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Abstract

Nowadays control technologies have a great importance for modern medicine, as they

influence different clinical practises. In fact, new discoveries in biology and a better under-

standing of the biological functions allow the development of new sensors, actuators and

more accurate models of the human body response to the administration of drugs. This

has led to the introduction of control systems also in drug administration contexts, among

which the closed-loop control of anesthesia during surgeries is one of the most important.

General anesthesia provides a suitable level of hypnosis, neuromuscular blockade and anal-

gesia to the patient under surgery and each of these effects is regulated by using a specific

drug. In order to achieve adequate levels of anesthesia, the anesthesiologists must adjust

several parameters, and the choice is made relying on experience, on recommended doses,

and on the trends of specific vital signs of the patient. To ease the burden of this crucial

role, a solution may be given by introducing model based closed-loop control techniques.

These strategies are based on the availability of a patient model and then the role of the

anesthesiologist will be freed of some regular tasks so that he/she can focus more on the

state of the patient. The aim of this work is to develop a model-based scheme to control

the Depth of Hypnosis (DoH) in anesthesia using the Bispectral Index Scale (BIS) signal

as controlled variable. In particular, control scheme based on Generalized Predictive Con-

trol (GPC) will be firstly developed in order to regulate the infusions of the anesthetic

drug propofol, exploiting the PKPD model of the patient so that the estimated effect-site

concentration is used as a feedback signal. Then, the obtained scheme will be expanded to

control also the infusions of the analgesic drug remifentanil.
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Chapter 1

Introduction

Undergoing a surgical procedure has become nowadays a rather common event in one’s

life, however what is behind this process is almost unknown for the majority of the people.

The aim of this chapter is to introduce the reader with an overview of the concepts now in

use in this medical field and the short history presented in the first section will emphasize

the tremendous impact that the discovery of anesthesia had in medicine as well as the

numerous developments that have taken place ever since. The concepts and definition of

anesthesia, as well as the possible risks, will be presented. Then, a brief overview of the

anesthesiologist’s work is reported in order to highlight the advantages that a closed loop

control system could bring. Finally, in the last section, the equations that make up the

models will be described in detail.

Temporal organization

The Gantt diagram that shows how the work has been developed is shown in figure 1.1.

The literature review phases consist in the search and assimilation of the knowledge neces-

sary to carry out the rest of the project. There are two phases because the work is firstly

focused on the control of the propofol only, SISO development phase, and then, after ob-

taining a good control sister, it is possible to expand it to control also the remifentanil

infusions, MISO development phase. Tests were carried out for each structure, in order to

1
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Figure 1.1: Gantt diagram with the temporal distribution.

evaluate the performance and make comparison with other works.

1.1 Clinical anesthesia

General anaesthesia is generally considered to have been born on 16th October 1846,

when dentist William T. G. Morton demonstrated the use of ether inhalation for surgical

anaesthesia on a patient at Massachusetts General Hospital. Ether anaesthesia was subse-

quently quickly adopted around the world, but before that day surgery was uncommon and

often a horrific experience for the patient. In fact the techniques used to slightly reduce

the pain, such as nerve compression or application of cold, allowed only surgical procedures

with extremely fast execution. Decreased cerebral perfusion obtained by compressing the

carotid artery was also used to render the patient unconscious, as well as the use of alcohol

and drugs but morbidity and mortality was very high. For that reason the success of the

‘etherization’ procedure, as it was first called by its inventor, immediately obtain great echo

throughout the civilized world. The term ‘anesthesia’, from the Greek word αναισθησια,

the lack of sensitivity, was later proposed to Morton by Oliver Wendell Holmes to describe

that new phenomenon.

Since the birth of the anesthesia a lot of different anesthetic agents has been investigated,

and parallel to that the 19th century witnessed the invention of many inhalation apparatuses

2



1.1 Clinical anesthesia

and techniques for drugs administration. The increasing complexity of the administration

and management of anesthesia requested the introduction of a new role in the surgery

room, and in the 1935 the first diploma of anesthesia was offered.

1.1.1 Risk and outcome in anesthesia

Development of anesthesia since the 19th century was concentrated on the safety of the

patient. In fact, by the end of 19th century the incidence of death due to anesthesia was

less than 0.1% [1]. A 1986 survey revealed that the overall death rate directly attributable

to anesthetic drugs was 1:185 056. Human error is probably the most common cause of

death, in fact, according to a 1987 study 75% of anesthetic related deaths are due to

anesthesiologist failure to apply life-savings knowledge, while only 1.7% of cases involve

equipment failure. This very low mortality rate can be attributed mainly to the following

three aspects of the clinical practice:

1. First, anesthesiologist select an appropriate combination of drugs and drug dosage

according the patient’s age, weight, co-morbid disease and the type and duration of

the operation. In standard practise the anesthesiologist often uses several drugs in

order to reach a state of balanced anesthesia, thus limiting the potential lethal side

effects of each drug.

2. The second aspect concerns the equipment that monitor patient’s vital signs and

eventually warns the practitioner of possible complications. Modern equipment is

fairly sophisticated and includes standard devices such as mass spectrometers capno-

graphs, pulse oximeters, heart rate and blood pressure monitors, etc.

3. Finally, education has had a key role in making anesthesia a particularly safe and

reliable procedure. Postgraduate training programs in the speciality of anesthesiology

are offered by every major medical school. Also this medical speciality benefits from

the publication of numerous clinical research journals, such as Anestesiology, British

Journal of Anaestesia, etc...

3



CHAPTER 1 INTRODUCTION

All of these aspects contribute to make clinical anesthesia one of the safest components

of any surgical operation: even particularly ill patients can be safely anesthetized. It is

the surgical procedure itself which offers the most risk. However, older adults and those

undergoing lengthy procedures are most at risk of negative outcomes, which can include

postoperative confusion, heart attack, pneumonia and stroke. A number of more serious

complications are associated with general anaesthetics, but these are rare. Possible serious

complications and risks include [2]:

• a serious allergic reaction to the anaesthetic (anaphylaxis);

• waking up during your operation. The continuous monitoring of the amount of

anaesthetic given will help to ensure this doesn’t happen;

• death, but this is very rare, occurring in around 1 in every 100 000 cases.

Serious problems are more likely to occur if the patient is having major or emergency

surgery, if he/she has any other illnesses, he/she smokes, or he/she is overweight, but in

most cases, the benefits of being pain-free during an operation outweigh the risks.

1.2 Modern concepts

Even though our understanding and methods of administering general anaesthesia have

evolved over time we still do not have a definition of general anaesthesia that is commonly

agreed upon. In 1987 Prys-Roberts describe the anesthesia as a state of “drug-induced un-

consciousness, [where] the patient neither perceives nor recalls noxious stimuli” [3]. This

definition limits the term of anesthesia to an absence of both conscious awareness and

memory formation (i.e., hypnosis and amnesia). However, the role of the anesthesiologists

goes beyond provoking a mere hypnotic state. They also ensure that autonomic reflexes

involving the sympathetic and parasympathetic nervous system (to provide cardiorespira-

tory control) are not sensitive to surgical stress. This is achieved by inducing a state of

analgesia with the administration of opioid drugs. Furthermore, intra-abdominal surgeries

4
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MUSCULAR 
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Neuromuscular
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Figure 1.2: The three effects of the anesthesia.

require the blockade of reflex muscle activity in the abdominal wall in order to permit

surgical exposure. To attain such state of paralysis it is necessary to use Neuromuscular

Blockade (NMB) agents. It is important to note that these drugs act peripherally at the

level of the synaptic link between the nerve and the muscle, and not centrally in the brain

or the spinal cord. To summarize, it is common in the literature to consider that the state

of clinical anesthesia results from the combination of three functional components, that

is, hypnosis, analgesia and immobility (figure 1.2). Three broad categories of anaesthe-

sia exist, they differentiate each other for the duration, the depth and part of the body

involved:

• General anesthesia suppresses central nervous system activity and results in un-

consciousness and total lack of sensation.

• Sedation suppresses the central nervous system to a lesser degree, inhibiting both

anxiety and creation of long-term memories without resulting in unconsciousness.

• Regional anesthesia and local anesthesia, which block transmission of nerve im-

pulses between a targeted part of the body and the central nervous system, causing

loss of sensation in the targeted body part. A patient under regional or local anes-

5
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thesia remains conscious.

There are also other type of anesthesia, used only in particulary situations, but the term

anesthesia is usually referred to the general anesthesia. That procedure can be divided

into four phases:

• The preparation of the patient that consist in getting the patient sedate before

bringing him in the surgery room.

• The induction is the period between the administration of analgesic and anesthetic

agents and loss of consciousness. During this stage, the patient progresses from

analgesia without amnesia to analgesia with amnesia. Patients can carry on a con-

versation at this time

• The maintenance is the period in which occurs the surgical operation. During this

times the drugs are dosed in order to maintain an adequate level of anesthesia.

• The recovery phase occurs when the drug administration ends, and the patients

wakes up, recovering all of his vital functions.

The narcosis is ensured by the infusion of specific drugs, which can be administrated

in two different way: by inhalation or by injection. These drugs include anesthetic to

induce the unconsciousness, analgesic to reduce the pain and muscle relaxers needed to

avoid involuntary movement of the patient. When necessary, other drugs can be used, for

example to control the arterial pressure, the heart rate or to reduce the sickness. When the

drug are administrated by intravenous route (i.e. Total Intravenous Anesthesia (TIVA)),

the propofol is commonly used as anesthetic due to its hypnotic properties and the almost

complete absence of side effects [4]. Propofol is generally combined with the remifentanil,

a fast-acting opioid with analgesic functions [5]. When used together these drugs have

a synergic effect: the remifentanil amplifies propofol’s effects as well as the side effects,

especially if the dosage of anesthetic is high. Hence, the study of this interaction becomes

a crucial step in order to grant an adequate level of anesthesia and to regulate the correct

quantity of each drug.

6



1.2 Modern concepts

1.2.1 The role of the anesthesiologist

In the surgery room the management of a patient’s anesthesia relies on the anesthesiol-

ogists experience and ability. The anesthesiologist has to choose the time and the sequence

of the infusions, as well as the drugs dosage, based on the patient’s physical characteristics,

like age, height, weight, gender, physical condition, diseases and the kind of the surgery.

Hence the first infusion profile is chosen on the basis of recommended doses and estimates

based on mathematical models. Later, the anesthesiologist regulates the drugs dosage in

function of the response to noxious stimuli and of the alterations of the hypnotic state of

the patient. These alterations are determined by some indirect indicators that the anes-

thesiologist monitors continuously, such as heart rate, arterial pressure, electrical activity

of the encephalon, tear secretion and facial contractions.

As said before, in order to blunt the effect of surgical stimulation, anesthesiologists use a

combination of drugs to block sensation. However the very mechanism of action of these

drugs make them particularly dangerous, as they deprive the central nervous system from

the information necessary to control normal body functions (i.e., gag reflex, respiration,

cardiac rhythm, and blood pressure). An overdose may then stop a patient’s breathing and

may even provoke a cardiovascular collapse. Overdoses are usually associated with a lack

of balance between the anesthetic regimen and the patient’s pharmacological needs. When

there is no surgical stimulation, the patient’s needs are low and a small amount of drug

may be sufficient to make them comfortable. However during noxious stimuli (i.e., stimuli

associated with transmission of nerve pain signals), drug titration needs to be increased

to limit the effect of surgery. As a result, a common side effect is the depression of the

cardiorespiratory system when surgical stimulation suddenly disappears.

Therefore, anesthesiologists try to keep a balance between the toxicity of anesthetic drugs

and the noxious stimulation of surgery.

7
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1.2.2 State of the art

Over the years a lot of indexes for the hypnotic and analgesic effects have been inves-

tigate, as well as for the muscle relaxation. NMB level is measured from the electromyog-

raphy signal obtained by electrical stimulation [6]. The control of NMB is done by means

of continuous infusion of a muscle relaxant and in the past years several control strategies

have been developed.

As already mentioned, the typical drug used to control the DoH is propofol, due to its

hypnotic properties and the almost complete lack of side effects [4]. Numerous researches

have been made on the propofol using the Electroencephalogram (EEG) as measure of the

anesthetic effect but the EEG cannot be used for accurate measure because of its difficult

evaluation and the high content of noise that presents. For that reason preference is given

to other indexes, derived from the EEG with digital signal processing, among which the

most used is the BIS [7]. The BIS is widely employed to measure the level of hypnosis of

the patient during anesthesia. It provides an estimation of DoH based on the bispectral

analysis of the EEG resulting in a dimensionless number between 0, equivalent to EEG

silence, to 100, equivalent to the patient fully awake. A target range between 40 and 60 is

suggested to prevent awareness and to reduce the dose of anesthetic agent that is needed

to maintain optimal anesthesia level.

The third component, the analgesia, is still to be demystified [8] and an accurate and ob-

jective measurement of the patient’s response to analgesic drug is still lacking. However,

when BIS is known a suitable interaction model between hypnotics and analgesics might

be helpful to simultaneously control both components of depth of anesthesia [9].

In the clinical practice of TIVA, it has been demonstrated the absolute possibility of

designing robust closed loop control systems even in the presence of extensive variability

among patients, using, for example, combinations of robust control techniques and adaptive

models [10]. The first use of computer systems in anesthesia dates back to 1996, when it was

introduced the Diprifusor system: a software module interfaced to medical pumps which

manages open-loop infusion on the basis of propofol compartment models described in the

8
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literature [11]. This system is called Target Controlled Infusion system (TCI), and it allows

a reduction of the anesthesiologist’s work. In fact, with the patient’s physical data and

the target plasma concentration defined a priori by the doctor, the system automatically

calculates the appropriate infusion rate and the anesthesiologist’s task becomes that of

adapting the system to the variability that is found between the different patients. This

is done by adjusting the right target concentration during the surgery. Recent studies

on predictive control and model-based control have allowed an improvement in stability

and closed-loop performance. In literature, on the basis of Internal Model Control (IMC),

robust strategies have been developed for the control of a Single Input Single Output (SISO)

that uses the BIS as a control variable to automatically adjust the propofol flow exiting

the pump [12]. The same type of SISO model was used both for prediction and simulation

purposes. A Model Predictive Control (MPC) algorithm was then designed, showing a

performance improvement over a generic predictive algorithm [13]. Studies on control

systems for muscle inhibitors have been performed in [14], identifying an excellent candidate

in the Supervised Multi-model Adaptive Control (SMMAC), which regulates the flow of

drugs based on muscle relaxation measured by a evoked potential (EP). Subsequently, the

concepts of reduced model and parameter identification were applied for the combined

infusion of propofol and remifentanil using an extended Kalman filter [15].

Finally, it is right to quote other methods taking into account only propofol administration

that have been proposed in the literature like [16], [17], [18] and already successfully applied

in practice.

