification and validation procedures, the following parameters were obtained:
ki = —0.005 pH% !, 7y = 16.5 min, t, = 7 min, k, = 0.0007 pH m? W1, and 7, = 118 min. Due to a
low complexity of the model, there exist modelling errors, which makes the presented approach more
realistic from a practical point of view [14,30]. Once the simplified models for pH control have been
obtained, the corresponding control schemes are built.

The simulations presented in this work have been performed using the raceway
photobioreactor nonliner model developed by [21] and the control system implemented in
Matlab/Simulink—Mathworks(© (version 2013R, Mathworks, Natick, MA, USA) environments.
The balances based on partial and ordinary differential equations, which establish the base of the
model, have been implemented by code in Matlab. The control system has been implemented also in
Matlab and coupled with the nonlinear model in the Simulink environment.

4. Results

This section shows simulation experiments using the proposed predictive feedforward
compensator coupled with different feedback controllers and applied to pH control in raceway
photobioreactors. The predictive feedforward compensator was tested in simulation, where the
nonlinear model described in Section 3 was used as virtual plant. All data used in the simulation
study were collected from the real photobioreactor operating in continuous mode at real conditions
in Almeria (Spain) during spring 2017. The simulations were performed for a period of seven days,
where different profiles of solar irradiance have been considered, since it is the main disturbance
that affects the pH control process during diurnal conditions (through the photosynthesis process).
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Moreover, in all considered control systems, the continuous signal obtained from the controller must
be translated into a discontinuous signal used to drive the valve. For this purpose, a PWM technique is
used, with a frequency of 0.1 Hz. Notice that microalgae growth requires that the operation variables
must be maintained at optimum values, where for the microalga used in this work an optimal value of
w(t) = 8 is required.

In this study, two different feedback control strategies, namely PI and GPC controllers,
have used the influence of feedforward action. Notice that the objective of this study is not a direct
comparison of the control schemes, but the analysis of feedforward predictive compensator and its
influence on control performance in different control approaches. The effectiveness of the predictive
feedforward compensator is analyzed through a simulation study where different approaches
for measurable disturbances compensation are considered. The PI controller is tested in three
configurations: self-contained (with no specific disturbance compensation technique), coupled with
classical feedforward (PI 4+ CFF) and predictive feedforward compensator (PI 4+ PFF). The GPC-based
approaches include: stand-alone configuration (with no specific disturbance compensation technique),
GPC with intrinsic feedforward action (GPC + IFF) and coupled with predictive feedforward
compensator (GPC + PFF).

The PI feedback controller was tuned according to the SIMC (Skogestad Internal Model Control)
design rule [31], and results in K = —235 and T; = 990. Moreover, the CFF compensator was
obtained using the methodology presented in Section 2 obtaining the following transfer function:
in CFF = (0.0007 + 0.01155s) / (—0.005 — 0.59s), where a non-realizable part was omitted (due to a
dead time inversion problem). The GPC-based feedback controllers were set up to satisfy required
performance resulting in: N = 10, N, = 5,6 = 1, A = 0.05. For GPC + IFF configuration,
all parameters are the same as for the stand-alone variant and only measurable disturbances are
considered during the development of the algorithm (see Section 2 for details). The PFF compensator
parameters were set to N = 7, N, = 1,6 = 1, A = 0 (these parameters were kept unchanged
for all configurations). Additionally, the future disturbance estimations were obtained using a
DES technique and its configuration parameters were set to ¢ = 0.99 and v = 0.1 following
recommendations from [13]. All controllers have been implemented with sampling time T; = 1
min. Moreover, due to the physical limitation of the actuator, the control signal has been saturated
between 0-100% and considered in an optimization procedure for all GPC-based approaches including
the PFF compensator. For the Pl-based configuration, the antiwindup technique was exploited to deal
with control signal saturation.

The control performance for each analyzed configuration was determined using the
following indexes:

IAE = /Oooe(t)dt, (22)
IAC = /O Y uba, (23)
CSE = [[Au(t)]], (24)

where I AE represents Integrated Absolute Error between reference and controlled variable, the TAC
refers to Integrated Absolute Control signal and CSE stands for Control System Effort.

Moreover, three complementary indexes are included for biomass concentration Cp,
photosynthesis rate PO,, and total amount of flue gases Gas supplied to the raceway photobioreactor.
The first two are obtained from the nonlinear process model and are used to demonstrate the influence
of the evaluated algorithm on microalgae growth. The former index shows the usage usage of the
control medium (flue gases), which can be directly related with energy consumption. The bigger value
means that more energy was consumed for gas compression, being less effective from a economic
point of view.

Since a graphical result for seven days and all analyzed control techniques will not allow one to
see the results properly, one representative day has been selected for PI and GPC feedback controllers,
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which are shown in Figures 3 and 4, respectively. These figures show the results of different feedforward
approaches coupled with two feedback controllers in order to check the efficiency of disturbance
compensation for pH process in a raceway photobioreactor. For each feedback control technique,
different disturbance compensation approaches are tested and all other parameters and variables are
kept unchanged. In such a configuration, the eventual changes in control performance are due to the
efficacy of the disturbance attenuation, which permits us to compare different feedforward schemes.
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Figure 3. Control results for PI (Proportional-Integral) as feedback controller and different
feedforward approaches.

