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Abstract: Key management is a central problem in information security. The development of quantum
computation could make the protocols we currently use unsecure. Because of that, new structures
and hard problems are being proposed. In this work, we give a proposal for a key exchange in the
context of NIST recommendations. Our protocol has a twisted group ring as setting, jointly with the
so-called decomposition problem, and we provide a security and complexity analysis of the protocol.
A computationally equivalent cryptosystem is also proposed.

Keywords: cryptography; non-commutative algebra; public key cryptography; key management;
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1. Introduction

In recent years, intense research has been made in cryptography, especially in relation to new
public key protocols. In August 2015, the USA’s National Security Agency (NSA) announced plans
to upgrade security standards. Improvements in quantum computation make it necessary to replace
current protocols with secure quantum ones. In a NIST report [1], there are six proposals to be quantum
safe: lattice-based, code-based, multivariate-based, hash-based, isogeny-based, and group-based
cryptographic schemes.

In this work, we make a proposal for a quantum-safe public key protocol. In the context of
group-based proposals, it is believed that problems such as the conjugate search problem (CSP) are not
solvable using quantum computers. We propose the so-called decomposition problem (DP), which is a
generalization of the CSP, and the multiplicative monoid of a twisted group ring as a setting in our
aim to find a quantum-safe key exchange in the context of group-based cryptography.

Decomposition Problem. Given (x, y) ∈ G2 and S ⊂ G, the problem is to find z1, z2 ∈ S
such that y = z1xz2.

Note that the CSP is a special case of this problem where z2 = z−1
1 , and that for the DP we do not

need invertible elements.
The idea is that even in asymmetric cryptography (more usually called public key cryptography),

characterized by having both a secret and public key to encrypt and decrypt (in contrast with symmetric
cryptography, which uses the same key for both procedures), the first and last steps in the algorithm
use the same key, which is the secret key, i.e., both generation of the public key and computation of
the shared key. In terms of Diffie–Hellman key exchange generalization using semigroup actions [2],
this would be the following.

Let S be a finite set, G be an abelian semigroup, and φ a G-action on S, and a public element h ∈ S.
The extended Diffie–Hellman key exchange in (G, S, φ) is the following protocol:
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1. Alice chooses a ∈ G and computes φ(a, h). Alice’s private key is a, and her public key is
pA = φ(a, h).

2. Bob chooses b ∈ G and computes φ(b, h). Bob’s private key is b, and his public key is pB = φ(b, h).
3. Their common secret key is then

φ(a, pB) = φ(a, φ(b, h) = φ(ab, h) = φ(ba, h) = φ(b, φ(a, h) = φ(b, pA).

So we can see that both Alice and Bob use their secret key in the first and last steps of the algorithm.
In contrast, our purpose would work as follows.

Let S be a finite set, G be a non-abelian semigroup, and φ a G-action on S, and a public element
h ∈ S. The extended Diffie–Hellman key exchange in (G, S, φ) is the following protocol:

1. Alice chooses a ∈ G and computes φ(a, h). Alice’s private key is a, and her public key is
pA = φ(a, h).

2. Bob chooses b ∈ G and computes φ(b, h). Bob’s private key is b, and his public key is pB = φ(b, h).
3. Their common secret key is then

φ(a∗, pB) = φ(a∗, φ(b, h) = φ(a∗b, h) = φ(b∗a, h) = φ(b∗, φ(a, h) = φ(b∗, pA),

where a∗, b∗ depend on a, b and also on the algebraic setting, in our case, in the cocycle of the
twisted group ring. In this way, the symmetry that we found using the secret key twice during
the key exchange does not occur, and we can show that this is an advantage, for example, when
facing attacks like the decomposition attack [3].

The rest of this paper is organized as follows: In Section 2, we give an algebraic setting of twisted
group rings. In Section 3, we provide our proposed key exchange and a security analysis of this
protocol. Section 4 shows a computationally equivalent cryptosystem. In Section 5, we extend our
proposal for n users, where we can observe clearly that there is a lack of symmetry concerning the
action of every user. Finally, conclusions are presented in Section 6.

2. Algebraic Setting

In this section, twisted group rings are defined, and we also show some properties that make the
key exchange possible. Firstly, we recall the definition of 2-cocycles, which will allow us to define the
twisted multiplication.

Definition 1. Let G be a group and A be an abelian group. An application

α : G× G → A

is a 2-cocycle if

1. α(g, 1) = α(1, g) = 1, for all g ∈ G,
2. α(g, h)α(gh, k) = α(g, hk)α(h, k), for all g, h, k ∈ G.

Now we define twisted group rings as follows.

Definition 2. Let K be a ring, G be a multiplicative group, and α be a cocycle in U(K). The group ring KαG is
defined to be the set of all finite sums of the form

∑
gi∈G

rigi,

where ri ∈ K and all but a finite number of ri are zero.
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The sum of two elements in KαG is given by(
∑

gi∈G
rigi
)
+
(

∑
gi∈G

sigi
)
= ∑

gi∈G
(ri + si)gi. (1)

And multiplication, which is twisted by a cocycle, is given by(
∑

gi∈G
rigi
)
·
(

∑
gi∈G

sigi
)
= ∑

gi∈G

(
∑

gjgk=gi

rjsk α(gj, gk)
)

gi.