9



CHAPTER 1 INTRODUCTION

1.3 Modeling anesthetic drugs

In order to develop an automatic control system for anesthesia that satisfies the strict

specifications and robustness characteristics that this problem presents, it is necessary to

know the response of the human body to the infusion of drugs. Having a mathematical

model that describes this behavior is therefore fundamental for carrying out simulations,

verifications and validations of the designed controller. In addition to this, when predictive

control is intended for a precise administration of drugs, the model used in the prediction

becomes of vital importance. Such model must capture well enough the dynamics of the

patient in response to the specific drugs considered. The relationship between drug infu-

sion rate and the drug effect can be described with pharmacokinetic and pharmacodynamic

models. With the Pharmacokinetics (PK) we describe the infusion, distribution and sub-

sequent elimination of the drug in the body, indicating the plasma concentration of the

medicine infused following a certain administration. With the Pharmacodynamics (PD)

we describe the relationship between the plasma concentration of drugs in the blood and

their clinical effect.

As already mentioned earlier, in the present thesis we refer to the use of propofol as a

hypnotic drug and remifentanil as analgesic: these two drugs are characterized by a syner-

gistic effect on the level of hypnosis of the patient: when the remifentanil is administered

together with propofol, the hypnotic effect is amplified. The model, in addition to the PK

and PD parts of both, must take into account also this mutual interaction and describe it

appropriately.

In this work, we use the Shnider model [19] for the description of the propofol response

and the Minto model [20] for remifentanil. They provide a linear dynamic part given by

the pharmacokinetic and pharmacodynamic series in addition to a non-linear Hill function

which represent the synergistic effect of the two drugs over the BIS. To simplify the rep-

resentation and to facilitate the development of automatic control, only the SISO model

describing the effect of propofol on the BIS will be initially presented, without considering

the use of analgesics. Only later the problem will be extended to the use of the two drugs,

10
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u(t)
Pharmacokinetic
Linear Model Linear Model Hill Function r(t)

Pharmacodynamic Model

Cp(t) Ce(t)

Figure 1.3: Block diagram of the propofol model including Pharmacokinetic parts and
Pharmacodynamics [14]

exploiting the complete model with the two linear parts and the Hill function.

1.3.1 SISO model

Among the drugs that can guarantee patient hypnosis, propofol is certainly the most

noteworthy. By studying his behavior, several models have been constructed. These models

relate the infusion rate and the level of hypnosis achieved measured by the BIS index, but

among them, the version universally accepted in the literature is that of Schnider [19]. Like

all pharmacological models it is composed of a pharmacokinetic part followed in cascade

by a pharmacodynamic part as illustrated in figure 1.3.

Pharmacokinetics of propofol

Pharmacokinetics is usually described by means of mamillary compartmental models,

where it is assumed that each compartment presents homogeneous properties; in partic-

ular the instantaneous drug distribution inside a compartment is uniform. The propofol

response model is made up of three compartments, as shown in figure 1.4. Each compart-

ment represent one part of the body:

• primary compartment: it is identifiable with blood, as it receives directly the drug

via drip.

• fast compartment: it interacts directly with the primary compartment. It is the

logical representation of organs and muscles that interact with blood through dy-

namics that can be considered fast.

11
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V2 V1 V3

Drug Infusion (u)

k12 q1 k13 q1

k21 q2 k31 q3

k10 q1 (metabolism)

q2 q1 q3

PRIMARY
COMPARTMENT

FAST
COMPARTMENT

SLOW
COMPARTMENT

(Muscles) (Blood) (Fat)

Figure 1.4: Block diagram of the Pharmacokinetics of the propofol.

• slow compartment: similar to the fast one, it only interacts with the primary com-

partment. It represents tissues that are in interchange relations with blood through

slow dynamics. This category includes, for example, fatty masses.

Starting from the block diagram we can reconstruct the equations that describe the inter-

compartmental bonds:

q̇1(t) = −(k10 + k12 + k13)q1(t) + k21q2(t) + k31q3(t) + u(t)

q̇2(t) = k12q1(t)− k21q2(t)

q̇3(t) = k13q1(t)− k31q3(t)

(1.1)

Where:

• u(t) indicates the speed of the incoming drug. This is called mass flow, as it

represents the entering mass over the unit of time. Usually, in the surgery room, the

units of measurement are [mg/s] for propofol and [µg/s] for remifentanil;

• qi(t) indicates the current mass of propofol in the ith compartment;

• q̇i(t) indicates the input (if positive) or output (negative) flow of the ith compartment

of the block diagram;

• kij is a parameter with dimension [1/s] that models the flow of drug from the ith to

jth compartment. In particular, k10 represents the drug eliminated through metabolic

process.
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1.3 Modeling anesthetic drugs

As proposed by Schnider, the kij values can be calculated from the relationship between

Clearance1 (Cli) of the compartment of arrival and volume of the one of departure2:

k10 =
Cl1
60V1

; k12 =
Cl2
60V1

; k13 =
Cl3
60V1

;

k21 =
Cl2
60V2

; k31 =
Cl3
60V3

.

(1.2)

The values of Vi can be calculated in [l] using the following equations:

V1 = 4.27, V2 = 18.9− 0.391(Age− 53), V3 = 2.38; [l] (1.3)

Where Age is dimensionless. Similarly, the model provides experimental formulas for the

calculation of Cli as a function of the patient’s physical characteristics (weight, height, age

and genre). Even in this case these quantities are considered dimensionless, with Weight

expressed in kg and Height in cm.

Cl1 = 1.89 + 0.0456(Weight− 77)− 0.0681(lbm− 59) + 0.0264(Height− 177)

Cl2 = 1.29− 0.024(Age− 53)

Cl3 = 0.836

(1.4)

The term lbm in (1.4) represents the lean body mass3, which is calculable using the James

Formula:

lbm = 1.1Weight− 128
Weight2

Height2
Men;

lbm = 1.07Weight− 148
Weight2

Height2
Women.

(1.5)

1“The removal of a substance from the blood, expressed as the volume of blood or plasma cleared of
the substance per unit time.”The American Heritage R© Medical Dictionary Copyright c© 2007, 2014.

2With respect to the expressions present in literature, we decided to operate a normalization of the
coefficient, in order to express u(t) in [mass/s].

3It is a coefficient that represents the difference between the total mass of the body and fat mass.
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To know the concentration in the primary compartment:

y(t) = Cp(t) =
q1(t)

V1
[mass/l] (1.6)

In the usage domain4 it is possible to consider the model as Linear Time Invariant (LTI)

and therefore obtain the state-space representation:




ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

(1.7)

having state matrix:

A =




−(k10 + k12 + k13) k21 k31

k12 −k21 0

k13 0 −k31


 ; (1.8)

with input, output and direct matrices:

B =
(

1 0 0
)T

; C =

(
1

V1
0 0

)
; D = 0.

(1.9)

Applying the Laplace transform to the system represented in the state-space form, gives

the following transfer function:

Y

U
= GCp,u(s) = K

(
1 + s

z1

)(
1 + s

z1

)

(
1 + s

p1

)(
1 + s

p2

)(
1 + s

p3

) ; (1.10)

where pi are the eigenvalues of the state matrix, K e zi are the gain and the resulting zeros.

The output of (1.7) and(1.10) is the plasma concentration of the SISO model considering

only the propofol.

4It is assumed (plausible) that there are negligible mass variations during the operation.
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1.3 Modeling anesthetic drugs

Pharmacodynamics of propofol

The pharmacodynamics is characterized by a first-order relation with no delay that

binds the concentration of the drug in the central compartment (Cp) with a fictitious one,

called Effect-Side-Compartment, in which Ce(t) is thought as the actual concentration in

the patient’s cerebral cortex. This compartment is significantly smaller than the rest of

the body and is almost constant for all individuals [19]. The the effect-side-compartment

concentration can be calculated, since ke0 will precisely characterize the temporal effects

of equilibration between the plasma concentration and the corresponding drug effect:

Ċe,p(t) = ke0(Cp(t)− Ce(t)); (1.11)

The value of ke0 has been estimated in literature [19] and can be obtained as follows:

ke0 = 0.459/60 = 0.00765 [s−1]. (1.12)

The presence of this Effect-Side-Compartment is due to the presence of a delay between

plasma concentration in the blood and clinical effect. This behavior was validated by ana-

lyzing blood samples during anesthesia to compare the drug concentration in the primary

compartment with the DoH measured by an EEG monitor.

Nonlinear interaction

EEG monitors are used to relate drug concentration with the clinical effect, with the aim

of evaluating patients anesthesia level. EEG is a very noisy signal and presents difficulties in

the interpretation: for these reasons it is preferred to use other systems that automatically

process the EEG signal. One of these is the Bispectral Index Scale (BIS), a dimensionless

parameter that can vary from 0 and 100, indicating respectively the situation of flat EEG

and completely awake patient.

The relationship between plasma concentration and BIS can be expressed mathematically

using a non-linear sigmoid surface, also known as Hill function. In this paragraph it is
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considered the use of only propofol and the surface is reduced to a curve, expressed by the

relation:

BIS(t) = E0 − Emax
(

Ce(t)
γ

Ce(t)γ + Ce50(t)
γ

)
; (1.13)

where:

• E0 indicates the initial state of the BIS without patient infusion;

• Emax − E0 represents the maximum effect achievable by the infusion;

• γ denotes the steepness of the curve, that is the patient’s receptivity to drugs;

• Ce50 is the drug concentration needed to reach half the maximum effect. It is related

to the sensitivity of pharmacokinetics;

• Ce(t) expresses the concentration in the effect-site over the time.

As shown in figure 1.5 the Hill function is strongly non-linear and is characterized by the

presence of an initial and a final saturation. At the beginning of the infusion, in fact,

the curve presents a plateau, where small amounts of drug in the plasma concentration

have no clinical effect until they reach a certain value. The final saturation expresses the

impossibility of the level of hypnosis to overcome the maximum value allowed by Emax,

regardless of the amount of drug infused.

1.3.2 MISO model

The SISO model previously illustrated relates the infusion profile of the hypnotic drug

propofol with the clinical effects on the patient, measured by the BIS index. However during

a surgical operation are also administered medication for muscle relaxation and analgesics.

An estimate of the level of myoresolution can be performed using the electromyography

(EMG). A lot of studies have been made on the subject [14, 21, 22] but a detailed analysis

of the model goes beyond the objectives of this text, as drugs that block neuromuscular

function do not affect the level of hypnosis of the patient (and therefore the BIS).
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Figure 1.5: Graphic representation of the Hill function.

On the other hand, analgesic drugs like the remifentanil have a synergistic effect with

propofol on the patient’s hypnosis level [23, 24, 25]. It is therefore essential to study a

model that describes the body’s response to these drugs, using compartmentalized models

and exploiting the pharmacokinetic and pharmacodynamic concepts already presented in

the case of propofol alone (SISO model).

From the practical point of view, the synergistic effect translates into a reduction in the

amount of propofol necessary to reach a certain level of anesthesia, with just a small

infusion of remifentanil. In the literature it has been shown that the BIS is able to provide

a quantitative evaluation of both drugs [26].

From a mathematical point of view it is necessary to construct a Multiple Input Single

Output (MISO) model that has as inputs uprop(t) and uremif (t) and as output the DoH

measured through the BIS. In this model the pharmacokinetics of propofol illustrated in

section 1.3.1 will be left unchanged since remifentanil has a faster dynamics than propofol.

Clinical studies [24] have shown that the action and absorption of remifentanil do not

interact with propofol pharmacokinetics.

To take into account the combined effect of the two drugs, it will be necessary to construct
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Figure 1.6: A schematic representation of a three compartmental PKPD model of the
patient.

a more complex pharmacodynamic model with a Hill function that provides the level of

BIS as a function of the concentrations of both drugs, as shown in figure 1.6. In this case

it becomes a surface in space instead of the curve of the SISO model.

Pharmacokinetics of remifentanil

In the literature there are several models that describe the effects of the analgesic drug

remifentanil on the level of anesthesia. In particular, the three-compartment model of

Minto [20] has been studied and developed in depth. As already developed for propofol

in section 1.3.1, it must be modelled an LTI system in the state-space as a function of

coefficients kij which depend on Vi and Cli. The equations of the model are presented

below:

k10 =
Cl1
60V1

; k12 =
Cl2
60V1

; k13 =
Cl3
60V1

;

k21 =
Cl2
60V2

; k31 =
Cl3
60V2

.

(1.14)
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where Vi [l ] and Cli [l/s ] are the volume and the clearance of the compartment.

Cl1 = 2.6− 0.0162(Age− 40) + 0.0191(lbm− 55);

Cl2 = 2.05− 0.0301(Age− 40);

Cl3 = 0.076− 0.00113(Age− 40).

(1.15)

V1 = 5.1− 0.0201(Age− 40) + 0.072(lbm− 55);

V2 = 9.82− 0.0811(Age− 40) + 0.108(lbm− 55);

V3 = 5.42.

(1.16)

As in the case of propofol, the lbm coefficients are extracted from the James formula (1.5).

The compartmental model can be expressed using the generic representation in the state

space (1.18) or by transfer function, in the same form as (1.10). The output of both

representations is the plasma concentration of remifentanil Cr.




ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t).

(1.17)

A =




−(k10 + k12 + k13) k21 k31

k12 −k21 0

k13 0 −k31


 . (1.18)

B =
(

1 0 0
)T

; C =

(
1

V1
0 0

)
; D = 0.

(1.19)
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Pharmacodynamics of remifentanil

The pharmacodynamics of remifentanil, as for propofol, is represented by a first-order

function without delay that relates the plasma concentration of the analgesic Ce,r of the

first compartment with a fictitious one, called effect-site compartment. It approximates

the delay between the plasma concentration of remifentanil in the blood with the hypnotic

effect. With the hypothesis that this compartment has negligible dimensions compared to

the rest of the system, we obtain the equation:

Ċe,r(t) = ke0,r (Cr(t)− Ce,r(t)) , (1.20)

where Cr is the plasmatic concentration of remifentanil in the blood and Ce,r is the effect-

site compartment concentration:

Ce,r =
q1,r
V1,r

. (1.21)

V1,r and q1,r are, respectively, the volume of the central compartment and the quantity of

remifentanil in the central compartment. The concentration of remifentanil in the effect-

site compartment can be completely calculated from the knowledge of the metabolism

of the drug, described by the parameter ke0,r [s−1], which characterizes the balance time

constant between plasma concentration and the corresponding effects of the drug. Its value

has been estimated in literature [20] and depends on the age of the patient in question from

the relation:

ke0,r = 0.595− 0.007 ∗ (Age− 40) (1.22)

Nonlinear interaction

The pharmacodynamics of remifentanil contemplate, in addition to the linear function

of the first order presented above, a nonlinear static function that correlates the concentra-

tions of propofol and remifentanil drugs in the human body with the measurable hypnotic

effect. The relationship is known as a Hill function and for simultaneous administration

of propofol and remifentanil is a nonlinear surface that indicates the DoH through the
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Bispectral Index Scale (BIS).

A widely accepted model for the interaction between propofol and remifentanil is proposed

in [20]. The formulation requires the normalization of the effect-site concentrations of the

drugs with respect to the concentrations needed to reach half of the maximum effect:

Uprop(t) =
Ce,p(t)

Ce50,p
, Uremif (t) =

Ce,r(t)

Ce50,r
, (1.23)

where:

• Ce,p(t) and Ce,r(t) are the effect-site concentrations of propofol and remifentanil com-

ing from the first order linear model;

• Ce50,p and Ce50,r are the propofol and remifentanil concentration required to reach

half of the maximum effect over the BIS level.

