
 

Master’s Thesis 

Kinematic and dynamic modeling of the Robot ABB IRB 
140 for the implementation of control algorithms 

 

Author José Antonio Aliaga Rodríguez 

Master’s Degree  Master’s Degree in Industrial Engineering 

Modality Research Work 

University University of Almería 

Department Department of Engineering 

Research Group 
ARM-TEP197 

(Automatic Control, Robotics and Mechatronics) 

Date September 2019 

 

Director Author 

  

José Luis Torres Moreno José Antonio Aliaga Rodríguez 



 

 

 

  



 

 

III 

 

 

Abbreviations and acronyms 
�⃗⃗�  Pose vector 

𝒙 Pose component - Location in axis 𝑥 

𝒚 Pose component - Location in axis 𝑦 

𝒛 Pose component - Location in axis 𝑧 

�⃗⃗�  Quaternion 

𝒂 (*) Pose component - Quaternion component 𝑎 

𝒃 Pose component - Quaternion component 𝑏 

𝒄 Pose component - Quaternion component 𝑐 

𝒅 Pose component - Quaternion component 𝑑 

�⃗�  Torque vector 

𝑫 −𝑯 Denavit-Hartenberg 

𝜽 Denavit-Hartenberg parameter – Rotation around axis 𝑧 

𝒅 Denavit-Hartenberg parameter – Translation along axis 𝑧 

𝒂 (*) Denavit-Hartenberg parameter – Translation along axis 𝑥 

𝜶 Denavit-Hartenberg parameter – Rotation around axis 𝑥 

𝑷𝑰𝑫 Proportional-Integral-Derivative (Controller) 

𝑪𝑻𝑪 Computed Torque Controller 

�⃗⃗�  Joint angles vector 

𝒄𝒖𝒓 Current 

𝒅𝒆𝒔 Desired 

𝑵 Newton 

𝒎 Meter 

𝒔 Second 

𝒌𝒈 Kilogram 

𝒓𝒂𝒅 Radian 

*: Duplicated denominations. 
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Abstract 
With the imminent widespread implementation of Industry 4.0, the field of industrial 

robotics is on the rise. A much wider presence of new robots in factories, warehouses and 

workshops connected in a continuous and intelligent way with the rest of the productive 

elements will undoubtedly be necessary to increase the effectiveness of the industry. 

This Master's Thesis presents a real engineering problem that deals with one of the most 

well-known robots in the industrial robotics landscape: the ABB IRB 140. Programmed both on 

MATLAB and on its simulation environment Simulink, equivalent kinematic and dynamic 

models of this robot arm are developed from its real geometric and mechanical features to later 

implement them in closed loop control schematics. 

The main goal of the construction of said control schematics is the positioning and 

orientation of the end effector of the robot arm in a series of poses along a predefined trajectory 

very similar to those a real robot would encounter in a practical environment. 

In general terms, a complete vision of all the basic steps of the modeling of an articulated 

robot is implemented, with all necessary scripts for its execution specifically programmed without 

making use of external robotics libraries. 
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Resumen 
Con la inminente implementación generalizada de la Industria 4.0, el campo de la robótica 

industrial se encuentra en alza. Una presencia mucho más amplia de nuevos robots conectados de 

manera continua e inteligente con el resto de elementos productivos en fábricas, almacenes y 

talleres será indudablemente necesaria para mejorar la efectividad de la industria. 

Este Trabajo Fin de Máster presenta un problema real de ingeniería que trata con uno de 

los robots más conocidos del panorama de la robótica industrial: el ABB IRB 140. Se desarrollan 

tanto en MATLAB como en su entorno de simulación Simulink unos modelos cinemático y 

dinámico equivalentes de este brazo robot a partir de sus características geométricas y mecánicas 

reales, para posteriormente implementarlos en una serie de esquemas de control en lazo cerrado. 

El fin principal de la construcción de dichos esquemas de control es el posicionamiento y 

orientación del efector final del brazo robot en una serie de poses determinadas a lo largo de una 

trayectoria predefinida muy similar a las que se vería sometido un robot real en un entorno de 

trabajo práctico. 

En términos generales se proporciona una visión completa de todos aquellos pasos 

básicos para el modelado de un robot articulado, habiendo sido programados específicamente 

todos aquellos scripts necesarios para su ejecución sin hacer uso de librerías de robótica externas. 
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Chapter 1.  Interest, objectives 
and temporal planning 

This chapter presents the motivation for this master’s thesis to be written, the main 

reasons why the topic was selected and in which objectives the whole work was divided. 

1.1 Historical basis 

Throughout history, mankind has been fascinated by any mechanism that could mimic 

the behavior of living beings. The Greeks had a word for these: authomatos, from which the 

English word automaton derives. Then the Arabs inherited all this knowledge from the ancient 

world and transmitted it to Europe. It was not until the beginning of the first industrial 

revolution in the 18th century, when these automatons were design in order to ease the labor to 

workers and boost production, instead of just amusement. 

