A Method based on UML Use Cases
for GUI Design *

Jesis M. Almendros-Jiménez and Luis Iribarne

Dpto. de Lenguajes y Computacién. Universidad de Almeria, Spain.
email: {jalmen,liribarne}@ual.es

Abstract. The use case model help the designers to identify the re-
quirements of the system and to study its high level functionality. In this
paper we present a methodology for graphical user interface design using
the UML use case model. Given a use case diagram representing the ac-
tors and use cases of a system, and a set of activity diagrams describing
each use case, our technique allows us to generate a prototype of each
user interface together with a set of GUI components. Our technique
handles the <<include>> and generalization relationships on use cases,
in such a way that they are interpreted from the point of view of the
GUI design.

1 Introduction

In the Unified Modeling Language (UML), one of the key tools for behaviour
modeling is the Use Case model, originated from OOSE. The key concepts as-
sociated with the use case model are actors and use cases. The users and any
other systems that may interact with the system are represented as actors. The
required behaviour of the system is specified by one or more uses cases, which are
defined according to the needs of actors. Each use case specifies some behaviour,
possibly including variants, that the system can perform in collaboration with
one or more actors. On the other hand, graphical user interfaces (GUI) have
become increasingly dominant, and the design of the “external” or visible sys-
tem has assumed increasing importance. The user interface, as a significant part
of most applications should also be modeled using UML. However, it is by no
means always clear how to model user interfaces using UML, although there
are some recent approaches [Kov98,dSP03,dSP00,EK00,EKK99,Nun03,BNT02]
which have addressed this problem.

In this paper, we focus on the design of GUI with the UML Use case model.
The design of GUI is based on Use case model, and conversely, the design of uses
cases is oriented to GUI design.

Use case model is intended to be used in early stages of the system ana-
lysis in order to specify the system functionality, as an external view of the
system. However, use cases can be formally specified by means of activity dia-
grams, which provide a finer granularity and more rigorous semantics. Activity
diagrams can specify user-system interaction. States represent outputs to the
user which are labelled with UML stereotypes representing visual components

* This work has been partially supported by the Spanish project of the Ministry of
Science and Technology “INDALOG” TIC2002-03968.

for data output. Transitions represent user inputs which are labeled with UML
stereotypes representing visual components for data input and choices.

This finer description allows a mapping with the graphic user interface design.
The refinement of uses cases by means of activity diagrams achieves more precise
specifications, enabling to detect <<include>> and generalization relationships
between use cases [Ste01,0P99]. These relations have an unstable semantics
along the UML development, and have received several interpretations, reflecting
a high degree of confusion among developers [Sim99]. Use case diagrams can
now be viewed as a high-level specification of each use case description, given by
activity diagrams and, therefore, as a high-level specification of the presentation
logic of the system.

In addition, the GUI design reflects these relationships between use cases,
by using the applet or frame inheritance as an implementation of use cases
generalization, and the applet invocation as an implementation of <<include>>
relationship. We handle use cases and activity diagrams and, following some rules
of transformation, we transform both specifications into the user interface. The
designer is the responsible for both specifications and the GUI are designed
according to the specification.

In the literature there are some works which accomplish the design of GUI in
UML. The closest to our approach are [dSP03,dSP00,Nun03]. These proposals
identify some aspects of GUI that cannot be modeled using UML notation, and
a set of UML constructors that may be used to model GUI. However, a method-
ology for GUI design using the use case model is not completely addressed, and
there also exists a lack of formal description of use cases and the correspondence
between use case relationships and GUI components.

Another similar work to our contribution is [EK00,EKK99] in which state ma-
chines and petri nets are used to specify GUI in UML. In the quoted approaches
they specify user interaction but they also lack of use case relationships handling.
Finally, in [Lia03,KSWO01], uses cases are mapped into a UML class diagram to
represent the data managed by the system, but not to design GUI.

The tools for supporting the development of software, the so-called CASE
tools, not only support the analysis and design of systems, but they also contain
code generators to automatically create code fragments of the specified system
in a target programming language. In [KG0O1,EHSW99] it has been described
how to implement collaboration diagrams into code. A CASE tool following our
methodology should be able to perform the transformation of the use case model
and activity diagrams into a set of GUI. It could allow a rapid prototyping of the
external view of the system, which completes the client and designer views of
the system to be developed. The generated GUI interfaces will consist of a UML
class diagram and a view of GUI components, together with code generation.
We have chosen Java as the programming language for GUI coding due to the
familiarity of most software developers with the Java swing for GUT (for instance,
applet and frame).