The interaction between propofol and remifentanil is super-additive, which means that their

combined effect is greater than the sum of the single one. So the power of the combination

of drugs is considered by the parameter φ, a dimensionless variable calculated as:

φ =
Uprop(t)

Uprop(t) + Uremif (t)
, (1.24)

By definition, φ ranges from 0 (remifentanil only) to 1 (propofol only). According to [25],

it is necessary to introduce a new term in order to normalize the combined effect of the

drugs:

U50(φ) = 1− βφ+ βφ2. (1.25)

β correlates the action of the drug with the number of units associated with 50% of the

maximum effect. The increase of β implies a greater hypnotic effect due to the synergistic

effect of drugs.

Finally, the concentration-response relationship for any ratio of the two drugs can be
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Figure 1.7: Hill Surface representing the response of patients to the simultaneous infusion
of propofol and remifentanil.

described as:

BIS(t) = E0 − Emax




(
Uprop(t) + Uremif (t)

U50(φ)

)γ

1 +

(
Uprop(t) + Uremif (t)

U50(φ)

)γ


 (1.26)

where:

• E0 is the initial state of the partient, without any infusion;

• Emax − E0 represents the maximum reachable effect;

• γ denotes the steepness of the curve, that is the patient’s receptivity to drugs;

• Uprop and Uremif are propofol and remifentanil concentrations normalized with respect

to half of the maximum. They are connected with clinical sensitivity to drugs;

• U50(φ) expresses the power of both drugs at the φ ratio as the number of units

associated with the 50% of the maximum effect.

The Hill surface is influenced by the parameters Ce,p e Ce,r and the typical trend is shown

in figure 1.7, where the curve is represented for Ce,p and Ce,r varying in the range 0 −
12 [µg/mL] and 0 − 12 [ng/mL] respectively (E0 = 98.0, Emax = 87.0, Ce50 = 4.12,

Ce50 = 12.50, γ = 5.21, β = 1). Similar to the Hill curve, the Hill surface is strongly

non-linear and presents an initial and a final saturation: the plateau at the beginning of

22



1.3 Modeling anesthetic drugs

the infusion indicates that small amounts of drug in the body do not involve significant

clinical effects until they exceed a certain threshold. The final saturation region expresses

the impossibility of the drugs effect to exceed the maximum achievable value expressed by

Emax, regardless of the amount of drug infused.

1.3.3 Clinical data

After presenting the structure of the models that describe the response of the human

body to the infusion of propofol and remifentanil drugs, it is necessary to have a database

of patient data to define the parameters of the models. We use a population of 12 clinical

cases present in the literature [13]. For each patient the physical characteristics (age, sex,

height, weight) and the parameters of the Hill function have been indicated (E0, Emax,

Ce50 , γ)5. These data are useful for a preliminary analysis of the system and for the devel-

opment of a propofol infusion-only controller. Furthermore, an additional patient, called

the average patient, has been calculated, whose Hill parameters and physical characteris-

tics are obtained as the mean of the corresponding data of the 12 patients. This case will

be useful for considering medium dynamics in the patients database. The population is

shown in the table 1.1.

In order to define the complete model considering the synergistic effect of drugs, a

normal distribution of the two parameters β = 1.5 and Ce50,r = 12.5 [ng/ml] found in

literature [13, 27] was created to artificially reproduce the intra-patient variability of real

cases. Thus, a population of 12 patients is available, with all the parameters necessary to

building the complete MISO model presented before. Also in this case an average patient

with average characteristics of the population has been created. Table 1.2 contains the

data.

5These parameters have been estimated by analyzing the propofol infusion response only
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Id Age Height [cm] Weight [kg] Gender Ce50 γ E0 Emax
1 40 163 54 F 6.33 2.24 98.8 94.10
2 36 163 50 F 6.76 4.29 98.6 86.00
3 28 164 52 F 8.44 4.10 91.2 80.70
4 50 163 83 F 6.44 2.18 95.9 102.00
5 28 164 60 M 4.93 2.46 94.7 85.30
6 43 163 59 F 12.00 2.42 90.2 147.00
7 37 187 75 M 8.02 2.10 92.0 104.00
8 38 174 80 F 6.56 4.12 95.5 76.40
9 41 170 70 F 6.15 6.89 89.2 63.80
10 37 167 58 F 13.70 1.65 83.1 151.00
11 42 179 78 M 4.82 1.85 91.8 77.90
12 34 172 58 F 4.95 1.84 96.2 90.80
13 38 169 65 F 7.42 3.00 93.1 96.58

Table 1.1: Patient database for propofol-only infusion models.

Id Age Height [cm] Weight[kg] Gender Ce50,p Ce50,r γ β E0 Emax

1 40 163 54 F 6.33 12.5 2.24 2.00 98.8 94.10
2 36 163 50 F 6.76 12.7 4.29 1.50 98.6 86.00
3 28 164 52 F 8.44 7.1 4.10 1.00 91.2 80.70
4 50 163 83 F 6.44 11.1 2.18 1.30 95.9 102.00
5 28 164 60 M 4.93 12.5 2.46 1.20 94.7 85.30
6 43 163 59 F 12.00 12.7 2.42 1.30 90.2 147.00
7 37 187 75 M 8.02 10.5 2.10 0.80 92.0 104.00
8 38 174 80 F 6.56 9.9 4.12 1.00 95.5 76.40
9 41 170 70 F 6.15 11.6 6.89 1.70 89.2 63.80
10 37 167 58 F 13.70 16.7 3.65 1.90 83.1 151.00
12 42 179 78 M 4.82 14.0 1.85 1.20 91.8 77.90
12 34 172 58 F 4.95 8.8 1.84 0.90 96.2 90.80
13 38 169 65 F 7.42 10.5 3.00 1.00 93.1 96.58

Table 1.2: Patient database for the propofol-remifentanil combined infusion models.
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Materials and methods

This chapter presents the technologies subsequently used in the implementation of

the anesthesia control system. We will illustrate the type of controller that we want to

implement for the regulation of propofol, focusing on the problems, characteristics and

innovations introduced. In this general introduction it is important to remember the final

application of the control structure: it considers the patient’s BIS level as a process output,

the propofol dosage as the control variable and the desired BIS value as the set-point.

We will begin by briefly presenting the characteristics of the GPC controllers, at the

base of the developed control structure. We will then go on to introduce the genetic

algorithms used for calibration of the controllers and finally we will describe the Monte

Carlo method used to generate a large patient database for testing the robustness of the

controller.

2.1 Generalized predictive control

The GPC was first proposed by Clarke and co-workers [28, 29] in the 1987 and has

become one of the most popular MPC methods. In fact it has been successfully imple-

mented in many industrial applications [30], showing good performance also in terms of

robustness. The GPC can handle many different control problems for a broad gamma of
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plants with a reasonable number of design variables selected by the user depending by the

control objectives and exploiting prior knowledge of the plant.

The GPC basic idea [31] consist in computing the future control signals in order to

minimize a multistage cost function which is defined over the prediction horizon. The

multistage cost function manage the trade-off between the control effort and the distance

between the predicted system output and some predicted reference sequence over the hori-

zon. GPC can deal with unstable and non-minimum phase plants and in case of absence

of constrains it provides an analytical solution to the computation of the control signal.

The general options available for GPC leads to a greater variety of control objectives

compared to other approaches, some of which can even be considered as limiting case of

GPC.

2.1.1 Formulation of Generalized Predictive Control

Most SISO plants, when considering operation around a particular operating point can

be linearized and described by:

A(z−1)y(k) = z−dB(z−1)u(k − 1) + C(z−1)ε(k)

where u(k) is the control sequence, y(k) the output sequence of the plant and ε(k) is the

zero mean white noise. A, B and C are the following polynomials, in the backward shift

operator z−1:

A(z−1) = 1 + a1z
−1 + a2z

−2 + ...+ anaz
−na

B(z−1) = b0 + b1z
−1 + b2z

−2 + ...+ bnbz
−nb

C(z−1) = 1 + c1z
−1 + c2z

−2 + ...+ cncz
−nc

where d is the dead time of the system. This model is known as a Controller Auto-

Regressive Moving-Average (CARMA) model. It has been argued [28] that for many

industrial applications in which the disturbances are non-stationary an integrated CARMA
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(CARIMA) is more appropriate. A CARIMA model is described by:

A(z−1)y(k) = z−dB(z−1)u(k − 1) + C(z−1)
ε(k)

∆
(2.1)

with

∆ = 1− z−1

For simplicity in the following, the C polynomial is chosen to be 1. In this way C−1

can be truncated and absorbed into A and B [31].

The GPC multistage cost function can be written as:

J =

N2∑

j=N1

δ(j)[ŷ(k + j|k)− w(k + j)]2 +
Nu∑

j=1

λ(j)[∆u(k + j − 1)]2 (2.2)

where ŷ(k+ j|k) is an optimum j step ahead prediction of the system output computed at

the discrete time k , N1 and N2 are the minimum and maximum prediction horizons, Nu is

the control horizon, w(k + j) is the future reference trajectory and δ(j) and λ(j) are used

as weight to handle the trade-off between the control effort and the trajectory following.

The aim of predictive control is to compute the future control actions u(k), u(k+ 1), ...,

in such a way that the future system output y(k + j) is driven close to w(k + j). This is

accomplished by minimizing J , the expectation of (2.2).

In order to optimize the cost function, the optimal prediction of y(k + j) for j ≥ N1 to

j ≤ N2 must be obtained. Consider the following Diophantine equation:

1 = Ej(z
−1)Ã(z−1) + z−jFj(z

−1) with Ã(z−1) = ∆A(z−1) (2.3)

The Ej and Fj polynomials are uniquely defined with degrees j − 1 and na, respectively

[31]. They can be obtained dividing 1 by Ã(z−1) until the reminder can be factorized as

z−jFj(z
−1). The quotient of the division is the polynomial Ej(z

−1).
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If (2.1) is multiplied by ∆Ej(z
−1)zj we obtain:

Ã(z−1)Ej(z
−1)y(k + j) = Ej(z

−1)B(z−1)∆u(k + j − d− 1) + Ej(z
−1)ε(k + j) (2.4)

Considering (2.3), (2.4) can be written as:

(1− z−jFj(z−1))y(k + j) = Ej(z
−1)B(z−1)∆u(k + j − d− 1) + Ej(z

−1)ε(k + j)

which in turn can be rewritten as:

y(k + j) = Fj(z
−1)y(k) + Ej(z

−1)B(z−1)∆u(k + j − d− 1) + Ej(z
−1)ε(k + j) (2.5)

The degree of polynomial Ej(z
−1) = j−1 and the noise terms in (2.5) are all in the future.

The best prediction of y(k + j) is therefore:

y(k + j) = Gj(z
−1)∆u(k + j − d− 1) + Fj(z

−1)y(k)

where Gj(z
−1) = Ej(z

−1)B(z−1).

It is possible to show that the polynomials Ej and Fj have been obtained dividing

1 by Ã(z−1) until the remainder of the division can be factorized as z−jFj(z
−1). These

polynomial can be expressed as:

Fj(z
−1) = fj,0 + fj,1z

−1 + ...+ fj,naz
−na

Ej(z
−1) = ej,0 + ej,1z

−1 + ...+ ej,j−ez
−(j−1)

The same procedure is used to obtain Ej+1 and Fj+1 that is dividing 1 by Ã(z−1) until the

reminder of the division can be factorized as z−(j+1)Fj+1(z
−1), with

Fj+1(z
−1) = fj+1,0 + fj+1,1z

−1 + ...+ fj+1,naz
−na
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At this point only another step of the division performed to obtain the polynomials Ej and

Fj has to be taken into account to obtain the polynomials Ej+1 and Fj+1. The polynomial

Ej+1 will be given by:

Ej+1(z
−1) = Ej(z

−1) + ej+1,jz
−j

with ej+1,j = fj,0

The coefficient of polynomial Fj+1 can be expressed as:

fj+1,i = fj,i+1 − fj,i+1ãi+1, i = 0, . . . , na− 1

The polynomial Gj+1 can be obtained recursively as follows:

Gj+1 = Ej+1B = (Ej + fj,0z
−j)B

Gj+1 = Gj + fj,0z
−jB

It is possible to notice that the first j coefficient of Gj+1 will be identical to those of Gj

and the remaining coefficients will be given by:

gj+1,j+i = gj,j+i + fj,0bi

To solve the GPC problem the set of control signals u(k), u(k + 1), ..., u(k + Nu) has to

be obtained in order to optimize (2.2). Because the considered system has a dead time of

d sampling periods, the output of the system will be influenced by signal u(k) only after

d+ 1 sampling periods. The prediction and control horizons can be defined by N1 = d+ 1,

N2 = d + N and Nu = N . Notice that there is no point in making N1 < d + 1 as terms

added to (2.2) will only depend on the past control signal. On the other hand, if N1 > d+1

the first points in the reference sequence, which is the ones guessed with most certainty,

will not be taken into account.

Now considering the following set of j ahead optimal predictions:

ŷ(k + d+ 1|k) = Gd+1∆u(k) + Fd+1y(k)
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ŷ(k + d+ 2|k) = Gd+2∆u(k + 1) + Fd+2y(k)

...

ŷ(k + d+N |k) = Gd+N∆u(k +N − 1) + Fd+Ny(k)

it can be written as [31]:

y = Gu + F(z−1)y(k) + G′(z−1)∆u(k − 1) (2.6)

where

y =




ŷ(k + d+ 1|k)

ŷ(k + d+ 2|k)
...

ŷ(k + d+N |k)




u =




∆u(k)

∆u(k + 1)
...

∆u(k +N − 1)




G =




g0 0 . . . 0

g1 g0 . . . 0
...

...
...

...

gN−1 gN−2 . . . g0




G′(z−1) =




(Gd+1(z
−1)− g0)z

(Gd+2(z
−1)− g0 − g1z−1)z2

...

(Gd+N(z−1)− g0 − g1z−1 − . . .− gN−1z−(N−1))zN



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F =




Fd+1(z
−1)

Fd+2(z
−1)

...

Gd+N(z−1)




Notice that the last two terms in (2.6) only depend on the past and can be grouped

into f:

y = Gu + f

If all initial conditions are zero, the free response f is also zero. If a unit step is applied to

the input at time k:

∆u(k) = 1, ∆u(k + 1) = 0, . . . ,∆u(k +N − 1) = 0

the expected output sequence [ŷ(k+1), ŷ(k+2), . . . , ŷ(k+N)]T is equal to the first column

of matrix G. In this way it is possible to calculate the first column of matrix G as the

step response of the process when a unit step is applied to the manipulated variable. The

free response term can be calculated recursively by:

fj+1 = z(1− Ã(z−1)fj +B(z−1)∆u(k − d+ j)

with f0 = y(k) and ∆u(k + j) = 0 for j ≤ 0.