The word robot was introduced for the first time in 1921, when the Czech writer Karel 

Čapek released in the Prague National Theater his play Rossum’s Universal Robot. The ethymology 

of the word is the Czech verb robota, which means forced labor, compulsory service or drudgery. 

The first modern industrial robot would not appear until 1954, when George C. Devol 

developed a mechanical arm with a gripper at its end effector, mounted on a rotating platform. 

Devol, along with Joseph Engelberger, founded the first robotics company in 1961: Unimation, 

and sold this robot to manufacturing companies such as General Motors. It was the beginning of 

a new industry and since then, robot presence has undergone a continuous and exponential 

growth spreading to countless production processes, being a key part in enhanced assembly lines.  
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Figure 1-1. The first robot, developed by Unimation. 

1.2 Robotics today 

Quality control, painting, assembly, packaging, palletizing (Figure 1-2) or welding are 

some of the many tasks that an industrial robot can perform, all of them with a degree of 

precision, repeatability and productivity never achieved before. In addition, this has freed human 

workers from tedious, repetitive and sometimes hazardous handwork, shifting part of them in the 

process to more qualified jobs. 

 

Figure 1-2. Palletizer robot by Bastian Solutions. 

The use of industrial robots has skyrocketed specially in the last decade, reaching 387,000 

sales in 2017 and a sales boom is expected in 2019 that will reach 1,400,000 units according to the 

International Federation of Robotics (IFR). The total estimated number of operational robots by 

year can be observed in the following Figure 1-3. 
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Figure 1-3. Estimated worldwide operational stock of industrial robots. Source: IFR 

Robotics is nowadays one of the leading areas of study in the emerging so-called Industry 

4.0, which is a revolution itself in the way we as societies manufacture. Although it was already 

holding a key role in the previous Industry 3.0, with the advent of new fields such as Machine 

Learning, the Internet of Things, the cloud or 3D printing, robotics has gained plenty of space 

for expansion and enhancement. 

Among these new possibilities, the reduction of robot prices, the apparition of highly 

advanced AGVs (Auto-Guided Vehicles) and better features and performance in general. 

1.3 The ABB IRB 140 

The studied robot in this master’s thesis is the ABB IRB 140, designed by the swiss 

company ABB. It is an industrial robot, which by definition of the International Federation of 

Robotics is a “automatically controlled, reprogrammable multipurpose manipulator 

programmable in three or more axes”. Designed specifically for manufacturing industries, it has 

an open structure specially adapted for flexible use and can communicate with external systems. 

According to the data sheet of the robot, it can handle payloads up to 6 kg with a reach of 

810 mm. It can be floor mounted, inverted or wall mounted at any angle and counts with an anti-

collision feature to ensure the safety and reliability of performance [1]. 

This specific model was selected, due to its presence in the laboratories of the University 

of Almería. This master’s thesis is aimed as well to be a bedrock for new degree and master’s 

theses that make use of the robot. 
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Figure 1-4. Photograph of the ABB IRB 140 at the CITE IV building of the University of Almería. 
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1.4 Interest 

As it was seen in the brief summary of the history of robotics, it is getting increasingly 

common to see robots performing many different types of operations, with special interest in the 

industrial ones. These operations are diverse, from large assembly lines to small work cells. 

The demands for highly qualified technicians and engineers with a good base knowledge 

in robotics are in consequence on the rise all around the globe. This master’s thesis is desired to 

be as well, an appealing cover letter for a possible new job in the field of robotics. 

1.5 Objectives 

The main objective of this master’s thesis is to delve into this broad field of robotics with 

the elaboration of a kinematic and dynamic model of the ABB IRB 140 robot based on a 

complete multidisciplinary analysis. Implemented in a feedback control schematic, these models 

will be then subjected to setpoints in form of predefined trajectories in order to obtain an 

optimum control of the mechatronic system as a whole.  

During this process, a physical model will be obtained on MATLAB and on Simulink, a 

graphical programming environment integrated on MATLAB itself. The Simulink’s SimScape 

Multibody library, which provides a multibody simulation environment for 3D mechanical 

systems, will be used to build the dynamic model of the robot. 

Finally, the behavior of this model under a controller’s action will be compared with that 

of the ABB Software RobotStudio to validate the whole schematic. The controller must be 

robust and with customizable aggressiveness. 

To achieve all this, a list of secondary objectives was proposed: 

1. Kinematic model. Generation of a simplified geometric model equivalent to that of the 

robot ABB IRB 140, which will be subject to several tests in order to validate this 

equivalence, consisting of: 

a. The introduction of joint angles as input to obtain the coordinates and orientation of 

the end effector, also called direct kinematics. 

b. The introduction of end coordinates and orientation as input to obtain the joint 

angles of the robot as output, or inverse kinematics. 

2. Dynamic model. Introduction of other physical properties of the robot, such as a simplified 

3D geometry, centers of mass, joint inertia matrices and material density. Calculation of the 

dynamic behavior, which relates the movement of the robot with the forces involved in it. 