The rest of the paper is organized as follows. Section 2 describes the rules of
a method that the designer should follow to build GUI components, using use

cases, class and activity diagrams. Section 3 presents a GUI project example of
Internet book shopping that ilustrates the use of the design rules. Then, section 4
describes a formalism for the presented methodology. Finally, section 5 discusses
some conclusions and future work.

2 A Method

In our method, a use case diagram consists of a set of actors (users and external
systems) and use cases. Relationships between actors are generalizations, and
relationships between uses cases are <<include>> dependences, together with
generalizations. In addition, relationships between actors and use cases are sim-
ple associations. Roles, multiplicity, directionality, and extend dependences will
not be considered in our approach yet.

An activity diagram consists of a set of states, with two special cases: the
initial and the final state. States can be linked with labeled transitions (arrows),
and a transition can have several branches with a diamond representing the
branching point. Some activity diagrams can describe a state of another activity
diagram.

2.1 Steps for applying the methodology
The following presents the steps identifying a GUI project development:

(a) Firstly, an informal high level description of the system is carried out by
means of a use case diagram. The use case diagram involves the actors and
the main use cases.

(b) Secondly, for each use case its behaviour is described by means of one or
more activity diagrams, fulfilling those restrictions of the methodology. The
original use case diagrams go refining until they obtain a more formal dia-
grams.

(¢) Thirdly, the use cases and the stereotyped states and transitions are trans-
lated into class diagrams.

(d) Finally, the class diagrams obtained in the previous step produce Java im-
plementations which could be considered as GUI component prototypes.

Certainly, this development sequence is cyclic since the designer can refine
high-level details of the use case diagrams in the next phases. On the other
hand, the behaviour described for the method only refers to the presentation
logic, without considering the business and data logic, which remains in a second
level and out of the scope of this paper.

2.2 Rules for a GUI design
Now, we can summarize the rules of the GUI design, as follows:
— FEach actor representing a user in the use case diagram is an applet. Ac-

tors representing external systems are not considered for visual component
design.

The generalization relationship between two actors p and ¢ (p generalizes q)
corresponds with inheritance of the applet represented by ¢ from the applet
representing p.

Each use case in the use case diagram is an applet.

The generalization relationship between two use cases u and w (u generalizes
w) corresponds with inheritance of the applet of w from the applet of w.
The <<include>> relationship between two use cases v and w (u includes
w) corresponds with the invocation from the applet of u of the (sub)applet
of w.

Each state of the activity diagram describing a use case necessarily falls in
one of the two following categories: terminal states or non-terminal states.

e A terminal state is labeled with a UML stereotype representing an output
GUI component. Therefore, they are also called stereotyped states.

e A non-terminal state is not labeled and is described by means of an
activity diagram. The non-terminal states can be use cases of the use
case diagram or not.

Each transition in the activity diagram of a use case can be labeled by means
of conditions or UML stereotypes with conditions. The UML stereotypes rep-
resent input GUI components. This kind of transitions is also called stereo-
typed tramsitions. The conditions represent use choices or business logic.

In the non-terminal states case, the use case diagram can specify <<include>>
or generalization relationship between the non-terminal state and the use
case, and we follow these rules:

e In the <<include>> relationship case, the non-terminal state is also
an applet and contains the GUI components in the associated activity
diagram.

e In the generalization relationship case, the non-terminal state is also an
applet containing the GUI components in the associated activity dia-
gram, but the use case also contains these GUI components.

In the non-terminal state case, which do not appear in the use case diagram,
they are not applets, and the GUI components in the associated activity
diagram are GUI components of the applet of the use case.

The conditions of the transitions of an activity diagram are not taken into
account for the GUI design.

With regard to the use case relationships, they are interpreted as follows:

The <<include>> relationship between a use case u and a use case w (u
includes w) means that one of the non-terminal states of the activity diagram
of u is w.