When the cocycle α is trivial, RαG is the classical group ring R[G].
As an example, consider the field K, its primitive root of unity t, and the dihedral group of 2m

elements, D2m =< x, y : xm = y2 = 1, yxa = xm−ay >. The group ring R = KαD2m, where α is

α : D2m × D2m → K

with α(xi, xjyk) = 1 and α(xiy, xjyk) = tj i, j = 1, ..., 2m− 1, is a twisted group ring.
This example is our concrete proposal for the key exchange, the twisted dihedral group ring

KαD2m, where K is a finite field of characteristic p such that p | 2m. This is required in order to R is not
a semisimple ring, which has its consequence in the security analysis.

Once we have defined our setting, we establish some useful properties that will allow us to make
our key exchange possible.

Definition 3. Let R = KαD2m, where t is the primitive root of unity that generates K and α is the cocycle
defined above. Given h ∈ R,

h = ∑
0≤i≤m−1

k=0,1

rixiyk,

where ri ∈ K and x, y ∈ D2m. We define h∗ ∈ KαD2m:

h∗ = ∑
0≤i≤m−1

k=0,1

rit−ixiyk,

where ri ∈ K and x, y ∈ Dm.

Note that R = KαD2m can be written as

R = R1 ⊕ R2,

where R1 = KCm and R2 = KαCmy, and Cm is a cyclic group of order m. In this context, we can define
Aj ≤ Rj as

Aj =
{ m−1

∑
i=0

rixiyk ∈ Rj : ri = rm−i

}
.

Proposition 1. Given h1, h2 ∈ R,

• If h1, h2 ∈ R1, then h1h2 = h2h1;
• If h1, h2 ∈ A2, then h1h∗2 = h2h∗1 , and h∗1h2 = h∗2h1;
• If h1 ∈ A1, h2 ∈ A2, then h1h2 = h2h∗1 .

The proof can be seen in Appendix A.
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3. Twisted Key Exchange Protocol

In this section, we explain the key exchange proposed, over the twisted group ring R = KαD2m,
and discuss the security and complexity of the protocol.

Let h ∈ R be a random public element. The key exchange between Alice and Bob is as follows:

1. Alice selects a secret pair sA = (g1, k1), where g1 ∈ R1, k1 ∈ A2 ≤ R2.
2. Bob selects a secret pair sB = (g2, k2), where g2 ∈ R1, k2 ∈ A2 ≤ R2.
3. Alice sends Bob pA = g1hk1, and Bob sends Alice pB = g2hk2.
4. Alice computes KA = g1 pBk∗1, and Bob computes KB = g2 pAk∗2, and they get the same secret

shared key.

We can easily check that they get the same shared key, computing

KA = g1 pBk∗1 = g1g2hk2k∗1 = g2g1hk1k∗2 = g2 pAk∗2 = KB,

since we had g1g2 = g2g1 and k1k∗2 = k2k∗1 by Proposition 1.

Security Analysis of the Protocol

Security of the protocol described above is based on the assumption that the following problem is
computationally hard:

Given R = KαD2m = R1⊕ R2, A2 ≤ R2, and the public elements h, y ∈ R, and the map ∗ : R→ R,
find a ∈ R1, b ∈ A2 ≤ R2 such that ahb∗ = y.

The stronger decisional version of this assumption would be:

Given R = KαD2m = R1⊕ R2, A2 ≤ R2, and the public elements h, y ∈ R, and the map ∗ : R→ R,
it is hard to distinguish a ∈ R1, b ∈ A2 ≤ R2 such that ahb∗ = y from a random element of the form
ghk, where g ∈ R1 and k ∈ R2.

Now we discuss the security of our protocol against various types of attacks in the literature. The
first attack given by [4] takes advantage of the algebraic setting; the second one, from [3], involves the
underlying computational problem; the third attack is a variation on our case, and finally, we check
the brute force attack.

1. Attacks using decomposition of group rings. Our proposed protocol over KαD2m is not susceptible
to this kind of attack because in our case, char(K) = p | 2m = |D2m|, so our group ring is
never semisimple.

2. Decomposition attack (Roman’kov). This attack by Roman’kov cannot be applied directly since
secret keys in our case are not selected in that way. But we propose the necessary changes for it to
be applicable (mainly, where the secret key belongs). Our proposal is robust against this attack, as
can be observed in the following example.

Example 1. Let R = GF(22)αD6, the public element h = t + (t + 1)x + x2 + ty + xy + x2y, and the
secret keys

sA = (1 + tx + tx2, y + (t + 1)xy + (t + 1)x2y),

sB = (t + (t + 1)x + (t + 1)x2, (t + 1)y + xy + x2y).