The obtention of the dynamic model is one of the most complex aspects of robotics, with 

still room for improvement and optimization. This model allows to relate mathematically: 

a. The introduction of forces and torques applied at the joints or at the end of the robot 

as inputs to obtain the joint coordinates and their temporal evolution (angles, angular 

velocities and angular accelerations), or direct dynamics. 
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b. The introduction of joint coordinates and their derivatives as inputs to obtain the 

forces and torques that should be exerted, or inverse dynamics. This is the dynamic 

model that will be implemented on the control system. 

3. Construction of a feedback control system. This schematic will consist of: 

a. A RobotStudio data/trajectory generator block that generates in continuous time a 

trajectory of end effector poses. Every pose consists of 3 Cartesian coordinates plus a 

rotation quaternion, all relative to the coordinate origin of the robot. The block will 

calculate the first and second derivative of the poses too (velocity and acceleration). 

b. An inverse kinematics block. Built to transform the current pose plus its derivatives 

into joint coordinates and its derivatives. 

c. A controller block. The controller will obtain the appropriate torques for every joint 

needed to achieve the previously calculated required angular coordinates. In the case 

of CTC controllers, the symbolic dynamic model will be placed here. 

d. An ABB IRB 140 model block. Every output of the controller will be introduced in 

its correspondent robot joint, giving rise to certain joint coordinates of the robot plus 

derivatives. 

e. A direct kinematics block. These current joint coordinates pass through the direct 

kinematics block, which transforms them back into poses and their derivatives, this 

time of the real robot. 

f. A comparator block. The current end effector pose is feedbacked to the controller 

and at the same time compared with the initial desired pose at the beginning of the 

schematic. This difference determines the effectiveness of the complete control 

system in reaching the input setpoints. 

4. Model validation. The comparator block errors of all developed control schematics will be 

compared with each other and the setpoints to evaluate their performance. 

 

 
Figure 1-5. Desired general schematic of the robot control model. 
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1.6 Stages of development 

The master’s thesis goes through the following stages: 

1. Knowledge acquisition for the adequate understanding of the kinematics and 

dynamics of a robot arm, its methodology, formulas, and state of the art of robotics. Study 

of control algorithms and characteristics of the ABB IRB 140 model.  

2. Software download. A list with the necessary software will be established, containing the 

programs for coding and simulating robot arm features.  

3. Main schematic drafting of the robot system. A schematic that gathers the whole control 

loop will be drafted.  

4. Kinematic modeling. Two different functions will be programmed in MATLAB for each of 

the kinematic models, direct and inverse, which only depends on the joint types and distances 

between them. 

5. Dynamic modeling. Using CAD models of the robot arm downloaded from the ABB 

website, SimScape blocks will be able to calculate the centers of mass and moments and 

products of inertia of the robot, based on spatial properties. These blocks will constitute the 

robot system on which tests will be performed. Furthermore, based upon the data obtained 

by the SimScape blocks, a dynamic model of the robot will be generated through the 

Newton-Euler algorithm. 

6. Development of an accurate and robust controller that can handle any robot 

configuration requirement. Either by means of a PID controller or a Computed Torque 

Controller, the robot must be able to follow certain trajectories in the times set for it with the 

least possible error. 

7. Equivalence tests between the models’ behavior and RobotStudio’s output. The results 

of the model will be compared with RobotStudio’s output to evaluate the validity of the 

models and apply corrective actions if necessary.  

8. Analysis of results and conclusions to evaluate how close the control system got to 

RobotStudio’s results and what can be done to improve it. 
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1.7 Bibliographic review 

Although there is some bibliography available focused on the ABB IRB 140, it is not as 

thorough and detailed as it would be desirable. Specially regarding the dynamics of the robot. 

Few works develop the details of the obtention of the dynamic model and none of them apply 

Computed Torque Controllers as control solution for trajectory tracking. For this reason, the 

implementation of a Computed Torque Controller on an ABB IRB 140 model would be 

completely novel. 

The most basic features about the ABB IRB 140 can be found in the Product 

Specification [1]. Many characteristics are not included due to confidentiality reasons, 

characteristics that would be very useful in this master’s thesis, but they will have to be 

extrapolated or simplified. Therefore, the product specification will provide mainly with the 

spatial measures and limitations of the robot. 

The desired method to obtain the kinematic model of the robot is the Denavit-

Hartenberg algorithm. This was developed back in 1955 by Jacques Denavit and Richard 

Hartenberg and it can be found in [2]. An application of the algorithm on the ABB IRB 140 is 

presented in [3], [5] and [6]. [3] proposes a geometrical inverse kinematic solution for the first 

three links. On the other hand, Suárez Baquero, M. & Ramírez Heredia [4] use the Screw 

Successive Displacements method for the direct kinematics and geometric strategies for the 

inverse kinematics. 