The generalization relationship between a use case u and a use case w (u
generalizes w) means that the activity diagram representing w contains the
states and transitions of the activity diagram of u, but some states or tran-
sitions s of u can be replaced in w by states (resp. transitions) s’ following
a replacement relationship s' C s. In addition, w can add new states and
transitions starting from (and reaching) the particular case of the state u.

3 A Case Study

In this section, we explain a simple case study of an Internet book shopping to
illustrate the functionality of our proposed methodology.

In the Internet Shoppping there basically appear three actors: (a) the cus-
tomer, (b) the ordering manager, and (c) the administrator. The customer can
consult certain issues of the product in a catalogue of books before carrying
out the purchase. The manager deals with (total or partially) customer’s or-
ders. The administrator actor can manage the catalogue of books and update
or cancel certain component characteristics of an order Both the manager and
the administrator should be identified themself before carrying out any kind of
operation restricted to his/her environment of work. Considering this approach,
the next sections describe those steps that should be continued to develop a GUI
project using uses cases.

3.1 Describing use cases

The connection of an actor with one or more use cases in the use case diagram
will be interpreted as a set of options (menu) on a first window on which the
actor will interact with the system. Figure 1 shows the complete presentation
logic definition for the Internet Shopping system.

2 G e ssinchiduss
Confim remavs sricls Confem withdraw smicla " i, senciudass
™ A o ~
/ B bl
oty sopping can gy <Fincludss ¢ Manage catalogue
i - o
~ o~ - . 1
: -\‘_ Guery catalogis by & oatramels <<inciuse \
“einehade=r Bhanping it (P 5

<einchudp e, e

o
P sty pdstonce o~ ~ Y
) Purchase LY J Administratosidentfication),
Customar — — . \
t {)] Conirmn add article wsinhudans \'.

) e : X
TRy i g sty (™y laainchudess L
- J H)

anfem Inmice .

=singipdors 7 Mottty r Il sst

PO ety isamect identifatin v

Admintran
— <sinciud - ,
- ™y el - Update onders !
e -— T . ! Fi
- o Veinghoders) - . E /
I P [T akhcidens /
i ssncludes> e Cancel parial orders - !)
P — 5
8 i Confitm withararw article in ¥k b i
g Marager ——— T -
| o ? g e <<inchsdhes
M denifcston e, \

<einchpgess

Hskifyincomect identsic stion -\"'

[= —

- e Confm cancel order
Manage parisl orders . . - — ———,
-rrlude Ty <<inglugas>
o weingiudess -
g—— e e e e Updale partial ordurs
{] gty incomect idantification < H
[Moty Invoice sadsts Administrane identfc ion

Fig. 1. The Internet Shopping use case diagram

In our methodology, the <<include>> relationship can be used to represent
optional or mandatory behaviour. This two kinds of relationships are properly

interpreted in the activity diagrams associated with both connected use cases
since a use case does not describe the behaviour. For instance, the use case
Manage catalogue is an applet that directly depends on four use cases.The rela-
tionships between Withdraw article, Modify article and Add article were
as relations of optionality: the branches of the Manage Catalogue go to these
states in the activity diagram. The use case Administrator identification
was modeled as a relation of mandatory of the use case Manage Catalogue: this
state is always reached in the activity diagram.

The relation of generalization is intended as an inheritance of behaviour and,
therefore, of GUI components. For example, the use case Query catalogue has
been established as a generalization of the use case Purchase. That means that
the purchasing applet also allows a query operation on the catalogue. In fact,
the applet of purchasing inherits from query catalogue.

The distinction between include relationships (mandatory, optional) and gen-
eralization is established by the system’s designer into the activity diagrams of
those include-connected use cases. In the following sections we will only focus
on the Purchase use case to explain the behaviour of the methodology.

3.2 Describing activity diagrams

Activity diagrams describe certain graphical and behavioural details about the
graphical components of an applet. In our case study, we have only adopted four
Java graphical components: JTextArea, JList, JLabel and JButton. Neverthe-
less, other graphical elements could be easily considered in the activity diagram
since they are modeled as state or transition stereotypes. Graphical components
can be clasified as input (a text area or a button) and output components (a
label or list). Input and output graphical components are associated with ter-
minal states and transitions by using the appropriate stereotype, for instance,
JTextArea, JList, JLabel stereotypes are associated with states and JButton
stereotype to transitions. Since the graphical behaviour concerns to states and
transitions, next we will describe them separately.