Then Alice and Bob obtain their public keys

pA = t + tx + (t + 1)x2 + ty + xy + (t + 1)x2y, pB = t + x + tx2 + (t + 1)y + txy + x2y,

and the shared key
K = (t + 1) + x + tx2 + ty + (t + 1)xy + (t + 1)x2y.
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A passive eavesdropper, Eve, might obtain a basis B of R1hR2 3 pA,

B = {1 + tx, 1 + x + x2, (t + 1)x + x + tx2, y + (t + 1)xy + tx2y}.

So she can see pA as
pA = ∑ βiaihbi,

where
a1 = 1 + tx, a2 = 1 + x + x2, a3 = 1, a4 = 1 + tx + (t + 1)x2,

and
b1 = x2y, b2 = x2y, b3 = y + xy + x2y, b4 = y + xy

if she applies the attack, obtains

3

∑
i=1

αiai pBbi = t + (t + 1)x + x2 + (t + 1)y + (t + 1)xy 6= K.

We can see that this attack would not work since our shared key K cannot be expressed in terms
of the basis B.

3. Decomposition as 1-side multiplication. This decomposition is not always possible, and if that is
the case, it does not necessarily imply breaking our protocol. We show it by using the following
example.

Example 2. Let us consider R, h, sA, sB as in the preceding example. A passive eavesdropper, Eve, would try to
recover K from pA and pB. Let us assume that she can find γ such that

γ · h = pA.

In this case, Eve finds γ = y. But applying this γ to pB is helpless,

γ · pB = (t + 1) + (t + 1)x + (t + 1)x2 + ty + txy + xy 6= K,

pB · γ = (t + 1) + x + tx2 + ty + txy + xy 6= K.

4. Brute force attack. The complexity of our algorithm is O(p
3
4 k) for a k-bits long key.

Complexity can be obtained by computing the number of possible keys. Given h public, we have
that the set of private keys is R1hA2 and the set of shared keys is R1hA1. Recall that R1 = KCm,

R2 = KαCmy, and Aj =
{

∑m−1
i=0 rixiyk ∈ Rj : ri = rm−i

}
. In both cases, we have

|R1| = (pn)m |Aj| = (pn)
m
2 ,

so an eavesdropper would have to try (pn)m · (pn)
m
2 = p

3
2 nm for an nm-bits long key, i.e., p

3
4 k

possibilities for a k-bits long key. In the example proposed in Appendix B, GF(24)αD32, for a 128-bits
long key, we obtain a security of O(296).

In terms of complexity, we could say that our protocol is not as good as other protocols in group
rings, such as the key exchange proposed in [5] (in our case, the key should be larger for the same
security against a brute force attack), but it is still competitive, and it is resistant against attacks such
as [4], which breaks the proposal in [5].

Finally, note that we have studied passive attacks, but in case of an active attack, such as a
man-in-the-middle attack, we would need extra security in our protocol. It could be solved by using
an authenticated channel, with digital signatures.
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4. A Public Key Cryptosystem

In this section, we show a computationally equivalent cryptosystem.
Let R = KαD2m be a twisted group ring by the 2-cocycle α, and recall R = R1 ⊕ R2. We consider

the following Elgamal-type cryptosystem for encryption and decryption. Suppose Bob wants to send a
message to Alice. We have R, and a random element h ∈ R, both public. Alice establishes her public
key as follows: she selects g1 ∈ R1 and k1 ∈ R2, and computes pA = g1hk1.

Encryption. To encrypt a message, Bob executes the following steps:

1. Bob selects two secret elements g2 ∈ R1 and k2 ∈ R2 and computes x1 = g2hk2.
2. Bob represents the message as an element m ∈ R.
3. Bob computes x2 = m + g2 pAk∗2 and sends (x1, x2) to Alice.

Decryption. Alice decrypts the message m by calculating

m = x2 + g1x1k∗1 = m + g2(g1hk1)k∗2 − g1(g2hk2)k∗1,

given that g1g2 = g2g1 and k1k∗2 = k2k∗1 by Proposition 1.

Proposition 2. Breaking the cryptosystem above is equivalent to breaking the key exchange proposed.

Proof. Assume that an eavesdropper, Eve, can solve the key exchange, and she wants to get m from
the pair

(x1, x2) = (g2hk2, m + g2 pak∗2).

Since she is able to break the key exchange, knowing Alice’s public key g1hk1 and Bob’s g2hk2

allows her to get g2g1hk1k∗2 (the shared key). So she can recover the message

m = x2 − g2 pAk∗2 = m + g2g1hk1k∗2 − g2g2hk1k∗2.

Now, assume that Eve can solve the cryptosystem. Then she can obtain any message m if she
knows h, g1hk1, g2hk2, m + g2g1hk1k∗2 . Eve encrypts a message m using g2hk2, obtaining

(x1, x2) = (g2hk2, m + g2g1hk1k∗2).

Since she can break the cryptosystem, she recovers m,

m = x2 − g2g1hk1k∗2,

and obtains the shared key by computing

K = g2g1hk1k∗2 = m− x2.

5. Group Key Management

In this section, we present a key exchange protocol for n users. As stated before, we observe very
clearly the lack of symmetry concerning the action of every user. We also discuss the rekeying process.