Other works are more focused on practical application of robot, such as Córdoba López 

[5], who develops the Denavit-Hartenberg method as a theoretical introduction for further 

programming on RobotStudio, or Mato San José [6] who simulates the kinematics and dynamics 

of the robot implementing these using the MATLAB’s Robotic Toolbox. 

Rønnestad [7] begins with the parameter identification for the dynamic model of the 6th 

robot joint by using the Least Squares (LS) estimation method, followed by the development of a 

controller for this dynamic model. It includes the possibility to handle different tools at the end 

effector. 

The most used bibliographic resource was [8], a robotics book by Barrientos, which 

covers those issues related to the operation of a robot: mathematical, mechanical and control 

aspects. Robot kinematics and dynamics are broadly detailed here and have entailed the main 

source of knowledge for this master’s thesis. Followed by Corke’s [9] book, deeply thorough as 

well, which contains the theoretical basis for the Computed Torque Controller, as well as more 

mathematical approaches of robot kinematics and dynamics. Kelly, R, and Santibáñez, V. with 

their book [10] introduce abundant control solutions for robot systems and help to broaden the 

theoretical basis of the Computed Torque Controllers.  

Sarabandi, S., & Thomas, F. [11] develop in their paper a mathematical algorithm to 

compute numerically a quaternion from a rotation matrix without falling in ill-conditioned 

situations that may compromise the stability of a solution due to rounding issues. 

Finally, [12] and [13] serve as examples of works with parameter identification for future 

improvements and expansions of the master’s thesis. 
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1.8 Timeline 

For the achievement of all the proposed objectives, a timeline was developed. Each task 

corresponds to a stage of the development. This planning was distributed in fortnights as shown 

in Table 1-1. 

Month March April May June July 

           Fortnight                      

Task 1ª 2ª 1ª 2ª 1ª 2ª 1ª 2ª 1ª 2ª 

Knowledge 

acquisition                 

  

Software 

downloads                 

  

Software design 

and pseudocode         

  

Kinematic model                   

Dynamic model                   

Controller 

development                  

 

Equivalence tests                   

Comparisons and 

conclussion          

 

Table 1-1. Timeline of the stages of development. 
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Chapter 2.  Material and methods 
The following chapter presents the material needed to build the model, both software and 

hardware and the mathematical models. 

2.1 Material 

Computer with Windows 7 

Microsoft Windows 7 is the oldest version of the Windows OS that still has an update 

service. It has been chosen as the operating system on which to run the software for its ease of 

use and presence in most laboratories at the University of Almería. 

In addition, any Simulink model and MATLAB code can be executed in any operative 

system. 

MATLAB 2019a 

MATLAB is numerical computing environment that allows to program code making use 

of its multiple integrated functions and libraries, which facilitate the characterization of complex 

mathematical models.  

Integrated as well in MATLAB, there is Simulink, a graphical programming environment 

for modeling, simulating and analyzing multidomain dynamical systems. The control loop model 

will be fully developed in this tool with the aid of libraries such as the SimScape Multibody 

library. 
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SolidWorks 

SolidWorks is a CAD (Computer Aided Design) and CAE (Computer Aided 

Engineering) software for Windows. It allows to represent in 3D all links of the robot in order to 

load them on Simulink and extract their physical properties. 

ABB RobotStudio 

RobotStudio is a software for simulation and offline programming designed by ABB that 

allows to replicate real workspaces with numerous available ABB robots and tools. In these 

virtual workspaces it is possible to simulate desired robot behaviors without shutting down 

production in plant (Figure 3-1). 

This makes RobotStudio a perfect application for training and learning. In a certain sense 

this master’s thesis seeks to create a simulation environment too, that represents the robot 

physics accurately. 

 

Figure 2-1. Start screen for a solution workspace consistent of an ABB IRB 140. 

2.2 Methods 

2.2.1 Robot kinematics 

Kinematics is the branch of mechanics that studies the motion of a solid or system of 

bodies with respect to a reference system without considering any forces or torques that may 

intervene. In this manner, robot kinematics only cares about the analytical description of 

movement as a function of time and particularly about the relation between the pose (location 

and orientation) of the end effector and joint angles. 

A robot arm, also known as a serial-link manipulator, consists of solid rigid links and 

joints. Joints can be rotational or translational, and their motion modifies the relative pose of the 
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subsequent links. The beginning of the link chain is usually fixed, and the end is free to move in 

space. 

There are two fundamental problems in robot kinematics, one is direct kinematics, 

whose purpose is to determine and map the pose of the robot end effector as function of its joint 

angles. The other is inverse kinematics, which is the opposite. Starting off with a desired pose 

of the end effector, finds a suitable joint configuration in order to reach that pose. 

 

Figure 2-2. Diagram of the relationship between direct and inverse kinematics. 

Kinematics is also capable of finding the relation between a differential change in the 

velocities and accelerations of the joints and a differential change of the velocity and acceleration 

of the end effector and the rate of change of the rotation quaternion and its derivative. 