States can be stereotyped or not. Stereotyped states represent terminal
states which can be labeled by <<JTextArea>>, <<JList>> and <<JLabel>>.
According to the rules of the proposed methodology, if a state is not labeled
with a stereotype, this means that the state is described in another activity dia-
gram. This new diagram can either represent the behaviour of another use case
or simply a way of allowing a hierarchical decomposition of the original activity
diagram. For example, in the activity diagram associated with the Purchase use
case, there appear two non-terminal states: Manage shopping cart and Notify
shopping cart empty. At the same time, two activity diagrams are described
for both states. All these activity diagrams are also shown in Figure 2.

Transitions can be labeled by stereotypes, conditions or both together. For
instance, a button is connected to a transition by using the <<JButton>> stereo-
type, and the name of the label is the name of the button. For example, a Show
cart transition stereotyped as <<JButton>> will correspond with a button com-
ponent called “Show cart”.

c 1 <<JButt o>
<) Bull on> P ~ [S
< lButtonsp—., Accept Y {1 Clisar lr.’ , [Selected aricle]
Cless! 1\ - <<JButian>» |

y Search

<</Buftonz> - ealButon= > [o TaatAreans | < <fTextireas c<lians | <WBution»>

\ e
T ¥ N -
Manage Ratm | telTestAmmass) gy Input pastal [RSN DR RS Rosuits Bt @)
shopping can 2 hput cond = addenes J) e
L — - <<JButon>> <esBution>>
Claar

| Proceed] Exit
.| shopping can no empty|] cJButions
< S— .

(e} The Query Catalogue activity diagram

| shopging can empty |

[e |

o £ [Selected aticle |
« | 1

[Metdy shopping | <<JButton>> . y A << JOutton=>
can emply Exit } ,.’ cellatsr Closs @®
g T 3 Salected =2
[Exit] aricles
H I << Butian>>
fa) The Purchase activity diagram ancel | [Accept | |[Selected anicle | f Remove sricle
¥
Confirm
remove aricle
celButtonss J
I "'""""":" el 11448 1o can {0} The Shopping Can activity diagram
®
o
gl Vs | Close] o
Gy} S I mm=r |
catilogue ~| can |) <<JLabel>> Accepl s
;] <<Rullon=5) Canfirm ramove celButtonss -
Show cart arlicle iy oosl]
| Ext]
<< JHutlons> r_;‘v'-ihel“n e JBullons >
- ks Shopping cat 3
.&;,{.{. srigty Close
(b} The Manage Shopping Can activity diagram {&) Tha P § ion activity di

Fig. 2. The whole activity diagram of the Purchase use case

Conditions can represent user choices or business/data logic. The first one
is a condition of the user’s interaction with a graphical component (related to
button or list states), and the second one is an internal checking condition (not
related to the states, but to the internal process). For example, note in the Query
Catalogue activity diagram how the list Results is modeled by a <<JList>>
state and a [Selected article] condition. Figure 2 shows some transitions
(p-e., [Closel, [Exit] or [Proceed]) that correspond with conditions of the
kind user choice. The [Exit] output transition of the state Manage shopping
cart means that the user has pressed a button called Exit, which has been
defined in a separate Manage shopping cart activity diagram. Nevertheless, the
[shopping cart no empty] and [shopping cart empty] conditions are two
business/data logic conditions, in which the human factor does not participate.

Condition/action transitions are also useful to model the behaviour of the
generalization relationships between use cases. Note in the original use case di-
agram how the Purchase use case inherits the behaviour of the use case Query
catalogue by means of a generalization relationship. This inheritance behaviour
is modeled in the Purchase activity diagram as a non-terminal state that includes
the behaviour of the Query Catalogue activity diagram. Condition/action tran-
sitions can be used to interrupt an inherited behaviour. In the Query Catalogue
example, the output transition [Selected article]/Add to cart mean that
the Add to cart button at the Purchase applet (use case) can interrupt the
query catalogue behaviour whether an article has been selected (condition).