Let h ∈ R = R1 ⊕ R2, described above. For i = 1, ..., n, user Ui has a secret pair si = (gi, ki), where
gi ∈ R1 and ki ∈ A2 ≤ R2. Let φ(si, h) = gihki, 2-sided multiplication. We will denote s∗i = (gi, k∗i ).

1. For i = 1, ..., n, user Ui sends to user Ui+1 the message

{C1
i , C2

i , ..., Ci+1
i },

where C1
1 = h, C2

1 = g1hk1 and
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• for i > 1 even, Cj
i = φ(si, Cj

i−1), when j < i, Ci
i = Ci

i−1, Ci+1
i = φ(s∗i , Ci

i−1),

• for i > 1 odd, Cj
i = φ(s∗i , Cj

i−1), when j < i, Ci
i = Ci

i−1, Ci+1
i = φ(si, Ci

i−1).

2. User Un computes φ(sn, Cn
n−1) if n is odd and φ(s∗n, Cn

n−1) if n is even.
3. User Un broadcasts

{C1
n, C2

n, ..., Cn
n}.

4. User Ui computes φ(si, Ci
n) if n is odd or φ(s∗i , Ci

n) if n is even, and gets the shared key.

Proposition 3. After this protocol, users U1, ..., Un agree on a common key.

Proof. Users U1, ...Un agree on a common key. Now we prove it for an even or odd n number of users.
Firstly, we consider n odd. Let us show that users U1, ...Un−1 get the same key and that this is

equal to Un key. To do so, we will prove by induction that

φ(si, Ci
n) = φ(sj, Cj

n)

for i 6= j, i, j ∈ {1, ..., n− 1}. And this also equals Un key, φ(sn, Cn
n−1). For s = 3,

φ(s1, C1
3) = φ(s1, g3g2hk2k∗3)

= g1g3g2hk2k∗3k1

= g2g3g1hk1k∗3k2

= φ(s2, g3g1hk1k∗3)
= φ(s2, C2

3)

using the commutativity rules given by Proposition 1,

k2k∗3k1 = k2k∗1k3 = k1k∗2k3 = k1k∗3k2.

Moreover, φ(s3, C3
2) = g3g2g1hk1k∗2k3 = g2g3g1hk1k∗3k2 = φ(s2, C2

3).
Now, suppose that

φ(si, Ci
n) = φ(sj, Cj

n).

Then we have
φ(s∗i , Ci

n+1) = φ(s∗i , φ(sn+1, Ci
n))

= φ(s∗i sn+1, Ci
n)

= φ(s∗n+1si, Ci
n)

= φ(s∗n+1, φ(si, Ci
n))

= φ(s∗n+1, φ(sj, Cj
n))

= φ(s∗n+1sj, Cj
n)

= φ(s∗j sn+1, Cj
n)

= φ(s∗j , φ(sn+1, Cj
n))

= φ(s∗j , Cn+1)

and

φ(sn, Cn
n−1) = φ(sn, φ(s∗n−1, Cn−2

n−1) = φ(sns∗n−1, Cn−2
n−1) = φ(sn−1s∗n, Cn−1

n−1)

= φ(sn−1, φ(s∗n, Cn−1
n−1) = φ(sn−1, Cn−1

n ).

So all users U1, ..., Un get the same key for n odd.
Secondly, we show that this also works for n even. We prove by induction that

φ(s∗i , Ci
n) = φ(s∗j , Cj

n)
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for i 6= j, i, j ∈ {1, ..., n− 1}. And this also equals Un key, φ(sn, Cn
n−1). For s = 4,

φ(s∗1 , φ(s4, C1
3)) = φ(s∗1 , g4g3g2hk2k∗3k4)

= g1g4g3g2hk2k∗3k4k∗1
= g2g4g3g1hk1k∗3k4k∗2
= φ(s∗2 , g4g3g1hk1k∗3k4)

= φ(s∗2 , φ(s4, C2
3)),

φ(s∗1 , φ(s4, C1
3)) = φ(s∗1 , g4g3g2hk2k∗3k4)

= g1g4g3g2hk2k∗3k4k∗1
= g3g4g2g1hk1k∗2k4k∗3
= φ(s∗3 , g4g2g1hk1k∗2k4)

= φ(s∗3 , φ(s4, C3
3))

using that gi ∈ R1 commute and

k2k∗3k4k∗1 = k3k∗2k4k∗1 = k3k∗4k2k∗1 = k3k∗4k1k∗2 = k3k∗1k4k∗2 = k1k∗3k4k∗2,

k2k∗3k4k∗1 = k2k∗4k1k∗3 = k2k∗1k4k∗3 = k1k∗2k4k∗3.

In addition, φ(s∗4 , C4
3) = g4g3g2g1hk1k∗2k3k∗4 = g3g4k2k1hk1k∗2k4k∗3 = φ(s∗3 , φ(s4, C3

3)).
Suppose now that

φ
(
s∗i , Ci

n
)
= φ

(
s∗j , Cj

n
)
.