Expression (2.2) can be written as

J = (Gu + f−w)T (Gu + f−w) + λuTu (2.7)

where

w = [w(k + d+ 1), w(k + d+ 2), . . . , w(k + d+N)]T
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Equation (2.7) can be written as

J =
1

2
uTHu + bTu + f0 (2.8)

where

H = 2(GTG + λI)

bT = 2(f−w)TG)

f0 = (f−w)T (f−w)

Assuming that there are no constraints on the control signals, the minimum of J can be

found by making the gradient of J equal to zero [31]:

u = −H−1b = (GTG + λI)−1GT (w− f) (2.9)

Notice that only the first element of vector ∆u is the control signal actually sent to the

process:

∆u(k) = K(w− f) (2.10)

where K is the first row of matrix (GTG + λI)−1GT .

If there are no future predicted errors (i.e. w− f = 0) then there is no control move, as the

desired reference will be reached with the free evolution of the process. However, in the

other case, the control action will be incremented proportionally to the future error (with

the factor K). Notice that instead taking the action based on past errors, as is the case in

conventional feedback controllers, it is taken with respect to future errors.

Only the first element of u is used and the calculation is repeated at the next sampling

time. To obtain the solution, the GPC needs to compute the inversion of an N×N matrix,

which requires a substantial amount of effort. To reduce the amount of computation

needed, the control horizon is used, assuming that the expected control signals are going

to be constant after Nu < N . This leads to the inversion of an Nu ×Nu matrix, reducing

the amount of computation, but restricts the optimality of the GPC.
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2.2 Genetic algorithms

2.2 Genetic algorithms

In the literature, unlikely for the Proportional-Integrative-Derivative control law (PID)

controllers, there are no techniques to calibrate the parameters of a GPC controller. As

the patients model are available, it is a bit of a trial and error with the calibration. In this

contest the genetic algorithms can be helpful to find heuristic solutions that best solve the

problem.

Genetic Algorithms (GA) is a global and stochastic research method inspired by the prin-

ciple of natural selection and biological evolution theorized in 1859 by Charles Darwin.

They operate on a population of potential solutions applying the principle of survival of

the best, thus evolving towards a solution that will hopefully approximate how much as

much as possible to the real solution of the problem. With each new generation, a new set

of solutions is created by the selection process that, based on the level of fitness, selects the

best members of the population and makes them evolve using a series of genetic operators

derived from natural genetics. This process leads to a robust evolution towards individuals

who are better suited to the environment, i.e. to the set of solutions that best respond to

the problem placed in the beginning. In particular, the steps to describe how the genetic

algorithms work are the following:

• initialization: it begins with the creation of an initial population with random

characteristics, but in any case limited within a certain pre-established range of

values;

• evaluation: in this step each member of the population is evaluated using a cost

function that specifies the criterion useful for estimating the best element of the

population. The criterion can be simple, to reduce the time of computation, or

complex, if more references are taken into account;

• selection: the cost function allows the elimination of the worst members from the

populations, i.e. those that less respect the established criterion, preserving the best

ones. This is what happens in nature with natural selection: the next generation will
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Figure 2.1: Schematic of the operation principle of genetic algorithms.

contain the best elements of the population;

• crossover: the characteristics of the selected elements are mixed in order to create

new individuals. By doing this, it increases the probability that new individuals

inherit the best characteristics from the old generation;

• mutation: it consists of a random behavior that is introduced into the new popula-

tion. Usually this is achieved with small random variations to increase the chances

of finding the optimal solution;

• repetition: after obtaining a new population, another iteration is made by repeating

the previous steps. To stop the algorithm, a tolerance threshold is introduced between

successive solutions.

In figure 2.1 an explanatory diagram of the functioning of genetic algorithms is represented.

Genetic algorithms are often used in the field of artificial intelligence and computer science,
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as they are a simple but very powerful tool for finding solutions to research problems;

however, they also present some drawbacks. First there is the problem of initialization

of the population, since if the initial parameters are not set correctly, the result will be

unreliable. The second problem concerns the final solution found: the genetic algorithms

ensure to find an optimal local solution, relative to the considered environment, which in

some cases may not coincide with the global one. Both of these problems could be solved

by imposing very large initial bounds and increasing the population, but this would result

in a considerable increase in computational time.

In order to evaluate the best elements of the population, a fitness function is used,

which provides as an index of adequacy the value of the IAE between the BIS and the

reference signal:

IAE =

∫ ∞

0

|BIS(t)− r(t)| dt (2.11)

In this way the selection process prefers the parameters that provide the lowest IAE. Just to

give an example of the possible values of this index, in figure 2.2 are reported two different

BIS profile with the relative IAE. It can be noticed that the red profile has a better trend,

in fact, numerically speaking, the blue has an IAE of 4871 while the red one of 3340.

2.3 Monte Carlo method

Monte Carlo Method (MCM) or Monte Carlo experiments are a broad class of com-

putational algorithms that rely on repeated random sampling to obtain numerical results.

A Monte Carlo simulation is, in essence, the generation of random objects or processes

by means of a computer. These objects could arise “naturally” as part of the modeling

of a real-life system, such as a complex road network, the transport of neutrons, or the

evolution of the stock market. In many cases, however, the random objects in Monte Carlo

techniques are introduced “artificially” in order to solve purely deterministic problems. In

this case the MCM simply involves random sampling from certain probability distributions.

In either the natural or artificial setting of Monte Carlo techniques the idea is to repeat the
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Figure 2.2: Example of two different BIS profile.

experiment many times (or use a sufficiently long simulation run) to obtain many quanti-

ties of interest using the Law of Large Numbers and other methods of statistical inference

[32]. Here are some typical uses of the MCM:

• Sampling. Here the objective is to gather information about a random object by

observing many realizations of it. An example is simulation modeling, where a ran-

dom process mimics the behavior of some real-life system, such as a production line

or telecommunications network. Another example is found in Bayesian statistics,

where Markov chain Monte Carlo (MCMC) is often used to sample from a posterior

distribution.

• Estimation. In this case the emphasis is on estimating certain numerical quan-

tities related to a simulation model. An example in the natural setting of Monte

Carlo techniques is the estimation of the expected throughput in a production line.

An example in the artificial context is the evaluation of multi-dimensional integrals

via Monte Carlo techniques by writing the integral as the expectation of a random

variable.
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• Optimization. The MCM is a powerful tool for the optimization of complicated

objective functions. In many applications these functions are deterministic and ran-

domness is introduced artificially in order to more efficiently search the domain of

the objective function. Monte Carlo techniques are also used to optimize noisy func-

tions, where the function itself is random - for example, the result of a Monte Carlo

simulation.

The Monte Carlo method is thus an empirical method for evaluating statistics. Through

computational “brute force”, a researcher creates sampling distributions of relevant statis-

tics. For that reason the MCM is used in this work to generate large samples of patients

that would not be otherwise available. These samples will be used to test the robustness

of the controller, because the controller will be initially tested only on the database of 13

patients presented in the first chapter and since that database does not cover all possible

combinations, it is required an additional investigation on the behaviour of the controller

in the presence of different patients. Detailed information about this topic will be provided

in the future chapters. For further details of the Monte Carlo method, see [33], [34], or

[35].
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Chapter 3

Propofol infusion system

This chapter describes the implementation of the control technologies previously pre-

sented. In this preliminary phase the system for the infusion of propofol alone (SISO

system) will be analyzed, thus neglecting the remifentanil and the synergistic effect of the

two drugs. This is of fundamental importance for verifying the real possibility of develop-

ing an automatic system for anesthesia using the presented technology. It also allows the

evaluation of the benefits offered by automatic control on a simpler system.

We will begin by presenting the implementation of the control structure of the SISO sys-

tem, performing initial tests on patient models taken from the literature. This will allow

the evaluation of the performance of the system in terms of adequacy to medical specifica-

tions. We will also test the robustness of the system by making further test on a database

of randomly-generated patients.

Finally we will compare this predictive control structure with the use of a standard PID

controller and other works present in the literature, evaluating the differences.

3.1 Control requirements

The control structure of the SISO system exploit the patient BIS signal as feedback

and aim to reach the desired BIS level controlling the infusions of propofol. The goal is
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therefore to create a controller that brings the patient’s level of hypnosis to a desired value

within a reasonable time frame.

From the medical specifications and the analysis of real infusion profiles provided by

the Spedali Civili di Brescia, it is considered a reference BIS of 50 to be reached in about

120 [s]. This time is not so crucial, the anesthesiologist wants it as short as possible, but

it is mandatory that the reference is reached within 300 [s] to avoid risks on the patient.

It is also important to note that the specification of the BIS at 50 is used to establish the

set-point and it is not particularly binding: in fact the anesthesiologist considers acceptable

the BIS values that ranges between 40 and 60.

In order to avoid risks to the health of the patient it is also important to avoid excessive

variations of the BIS. For example during the initial transient, in which the patient goes

from completely awake (BIS = 100) to unconscious (BIS = [60-40]), it is essential to limit

the undershoot that lead the controlled variable to low and risky values. Finally, it is good

practice to limit the use of drugs, that means trying to give the least amount of drug needed

to achieve the desired level of anesthesia. This allows a better response of the patient in

the post-operative phase and limits the side effects.

An additional specification to be considered concerns the minimum and maximum

permissible infusion rates. This means that the control action must assume values within

the established range. The minimum value is obviously 0 [mg/s] and corresponds to the

non-infusion situation of the drug: negative values of the control variable have no physical

meaning, as they would represent a contrary flow of drug. The upper limit of infusion rates

can be set at 4.00 or 6.67 [mg/s]. The first limit has been provided by clinical practice and

represents the maximum rate used in boluses. The second value was instead calculated

considering the maximum rate of a standard medical pump (Graseby 3400, Smiths Medical,

London, UK ) and the concentration of the hypnotic drug propofol (Diprivan 20 [mg / ml ])

as:

Rate [mg/s] =
Rate [ml/h]

3600[s/h]
· Concentrationpropofol (3.1)

In this work, we will consider the upper limit of 6.67 [mg/s].
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There is also another constraint that need to be taken into account: the maximum varia-

tions of the infusion rate, which is how faster the control variable can change. There are

no practical values available but it is still possible to consider this constraint by avoiding

too fast variations like peaks or wide oscillations on the control signal.

To summarize, the control specifications to be considered are shown in table 3.1.

Set-point reference 50
Undershoot 10%FS

Settling time 120 [s]
Upper limit 6.67 [mg/s]
Lower limit 0.0 [mg/s]

Table 3.1: Specifications of the SISO control system.

3.2 Control scheme

In figure 3.1 the control structure implemented using the technology presented in the

previous chapter is shown. The control structure exploits the scheme proposed in [36]

and allows the integration of the model of the patient in the control scheme to provide a

personalized infusion of the drug. In the considered control architecture, P̃ is the PKPD

linear model of the patients, and H̃ is the Hill function model. In particular, the parameters

of P̃ can be easily computed for each patient, as described in section 1.3, using his/her

demographic data. On the contrary, the parameters of the Hill function are generally

unknown (with the exception of E0 that can be measured for each patient) and the average

parameters (13th row of table 1.1) are used for all patients. The output of P̃ is the estimated

effect site concentration Ce(t) of the patient. In the ideal case, when the models P̃ and

H̃ coincide with the patient dynamics P and H, the proposed scheme becomes a linear

control system of the PKPD process. In fact, r̂ is exactly the effect site concentration

reference value corresponding to the desired BIS level r(t). As it is shown in figure 3.1, r̂

is simply calculated by the inversion of the static function H̃. In the ideal case, the model

output Ce(t) is the only feedback signal of the control scheme because the innovation
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Figure 3.1: The SISO control scheme for the automatic regulation of propofol during
anesthesia.

signal i(t) is equal to zero since Ce(t) = Ĉe(t). In fact, i(t) is different from zero only in

the presence of disturbances on the process output that are not estimated by the internal

model. However, the static nonlinearity in the Wiener model is always uncertain as it

is virtually impossible to know the exact values of the parameters a priori. Moreover,

also the linear PKPD model is uncertain due to the parameters variability. As mentioned

above, in this paper we select H̃ by considering the average Hill function parameters found

in [7] while P̃ changes for each patient based on his/her demographic data, as explained

in section 1.3. The innovation signal i(t) is therefore necessary to compensate for the

differences between P̃ and P , between H̃ and H, and for the disturbances induced by

noxious stimuli. The contribution of i(t) depends on the error between the estimated

effect site concentration Ce(t) and the effect site concentration Ĉe(t) calculated using the

BIS signal via average Hill function inversion H̃−1. In particular, at the steady-state,

the innovation signal allows the compensation of the possibly wrong reference signal r̂

calculation. Indeed, the anesthesiologist fixes the BIS level reference and the inversion

of the average Hill function H̃ defines the effect site concentration reference. However, r̂

can be different from the Ce(t) steady-state value necessary to reach the desired BIS level,
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due to the difference between H and H̃. Nevertheless, the same estimated inverted Hill

function H̃−1 used to compute r̂ is also fed back through the innovation guaranteeing zero

steady-state tracking error even in the presence of uncertainties.

The blocks Fd and Fr in the scheme are two low-pass filters. The Fr filter is used to obtain a

smooth reference profile, avoiding an aggressive response of the controller. As done in [37],

this filter is used to achieve the desired set point response, leaving the controller focused

on the disturbance rejection task. The transfer function is:

Fr(s) =
1

Tfrs+ 1
(3.2)

The filter Fd acts on the innovation signal i(t) and handles the trade-off between the

contribution of the innovation in the control system and the noise filtering action. Also Fd

is selected as a first-order low-pass filter:

Fd(s) =
1

Tfds+ 1
(3.3)

3.2.1 Tuning of the parameters

To be able to test the implemented control scheme, which means to study how the

system responds to the set-point and how it behaves in the presence of disturbances, it

is necessary to calibrate the controller appropriately. In order to obtain the best perfor-

mances after some trial we decided to handle the set point following and disturbances

rejection tasks separately. The controller will be tuned to maximise the performance in

rejecting the disturbance, while the time constant of the filter Tr will be chosen to obtain

a good set point response. The tuning is performed by means of the GA and it is divided

into two phases: firstly the GPC controller is tuned considering the system without the

filter and introducing the disturbances as two steps (one positive and the other negative).

Then the filter time constant Tfr is found considering the already tuned GPC but focusing

only on the set point response. The calibration is performed in both cases with the genetic

algorithms that determine, through various cost functions, the best set of parameters of the
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controller. For further information on the functioning of these algorithms refer to section

2.2.

As regards the calibration for the rejection of disturbances, it was necessary to introduce

further constraints because otherwise the control variable presents too fast variations that

cannot be followed in the reality. In fact, without these constraint, the manipulated vari-

able is as pictured in figure 3.2 and presents high and fast oscillations at minute 6 and 11,

when the disturbances occur. This happens because for the specific process, there exist

issues. Analyzed system obtains steady state after approximately 9000 seconds. Following

general rule for MPC design it is recommended that prediction horizon should be selected

as approximately 60-70% of steady state time. With selected sampling time of 1 seconds

this will results in very large GPC’s internal matrixes, and in consequence it will be im-

possible to compute the solution in inter sampling time. The situation changes when the

sampling time is set up to 180 seconds and prediction horizon is set up to 40 samples.