A generalization relationship can also deal with a replacement of behaviour
instead of an increase in behaviour. Note in the original use case diagram how

the Query Catalogue by Administrator also inherits the Query Catalogue. Let
us suppose that their behaviours (activity diagrams) are the same, but the re-
sult list shown to the customer actor (the Results state) is different from that
shown to the administrator actor (p.e., Administrator Results state). In this
case, the system’s designer can use the behaviour (a.d.) of the use case “Query
Catalogue” to model the behaviour (activity diagram) of the “Query Catalogue
by Administrator” re-writing (replacing) the result list (p.e., replacing Results
by Administrator Results). This rule of replacement can also be considered
on transitions (p.e., replacing a button by another GUI component). Finally,
the conditions and “conditions/actions” can be also replaced. In all cases, is a
decision of the designer to allow the replacement of states and transitions.

3.3 Generating class diagrams
Once refined a formal use case diagram and obtained a set of activity diagram,
now we generate class diagrams from this diagram information.

The class diagrams are built from Java Swing classes. In the method, each
use case corresponds with an applet class. Use cases are translated into classes
with the same name as these use cases. The translated classes specialize in a
Java Applet class. The components of the applet (use case) are described in
activity diagrams. A terminal state is translated into that Java Swing class
represented by the stereotype of the state. The Java Swing class is connected
from the container class (i.e., that class working as an applet window in the
use case diagram) and uses an association relationship whose role’s name is
the one on the terminal state. For example, those terminal states stereotyped
as <<JTextArea>> are translated into a JTextArea class in the class diagram.
Something similar happens to the rest of stereotyped states and transitions.
The non-terminal states of an activity diagram may correspond to some other
use cases (applets) or activity subdiagrams. In the last case, the non-terminal
states can be considered an abstract class in the class diagram. Then, it can be
described in another class diagram with the same name as that abstract class.
Figure 3 shows the resultant class diagram of the customer side.

Due to the extension of the resultant class diagram, some classes have not
been included in the figure.

3.4 Generating the GUI components
Finally, rapid GUI prototypes could be obtained from the class diagram. Figure
4 shows a first visual result of the Purchase applet, but without functionality.
Note how the Purchase window (applet) is very similar to the Query Cat-
alogue window, except that the second one includes three buttons more than
the first window. This similarity between applets was reflected in the original
use case diagram as a generalization relationship between use cases (applets),
here, between the use cases Query catalogue and Purchase. Since the Internet
Shopping project was designed, the customer will always work on a Purchase ap-
plet opened from the Customer applet, and never on a Query Catalogue applet,
though the first one inherits the behaviour of the second (i.e., by the relation of
generalization).

il [MoteySnappingCan
Ernply

_|confimBemoveadicls

sRomovenricle [TPNEO0 | yCancal |
s e
+Hilose Fhetopt CueryC a alngue
J HRemoveText

JLabel

+Search, |

Shoppnglan| .SeleciadadiclesTexs

+A4dT G hopgangl 54

+SearchingCrilens
S | +Showian
+Proceed

‘ +hccapt

+EnoppingCan Teod

San

o i | FResuhs

#SearchingCritena

| Hnput Card +CanErpipty Tt

HnputPost address Purchase r
< SolnctedirticlaText [JLabel
#ingan CardT e,
[+Hrgut Post sbhddressTent
+ShoppingCarText
cehrtoean)
Custorner -

Fig. 3. A class diagram obtained from the use cases and activity diagrams

The Shopping Cart window (Figure 4, c¢) appears when the Show Cart but-
ton is pressed on the Purchase window (Figure 4, b). Note how the button is
associated with the window by means of an <<include>> relation between use
cases. The two information applet windows (Figure 4, d) are also associated with
two buttons: the Remove article button in the Shopping Cart window and the
Proceed button in the Purchase window. Note the activity diagrams shown in
Figure 2 to track better the behaviour of the example.

To develop the case study we have used the Rational Rose for Java tool. For
space reasons, we have included here just a part of the GUI project developed
for the case study. A complete version of the project is available at http://wuw.
ual.es/"liribarn/Investigacion/usecases.html.