Then we have

φ(si, Ci
n+1) = φ

(
si, φ(s∗n+1, Ci

n)
)

= φ
(
si, φ(s∗n+1, Ci

n)
)

= φ
(
sis∗n+1, Ci

n)
)

= φ
(
sn+1s∗i , Ci

n)
)

= φ
(
sn+1, φ(s∗i , Ci

n)
)

= φ
(
sn+1, φ(s∗j , Cj

n)
)

= φ
(
sn+1s∗j , Cj

n)
)

= φ
(
sjs∗n+1, Cj

n
)

= φ
(
sj, φ(s∗n+1, Cj

n)
)

= φ(sj, Cj
n+1).

So the shared key φ
(
si, φ(s∗n+1, Ci

n)
)

is the same for every i ∈ {1, ..., n− 1}, and also,

φ(s∗n, Cn
n−1) = φ(s∗n, φ(sn−1, Cn−2

n−1) = φ(s∗nsn−1, Cn−2
n−1) = φ(s∗n−1sn, Cn−1

n−1)

= φ(s∗n−1, φ(sn, Cn−1
n−1) = φ(s∗n−1, Cn−1

n ),

and all users U1, ..., Un have the same shared key, and we are done.

An important issue in group key management is rekeying after the initial key agreement.
There exist three situations: the first is due to key caducity, and the members of the group are
the same; the second is when a user leaves the group, and the third is when a new user joins it. We
describe these procedures in the following lines.

Let us consider the first situation. Every user Ui has the information Ci
n received from the user

Un. The rekeying process can be carried out by any of them, as is suggested in [6]. We call this user
Uc. He chooses a new element sc′ = (gc′ , kc′), where gc′ ∈ R1 and kc′ ∈ A2. If n is odd, he changes his
private key to s∗c′ sc and broadcasts the message

{φ(s∗c′ , C1
n), φ(s∗c′ , C2

n), ..., φ(s∗c′ , Cc−1
n ), Cc

n, φ(s∗c′ , Cc+1
n ), ..., φ(s∗c′ , Cn

n)}.
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If n is even, he changes his private key to sc′ s∗c and broadcasts the message

{φ(sc′ , C1
n), φ(sc′ , C2

n), ..., φ(sc′ , Cc−1
n ), Cc

n, φ(sc′ , Cc+1
n ), ..., φ(sc′ , Cn

n)}.

Then every user recovers the common key using the private key si if n is even, and s∗i if n is odd.
We can easily check that this shared key is the same for every user. Recall that we proved that

φ(si, Ci
n) = φ(sj, Cj

n) for i, j = 1, ..., n− 1 and odd n. Now we have

φ(s∗i , φ(sc′ , Ci
n) = φ(s∗i sc′ , Ci

n))

= φ(s∗c′ si, Ci
n)

= φ(s∗c′ , φ(si, Ci
n)

= φ(s∗c′ , φ(sj, Cj
n)

= φ(s∗c′ sj, Cj
n)

= φ(s∗j sc′ , Cj
n))

= φ(s∗j , φ(sc′ , Cj
n),

and φ(sn, Cn
n−1) = φ(sn−1, Cn−1

n ) implies that

φ(s∗n, φ(sc′ , Cn
n) = φ(s∗nsc′ , Cn

n))

= φ(s∗c′ sn, Cn
n)

= φ(s∗c′ , φ(sn, Cn
n))

= φ(s∗c′ , φ(sn, Cn
n−1))

= φ(s∗c′ , φ(sn−1, Cn−1
n ))

= φ(s∗c′ sn−1, Cn−1
n )

= φ(s∗n−1sc′ , Cn−1
n ))

= φ(s∗n−1, φ(sc′ , Cn−1
n )),

so all users get the same shared key. This can be proved analogously for odd n. Note that every time
we rekey, we need to consider that a new user has been added to the key agreement (just to decide if
we use the procedure for odd or even n), so the second time we rekey we will consider that they are
n + 1 users, and so on.

In the second case, when some user leaves the group, the corresponding position in the rekeying
message is omitted.

In the last case, when a new user Un+1 joins the group, if n is odd, then Uc adds the element
φ(sc′ , Cn

n) and sends the following to the new user:

{φ(sc′ , C1
n), φ(sc′ , C2

n), ..., φ(sc′ , Cc−1
n ), Cc

n, φ(sc′ , Cc+1
n ), ..., φ(sc′ , Cn−1

n ), φ(sc′ , Cn
n)}.

If n is even, Uc adds the element φ(s∗c′ , Cn
n) and sends to Un+1 the following:

{φ(s∗c′ , C1
n), φ(s∗c′ , C2

n), ..., φ(s∗c′ , Cc−1
n ), Cc

n, φ(s∗c′ , Cc+1
n ), ..., φ(s∗c′ , Cn−1

n ), φ(s∗c′ , Cn
n)}.

Finally, user Un+1 proceeds to step 3 of the group key protocol and sends the other users the
information to obtain the shared key using their private keys.