For this configurations we obtained desired performance with small computational effort.

Nevertheless, for the analyzed process such a big sampling time is not acceptable and we

need to consider another approach. To obtain an acceptable trend of the manipulated

variable it is necessary to introduce the following constraints:

• If ∆U > 0.5 in one of the last 5 samples then the maximum allowed decrement of the

manipulated variable (for the next calculation) it will be ∆Umin = −0.1. This will

compensate for positive disturbances preventing the controller output to decrement

too fast.

• If the BIS signal is under the reference then the maximum allowed increment of the

manipulated variable it will be ∆Umax = +0.1. In this way when oscillations occur

and the BIS is under the reference (negative disturbances) the manipulated variable

is forced to stay at low levels until the BIS reaches the reference.

• In the other cases the ∆Umin and ∆Umax remains the highest possible, as there is no

need to intervene.
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Figure 3.2: Response of the average 13 patient without constraints.

The controller output obtained with this new contrives results having an acceptable profile

and also a better response in terms of performance indexes.

As a criterion for the cost function, IAE was chosen. It provides a measure of the behavior

of the system by integrating the absolute value of the error variable:

IAE =

∫
|r(t)−BIS(t)|dt (3.4)

The lower the IAE, the better the behavior of the system will be, because it means that

there are less differences between the reference and the BIS.

The calibration parameters obtained from the execution of the genetic algorithms are

reported in the table 3.2.
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N 27
Nu 7
λ 1.6
Td 22.7
Tr 44.9

Table 3.2: Calibration parameter for the propofol only infusion system.

3.2.2 Simulations

After tuning the controller, it is now possible to analyze the response of the SISO system

to the set-point of 50, with the calibration parameters of table 3.2. As a first illustrative

result we consider the average patient 13 reported in table 1.1. It represents a fictitious

patient, that is, its parameters are derived from the mean of the other patients. It can be

considered as the average patient and therefore the one on which perform the first tests of

the control structure. The patient is characterized by the following linear model:

PK(s) =
0.2342s2 + 0.001631s+ 1.521 · 10−6

s3 + 0.02404s2 + 9.904 · 10−5s+ 4.726 · 10−8
(3.5)

PD(s) =
0.00765

s+ 0.00765
(3.6)

in series with the non linear Hill function:

BIS(t) = 93.1− 96.58

(
Ce(t)

Ce(t) + 7.42

)3

; (3.7)

The simulation results of the induction and maintenance phases are shown in figure 3.3.

The BIS signal is plotted in the top part of the figure while the control action is plotted in

the bottom part. The performance achieved with the average patient is satisfactory from

the clinical point of view. In fact, the BIS level attains the set-point reference without

undershoot and with an acceptable settling time. More in details, the following perfor-

mance indexes, proposed in [13], have been calculated for the set-point following (namely,

the induction phase) task in order to evaluate the performance of the automatic control

system:
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Figure 3.3: BIS signal and manipulated variable for the average patient in the SISO system.

• TT: observed time-to-target (in seconds) required for reaching the first time the

target interval of [45÷ 55] BIS values;

• BIS-NADIR: the lowest observed BIS value;

• ST10: settling time, defined as the time interval for the BIS to reach and steady

within the BIS range between 45 and 55 (that is, the target value of 50 ± 5);

• ST20: the same of ST10 but it considers a BIS range of 40 and 60;

• US: undershoot, defined as the difference between the lower threshold of 45 and the

minimum value of BIS below this threshold.
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TT [min] BIS-NADIR ST20 [min] ST10 [min] US
1.37 50.00 1.18 1.37 0.00

Table 3.3: Set-point response for the average patient 13.

TTp [min] BIS-NADIRp TTn [min] BIS-NADIRn
0.33 50.00 0.78 50.00

Table 3.4: Disturbance response for the average patient 13.

Regarding the load disturbance rejection task, only the TT and the BIS-NADIR indexes

are meaningful and they are calculated separately for the positive (p) and for the negative

(n) step signal. These indexes will also be used to make comparisons with other works.

The satisfaction of the performance is confirmed by the indexes analysis, reported in ta-

ble 3.3, where TT is equal to ST10, which means that the BIS signal does not exceed the

45 and 55 thresholds. Considering the disturbance rejection task, that is the compensation

of possible noxious stimuli during the maintenance phase, it is possible to notice that the

control action increases to compensate the first (positive) step in order to decrease the

DoH of the patient and vice versa with the second (negative) step. The controller response

for this task is much more aggressive compared to the set-point tracking one, because a

fast rejection of the disturbances is required. The same performance indexes proposed for

the set-point response are evaluated for each disturbance step; as shown in table 3.4 the

indexes for the positive step are denoted with the letter ‘p’ and for the negative step with

letter ‘n’, respectively. The settling times TTn and TTp are satisfactory for the clinical

practice: the controller allows a fast disturbance rejection without excessive overshoot in

the BIS level, as it is proven by BIS-NADIRp and BIS-NADIRn. TTn is higher than TTp

because of the lower saturation limit of the pump. In fact, when a negative step distur-

bance occurs, the controller has to decrease the infusion in order to increase the DoH of

the patient but the lower infusion limit is zero. Therefore, the BIS level increases naturally

and this implies a higher settling time.

48



3.2 Control scheme

3.2.3 Robustness

A critical aspect to consider in the developed control is the robustness, that is the abil-

ity of the system to cope with variations of the model. In the theory of classical automatic

controls, the work is developed with a dynamic system described in the form of a state or

by its transfer function, known in a complete and accurate way, and an ad-hoc controller for

that system is designed with different techniques. In practice this is not possible because

the system is developed on a model that roughly describes the real system. The control

that succeeds in solving this problem is said to be robust precisely because it guarantees

the asymptotic stability for a set of systems and not only for just the nominal one. The

problem of robustness in the application considered in this report is even more complex.

In fact, there is an uncertainty of the model due to the fact that it is difficult to accurately

consider and describe every aspect of the human body’s response to drugs. In addition

to this, there is the problem that the model must consider the intra-subject variability:

each patient can react differently to propofol depending on their physical characteristics

and their state of health. The developed controller must ensure correct functioning in

each case, avoiding the onset of problems that could endanger the patient’s health. If,

for example, the controller generates a correct control action for one patient, but is too

high for another patient, dangerous undershoot may occur with respect to the established

reference.

The controller robustness is therefore a fundamental characteristic for the automatic con-

trol of DoH and it has to guarantee satisfactory performance despite of the inter- and

intra-patient variability. The same tests performed on the average patient 13 have been

performed on the entire population of table 1.1 in order to validate the robustness to inter-

patient variability. In this test the average Hill function is considered and the hypothesis

of perfect knowledge of the process model is applied (P̃ = P ). The process output and the

control action for the induction phase are shown in figure 3.4. As can be appreciated from

the figure, the control actions are very similar to each other, that is, despite the variability

of the model, the controller generates comparable actions. Also the outgoing BIS signals
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Figure 3.4: BIS level and control action in the induction phase for each patient.

are very similar: all patients enter the BIS range of [60-40] in the established time (about

100 [s]) and all stabilize at the established reference in comparable times. The transient

during which the BIS is brought to the regimen turns out to be practically identical for

every patient: some differences in terms of oscillations are noticed, as some subjects tend

to have a more oscillating behavior, but correct as included in the range [60 -40].

It is possible to say that clinical specifications are always fulfilled despite the inter-patient

variability, as can be verified by analyzing the performance indexes in table 3.5.

The control system robustness to inter-patient variability is verified also for the distur-

bance rejection case. In figure 3.5 the response of the disturbance is shown for each patient

and the corresponding indexes are shown in table 3.6. Settling times and BIS undershoots

are satisfactory with respect to the clinical practice.

The same tests performed on the set of patients reported in table 1.1 have then been ex-

ecuted on 500 patients generated by applying a Monte Carlo method in order to further

validate the controller robustness to the inter-patient variability, as done in [36]. The
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Figure 3.5: BIS level and control action in the maintenance phase for each patient.

Patient TT [min] BIS-NADIR ST20 [min] ST10 [min] US
1 1.27 49.89 1.08 1.27 0.00
2 1.15 41.60 1.05 2.33 3.40
3 1.75 50.00 1.40 1.75 0.00
4 1.25 50.00 1.07 1.25 0.00
5 1.07 44.86 0.95 1.95 0.14
6 1.90 50.00 1.50 1.90 0.00
7 1.68 50.00 1.27 1.68 0.00
8 1.27 49.51 1.12 1.27 0.00
9 1.12 41.01 1.05 2.28 3.99
10 1.92 50.00 1.38 1.92 0.00
11 1.35 50.00 1.03 1.35 0.00
12 1.20 50.00 0.98 1.20 0.00
13 1.37 50.00 1.18 1.37 0.00

mean 1.41 48.22 1.16 1.66 0.58
std.dev 0.30 3.38 0.17 0.40 1.39

max 1.92 50.00 1.50 2.33 3.99
min 1.07 41.01 0.95 1.20 0.00

Table 3.5: Performance indexes for the set-point tracking of each patient.
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Patient TTp [min] BIS-NADIRp TTn [min] BIS-NADIRn
1 0.40 50.00 0.98 49.99
2 0.28 50.00 0.75 50.46
3 0.37 50.00 0.77 50.00
4 0.37 50.00 0.85 50.00
5 0.33 50.00 1.02 50.00
6 0.38 50.00 0.77 49.99
7 0.42 50.01 0.92 49.98
8 0.33 50.00 0.78 50.00
9 0.27 49.63 0.70 50.42
10 0.50 50.02 0.98 49.93
11 0.50 50.05 1.22 49.93
12 0.40 50.01 1.08 49.99
13 0.33 50.00 0.78 50.00

mean 0.38 49.98 0.89 50.05
std.dev 0.07 0.10 0.16 0.17

max 0.50 50.05 1.22 50.46
min 0.27 49.63 0.70 49.93

Table 3.6: Performance indexes for the disturbance rejection of each patient.

PKPD models are generated by considering the average values of the model parameters.

The patient models are randomly calculated by considering a uniform distribution of the

age between 18 and 70, of the height between 150 [cm] and 190 [cm], and of the weight

between 50 [kg] and 100 [kg]. Then, the distribution of the values for the Hill function

parameters have been taken from [7]. As in previous case, P is fixed equal to P̃ and H̃

is chosen as the average Hill equation. The results for the induction phase are shown in

figure 3.6, while those related to the maintenance phase are shown in figure 3.7. The cor-

responding indexes are shown in tables 3.7 and 3.8. We note that two patients have an

undershoot that exceeds the lower limit of 40. The problem is not relevant, as the excessive

overshoot is minimal, reaching a BIS of 38 and 39 respectively.

The simulated results show that the control system is robust with respect to the inter-

patient variability as all the clinical specifications are always fulfilled. In the previous

test a perfect knowledge of the patient model has been assumed, because the objective

was to test the robustness of the controller over a wide population. We also want to test
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Figure 3.6: Set-point step responses by using MCM for inter-patient variability.

Figure 3.7: Load disturbance responses by using MCM for inter-patient variability.
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TT [min] BIS NADIR ST10 [min] ST20 [min] US
mean 1.46 49.16 1.18 1.51 0.12

std dev 0.21 1.91 0.13 0.29 0.66
min 0.98 37.64 0.88 1.08 0.00
max 2.03 50.00 2.43 2.87 7.36

Table 3.7: Performance indexes for the set-point tracking task with the MCM for inter-
patient variability.

TTp BIS-NADIRp TTn BIS-NADIRn
mean 0.37 49.91 0.89 50.21

std.dev 0.05 0.34 0.08 0.26
max 0.25 47.24 0.70 50.00
min 0.60 50.00 1.13 51.45

Table 3.8: Performance indexes for the load disturbance rejection task with the MCM for
inter-patient variability.

the robustness of the controller against the mismatches of the linear part of the model,

that is, the intra-patient variability. To this end, we consider the statistical distribution of

the PKPD model parameters reported in section 1.3.1. In particular, for each patient of

table 1.1, P̃ is calculated based on the average parameters values used in section 1.3.1 and

P is generated by applying another MCM on the parameters statistical distribution. For

each patient, a set of 500 models has been generated based on the statistical properties of

the model shown in [19]. For the sake of readability, only the performance indexes related

to the average patient 13 are given below. The responses of the average patient for the

induction phase are shown in figure 3.8 and the corresponding performance indexes are

shown in table 3.9. Despite the intra-patient variability, the set-point response is always

satisfactory and the clinical specifications are always fulfilled. It is well known that when

the model is very different from the real process, the performance of a predictive controller

based on that model is heavily influenced and achieving a good level of robustness could

be very difficult. For this reason it is possible to confirm the intra-patient robustness for

all the other patients, see figure 3.10, even if for patient 2 and patient 9 in some cases the

BIS goes under the level of 40. The results for the maintenance phase of average patient 13

are shown in figure 3.9 and the performance indexes are reported in table 3.10, while the
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TT [min] BIS-NADIR ST20 [min] ST10 [min] US
1.40 49.57 1.17 1.39 0.00
0.11 0.88 0.05 0.12 0.04
1.17 44.10 1.02 1.15 0.00
1.90 50.21 1.40 2.17 0.90

Table 3.9: Performance indexes for the set-point tracking task with the MCM for intra-
patient variability (average patient 13).

TTp [min] BIS-NADIRp TTn [min] BIS-NADIRn
0.39 49.98 0.78 50.04
0.02 0.07 0.04 0.05
0.33 49.74 0.67 49.93
0.45 50.20 0.90 50.31

Table 3.10: Performance indexes for the load disturbance rejection task with the MCM for
intra-patient variability (average patient 13).

results for all the patients are shown in figure 3.11. Also in these cases the intra-patient

robustness is verified.

From this analysis the developed system turns out to be robust and able to cope to the

variability of patient models. The excellent results obtained therefore push then to continue

the development of the automatic control system for anesthesia.
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Figure 3.8: Set-point step responses for intra-patient robustness (average patient 13).

Figure 3.9: Load disturbance responses for intra-patient robustness (average patient 13).
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(a) Patient 1 (b) Patient 2 (c) Patient 3

(d) Patient 4 (e) Patient 5 (f) Patient 6

(g) Patient 7 (h) Patient 8 (i) Patient 9

(j) Patient 10 (k) Patient 11 (l) Patient 12

Figure 3.10: MCM results for the set-point step response for all patients.
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(a) Patient 1 (b) Patient 2 (c) Patient 3

(d) Patient 4 (e) Patient 5 (f) Patient 6

(g) Patient 7 (h) Patient 8 (i) Patient 9

(j) Patient 10 (k) Patient 11 (l) Patient 12

Figure 3.11: MCM results for the load disturbance response for all patients.
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3.3 Comparison with other control systems

After testing the usability of the SISO control system developed for the propofol only

infusion, it is now possible to perform comparisons on performance with other system.