4 Formalisation

In this section we will formalize the described method, and provide a formal def-
inition for use case diagrams and use cases. In particular, we will define the use
case relationships <<include>> and generalization. We will also define well-
formed use case diagram which follows some restrictions. In addition, we will
provide an abstract definition of GUI, and we will define two relationships be-
tween GUL: inclusion and generalization. This will allow us to define a generic
transformation technique for use case diagrams into a set of GUI. Finally, we will
establish some properties of this transformation technique. Now, let us define a
use case diagram as follows:

Definition 1 (Use Case Diagram). A use case diagram UCD = (n, ACT, UC,

<<i>> . . .
—>, —, =-37) consists of a diagram name n; a finite set ACT of actor’s names
which can be users and external systems p,q,r,...; a finite set UC of use cases

u,v,w, ...; and three relations —>, — and <f—i5>, where 1> C (ACT x ACT)U

ST R (=0t Vi s Prrchsa et =IOl x|
Ay
Buery Catalogue. Purchase
‘Soarcring crnens Searching crmeris
I
Search o | Sewen | | Clew
Results Results
e | addrocat | swwcmt | o | Em
Appint smasect Aapiet staried
{2) The Query Catalogue applet (Use case) (b) The Purchase applet (use case)
i BT ol
= ppiet
Shopping Cart Femowe stickT
Setestid aitmtes. e el
Fiemmnas metich Clestn
- Aok stated
(] Tha Shepping Cart applset {uss cass) [d) Information applats [ute cases)

Fig. 4. The applet windows of the Customer side

(UCxUC); — CACT xUC; and <f—i5>g UC xUC; as usual we write p—>q,

rather than (p,q) € —>, and analogously for — and e

Now, we formally define a use case being specified by means of an activity
diagram as follows:

Definition 2 (Use Case). A use case u = (n,S,SI,IN,OUT,COND,—)
consists of:

— a use case name n;
— a finite set S of states which consist of:

e ¢ finite set UC of use cases;

e a finite set SS of stereotyped states of the form (sn,p) where sn is a

state name and p € OUT;

o three special states SP, the initial, end and branching states.

— a finite set SI of stereotyped interactions of the form [C]/(in,i) where C €
COND, in is a interaction name, and i € IN. The condition [C] is optional;

— a finite set IN of input stereotypes i,7, .. .;
— a finite set OUT of output stereotypes p,q, .. .;
— a finite set COND of conditions C,D . ..;

— a transition relation -C S x (STUCOND) x S; as usual we write A AB
rather than (A, \, B) €—, where X can be [C] or [C]/(in,1).

In an activity diagram we have two kinds of states: stereotyped and non-
stereotyped states. Stereotyped states represent terminal states that correspond

with graphical components. The non-terminal states correspond with use cases.
Transitions are labeled with (conditionated) stereotyped interactions and condi-
tions. The first case corresponds with stereotyped transitions.

We denote by name(u) the name of a use case u. Analogously, we define the
functions usecases(u) and transitions(u), to get the use cases, respectively, the
transitions of a use case. SI(u) —resp. SS(u)— denotes the set of stereotyped
interactions (in, i) in u —resp. stereotyped states (sn,p) in u—. Finally, we call

exit conditions, denoted by exit(u), to the interaction names in of transitions

s [C]/Ll;n,i)

use case.

Now, we have to assume a (reflexive) replacement relation C between stereo-
typed states, and the same relation for stereotyped interactions and conditions.
In practice, this replacement relation should be decided by the designer. Basi-
cally, stereotyped states can be replaced if the output GUI component can be
replaced. For instance, a list with two columns can be replaced by a list with
three columns without lost of functionality. The same happens with stereotyped
interactions which can be replaced if the input GUI components can be replaced.
For instance, a selection of any of the cited list. Finally, conditions can be, for
instance, replaced if one of them is more restrictive than the other.

The replacement relation C can be extended to use cases, as follows. Given

s s C . .
s" and conditions C of transitions [—>] which go to the end state in a

A - . .
two use cases u,v: v C u whenever s = t € transitions(u) iff there exists

s’ ="' t' € transitions(v), such that s’ C s, ¢’ C t and X' C X. Assuming this,
we can define the inclusion and generalization relationship between use cases as
follows. Given two use cases u, v we say that u includes v if v € usecases(u), and
we say that u generalizes v, if there exists w € usecases(v) such that w C u.