Our next objective is showing that the security of this protocol for n users is equivalent to the
security of the key exchange in the case of two users, as is the case of [6] and any other similar proposal
such as [7] or more recently, [8], among many others.

6. Conclusions

Our contribution is proposing twisted group rings as interesting structures for key management,
combined with the decomposition problem, since they seem to be quantum-safe for the time being.
More specifically, we have introduced a key exchange protocol using the group ring Kα[D2m] and have
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shown a security and complexity analysis. We have also proposed an Elgamal cryptosystem and
discussed its security. Finally, we have extended this protocol for several users.

Author Contributions: Investigation, M.D.G.O., J.A.L.R., and B.T.J.; Writing—original draft, M.D.G.O.;
Writing—review & editing, J.A.L.R. and B.T.J.

Funding: This work has been supported by Ministerio de Economía y Competitividad grant MTM2017-86987-P.
Both the second and third authors are also funded by Junta de Andalucía grant FQM221.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof of Proposition 1. Let us show that each of these equalities holds.

1. Given h1, h2 ∈ R1, we have

rixisjxj = risjα(xi, xj)xixj = risjxi+j,

sjxjrixi = sjriα(xj, xi)xjxi = risjxi+j.

So then

h1h2 =
m−1

∑
i=0

(rixi)
m−1

∑
j=0

(sjxj) =
m−1

∑
i,j=0

(risjxi+j) =
m−1

∑
j=0

(rjxj)
m−1

∑
i=0

(rixi) = h2h1.

2. Given h1, h2 ∈ A2, these elements can be written as

r0y + r1xy + r2x2y + ... + r m−1
2

x
m−1

2 y + r m−1
2

x
m+1

2 y + ... + r2xn−2y + r1xn−1y

= r0y +

m−1
2

∑
i=1

(rixiy + rixm−iy)

if m is odd, and

r0y + r1xy + r2x2y + ... + r m
2 −1x

m
2 −1y + r m

2
x

m
2 y + r m

2 −1x
m
2 +1y + ... + r2xn−2y + r1xn−1y

= r0y + r m
2

x
m
2 y +

m−2
2

∑
i=1

(rixiy + rixm−iy)

if m is even.
It is worth showing now that the following equality holds:

n

∑
i=1

(rixiy + rixm−i)
n

∑
j=1

(t−jsjxjy + tjsjxm−j) =
n

∑
j=1

(sjxjy + sjxm−j)
n

∑
i=1

(t−irixiy + tirixm−i). (A1)

This is because we will need to use it in both bases, for even and odd m. Since we have that with
basic elements we get

(rixiy + rix−iy) · (t−jsjxjy + tjsjx−jy) = (sjxjy + sjx−jy) · (t−irixiy + tirix−iy),
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(rixiy + rix−iy) · (t−jsjxjy + tjsjx−jy)
= rixiy · t−jsjxjy + rixiy · tjsjx−jy + rix−iy · t−jsjxjy + rix−iy · tjsjx−jy
= risjt−jα(xiy, xjy)xiyxjy + risjtjα(xiy, x−jy)xiyx−jy

+risjt−jα(x−iy, xjy)x−iyxjy + risjtjα(x−iy, x−jy)x−iyx−jy
= risjt−jtjxi−j + risjtjt−jxi+j

+risjt−jtjx−i−j + risjtjt−jx−i+j

= risj(xi−j + xi+j + x−i−j + x−i+j),

(sjxjy + sjx−jy) · (t−irixiy + tirix−iy)
= sjxjy · t−irixiy + sjxjy · tirix−iy + sjx−jy · t−irixiy + sjx−jy · tirix−iy
= sjrit−iα(xjy, xiy)xjyxiy + sjritiα(xjy, x−iy)xjyx−iy

+sjrit−iα(x−jy, xiy)x−jyxiy + sjritiα(x−jy, x−iy)x−jyx−iy
= sjrixj+i + sjrixj−i + sjrix−j+i + sjrix−j−i

= sjri(xj+i + xj−i + x−j+i + x−j−i)

= risj(xi−j + xi+j + x−i−j + x−i+j).

Then we have

∑n
i=1(rixiy + rixm−iy)∑n

j=1(t
−jsjxjy + tjsjxm−jy)

= ∑n
i=1(rixiy · t−jsjxjy + rixiy · tjsjxm−jy + rixm−iy · t−jsjxjy + rixm−iy · tjsjxm−jy)

= ∑n
i=1(risjt−jα(xiy, xjy) + risjtiα(xiy, xm−jy)xiyxm−jy

+risjt−jα(xm−iy, xjy)xm−iyxjy + risjtjα(xm−iy, xm−jy)xm−iyxm−jy)
= ∑n

i=1(risjt−jtjxiyxjy + risjtjt−jxiyxm−jy + risjt−jtjxm−iyxjy + risjtjt−jxm−iyxm−jy)
= ∑n

i=1(risjxi−j + risjxi+j + risjx−i−j + risjx−i+j)

= ∑n
i=1 risj(xi−j + xi+j + x−i−j + x−i+j)

= ∑n
j=1(sjxjy + sjxm−jy)∑n

i=1(t
−irixiy + tirixm−iy).