The first comparison will be with a standard PI controller, which includes an anti-windup

method and it uses two different set of parameters, one used for the induction phase and the

other for the maintenance phase. In figure 3.13 it is possible to observe the implementation

of the system for the control of the hypnotic propofol drug alone (SISO system). The PI

has the following formulation:

C(s) = Kp

(
1 + Ti

1

s

)
(3.8)

where Kp is the proportional gain and Ti is the integral time constant. As already men-

tioned, two different set of parameters will be used and the tuning is obtained in both cases

with the GA as it cannot be performed with the calibration laws in the literature. This

is because the process is complex and nonlinear and linearizing and approximating with a

simpler model would result in the loss of fundamental information about the dynamics of

the system. Table 3.11 shows the tuned parameter used for the induction phase and the

maintenance phase. Figure 3.12 shows the comparison between the response of the GPC

and the PI with the average 13 patient. As it is possible to notice, the GPC presents a

faster and less oscillating trend but the PI has a smoother control action. It is worst also

the positive disturbance rejection, while for the negative is more or less the same. This

is also confirmed by the IAE calculated on the results: 7824 for the PI and 3922 for the

GPC. The better performance of the GPC are attributable to the fact that the process is

slow and since the GPC knows the model it can act in advance on future errors, while the

Induction Maintenance
Kp 0.0294 0.0605
Ti 400.855 409.049

Table 3.11: Tuning parameters of the PI controller.
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Figure 3.12: Comparison between the response of the GPC and PI controllers with the
average patient 13.
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PI reacts later, only when it detects the error. It is worth pointing out that during the

simulation the GPC controller is using the same amount of drugs as the PI controller.

)(tBIS)(tu
HILL)(sPK )(sPD

)(tCp )(tCePI)(tr

patient

)(td


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+ )(te

Figure 3.13: Implementation of the SISO control scheme with standard PI for the propofol
regulation.

To test the behavior of the controller under real condition it is possible to make a

simulation with the disturbance profiles used in [38], which are reported in figure 3.14 and

figure 3.15. In [38] it is implemented a combined strategy of MPC and least squares online

parameter estimation for the control of the hypnotic depth. The system is composed by

a conventional online MPC with a Kalman filter implemented to obtain an estimate of

the states plus an online estimator added to the closed control loop for the estimation of

the PD parameter C50 during the course of surgery. The block diagram of this system is

reported in figure 3.16.

It is only possible to make a visual comparison with the results obtained with the MPC

because no performance indicator is calculated in the article, only the BIS trends are
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Figure 3.14: Disturbance profile:(A) arousal reflex due to the first surgical incision; (B)
offset slowly decreases but settles at on onset of 10% due to continuous normal surgical
stimulations; (C) withdrawal of stimulations during skin-closing.
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Figure 3.15: Disturbance profile: (A) laryngoscopy/intubation; (B) surgical incision fol-
lowed by no surgical stimulation; (C) abrupt stimulus after a period of low stimulation;
(D) onset of a continuous normal surgical stimulation; (E-G) stimulate short-lasting, larger
stimulations; (H) withdrawal of stimulations during closing.

700 A. Krieger, E.N. Pistikopoulos / Computers and Chemical Engineering 71 (2014) 699–707

Fig. 1. Closed loop control design.

In this paper a closed loop control design for volatile anesthesia
is presented, where the controller is derived based on a model pub-
lished in Krieger et al. (2014). A conventional online MPC  and the
explicit solution in form of a multi-parametric MPC (mp-MPC) are
presented. A Kalman filter is implemented to obtain an estimate
of the states based on the measurement of the end-tidal concen-
tration. An online estimator is added to the closed control loop
for the estimation of the PD parameter C50 during the course of
surgery. Closed loop control simulation for the system for the con-
ventional MPC, explicit MPC  and the online parameter estimation
are presented for induction and disturbances during maintenance
of anesthesia.

2. Closed loop control design

The presented closed loop model predictive control design and
nomenclature is illustrated in Fig. 1. It consists of the patient model,
the MPC, the state estimator and the parameter estimator.

The anesthetist sets the target reference point BISR specific to
the patient and planned surgery. Feedback about the current state
of the patient is obtained by a state estimator (state feedback) and
the actual measurement (output feedback). For volatile anesthesia,
the systems inputs are the inhaled concentration of the volatile
anesthetic agent, CI. The outputs are the end-tidal concentration
of the anesthetic agent, CE, and the measure of the hypnotic depth,
BIS. The system’s states are the concentrations in the different body
compartments, C, determined by the estimator, Ĉ.  The control of
the system is described as a reference tracking problem, where the
objective is to find the optimal sequence of inputs to regulate the
anesthetic depth of the patient to a target reference point BISR. The
separate blocks in Fig. 1 are presented in detail in the following
sections.

2.1. Patient model

The individualized pharmacokinetic (PK) model equations,
describing the drug distribution and uptake, for the model of
volatile anesthesia were published in Krieger et al. (2014). A sum-
mary is given in Appendix A.2. Under the assumption of a constant
tidal volume, VT, and a constant respiratory frequency, fR, the PK
equations result in a linear state space system with the arterial
blood concentration, Ca, as output and the inhaled concentration
of the anesthetic agent, CI, as input of the system.

The nonlinearity is introduced by the pharmacodynamic (PD)
equations, relating the arterial concentration, Ca, determined by
the PK equations to the effect. The Hill-Equation (2) links the BIS
via an artificial effect site concentration, Ce (1), to Ca:

dCe

dt
= ke0(Ca − Ce) (1)

BIS = BIS0 + (BISmax − BIS0)
C�

e

C�
50 + C�

e

, (2)

Table 1
MPC  tuning parameters and specifications.

Variable Value Variable Value Unit

ts 0.1667
∧=10 s �CI,max 1 vol%

N  6
∧=1 min  �CI,min −1 vol%

M  3
∧=30 s CI,max 4 vol%

QR 1000 CI,min 0 vol%
R1 1 Ce,max 3.08 vol%

Ce,min 0 vol%

where ke0 denotes the first order rate constant describing the delay
of drug action, C50 is the concentration at 50% of the total effect and
� the slope of the Hill-Equation (2). BIS0 describes the initial effect
at no anesthetic concentration BIS0 = 100 and BISmax = 0 describes
the maximum effect.

The model resulting from the presented PK and PD equations is
further applied to design the MPC.

2.2. Model predictive controller

To compensate the non-linearity introduced by the Hill-
Equation (2) the equivalent reference point on the BIS, BISR, of
the target effect site concentration CR

e is obtained by the inverse
Hill-Equation (Nascu et al., 2012).

CR
e = C50

(
BISR − BIS0

BISmax − BISR

)1/�

. (3)

At each time step the optimal control input, corresponding to
the inhaled concentration of the anesthetic agent, CI, is calculated
as the solution of the objective function for the target effect site
concentration (4):

min
CI,k

J =
N∑

k=1

(Ce,k − CR
e )

′
QR(Ce,k − CR

e ) +
M−1∑

k=0

�C ′
I,kR1�CI,k

s.t. Ck+1 = A Ck + B CI,k

Ce,k = C Ck

CI,min ≤ CI,0, . . .,  CI,M ≤ CI,max

Ce,min ≤ Ce,1, . . .,  Ce,N ≤ Ce,max

�CI,min ≤ CI,−1 − CI,0, . . .,  CI,M−1 − CI,M ≤ �CI,max

(4)

N Output horizon
M Control horizon, with M ≤ N
QR Weight matrix on reference tracking error
R1 Weight matrix on change in control input
A,  B, C State space system matrices
C  State vector of the system, i.e. Cb,i ,  Ct,i , see Appendix A.2
Ce Effect site concentration (control output)
CR

e Reference point on effect site concentration
CI Inspired concentration (control input)
�CI Change in inlet concentration (change in control input)

The control input sequences, CI,0, . . .,  CI,M, are computed for the
entire control horizon M.  However, only the first control action,
CI,0, is implemented. In subsequent time steps, this procedure is
repeated and the objective function (4) is solved repetitively to
obtain the control action at each time-point with constraints on
the input CI, change in the input �CI and output Ce.

The optimal control input is computed as a function of the esti-
mated states of the patient and the reference point CR

e resulting
in the target value BISR in (3). The controller specifications are
summarized in Table 1.

Figure 3.16: Control system used in [38].

presented. The images in the article are therefore reported, together with the response of

the GPC controller: at the top of figure 3.17 there is the response of the MPC in [38],

with the BIS trend in dash-dotted line, while at the bottom there are the BIS trend and

the control signal of the 13 patients of table 1.1, obtained with the GPC. Comparing the

results it is possible to observe that even in this case the GPC provides a faster disturbance

rejection: this consists in a better response for the first disturbance profile, as the BIS

stays for more time at the desired level. In fact with the GPC the BIS begins to reach the

reference immediately after the step disturbance (A) of figure 3.14, while the MPC needs

more time to react. The same happens for the last part (C) of the disturbance profile,

resulting in having less undershoot for the GPC case.

Looking at figure 3.18, that reports the system response at disturbances profile in figure
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3.14, it is possible to notice that the fastness of the GPC causes a positive peak that makes

the BIS reach the 80 unit. That is because the step of +40 BIS unit in point C of figure

3.15: for the MPC it does not produce a +40 increment on the reference signal because in

that moment the MPC is still compensating for the previous negative step and the BIS is

under the reference. So, in this case, it is possible to say that the controller slowness gives

advantages.

Besides of this unlucky combination we can say that the GPC performs better than the

MPC of [38], because normally it has a faster action, and in case of need it can be slowed

down (by incrementing the value of λ in equation 2.7) to achieve a similar behaviour of the

MPC. In both cases it is not possible to make observation on the control signals because

they are not reported in the article.

Having achieved good results in comparison with other controllers, it is now possible to

proceed further, introducing remifentanil infusions into the system.
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Fig. 6. Simulated CE values of all patients and control designs.

individual patient’s dynamics and obtains the reference set-point
for the patient.

Fig. 4 depicts the simulated effect site concentrations, Ce, of the
four patients. Again, as a consequence of the individual patient vari-
ables and parameters, the targeted effect site concentration is not
identical for an identical BIS value, cp. Fig. 3, due to a different sen-
sitivity of each patient to the anesthetic agent, i.e. C50. The online
parameter estimation enables the identification of the individual
effect site concentration for each patient to obtain the target BIS,
CR

e .
Fig. 5 shows the manipulated inlet variable CI, as optimal solu-

tion of (4). For MPC3 the significant differences in CI are triggered by
the online parameter estimation, which results in a step change of
CR

e , as a function of the individual effect site concentration for each
patient equivalent to BISR. The differences between the patients for
controller MPC2 are triggered by the state estimation based on the
measurement of the end-tidal concentration CE depicted in Fig. 6.
The varying values of CE for each patient are originated from a differ-
ent uptake and distribution of the volatile anesthetic as a function
of the individual patient variables, Table 4.

In Fig. 7 the nominal value of C50 is compared to the estimated
values for MPC3. Note that the final estimated value of C50 is not
corresponding to the value of C50 given in Table 4, because the
estimation of C50 also compensates for other variations of the indi-
vidual patient and the nominal patient, Pn, in Table 4.

Note that the conventional online MPC, MPC1 and the mp-MPC,
MPC2, showed an identical and very good control performance
when the exact patient dynamics are known, Pn. The difference is
that MPC1 solves the QP problem (4) online and MPC2 obtains the
optimal solution by a simple function evaluation. The optimal con-
trol input of CI as a function of the system’s states, the previously
administered CI and the set point CR

e of the initial 6 critical regions
that are crossed for Pn are given in (B.5). As there is no difference
between MPC1 and MPC2 and the performance of MPC1 and MPC2
is identical, the results of the MPC2 design for P1, P2 and P3 are
depicted in Figs. 3–7.

Although the model is individualized to the characteristics of
the patient there is no guarantee that all variables and parame-
ters are known exactly. The reasons are high patient-variability,

Fig. 7. Nominal value of C50 for MPC1 and MPC2 and estimated Ĉ50 for MPC3.

Fig. 8. Disturbance profile (Dumont et al., 2009; Hahn et al., 2012): (A) arousal reflex
due to the first surgical incision; (B) offset slowly decreases but settles at an onset of
10% due to continuous normal surgical stimulations; (C) withdrawal of stimulations
during skin-closing.

Fig. 9. Disturbance profile (Struys et al., 2004): (A) laryngoscopy/intubation; (B) sur-
gical incision followed by no surgical stimulation; (C) abrupt stimulus after a period
of  low stimulation; (D) onset of a continuous normal surgical stimulation; (E–G)
simulate short-lasting, larger stimulations; (H) withdrawal of stimulation during
closing.

external disturbances and/or non-linearities that are not captured
in the modeling equations. This is illustrated when the nominal
controller MPC2 is applied to three validated and individualized
patient models and no successful set point reference tracking can
be achieved. The results in Fig. 3 clearly demonstrate a need for
an individualized control strategy for each patient: the closed loop
control simulations show a large off-set from the set-point for P1,
P2 and P3. Our approach is the compensation of the imposed uncer-
tainty by online parameter estimation of C50. This strategy allows
adjusting the controller to the individual sensitivity of the patient to
the anesthetic agent. The proposed control strategy, MPC3, shows
good results and is able to adjust the controller to the individual
patient dynamics by online estimation of C50. All patients converge
to the target reference point of BIS = 40 in Fig. 3 and their individual
value of C50 in Fig. 7.

3.2. Maintenance of anesthesia and disturbance rejection

During maintenance of anesthesia the aim is a stable and con-
stant reference tracking of the target BIS, BISR, set by the anesthetist.
The ability of the control strategies MPC1/MPC2, and MPC3 to reject
typical disturbances on the BIS occurring during the course of
surgery is presented in this section. These disturbance profiles were
published by Dumont et al. (2009) and Struys et al. (2004) and are
shown in Figs. 8 and 9.

The simulated BIS, optimal control input, CI, and estimated C50
for MPC2 and MPC3 and the nominal patient Pn during mainte-
nance of anesthesia under disturbances in Figs. 8 and 9 are shown
in Figs. 10–15.

Figs. 10 and 13 show an improved tracking of the BIS for con-
trol design MPC3 compared to the nominal controller MPC2 under

Fig. 10. BIS for disturbance profile in Fig. 8.(a) MPC
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Figure 3.17: BIS responses for disturbances profile in figure 3.14.
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Table A5
Denotation of variables and parameters of the model equations.

Sym. Denotation Units Sym. Denotation Units

BIS Bispectral Index – m Weight kg
C  Concentration volatile anesthetic vol% mliv Metabolism liver mL/min
C50 Drug concentration at 50% effect vol% Q̇ Blood flow mL/min
fR Respiratory frequency 1/min Q̇s Blood flow lung shunt mL/min
�  Slope Hill-Equation – r Ratio –
h  Height m u Uptake mL/min
�  Partition coefficient – V Volume mL
ls Lung shunt – VD Dead space mL
m  Weight kg V̇ Air flow mL/min
mliv Metabolism liver mL/min VT Tidal volume mL

Fig. 11. CI for disturbance profile in Fig. 8.

Fig. 12. Nominal and estimated C50 for Pn for disturbance profile Fig. 8.

Fig. 13. BIS for disturbance profile in Fig. 9.

disturbances. The control input, CI, is shown in Figs. 11 and 14. The
varying CI is initiated by estimated value of C50 in Figs. 12 and 15
and an updated set point.