Therefore, the transitions of the most general use case can be replaced in the
particular one by more particular stereotyped states and interactions, and condi-
tions, by following the replacement relationship. In addition, the more particular
use case can add new states and transitions. Now, we will define the well-formed
use cases. Let remark that inclusion is a particular case of generalization, that
is, if u includes v then v generalizes u. However, we handle the generalization by
considering two applets, one for each use case u and v, but v does not invoke v,
rather than u includes the behaviour of v.

Definition 3 (Well-formed Use Case). A use case u is well-formed if the
following conditions hold:

— forall s Mte transitions(u) then X has the form [C]/(in,i) € ST iff
e s=(sn,p), pe OUT, or;
e s € usecases(u) and s generalizes u;

— for all v € usecases(u) then there ezists s Mte transitions(u) such that A
has the form [C] or [C]/(in,p) for every C € exit(v).

Well-formed use cases take into account that: (1) an output component
should trigger an input interaction; (2) input interactions can be added to a

more general use case in order to obtain more particular ones; and finally, (3)
the exit conditions of a non-terminal state should be included in the main use
case.

According to the previous definition, a well-formed use case diagram includes
well-formed use cases, and the < <include>> and generalization relationships be-
tween use cases in the use case diagram correspond with a subset of the analogous
relationships defined for use cases.

Definition 4 (Well-formed Use Case Diagram). A well-formed Use Case
Diagram UCD = (n,ACT,UC, —>, —,<§—Zi>) satisfies that every u € UC is

well-formed; for allu,u' € UC, u' —=>u if u generalizes u'; and for all u,u’ € UC,

<<i>> .
u --3" u' if u includes u'.

Now, we will provide an abstract definition of GUI and GUI components.
A GUI has a name, a set of GUI which can be invoked from it, and a set of
stereotyped interactions and states which represent the input and output GUI
components.

Definition 5 (GUI). A graphical user interface G = (n,W,1,0) consists of
a GUI name n; a finite set W of graphical user interfaces; a finite set I of
stereotyped interactions (in,i); and a finite set O of stereotyped states (sn,p).

GUI can be compared by means of generalization and inclusion relationships.
The first one corresponds with the inheritance relationship, and the second one
with the invocation of GUIL. The designer should take into account this corre-
spondence when (s)he defines the replacement relationship between stereotyped
states and transitions.

Given two GUI (n, W, I,0),(n',W',I' O'") we say that (n, W, I,0) general-
izes (n', W', I', O") if for all G € W, there exists G' € W' such that G generalizes
G'; for all i € I, there exists i’ € I' such that i’ C i; and for all o € O, there exists
o' € O' such that o' C o. Given two GUI G and G, we say that G = (n, W, I,0)
includes G' if G' € W.

Now, we can formally define our transformation technique which provides
a set of GUI for each use case diagram. In order to define our transformation,
we need to suppose that <<option>> is a stereotype representing each menu
option of a GUI.

Definition 6 (GUI of a Use Case Diagram). Given a well-formed use case

diagram UCD = (n, ACT, UC, —l>,—,<§—i3>), we define the GUI associated

with UCD, denoted by GUI(UCD), as the set {GUI(p,—) |p € ACT is a user},

where:

W= {GUI() | p — u}

GUI(p,—) = (p,W,1,0) where = {(name(u), << option >>) | p — u}

and
<<i>>

W={GUIWw) |u -5 v}
GU[(U’) = (name(u)v W7 I: O) where I'= SI(U) U{veusecases(u),and not u
0 = SS(u) U

<§f+>>v} SI(U)
<§—i3>v} SS(U)

{vEusecases(u),and not u

We can state the following result from our transformation technique.