2.1 Now we show that h1h∗2 = h2h∗1 .

- If m is odd:

h1h∗2 =
(

r0y + ∑
m−1

2
i=1 (rixiy + rixm−iy)

)(
s0y + ∑

m−1
2

j=1 (t
−jsjxjy + tjsjxm−jy)

)
= r0y · s0y + r0y ∑

m−1
2

j=1 (t
−jsjxjy + tjsjxm−jy) + ∑

m−1
2

i=1 (rixiy + rixm−iy)s0y

+∑
m−1

2
i=1 (rixiy + rixm−iy)∑

m−1
2

j=1 (t
−jsjxjy + tjsjxm−jy)

= r0s0 + ∑
m−1

2
i=1 (rixiy + rixm−iy)s0y + r0y ∑

m−1
2

j=1 (t
−jsjxjy + tjsjxm−jy)

+∑
m−1

2
i=1 (rixiy + rixm−iy)∑

m−1
2

j=1 (t
−jsjxjy + tjsjxm−jy)

= s0y · r0y + s0y ∑
m−1

2
i=1 (t−irixiy + tirixm−iy) + ∑

m−1
2

j=1 (sjxjy + sjxm−jy)r0y

+∑
m−1

2
j=1 (sjxjy + sjxm−jy)∑

m−1
2

i=1 (t−irixiy + tirixm−iy)

=
(

s0y + ∑
m−1

2
j=1 (sjxjy + sjxm−jy)

)(
r0y + ∑

m−1
2

i=1 (t−irixiy + tirixm−iy)
)

= h2h∗1 ,

where we have used that

• ∑n
i=1(rixiy + rixm−i)∑n

j=1(t
−jsjxjy + tjsjxm−j) = ∑n

j=1(sjxjy + sjxm−j)∑n
i=1(t

−irixiy +

tirixm−i) A1,

• r0y ·∑
m−2

2
j=1 (t

−jsjxjy + tjsjxm−jy) = ∑
m−2

2
j=1 (sjxjy + sjxm−jy) · r0y A2,

• ∑
m−2

2
i=1 (rixiy + rixm−iy)s0y = s0y ∑

m−2
2

j=1 (t
−irixiy + tirixm−iy) A2,
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r0y

m−1
2

∑
j=1

(t−jsjxjy + tjsjxm−j) =

m−1
2

∑
j=1

(r0y · t−jsjxjy + r0y · tjsjxm−jy)

=

m−1
2

∑
j=1

(r0sjt−jα(y, xjy)yxjy + r0sjtjα(y, xm−j)yxm−jy)

=

m−1
2

∑
j=1

(r0sjxm−j + r0sjxj) (A2)

=

m−1
2

∑
j=1

(sjr0α(xjy, y)xjyy + sjr0α(xm−jy, y)xm−jyy)

=

m−1
2

∑
j=1

(sjxjy + sjxm−j)r0y.

- Analogously, if m is even, we have

h1h∗2 =
(

r0y + r m
2

x
m
2 y + ∑

m−2
2

i=1 (rixiy + rixm−i)
)

(
s0y + t−

m
2 s m

2
x

m
2 y + ∑

m−2
2

j=1 (t
−jsjxjy + tjsjxm−j)

)
= r0y · s0y + r0y · t−m

2 s m
2

x
m
2 y + r0y ∑

m−2
2

j=1 (t
−jsjxjy + tjsjxm−jy) + r m

2
x

m
2 y · s0y

+r m
2

x
m
2 y · t−m

2 s m
2

x
m
2 y + r m

2
x

m
2 y ∑

m−2
2

j=1 (t
−jsjxjy + tjsjxm−jy)

+∑
m−2

2
i=1 (rixiy + rixm−iy) · s0y + ∑

m−2
2

i=1 (rixiy + rixm−iy)t−
m
2 · t−m

2 s m
2

x
m
2 y

+∑
m−2

2
i=1 (rixiy + rixm−iy)∑

m−2
2

j=1 (t
−jsjxjy + tjsjxm−jy)

= r0s0 + r m
2

x
m
2 y · s0y + ∑

m−2
2

i=1 (rixiy + rixm−iy) · s0y + r0y · t−m
2 s m

2
x

m
2 y

+r m
2

x
m
2 y · t−m

2 s m
2

x
m
2 y + ∑

m−2
2

i=1 (rixiy + rixm−iy)t−
m
2 · t−m

2 s m
2

x
m
2 y

r0y ∑
m−2

2
j=1 (t

−jsjxjy + tjsjxm−jy) + r m
2

x
m
2 y ∑

m−2
2

j=1 (t
−jsjxjy + tjsjxm−jy)

+∑
m−2

2
i=1 (rixiy + rixm−iy)∑

m−2
2

j=1 (t
−jsjxjy + tjsjxm−jy)