MPC3 shows a better performance for the rejection of both dis-
turbance profiles compared to the nominal controller, MPC2. For
a slowly changing disturbance MPC3 is able to reject the disturb-
ance successfully and steer the system to the target reference value,
shown in Figs. 10 and 13. After the sequences of different distur-
bances the estimated value of C50 is converging to its nominal value
Figs. 12 and 15, which further affirms the accuracy of the online
parameter estimator.

Fig. 14. CI for disturbance profile in Fig. 9.

Fig. 15. Nominal and estimated C50 for Pn for disturbance profile in Fig. 9.

4. Conclusions and future work

The presented control strategy combines mp-MPC and online
parameter estimation of C50 to address control of anesthesia under
uncertainty.

This strategy showed a good performance during induction of
anesthesia and adapted the controller’s dynamics to the individual
patient’s sensitivity. The safety of the patient is assured by con-
straints in (i) the online parameter estimation problem and (ii) the
mp-MPC specification. This set-up allows extensive advance testing
of the control performance. The control strategy was  further evalu-
ated for disturbance rejection of commonly occurring disturbances
during the course of surgery. Here, the online estimation of C50
showed promising results for slowly varying disturbances. How-
ever, further investigation is needed to guarantee safe and robust
control also during fast acting disturbances.

The online estimation contributes to further understanding of
the patient’s sensitivity, which could be advantageous for future
surgeries of the same patient.

In our ongoing work we investigate further strategies to cope
with the patient-variability with the objective of a faster adjust-
ment of the controller to the patient’s dynamics and a faster
disturbance rejection. The methods taken into consideration are
other state estimation techniques such as the moving horizon esti-
mator (Voelker et al., 2013) coupled with robust control strategies
(Kouramas et al., 2013; Sakizlis et al., 2004).
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Appendix A. Volatile anesthesia model

A.1. Nomenclature

See Tables A5 and A6.
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Figure 3.18: BIS responses for disturbances profile in figure 3.15.
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Chapter 4

Complete system

In the previous chapter the work was focused on obtaining an efficient and robust

controller for the infusion of the anesthetic drug propofol. This chapter presents the control

scheme capable to set the infusion rate of the anesthetic and analgesic drugs, i.e. propofol

and remifentanil, using the BIS signal as controlled variable (MISO system). This is

possible because the remifentanil has an influence on the effect of the propofol which means

that variations on the remifentanil infusion rate will provoke variation on the BIS signal.

The idea is to exploit the control scheme previously developed for the propofol and set the

remifentanil infusion rate with a gain over the propofol infusion, as it is usually done by the

anesthesiologist. So by taking into account the synergistic effect between the two drugs,

the controller must compute the correct propofol infusion profile, then the remifentanil the

dose is selected by multiplying the infusion rate by a gain previously established.

The development of this system allows the automatic administration of anesthesia, as

foreseen by the objective of the thesis.

4.1 Control requirements

The control structure of the MISO system provides for the automatic regulation of the

combined infusion of propofol and remifentanil drugs, using the BIS signal as feedback for
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the regulation of propofol. The goal is therefore to create a controller that brings the level

of hypnosis of the patient to a desired value in a time interval suitable for the application.

The medical specifications that the control system must meet are the same as those pre-

sented for the propofol-only regulation system. They have been provided by the Spedali

Civili di Brescia and provide a reference BIS of 50 to be reached in less than 5 [min] (prefer-

ably in a shorter time, as about 120 [s]), limited undershoot and the general consideration

of minimizing the drugs administration to obtain the desired DoH.

The system must also be robust enough to cope with the variability of the model, due to

the different characteristics and health status of the patients. This property is fundamental

to the particular application considered, in order to avoid risks to the health of patients.

An additional specification to be considered concerns the limits to the generated control

action, which are the infusion rate bounds of a standard pump (Graseby 3400, Smiths

Medical, London, UK). The lower saturation corresponds to the zero infusion for both

drugs while the maximum rate is 6.67 [mg/s] for propofol (Diprivan 20 [mg/ml]) and

16.67 [µg/s] for remifentanil (Ultiva 50 [µg/s]) [39].

Summarizing the control specifications to be considered are those described in the

table 4.1.

Set-point reference 50
Undershoot 10 %FS

Settling time 120 [s]
Propofol upper sat. 6.67 [mg/s]
Propofol lower sat. 0.0 [mg/s]

Remifentanil upper sat. 16.67 [µg/s]
Remifentanil lower sat. 0.0 [µg/s]

Table 4.1: Specifications of the MISO control system.

4.2 Control scheme

Unlike the system presented in the previous chapter, the control here developed must

consider the drugs synergistic effect in order to correctly infuse anesthesia. When the
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propofol is administrated together with the remifentanil, its effects over the DoH are am-

plified as modeled in equation 1.26. Figure 4.1 represents the implemented control scheme,

which is based on the one used in section 3.2. This control scheme tries to emulate the

behaviour of the anesthesiologist who sets the remifentanil infusion rate with a gain over

the propofol rate and then his/her work is to monitor and regulate the propofol infusions

in order to obtain the desired BIS level. The value of the ratio K depends on many factors,

first of all the type of surgery, and it is decided by the anesthesiologist thanks to his/her

experience. Usual values ranges between 0.5 and 15 with the propofol measured in [mg/s]

and the remifentanil in [µg/s].

In the same way as in section 3.2, the blocks P̃prop and P̃remif are considered equals, which

means that a perfect knowledge of the linear parts is assumed. Otherwise, the parameters

of the non-linear Hill function are unknown and for the H̃−1 block the average parameters

found in the literature are used. More precisely the parameters are the one used in [7] and

[40] and their values are 87.5, 4.92 [µg/ml], 12.5 [ng/ml], 2.69, 1.5 respectively for Emax,

C50prop, C50remif , γ, β. The parameter E0 can be measured and the correct value will be

used for each patient.

Fd is a low pass filter, in the form:

Fd(s) =
1

Tds+ 1
(4.1)

In the design of the control system it was necessary to take into consideration the

following aspects:

1. the inverse Hill function block H̃−1 must take into account also the contribute of the

remifentanil;

2. the contribute of the remifentanil should also be considered for the calculation of the

reference signal;

3. the anesthesiologists use different value of the ratio between propofol and remifentanil
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Figure 4.1: The MISO control scheme for the automatic regulation of propofol and remifen-
tanil during anesthesia.

infusions rate, so we have to do an optimization for each value of the ratio.

For the first point, the equation (1.26) needs to be reversed, in order to obtain something

in the form of: Uprop(t) = f(BIS(t), Uremif (t)). To achieve that, it is possible to modify

(1.26) in the form of a third degree equation:

U3
p + bU2

p + cUp + d = 0 (4.2)

with:

b = 3Ur −
(

E0 −BIS
Emax − E0 +BIS

)1/γ

c = 3U2
r − 2Ur

(
E0 −BIS

Emax − E0 +BIS

)1/γ

+ βUr

(
E0 −BIS

Emax − E0 +BIS

)1/γ

d = U3
r − U2

r

(
E0 −BIS

Emax − E0 +BIS

)1/γ
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NL
1G

2GK

1u

2u

1y

2y

BIS

Figure 4.2: Simplified scheme for the patient model.

where Up and Ur are propofol and remifentanil effect-site concentrations normalized with

respect to the concentration that produces half of the maximal effect:

Uprop(t) =
Ce,p(t)

Ce50,p
, Uremif (t) =

Ce,r(t)

Ce50,r
, (4.3)

In this way, knowing the actual BIS and the estimated remifentanil effect site concentration

C̃e,r(t) it is possible to solve the equation and calculate Ĉe,r(t).

The equation (4.2) cannot be directly used for the calculation of the reference signal,

because it depends also on the Uremif . As it is possible to see also from the simplified

representation in figure 4.2, the remifentanil infusion is linked at the propofol infusion by

means of a gain, so it is therefore possible to express Uremif in function of Uprop.

y1 = G1u1 y2 = G2u2 = G2Ku1

From here it is possible to obtain:

y2 = G−11 G2Ky1 (4.4)

Which can be written in the form of difference equation:

y2(k) = b0y1(k)+b1y1(k−1)+...+b7y1(k−7)−a1y2(k−1)−a2y2(k−2)−...−a7y2(k−7) (4.5)
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At this point it is possible to substitute Uremif in the equation (4.2) with Uremif (Uprop)

from equation (4.5) obtaining an equation in which the propofol concentration depends

only by the desired BIS level. Thus it is possible to calculate an optimal reference signal

for the propofol infusions, keeping in mind that this value can undergo slight variations at

every sample time because the relation between y1 and y2 is not fixed and depends on the

past values of y1 and y2.

4.2.1 Tuning of the parameters

Observing figure 4.1 it seems that there is one less parameter to calibrate than the

control scheme used in chapter 3.2 as the Fr block has disappeared. This is because the

use of the filter on the reference cannot handle the aggressiveness of the controller with

the two drugs infused, and for this scheme we decided to handle the set-point following

and disturbance rejection tasks in a different manner. Firstly the controller will be tuned

to obtain an optimal set-point response, then another tuning procedure will be made

maintaining N and Nu from the found parameters and searching λ and Td for the best

disturbance rejection. In this case, in order to change λ and Td online we need to include

in the scheme two different low pass filters with a bumpless strategy to have smooth

transitions. In figure 4.3 it is possible to see how the bumpless strategy is implemented:

when one filter is working the other is in following mode which means that its output is

modified to be the same as the actual output. Then, when the change occurs, the role are

reversed.

To change from one set of parameters to another, we decided to activate the switch S1

after 300 [s] from the set-point change. This is because after that period the induction

phase should be considered finished and the maintenance phase begins. Is is important

to mention that λ and Td are the only parameters that can be changed online, as N and

Nu establish the dimension of the matrixes in section 2.1 and the only possibility to have

different N and Nu is to have two different controllers.

To summarize, the tuning consist in the research of six parameters for each value of
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Figure 4.3: Detail of block Fd of figure 4.1.

the ratio K. As already mentioned above, the control system turns out to be MISO and

non-linear and therefore it is necessary to use GA to derive the optimal set of tuning

parameters. They were presented in section 2.2 and allow the determination of system

parameters through subsequent simulations and analysis of the results obtained with the

minimization of a cost function. The ratio value is not fixed and it ranges from 0.5 to 15 1.

As starting point we decided to obtain the optimal set of parameter for 16 different values

of K. The results are reported in table 4.2. With the table it is possible to use the control

system only with the ratio of remifentanil and propofol reported in the first column, but

not for values between them, like, for example, K = 1.5. To bypass this problem we have

analyzed the table looking for trends in the parameter values and it turns out that for λ,

Td1 and Td2 it is possible to interpolate the data with a first degree equation: in figure 4.4

are reported the values of the parameters together with the straight lines obtained with

1data provided by the Spedali Civili di Brescia.
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K N Nu λ1 Td1 λ2 Td2

0,5 45 33 32 51 5 21
1 43 21 45 62 5 22
2 36 34 10 96 3 23
3 40 30 15 77 4 22
4 46 41 20 51 2 41
5 45 34 12 75 3 47
6 42 35 10 75 3 48
7 40 20 11 79 2 41
8 41 37 17 108 6 54
9 38 33 9 119 4 56
10 43 22 10 139 5 66
11 36 10 8 108 4 83
12 38 16 9 115 4 80
13 36 17 8 151 5 91
14 37 16 3 172 3 102
15 39 32 19 178 2 108

Table 4.2: Tuning parameters for different values of K.

interpolation. For the other parameter N , Nu, λ2 we chose to use the average values:

N = 40

Nu = 31

λ1 = 24.9572− 1.3387 ∗K

Td1 = 45.6747 + 7.678 ∗K

λ2 = 4

Td2 = 11.2321 + 6.019 ∗K

To verify the effectiveness of this strategy, the maximum IAE of the patients of table 1.2

was calculated for each K value, both with the parameters obtained with GA and with

the interpolation. The average values of IAE reported in table 4.3, result very similar, so

it is possible to confirm that the parameters found with the interpolation can be used.
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Figure 4.4: Interpolation of the λ2, Td1 and Td2 parameters.
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IAE 5175 5182

Table 4.3: Average of the maximum IAE calculated for each value of K reported in ta-
ble 4.2.

4.2.2 Robustness

Before executing the simulations it is necessary to establish a value of the ratio to be

used. The K block in figure 4.1 is a gain that handles the presence of two inputs and

one output in the process. By taking into account that, during maintenance phase the

clinical practice suggests typical constant drug infusions of 6 [mg/kg/h] of propofol and

0.2 [µg/kg/min] of remifentanil, which correspond respectively to 0.12 [mg/s] and 0.23

[µg/s] for an average patient’s weight of 70 [kg]. Thus, the ratio between remifentanil and

propofol recommended rates, in the model units, is about 2 and the gain has been fixed

to this value in order to test the most used configuration of the controller. In order to

test the intra-patient robustness of the proposed control system a Monte Carlo method

has been employed to verify the robustness property. In particular, a set of 1000 models

have been generated for each patient of the database based on the statistical properties

of the model parameters. The simulation results related to the average patient 13 for the

induction phase are plotted in figure 4.5 and the corresponding performance indices are
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Figure 4.5: Monte Carlo simulation results of induction phase for the average patient 13.

Figure 4.6: Monte Carlo simulation results of maintenance phase for the average patient
13.
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Figure 4.7: Simulation results of induction and maintenance phases for all patients.

TT [min] BIS-NADIR ST20 [min] ST10 [min] US
mean 2.31 49.87 1.74 2.29 0.00

std.dev 0.51 0.15 0.29 0.51 0.00
min 1.40 47.99 1.22 1.38 0.00
max 5.25 50.71 3.60 5.23 0.00

Table 4.4: Performance indices for the induction phase with the MCM (average patient
13).

shown in table 4.4. Results for the maintenance phase are in figure 4.6 and in table 4.5.

In both cases the results can be considered acceptable if we consider that in one case over

1000 the TT index is over the limit and that for this test we assume a significant variability

of the system.

Regarding the inter-patient variability the results related to the induction and maintenance

phases of all the patients of table 1.2 are shown in figure 4.7 and the performance indexes

are reported in the next section. The achieved BIS level and the control actions are quite

similar for each patient, and all the clinical specifications are always fulfilled, demonstrating

the robustness of the system even with inter-patient variability.
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TTp [min] BIS-NADIRp TTn [min] BIS-NADIRn
mean 0.61 49.93 0.88 50.14

std.dev 0.01 0.07 0.01 0.13
min 0.57 49.62 0.83 49.91
max 0.68 50.49 0.92 51.03

Table 4.5: Performance indices for the maintenance phase with the MCM (average patient
13).

4.3 Comparison with event based control

The MISO system developed for the combined propofol and remifentanil infusion has

provided satisfactory results for automatic anesthesia control; in this paragraph we want

to compare the developed control system with the one described in [39]. It is based on the

implementation of an event generator with strong noise filtering capabilities together with

a PIDPlus controller and considers both the administration of propofol and remifentanil

in order to obtained a desired level of the BIS.