This differential model is defined by the Jacobian matrix. It relates the vector of joint 

velocities with the vector of linear and rotational velocities, as another section of the direct 

kinematic problem focused on velocity.  

 

Figure 2-3. Diagram of the relationship between direct and inverse Jacobian matrices. 

 

2.2.1.1 The direct kinematic problem 

Jacques Denavit and Richard Hartenberg proposed a systematic method in 1955 to 

describe and represent the spatial geometry of the elements of a kinematic chain, and in particular 

of a robot, with respect to a fixed reference system [2]. This method uses a homogenous 

transformation matrix to describe the spatial relationship between two adjacent rigid elements, 

reducing the direct kinematic problem to find a homogenous transformation matrix 4 × 4 that 

relates the spatial location of the robot end effector with respect to the coordinate system of its 

base. 

Choosing the coordinate systems associated with each link according to the 

representation proposed by Denavit-Hartenberg (from now on, D-H), it is possible to jump from 
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one to the next by means of 4 basic transformations that depend exclusively on the geometric 

characteristics of the link. 

It should be noted that although in general a homogeneous transformation matrix is 

defined by 6 degrees of freedom (three linear translations and three angular rotations), the D-H 

method allows, in rigid links, to reduce this number to 4 with a correct choice of coordinate 

systems. These 4 basic transformations consist of a succession of rotations and translations that 

allow to relate the reference system of the element 𝑖 − 1 with the system of the element 𝑖. The 

transformations in question are as follows: 

1. Rotation around the 𝑧𝑖−1 axis of an angle 𝜃𝑖 . 

2. Translation along 𝑧𝑖−1 a distance 𝑑𝑖; vector 𝑑𝑖 (0,0, 𝑑𝑖). 

3. Translation along 𝑥𝑖 a distance 𝑎𝑖; vector 𝑎𝑖 (𝑎𝑖, 0,0). 

4. Rotation around the 𝑥-axis an angle 𝛼𝑖. 

Since the product of matrices is not commutative, the transformations must be carried 

out in the indicated order. Making use of homogeneous transformation matrices, every 

transformation can be represented as: 

𝐴𝑖−1
𝑖 = 𝑅𝑜𝑡(𝜃𝑖) · 𝑇𝑟𝑎(0,0, 𝑑𝑖) · 𝑇𝑟𝑎(𝑎𝑖, 0,0) · 𝑅𝑜𝑡(𝛼𝑖) (2.1) 

𝐴𝑖−1
𝑖 = [

𝑐(𝜃𝑖) −𝑠(𝜃𝑖) 0 0

𝑠(𝜃𝑖) 𝑐(𝜃𝑖) 0 0
0 0 1 0
0 0 0 1

] · [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖
0 0 0 1

] · [

1 0 0 𝑎𝑖
0 1 0 0
0 0 1 0
0 0 0 1

]

· [

1 0 0 0
0 𝑐(𝛼𝑖) −𝑠(𝛼𝑖) 0

0 𝑠(𝛼𝑖) 𝑐(𝛼𝑖) 0
0 0 0 1

] (2.2)

 

 

𝑠(𝑥) y 𝑐(𝑥) are the functions sine and cosine respectively. Multiplying, the generic form 

of a D-H transformation matrix is: 

𝐴𝑖−1
𝑖 = [

𝑐(𝜃𝑖) −𝑐(𝛼𝑖)𝑠(𝜃𝑖) 𝑠(𝛼𝑖)𝑠(𝜃𝑖) 𝑎𝑖𝑐(𝜃𝑖)

𝑠(𝜃𝑖) 𝑐(𝛼𝑖)𝑐(𝜃𝑖) −𝑠(𝛼𝑖)𝑐(𝜃𝑖) 𝑎𝑖𝑠(𝜃𝑖)

0 𝑠(𝛼𝑖) 𝑐(𝛼𝑖) 𝑑𝑖
0 0 0 1

] (2.3) 

With a total of 𝑛 joints, the transformation matrix from the origin of the system {𝑆0} to 

its end {𝑆𝑛} is: 

𝑇 = 𝐴0 1 · 𝐴1 2 · … · 𝐴𝑛−1
𝑛 (2.4) 
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Figure 2-4. D-H parameters for a rotational joint. 

In order to achieve this simplified configuration, certain rules must be established. These, 

in addition to the definition of the 4 D-H parameters, make up the following Denavit-Hartenberg 

algorithm for the resolution of the direct kinematic problem: 

D-H 1. Label the robot links starting from 1 (first free moving robot link) and ending at 𝑛 

(last free moving robot link). The fixed base of the robot will be labeled as 0. 

D-H 2. Label each joint starting from 1 (first degree of freedom) and ending at 𝑛. 

D-H 3. Pinpoint the axis of every joint. If it is rotational, the axis will be its own rotating axis. 

If it is prismatic it will be the axis along its displacement occurs. 