= s0y · r0y + s0y · t−m
2 r m

2
x

m
2 y + s0y ∑

m−2
2

j=1 (t
−irixiy + tirixm−iy) + s m

2
x

m
2 yr0y

+s m
2

x
m
2 y · t−m

2 r m
2

x
m
2 y + s m

2
x

m
2 y ∑

m−2
2

i=1 (t−irixiy + tirixm−iy)

+∑
m−2

2
j=1 (sjxjy + rjxm−jy)r0y + ∑

m−2
2

j=1 (sjxjy + rjxm−jy)t−
m
2 r m

2
x

m
2 y

+∑
m−2

2
j=1 (sjxjy + rjxm−jy)∑

m−2
2

i=1 t−i(rixiy + tirixm−iy)

=
(

s0y + s m
2

x
m
2 + ∑

m−2
2

j=1 (sjxjy + sjxm−j)
)

(
r0y + t−

m
2 r m

2
x

m
2 + ∑

m−2
2

i=1 (t−irixiy + tirixm−i)
)

= h2h∗1 ,

where we have used that

• r0y · s0y = r0s0 = s0r0 = s0y · r0y

• r0y · t−m
2 s m

2
x

m
2 y = r0s m

2
t−

m
2 α(y, x

m
2 y)yx

m
2 y = r0s m

2
x

m
2 = s m

2
r0α(x

m
2 y, y)x

m
2 yy = s m

2
x

m
2 y · r0y,

• r0y ·∑
m−2

2
j=1 (t

−jsjxjy + tjsjxm−jy) = ∑
m−2

2
j=1 (sjxjy + rjxm−jy) · r0y A2,

• r m
2

x
m
2 y · s0y = r m

2
s0α(x

m
2 y, y)x

m
2 yy = r m

2
s0x

m
2 = s0r m

2
t

m
2 α(y, x

m
2 y)yx

m
2 y = s0y · t−m

2 r m
2

x
m
2 y,

• r m
2

x
m
2 y · t−m

2 s m
2

x
m
2 y = s m

2
x

m
2 y · t−m

2 r m
2

x
m
2 y A3,

• r m
2

x
m
2 y ∑

m−2
2

j=1 (t
−jsjxjy + tjsjxm−jy) = ∑

m−2
2

j=1 (r m
2

x
m
2 y · sjxjy + ·r m

2
x

m
2 ysjxm−jy) =

∑
m−2

2
j=1 (r m

2
sjx

m
2 +j + r m

2
sjx

m
2 −j)
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= ∑
m−2

2
j=1 (sjxjy · t−m

2 r m
2

x
m
2 y + rjxm−jy · t−m

2 r m
2

x
m
2 y) = ∑

m−2
2

j=1 (sjxjy + rjxm−jy)t−
m
2 r m

2
x

m
2 y,

• ∑
m−2

2
i=1 (rixiy + rixm−iy)s0y = s0y ∑

m−2
2

j=1 (t
−irixiy + tirixm−iy) A2,

• ∑
m−2

2
i=1 (rixiy + rixm−iy)t−

m
2 s m

2
x

m
2 y = s m

2
x

m
2 y ∑

m−2
2

i=1 (t−irixiy + tirixm−iy) A3,

• ∑
m−2

2
i=1 (rixiy + rixm−iy)∑

m−2
2

j=1 (t
−jsjxjy + tjsjxm−jy) = ∑

m−2
2

j=1 (sjxjy + rjxm−jy)∑
m−2

2
i=1 (t−irixiy +

tirixm−iy) A1,

r m
2

x
m
2 y

m−2
2

∑
j=1

(t−jsjxjy + tjsjxm−jy) =

m−2
2

∑
j=1

(r m
2

x
m
2 y · t−jsjxjy + ·r m

2
x

m
2 ysjxm−jy)

=

m−2
2

∑
j=1

(r m
2

sjt−jα(x
m
2 , xjy)x

m
2 xjy+

r m
2

sjtjα(x
m
2 , xm−jy)x

m
2 xm−jy)

=

m−2
2

∑
j=1

(r m
2

sjx
m
2 +j + r m

2
sjx

m
2 −j)

=

m−2
2

∑
j=1

(r m
2

sjx
m
2 −j + r m

2
sjx

m
2 +j) (A3)

=

m−2
2

∑
j=1

(sjr m
2

t−
m
2 α(xjy, x

m
2 )xjyx

m
2 +

sjr m
2

t−
m
2 α(xm−jy, x

m
2 )xm−jyx

m
2 )

=

m−2
2

∑
j=1

(sjxjy · t−
m
2 r m

2
x

m
2 y + rjxm−jy · t−

m
2 r m

2
x

m
2 y)

=

m−2
2

∑
j=1

(sjxjy + rjxm−jy)t−
m
2 r m

2
x

m
2 y.

The proof of h∗1h2 = h∗2h1 and h1h2 = h2h∗1 can be made by using similar arguments.

Appendix B. Mathematica Implementation of 128-Bit Example

In this appendix, we include an example of our key exchange in GF(24)αD32, where keys are 128
bits long, implemented in the software Mathematica.
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Figure A1. Implementation of the key exchange in Mathematica
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