The control structure is shown in figure 4.8, where r(t) is the set-point signal, e(t) is

the error variable and up(t) [mg/s] and ur(t) [µg/s] are the propofol and the remifentanil

infusion rates, respectively. The saturation blocks limit the control signal with the same

constraints introduced in table 4.1 and the ratio is set at 2.

In the paper the same performance indexes introduced in chapter 3 are used:

• TT: observed time-to-target (in seconds) required for reaching the first time the

target interval of [45÷ 55] BIS values;

• BIS-NADIR: the lowest observed BIS value;

• ST10: settling time, defined as the time interval for the BIS to reach and steady

within the BIS range between 45 and 55 (that is, the target value of 50 ± 5);

• ST20: the same of ST10 but it considers a BIS range of 40 and 60;

• US: undershoot, defined as the difference between the lower threshold of 45 and the

minimum value of BIS below this threshold.
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for an average patient’s weight of 70 [kg], the ratio between
remifentanil and propofol recommended rates, in the model
units, is about 2. Thus, the gain has been fixed to this value
in order to use this ratio between the two drugs along the
whole surgery. The saturation blocks represent the infusion rate
bounds of a standard pump (Graseby 3400, Smiths Medical,
London, UK). The lower saturation corresponds to the zero
infusion for both drugs while the maximum rate is 6.67
[mg/s] for propofol (Diprivan 20 [mg/ml]) and 16.67 [µg/s]
for remifentanil (Ultiva 50 [µg/s]). The model presented in
Section II is implemented to simulate the response of the
patient. The typical BIS signal is affected by noise that can
be represented as a white Gaussian additive noise. While the
high frequency components are typical of measurement noise,
the low frequencies represent the BIS level variations that
are not described by the model, as they are due to particular
surgery phases or uncertainties in the BIS signal. This allows
the simulation of more realistic cases and the attainment of
a more robust tuning of the controller (see Section IV). The
noise standard deviation has been estimated from clinical data
provided by Department of Anesthesiology, Critical Care and
Emergency of the Spedali Civili di Brescia University Hospital,
Brescia (Italy) by analysing the BIS signal of a commercial
monitor for different patients. This monitor has a sampling
period of 5 [s] and the average estimated value of the noise
standard deviation is 4.45.
The core of the control system is obviously represented by
the event generator that triggers the PIDPlus controller. The
PIDPlus controller is based on a standard automatic reset form
implementation of a PID controller (see [18] for details), as
shown in Figure 2, where Kp is the proportional gain, Ti is the
integral time constant, Td is the derivative time constant, e is
the control error (i.e., the difference between the set-point value
and the value of the process variable provided by the event
generator) and u is the control variable. In this configuration,
the integral action is determined as the output of a positive
feedback network with a first-order filter whose time constant
is the integral time constant Ti. In order to deal with events,
the controller is modified so that the last calculated filter output
is kept constant until a new event occurs. When this happens,
the new filter output is used.
The event generator associated to the PIDPlus controller is the
one proposed in [19], which applies a send-on-delta (SOD)
technique based on the integral of the BIS signal. In this
way, a strong high-frequency noise filtering action is provided,
without affecting significantly the low-frequency behaviour
of the controller. The event generation condition is therefore
defined as:


∫ t

tlast

y(t)− yc(tlast)dt
 > ∆i (12)

where y(t) is the process variable signal that has to be sampled,
yc(tlast) is the last transmitted sample, tlast is the time instant
of the previous event, t is the current time instant and ∆i is
a tuning parameter of the filter. The value to be sent to the
controller is then determined as:

yf (t) =

∫ t
tlast

y(t)dt

t− tlast
. (13)

Note that, for safety reasons, an event is generated in any case
after a time interval of 30 [sec] when no events occur.

Id Age H [cm] W [kg] G Ce50,p Ce50,r γ β E0 Emax

1 40 163 54 2 6.33 12.5 2.24 2.00 98.8 94.10
2 36 163 50 2 6.76 12.7 4.29 1.50 98.6 86.00
3 28 164 52 2 8.44 7.1 4.10 1.00 91.2 80.70
4 50 163 83 2 6.44 11.1 2.18 1.30 95.9 102.00
5 28 164 60 1 4.93 12.5 2.46 1.20 94.7 85.30
6 43 163 59 2 12.00 12.7 2.42 1.30 90.2 147.00
7 37 187 75 1 8.02 10.5 2.10 0.80 92.0 104.00
8 38 174 80 2 6.56 9.9 4.12 1.00 95.5 76.40
9 41 170 70 2 6.15 11.6 6.89 1.70 89.2 63.80
10 37 167 58 2 13.70 16.7 3.65 1.90 83.1 151.00
12 42 179 78 1 4.82 14.0 1.85 1.20 91.8 77.90
12 34 172 58 2 4.95 8.8 1.84 0.90 96.2 90.80
13 38 169 65 2 7.42 10.5 3.00 1.00 93.1 96.58

TABLE I: Characteristic variables for the considered set of
patients (H: heigth, W: weigth, G: gender).

Fig. 1: Proposed control structure for the coadministration of
propofol and remifentanil

IV. TUNING OF THE PARAMETERS

The devised control architecture requires the tuning of
the PIDPlus controller parameters Kp, Ti and Td and the
event generator threshold ∆i. The tuning of the controller
should consider the control specifications. In the induction
phase the set-point BIS level, fixed at 50, has to be achieved
in about 5 [min] without an excessive undershoot. Then,
during the maintenance phase, the controller has to reject
disturbances due to noxious stimuli. By following the same
approach proposed in [26], disturbances have been modeled
as a step signal of amplitude 10 in the BIS level followed
by another step after 10 [min] of amplitude -10. It is worth
stressing that the response of this kind of disturbance signal
allows an intuitive evaluation of the controller performance. As
already mentioned, the BIS value should be kept as much as
possible in the range from 40 to 60 in order to avoid possible
complications for the patient. In order to find suitable values
for the controller parameters that take into account the different
specifications and ensure the required robustness, a genetic
algorithm [27] has been applied. Indeed, the parameters Kp,
Ti, Td and ∆i have been determined in order to minimize the
worst-case Integral Absolute Error (IAE) of the process output
by considering the entire dataset of patients in Table I and by
constraining the minimum value of the BIS signal to be greater
than 40 (in the induction phase only). The IAE performance
index is defined as:

IAE =

∫ ∞

0

|e(t)|dt. (14)

Two different sets of parameters have been determined for the
set-point response and for the disturbance rejection so that the
overall control performance can be improved by applying a
gain scheduling strategy, that is, a different set of controller
parameters for the induction and maintenance phases [28]. The

Figure 4.8: Control scheme used in [39]

PIDPlus GPC
Patient TT [min] BIS-NADIR ST20 [min] ST10 [min] US TT [min] BIS-NADIR ST20 [min] ST10 [min] US

1 2.23 49.03 1.97 2.23 0.00 1.57 49.69 1.27 1.57 0.00
2 2.53 44.01 2.28 5.03 1.00 1.73 49.62 1.42 1.73 0.00
3 2.63 47.89 2.35 2.61 0.00 2.02 49.66 1.50 2.02 0.00
4 2.33 45.34 2.22 2.33 0.00 1.33 44.39 1.23 2.10 0.61
5 5.32 50.83 2.33 7.43 0.00 2.12 49.71 1.52 2.12 0.00
6 2.63 47.83 2.40 6.07 0.00 1.90 49.55 1.48 1.90 0.00
7 3.15 48.48 2.68 3.15 0.00 1.98 49.73 1.52 1.98 0.00
8 2.77 46.24 2.58 2.77 0.00 1.72 49.60 1.43 1.72 0.00
9 2.40 44.19 2.30 4.78 0.81 1.40 47.45 1.28 1.40 0.00
10 3.22 46.8 2.98 3.22 0.00 2.20 49.56 1.60 2.20 0.00
11 3.88 50.00 2.80 3.88 0.00 2.18 49.78 1.62 2.18 0.00
12 3.23 47.62 2.07 3.23 0.00 2.17 49.51 1.60 2.17 0.00
13 3.30 44.84 2.68 9.00 0.15 1.92 49.62 1.50 1.92 0.00

mean 3.05 47.16 2.43 4.29 0.15 1.86 49.07 1.46 1.92 0.05
std.dev 0.83 2.17 0.29 2.10 0.34 0.29 1.53 0.13 0.25 0.17

max 5.32 50.83 2.98 9.00 1.00 2.20 49.78 1.62 2.20 0.61
min 2.23 44.01 1.97 2.23 0.00 1.33 44.39 1.23 1.40 0.00

Table 4.6: Performance indices of induction phase for all patients.

PIDPlus GPC
TTp [min] BIS-NADIRp TTn [min] BIS-NADIRn TTp [min] BIS-NADIRp TTn [min] BIS-NADIRn

1 1.30 48.39 1.53 50.50 0.45 48.66 1.05 50.08
2 0.92 47.45 1.30 52.06 0.48 49.63 0.80 50.08
3 0.95 47.13 0.93 51.58 0.48 49.72 0.78 50.09
4 0.88 46.33 0.97 53.17 0.48 49.29 0.72 50.01
5 1.33 50.00 1.96 51.32 0.55 49.65 1.02 50.09
6 1.32 46.61 1.28 52.34 0.52 49.62 0.83 50.06
7 1.70 49.20 1.81 52.43 0.58 49.77 1.00 50.05
8 1.55 48.73 1.32 50.57 0.53 49.69 0.87 50.03
9 1.07 45.85 0.93 53.31 0.48 49.60 0.78 50.04
10 1.00 46.84 0.95 54.62 0.48 49.05 1.05 50.08
11 2.56 50.00 2.58 50.55 0.73 49.85 1.32 50.06
12 1.72 49.81 1.60 50.43 0.53 49.27 1.13 50.27
13 1.10 48.08 1.05 52.75 0.53 49.69 0.85 50.06

mean 1.34 48.03 1.40 51.97 0.53 49.50 0.94 50.08
std.dev 0.47 1.45 0.49 1.30 0.07 0.34 0.17 0.06

max 2.56 50.00 2.58 54.62 0.73 49.85 1.32 50.27
min 0.88 45.85 0.93 50.43 0.45 48.66 0.72 50.01

Table 4.7: Performance indices of maintenance phase for all patients.
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In tables 4.6 and 4.7 are reported the performance indices obtained with the two

controllers for the induction and maintenance phases. As it is possible to see from the

TT and ST indices, with the GPC developed in this work it is possible to obtain faster

set-point responses with an average lower undershoot. Also during the maintenance phase

the GPC presents a faster reaction, having TTp and TTn smaller than the PIDPlus. The

main reason of these differences is attributable at the internal presence of the model into

the controller, necessary for estimating the future system response in advance, it allows

the GPC to modify the control action accordingly, reaching the reference optimally.

Regarding the robustness, the most critical aspect for every model based controller,

the same test performed in [39] have been reproduced. The results, reported in tables 4.8

and 4.9, show that GPC meet the specifications even with uncertainties in the linear part,

obtaining good performance indexes.

It can therefore be concluded that the predictive control system developed is preferable to

the event based control for the particular type of application considered.

PIDPlus GPC
Patient TT [min] BIS-NADIR ST20 [min] ST10 [min] US TT [min] BIS-NADIR ST20 [min] ST10 [min] US
mean 3.38 47.74 2.85 4.22 0.13 2.31 49.87 1.74 2.31 0.00

std.dev 0.94 1.91 0.87 1.72 0.62 0.51 0.15 0.29 0.51 0.00
min 2.47 39.79 2.23 2.47 0.00 1.40 47.99 1.22 1.38 0.00
max 5.98 51.41 9.27 9.98 5.20 5.25 50.71 3.60 5.23 0.00

Table 4.8: Performance indices for the induction phase with the MCM (average patient
13).

PIDPlus GPC
TTp [min] BIS-NADIRp TTn [min] BIS-NADIRn TTp [min] BIS-NADIRp TTn [min] BIS-NADIRn

mean 1.28 48.30 1.37 48.30 0.61 49.93 0.88 50.14
std.dev 0.18 0.66 0.21 0.67 0.01 0.07 0.01 0.13

max 2.56 46.15 0.97 46.15 0.57 49.62 0.83 49.91
min 1.78 49.41 2.12 49.42 0.68 50.49 0.92 51.03

Table 4.9: Performance indices of maintenance phase with the MCM (average patient 13).
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Conclusions and future works

In this work an automatic control system for intravenous anesthesia was developed.

The system exploits the estimated effect-site concentration, derived from the BIS signal,

as an anesthetic level feedback for the regulation of propofol and remifentanil, hypnotic

and anesthetic drugs respectively. The novelty of this work lies in the use of the GPC to

anticipate the responses of the patients to drug infusion, and an innovation feedback signal

to compensate for model uncertainties.

The control structure has been implemented initially for the propofol infusion only,

leading to the study of a SISO model of the process. After appropriately calibrating the

system with GA, system simulations with patient models in the literature were performed.

The system meets all the medical specifications required on the BIS profile trend, repre-

senting a good starting point for the development of the complete control system.. We also

compared the performance of the controller with other systems found in the literature,

noting that the developed system presents many advantages.

As the results obtained with the SISO system are excellent, the control structure has been

then expanded to consider the introduction of the remifentanil effect on the process. This

represents a significant control challenge, as the response of the human body to the infu-

sion of propofol and remifentanil can be modeled through a non-linear MISO system that

must take into account the synergistic effect of drugs. For the regulation of propofol, the

same GPC controller developed for the SISO system was maintained. The lack of feedback

signals to detect the sensation of pain does not allow the realization of a closed control loop

also for remifentanil. It was therefore decided to regulate the anesthetic as a ratio over the
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hypnotic drug, as done in the clinical practice. In this case, the medical specifications are

also met and the controller reacts well to disturbances and changes in the set-point.

One of the most interesting control challenges of this system is undoubtedly robustness,

as the GPC controller is very sensitive to model changes. In fact there is a great variability

of the process, depending on the patient considered. Each person reacts differently to the

administration of drugs, depending on their physical characteristics and health condition.

The system must therefore compensate for intra-patient variability, always guaranteeing

excellent infusion profiles not harmful to the patient’s health. For this reason we placed

emphasis on testing the robustness for intra-patient and inter-patient variability with a

MCM.

In future works it will be interesting to improve the control of the remifentanil by looking

for a method to make a closed loop. It is not to be excluded that future works could

integrate in the automatic control also the neuromuscular blocking drugs not considered

yet. As an ultimate ambitious goal, there is obviously the implementation of the controller

and the execution of tests on real patients.

The implementation of a closed-loop control system could lead to advantages for the

health of patients and economic benefits at the same time. The maintenance of the hyp-

notic level around a recommended BIS value could allow a reduction of the time required

for the awakening of the patient, and consequently it could lead to a save of time for the

medical staff. The work of the anesthesiologist could be facilitated, allowing a reduction

in workload. Moreover, the patient would benefit from limited postoperative side-effects

following the propofol infusion and would require less time for the anesthesia and psy-

chomotor function recovery. It is therefore believed that it is of paramount importance to

continue with the development of this system by achieving a functioning control scheme

that respects the medical specifications and is robust in terms of inter and intra-patient

variability.
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