D-H 4. For 𝑖, from 0 to 𝑛 − 1, place the axis 𝑧𝑖 where the joint axis 𝑖 + 1 stands. 

D-H 5. Place the origin of the coordinate system {𝑆0} at any point of the axis 𝑧0. The axis 𝑥0 

and 𝑦0 will be positioned so that they form a dextrorotatory system with 𝑧0. 

D-H 6. For 𝑖, from 1 to 𝑛 − 1, place the origin of the coordinate system {𝑆𝑖} (attached to 

link 𝑖) at the intersection of the axis 𝑧𝑖 with the shared perpendicular line of 𝑧𝑖−1 and 

𝑧𝑖. If both axes intersected, {𝑆𝑖} would be placed at that intersecting point. If they 

were parallel {𝑆𝑖} would be place at the joint 𝑖 + 1. 

D-H 7. Place 𝑥𝑖 at the shared perpendicular line of 𝑧𝑖−1 and 𝑧𝑖. 

D-H 8. Place 𝑦𝑖 so that it draws a dextrorotatory system with 𝑥𝑖 and 𝑧𝑖. 

D-H 9. Place the coordinate system {𝑆𝑖} at the end effector of the robot, so that 𝑧𝑛 matches 

with the direction of 𝑧𝑛−1 and 𝑥𝑛 is perpendicular to 𝑧𝑛−1 and 𝑧𝑛. 

D-H 10. Obtain 𝜃𝑖 as the angle to be rotated around 𝑧𝑖−1, so that 𝑥𝑖−1 and 𝑥𝑖 are parallel. 
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D-H 11. Obtain 𝑑𝑖 as the distance measured along 𝑧𝑖−1, that {𝑆𝑖−1} would have to be shifted, 

so that 𝑥𝑖 and 𝑥𝑖−1 are aligned. 

D-H 12. Obtain 𝑎𝑖 as the distance measured along 𝑥𝑖 (which would now coincide with 𝑥𝑖−1) 

that {𝑆𝑖−1} would have to be shifted so that its origin coincides with {𝑆𝑖}. 

D-H 13. Obtain 𝛼𝑖  as the angle to be rotated around 𝑥𝑖 , so that the new {𝑆𝑖−1}  would 

coincides with {𝑆𝑖} 

D-H 14. Obtain all transformation matrices 𝐴𝑖−1
𝑖. 

D-H 15. Obtain the transformation matrix that relates the base coordinate system {𝑆0} with 

the end effector coordinate system {𝑆6}: 𝑇 = 𝐴0 1 · 𝐴1 2 · … · 𝐴𝑛−1
𝑛. 

D-H 16. This transformation matrix 𝑇 generates a rotation matrix and a translation vector as 

function of every joint coordinate. 

A homogeneous transformation matrix 𝑇  is a 4 × 4  matrix that represents the 

transformation of a vector of homogeneous coordinates from one coordinate system to another.  

A homogenous transformation matrix has the generic form: 

𝑇 = [
𝑅3×3 𝑡3×1
𝑓1×3 𝑤1×1

] = [
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛
𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑆𝑐𝑎𝑙𝑒

] (2.5) 

In robotics, perspective and scaling components are assumed to be zero and one 

respectively, being only relevant the rotation and translation sub-matrices. 

The translation matrix is the most straightforward, since it allows the extraction of the 

translation vector instantaneously. This vector is a column vector whose 3 values represent the 

translation of the coordinate system on the 𝑥, 𝑦 and 𝑧 axes of the original system. 

[𝑡3×1] = [
𝑥
𝑦
𝑧
] (2.6) 

On the other hand, the rotation matrix requires some processing of its values to extract 

useful information about the rotation to which the coordinate system has been subjected. It does 

not therefore have a trivial solution. In this master’s thesis, the representation of the rotation 

between two coordinate systems by means of quaternions has been opted. 

A quaternion is a system of representation of rotations consisting of a vector of four 

components, one real and three complex. It is a tool of great versatility. Although they are not as 

intuitive as Euler's angles, quaternions are easy to calculate, they are efficient, they do not have 

singularities and they do not suffer from ambiguity.  

𝑞 = [𝑎, 𝑏, 𝑐, 𝑑]𝑇 (2.7) 

The selected algorithm to calculate them has been the Sarabandi-Thomas method. It can 

be found in [9]. Code 1 and Code 2 implement it numerically and symbolically respectively. Its 

mathematical formulas are the following: 
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𝑎 =

{
 
 

 
 

1

2
· √1 + 𝑅11 + 𝑅22 + 𝑅33          𝑖𝑓 𝑅11 + 𝑅22 + 𝑅33 > 𝜂

1

2
· √
(𝑅32 − 𝑅23)2 + (𝑅13 − 𝑅31)2 + (𝑅21 − 𝑅12)2

3 − 𝑅11 − 𝑅22 − 𝑅33
          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.8) 

𝑏 =

{
 
 

 
 