Figure 3 shows the control results for the configuration where the PI controller is used in feedback
loop. For this case, three configurations have been evaluated where disturbance compensation
was performed using: feedback controller (PI), classical feedforward compensator PI + CFF and a
predictive feedforward compensator PI + PFF. From the first plot in Figure 3, it can be seen that all
tested schemes are able to maintain the pH level close to its set point. Nevertheless, the configurations
using the dedicated disturbance compensator, PI + CFF and PI 4 PFF, obtain better precision.
In these two configurations, the control signal is composed of two parts, urr and urp, obtained from
feedforward and feedback controllers, respectively. The urr component provided depends on the
solar irradiance, and proper structure of the compensator. Moreover, from the urr plot, it can be
observed that significant differences between PI + CFF and PI 4 PFF are obtained. This is due to a
predictive approach used in PFF that considers dead time inversion and exploits the future disturbance
information estimated using the DES technique. In such a case, the estimated future values of the
solar irradiance (see red plot on bottom graph in Figure 3) has an offset in comparison to the real solar
irradiance signal. Notice that, in the schemes with feedforward compensators, the resulting control
signal from the compensator is applied only if the pH level is bigger than 7.9; otherwise, it is set to
zero. This condition is set to prevent CO, injections when pH is below the set point.

From the obtained results, it can be seen that none of the analyzed compensators are able
to completely attenuate the disturbance effect. Even the PFF approach with future disturbance
compensation does not achieve the complete attenuation. This is mainly due to two reasons. The first
one is related with plant-model mismatch and the second can be linked with future disturbance
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estimation errors. Both factors are making the predictive disturbance compensator less effective in
comparison to the nominal case where no modelling and estimation errors are considered. However,
the PFF performance is better in comparison to the classical approach, which is confirmed by the
indexes related to control accuracy and process performance.

The average performance indexes for the previously analyzed configurations are summarized in
Table 1. The I AE index shows that the best accuracy, for the analyzed seven-day period, is obtained
for PFF. On the other hand, the CFF approach improves the IAE measure in comparison to the
configuration where only the feedback controller is used to compensate the disturbances. Additionally,
the PFF configuration obtains the lowest AU measure, being the most effective in control resource
utilization. The improved accuracy of the approaches with feedforward compensators is obtained at
the expense of higher control signal variability, which is shown by the CSE index where PFF obtains
the biggest value. Besides that, the predictive feedforward compensator uses the lowest amount of the
flue gases (see Gas index) from all tested configurations, being the most energy efficient.

Table 1. Average performance indexes for PI as feedback controller and different configurations of
feedforward control schemes for the seven-day period.

Feedforward IAE IAU CSE Gas Cyp PO,
Scheme [-1103 [—]10* [—] [m®] [kg/m?] [kgo,/m3s]
- 4983 3773 147 628 0499 0.0278
CFF 4872 3706 193 617 0514 0.0285
PFF 4713 3421 212 596 0529 0.0301

From the process performance point of view, application of feedforward compensators improves
the overall productivity of the biomass, which is confirmed through Cj, and PO, measures. The PFF
configuration provides the best growth conditions, keeping the pH value close to its reference for
a longer time. The photosynthesis rate increments were shown using PO, measure provided by
the nonlinear model. This index reflects the oxygen concentration and it is proportional to the
photosynthesis rate. The PO, increased 5.6% for the PFF configuration when compared to the CFF
technique. Similar improvements are obtained in terms of energy savings. The changes in energy
required for control purposes are calculated using the Gas index. This measure expresses the volume of
the flue gases used during the seven-day time period. The energy usage for the microalgae production
in the raceway reactor is mainly related to the energy consumed by the flue gas compressor. Based on
this issue, a direct relation between Gas and energy used can be established. The reduced amount of
gas usage by the control scheme has a proportional impact on the energy savings. In this case, the PFF
based scheme reduced the energy usage about 4.5% regarding the CFF. These facts are crucially
important for biomass production from microalgae since they increase the process rentability.