Theorem 1. The GUI associated to a well-formed UCD satisfies the following
conditions:

— for all a,a’ € ACT, o' —1>a then GUI(a, —) generalizes GUI(a',—);
— for all u,u’ € UC, u' —>u then GUI(u) generalizes GUI(u');

— for all u,u’ € UC, u SSI3T W then GUI(u) includes GUI(u');

— for all a € ACT and u € UC, a —u. then GUI(a,—) includes GUI(u)

5 Conclusions and Future Work

We have studied a method for transforming the use case model of a system into
a graphical use interface. The use case diagrams help the designers to identify
the requirements of the system and to study its high level functionality. There
exist UML diagrams (i.e. activity and class diagrams) that allow to discover
new details of system behaviour or to describe better the already existing. Nev-
ertheless, we have shown in this paper how a direct correspondence between the
requirements identified in the use cases with these UML diagrams is feasible.
GUI components may be designed with our methodology for rapid prototyping
of the external view of the system. Through a case study, we have shown how
our technique can be applied to the design of Internet book shopping system. In
addition, our approach has been formally studied by providing a generic trans-
formation technique of the use case model into a set of abstract graphical user
interfaces. As a future work, we firstly plan to extend our work to deal with the
< <extends>> relationship of use cases. Secondly, we would like to incorporate
our methodology in a CASE tool in order to automatize it. And finally, we would
like to integrate our technique in the whole development process.

References

[BNT02] Robert Biddle, James Noble, and Ewan Tempero. Essential use cases and
responsibility in object-oriented development. In Proceedings of the Aus-
tralasian Computer Science Conference (ACSC2002), 2002.

[dSPO0]

[dSP03]

Paulo Pinheiro da Silva and Norman W. Paton. User interface modelling
with UML. In Information Modelling and Knowledge Bases XII, pages 203—
217. IOS Press, 2000.

Paulo Pinheiro da Silva and Norman W. Paton. User Interface Modeling in
UMLI. IEEE Software, 20(4):62-69, 2003.

[EHSW99] Gregor Engels, Roland Huecking, Stefan Sauer, and Annika Wagner. UML

[EK00]

[EKK99)

[KGO1]

[Kov98]

[KSWO01]

[Lia03]

[Nun03]

[OP99]

[Sim99]

[Ste01]

Collaboration Diagrams and their Transformation to Java. In UML’99: The
Unified Modeling Language - Beyond the Standard, pages 473-488. LNCS
1723, 1999.

Mohammed Elkoutbi and Rudolf K. Keller. User Interface Prototyping
Based on UML Scenarios and High-Level Petri Nets. In M. Nielsen and
D. Simpson, editors, Application and Theory of Petri Nets 2000, 21st In-
ternational Conference, ICATPN 2000, pages 166-186. LNCS 1825, 2000.
Mohammed Elkoutbi, Ismail Khriss, and Rudolf K. Keller. Generating user
interface prototypes from scenarios. In /th IEEE International Symposium
on Requirements Engineering (RE ’99), page 150. IEEE Computer Society,
1999.

Ralf Kollmann and Martin Gogolla. Capturing Dynamic Program Be-
haviour with UML Collaboration Diagrams. In Proceedings of the Fifth Con-
ference on Software Maintenance and Reengineering, CSMR 2001, pages
58—67. IEEE Computer Society, 2001.

Srdjan Kovacevic. UML and User Interface Modeling. In The Unified Mod-
eling Language, UML’98: Beyond the Notation,, pages 253-266. LNCS 1618,
1998.

Georg Ksters, Hans-Werner Six, and Mario Winter. Coupling Use Cases and
Class Models as a Means for Validation and Verification of Requirements
Specifications. Requirements Engineering, 6(1):3-17, 2001.

Ying Liang. From use cases to classes: a way of building object model with
UML. Information & Software Technology, 45(2):83-93, 2003.

Nuno Jardim Nunes. Representing User-Interface Patterns in UML. In
D. Konstantas et al., editor, Object-Oriented Information Systems, 9th In-
ternational Conference, OOIS 2003, pages 142-151. LNCS 2817, 2003.
Gunnar Overgaard and Karin Palmkvist. A Formal Approach to Use Cases
and Their Relationships. In The Unified Modeling Language, UML’98: Be-
yond the Notation, pages 406-418. LNCS 1618, 1999.

A J H Simons. Use cases considered harmful. In Proc. 29th Conf. Tech.
Obj.-Oriented Prog. Lang. and Sys., (TOOLS-29 Europe), pages 194-203.
IEEE Computer Society, 1999.

Perdita Stevens. On Use Cases and Their Relationships in the Unified
Modelling Language. In Fundamental Approaches to Software Engineering,
4th International Conference, FASE’ 01, pages 140-155. LNCS 2029, 2001.