1

2
· √1 + 𝑅11 − 𝑅22 − 𝑅33          𝑖𝑓 𝑅11 − 𝑅22 − 𝑅33 > 𝜂

1

2
· √
(𝑅32 − 𝑅23)2 + (𝑅12 + 𝑅21)2 + (𝑅31 + 𝑅13)2

3 − 𝑅11 + 𝑅22 + 𝑅33
          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.9) 

𝑐 =

{
 
 

 
 

1

2
· √1 − 𝑅11 + 𝑅22 − 𝑅33          𝑖𝑓 − 𝑅11 + 𝑅22 − 𝑅33 > 𝜂

1

2
· √
(𝑅13 − 𝑅31)2 + (𝑅12 + 𝑅21)2 + (𝑅23 + 𝑅32)2

3 + 𝑅11 − 𝑅22 + 𝑅33
          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.10) 

𝑑 =

{
 
 

 
 

1

2
· √1 − 𝑅11 − 𝑅22 + 𝑅33          𝑖𝑓 − 𝑅11 − 𝑅22 + 𝑅33 > 𝜂

1

2
· √
(𝑅21 − 𝑅12)2 + (𝑅31 + 𝑅13)2 + (𝑅32 + 𝑅23)2

3 + 𝑅11 + 𝑅22 − 𝑅33
          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.11) 

Where 𝑅 is the rotation matrix and 𝜂 the selected threshold (= 0 for best performance). 

The direct kinematic problem for position and rotation would be now solved, and the output 

pose vector, combining the translation vector and the quaternion would be: 

𝑝 =

[
 
 
 
 
 
 
𝑥
𝑦
𝑧
𝑎
𝑏
𝑐
𝑑]
 
 
 
 
 
 

(2.12) 

Jacobian Matrix 

The version of this problem applied for velocities must make use of the Jacobian matrix, 

as said in the introduction of section 2.2.1 In the case of a robot with 𝑛 joints: 

[
 
 
 
 
 
 
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�]
 
 
 
 
 
 

= 𝐽 · [

�̇�1
�̇�2
⋮
�̇�𝑛

] (2.13) 

Where 𝐽 is the Jacobian matrix: 
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𝐽 =

[
 
 
 
 
𝜕𝑓𝑥
𝜕𝑞1

⋯
𝜕𝑓𝑥
𝜕𝑞𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑑
𝜕𝑞1

⋯
𝜕𝑓𝑑
𝜕𝑞𝑛]

 
 
 
 

⏟          
7×𝑛

(2.14)
 

And 𝑓𝑥 , 𝑓𝑦, … , 𝑓𝑑 are all the direct kinematic formulas that relate every pose parameter as 

a function of all joint angles. 

𝑥 = 𝑓𝑥(𝑞1, … , 𝑞𝑛) 𝑦 = 𝑓𝑦(𝑞1, … , 𝑞𝑛) 𝑧 = 𝑓𝑧(𝑞1, … , 𝑞𝑛)

𝑎 = 𝑓𝑎(𝑞1, … , 𝑞𝑛) 𝑏 = 𝑓𝑏(𝑞1, … , 𝑞𝑛) 𝑐 = 𝑓𝑐(𝑞1, … , 𝑞𝑛) 𝑑 = 𝑓𝑑(𝑞1, … , 𝑞𝑛)
(2.15) 

As can be observed, every joint configuration generates a different Jacobian matrix. In the 

case that the rank of the matrix reaches a number lower than the total of degrees of freedom, it 

means that one or more columns are equal to a linear combination of other columns. The robot 

is in a singularity, where one or more degrees of freedom are lost. The physical meaning of this 

phenomenon is that any effort to vary some pose parameter of the end effector by the movement 

of a certain joint would not be possible. 

The pose accelerations can be obtained mathematically processing the Jacobian matrix 

formula, which is a differential equation. 

[
 
 
 
 
 
 
�̈�
�̈�
�̈�
�̈�
�̈�
�̈�
�̈�]
 
 
 
 
 
 

= 𝐽 · [

�̈�1
�̈�2
⋮
�̈�𝑛

] −
𝑑𝐽

𝑑𝑡
· [

�̇�1
�̇�2
⋮
�̇�𝑛

] (2.16) 

2.2.1.2 The inverse kinematic problem 

One way of obtaining the inverse kinematic problem is through finding geometrical 

relationships between links and joints of the robots, but it is inadequate due to the complexity of 

the ABB IRB 140. With 6 degrees of freedom it would take too much time to find an analytical 

solution. Therefore, another method is preferred.  

This other method would be the resolution by means of the homogeneous 

transformation matrix 𝑇. It would be starting from 12 nonlinear equations present in the matrix, 

6 of them linearly dependent. Through a numerical method, all joint angles necessary to reach a 

certain pose would be calculated, making it a feasible task due to the nature of the simulation. 

However, it is important to note that there might be multiple solutions for a single objective 

pose, or even no solution at all. 