The results for the second control scenario, where the GPC algorithm is used as a feedback
controller are shown in Figure 4. As in the previously analyzed scheme, the PFF compensator combined
with the GPC controller provides the most accurate control of the pH. In such a configuration, the pH
value is controlled close to its reference and the signal is characterized by reduced oscillations. The GPC
standard intrinsic disturbance compensator, I FF, is able to improve the performance of the stand-alone
GPC, but, due to design compromises (co-design trade-off between feedback and feedforward), it is
less effective than the proposed predictive feedforward compensator. This fact is even more visible
when the stand-alone GPC configuration is analyzed. In this case, the disturbance compensation is
performed through a feedback loop, since no additional compensator is included. The disturbance
compensation oriented design (allowing quick change in control signal) results in overshoot in the
initial stage of the day [20]. Notice that, in all analyzed configurations, the feedback controller has the
same tuning, and the disturbance compensation technique consideration improves the performance.
In such a case, the best accuracy is obtained for the GPC + PFF configuration. When the control signal
is analyzed for all tested configurations (plots two, three and four in Figure 4), it can be observed
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that the predictive feedforward compensator is starting before other configurations. This is mainly
due to the predictive mechanism that is able to handle future disturbance providing the disturbance
attenuation before its effect appears on the controlled variable. Additionally, the possibility for optimal
adjustment of the control signal weighing factor A is another element that has influence on control
signal changes. It should be highlighted that PFF configuration in nominal cases (no modelling and
disturbance estimation errors) should be able to attenuate completely the effect of disturbance [12].
In industrial practice, it will be impossible to meet this condition and consequently one can not expect
perfect compensation of the measurable disturbances. Nevertheless, significant improvements in
control performance regarding classical approach can be obtained as shown in the analyzed case.
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Figure 4. Control results for GPC as the feedback controller and different feedforward approaches.

Table 2 summarizes the control performance indexes for a scheme where the GPC controller
is used in the feedback loop. In this case, the lowest value of IAE is obtained by the GPC + PFF.
The IFF scheme improves stand-alone GPC, but it is less accurate in pH regulation than the predictive
feedforward compensator. Moreover, it can be observed that configurations with disturbance
compensation mechanism reduce the control effort, IAU, which has positive impact on the CO,
usage. For the CSE index, similar behavior as the previously analyzed scheme was observed.
The configurations with disturbance compensation technique provide the control signal that is
characterized by increased variability, whereas the control signal from PFF obtains the biggest CSE
index value. From all tested configurations, the best growth conditions were obtained for PFF,
which improves PO, index about 6.4% in comparison to the IFF. Moreover, stand-alone GPC was
characterized by the biggest consumption of the control resources (Gas). The smallest usage of flue
gases was obtained by PFF configuration. As a consequence, the predictive feedforward compensator
is the most energy efficient approach, reducing it about 3.8% in comparison to the IFF scheme. This fact
is of great importance in raceway photobioreactor biomass production, since it allows the possibility
to reduce the process maintenance costs.
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Table 2. Average performance indexes for GPC as the feedback controller and different configurations
of feedforward control schemes for a seven-day period.

Feedforward IAE IAU CSE Gas Cyp PO,
Scheme [—1103 [—]10* [—=] [m3] [kg/m3] [kg02/m3s]
- 4.741 3.522 254 5.89 0.521 0.0297
IFF 4.672 3.485 33.7 5.80 0.547 0.0309
PFF 4.538 3.397 58.5 5.64 0.571 0.0329

On the other hand, application of measurable disturbance compensation techniques has a positive
influence on the photobioreactor productivity, which is represented by the C, measure. From this
index, it can be observed that the highest productivity is achieved for PFF, improving the stand-alone
GPC algorithm as well as IFF configuration. In such a case, Cj, has increased about 9%. This improved
productivity is obtained with lower control resources utilization having a positive impact on the
process performance.

From the obtained results, for both feedback control techniques, it can be deduced that the
predictive feedforward compensator can provide better performance than the classical approach.
Nevertheless, its final performance will depend on plant model mismatch and disturbance estimation
accuracy. As shown in the previous analysis, the predictive feedforward compensator can handle
measurable disturbance in a more efficient way in comparison to the classical feedforward compensator
as well as GPC with intrinsic compensation. This realistic evaluation considered aforementioned
issues for the pH control problem in the raceway photobioreactor, where important benefits for
this particular process were obtained. Independently on the feedback controller, the application of
predictive feedforward compensator results in an improved photosythesies rate, providing an average
increase of 6% , and where the biomass concentration was increased about 4%. At the same time,
the average energy usage was reduced about 4%.

5. Conclusions

In this paper, the evaluation of a predictive feedforward compensator and its combination
with the PID and the MPC techniques were presented. The analysis was performed through a
simulation study, where the pH control problem in a raceway photobioreactor was considered. To show
the properties of the analyzed technique, several feedforward compensators have been considered.
Through those configurations, it was demonstrated that significant improvements were obtained in
control accuracy when a predictive feedforward compensator is used. In such a case, the effectiveness
of the analyzed feedforward scheme was verified, obtaining significant improvements in control system
performance indexes when compared to classical compensators. The positive impact of predictive
feedforward compensator was also confirmed through microalgae growth performance indicators.
For this particular process, it was possible to improve the photosynthesis rate about 6% and biomass
concentration was increased about 4%. Moreover, the predictive compensator provides a possibility
to reduce the energy required for process operation while simultaneously providing a more efficient
way for the flue gas usage (used as CO, source). The average energy demand was decreased about 4%
when a predictive compensator was used.

Based on the obtained results, it was demonstrated that application of a predictive feedforward
compensator has a positive impact on the analyzed process performance, even in the presence of
modelling and disturbance estimation errors.
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