A good graphic example of this feature are the 2 robot configurations below (Figure 2-5) 

simulated on RobotStudio, where they reach the same pose out of different joint angles. 
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Figure 2-5. Example of 2 different configurations that end up at the same end effector pose. 

On the other hand, a non-existence of a solution appears when the requested pose is 

located outside the work area, spatial-wise or orientation-wise. 

Returning to the Jacobian matrix, if it relates the pose velocity with respect to the joint 

angles and joint velocities, its inverse should obtain the joint velocities out of joint angles and the 

pose velocity. 

[

�̇�1
�̇�2
⋮
�̇�𝑛

] = 𝐽−1 ·

[
 
 
 
 
 
 
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�]
 
 
 
 
 
 

(2.17) 

Unfortunately, two problems emerge. The first one is, if the rotation representation 

chosen are quaternions, the number of pose parameters would be 7 (3 spatial and 4 rotational),  𝐽 

would not be square and therefore, its inverse could not be worked out. The second is that such 

large symbolic matrices as 𝐽 if it was square, are not computable in reasonable intervals of time. 

The most computationally efficient method would be to solve the linear system for the 

current joint configuration, where if 𝐴𝑥 = 𝑏 represents the standard matrix form of the linear 

system: 

𝐴𝑥 = 𝑏 → 𝐽⏟
𝐴

· [

�̇�1
�̇�2
⋮
�̇�𝑛

]

⏟
𝑥

=

[
 
 
 
 
 
 
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�]
 
 
 
 
 
 

⏟
𝑏

(2.18)
 

And finally, the obtention of the joint accelerations as function of the pose, pose velocity 

and pose acceleration, differentiating formula 2.18 with respect to time and reordering it to fit the 

standard matrix form: 
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𝐽⏟
𝐴

· [

�̈�1
�̈�2
⋮
�̈�𝑛

]

⏟
𝑥

=

[
 
 
 
 
 
 
�̈�
�̈�
�̈�
�̈�
�̈�
�̈�
�̈�]
 
 
 
 
 
 

+
𝑑𝐽

𝑑𝑡
· [

�̇�1
�̇�2
⋮
�̇�𝑛

]

⏟        
𝑏

(2.19) 

2.2.2 Robot dynamics 

Robot dynamics addresses the relation between the forces acting on a solid or group of 

solids and the movement that originates from them. This relation is calculated through the so-

called dynamic model, which establishes the mathematical association between: 

• The location of the robot defined by its joint variables or by the pose of its end effector, and 

its derivatives: velocity and acceleration. 

• The forces and torques applied in the joints (or at the end effector). 

• The dimensional parameters of the robot, such as length, mass and inertia of its links. 

The process of obtaining this model for mechanisms of one or two degrees of freedom is 

not excessively complex, but as the number of degrees of freedom increases, the computation of 

the dynamic model becomes exponentially more complicated. For this very reason, most of the 

time the best option is to implement iterative numerical methods. 

The process of obtaining the dynamic model has been proven one of the most complex 

aspects of robotics, which has led to be obviated on numerous occasions. However, the dynamic 

model is essential to achieve the following purposes: 

• Simulation of the movement of the robot. 

• Design and evaluation of the mechanical structure of the robot. 

• Dimensioning of the actuators. 

• Design and evaluation of the dynamic control of the robot. 

This last purpose is of great importance, since the precision of positioning and velocity 

depends vastly on the quality of the dynamic model developed. 

A perfect dynamic model would consider many other elements of the robots aside from 

links and gravity itself. Actuators, internal and external temperature or wear among others, add 

up to some inequalities between the model and reality that may impact the quality of control. 

These will be ignored in this master’s thesis for the sake of simplicity. 

2.2.2.1 The rigid-body equations of motion 

For a set of links, their rigid-body equations of motion can be represented elegantly as a 

matrix set of differential equations: 

𝑄 = 𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) + 𝑂𝑡ℎ𝑒𝑟𝑠 (2.20) 
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Where 𝑄  ys the vector of generalized actuator forces associated with the generalized 

coordinates 𝑞 , 𝑀  is the joint-space inertia matrix, 𝐶  is the Coriolis and centripetal coupling 

matrix, and 𝐺  is the gravity loading. Others represent the ignored effects that have a smaller 

impact on the robot control performance. 

2.2.2.2 The Lagrange method 

Obtaining the dynamic model of a robot from the Lagrangian formulation leads to an 

algorithm with a computational cost of order 𝑂(𝑛4). That means, the number of operations to 

be carried out increases with the fourth power of the number of degrees of freedom of the robot. 

In the particular case of this thesis, with a robot with 6 degrees of freedom, this number of 

operations makes the algorithm presented rather unsuitable to be used in real time. 

2.2.2.3 The Newton-Euler method 

This new algorithm is based on vector operations (with scalar and vector products 

between vector magnitudes, and products of matrices and vectors). This makes it far more 

efficient than the Lagrangian formulation. In fact, the order of computational complexity of the 

Newton-Euler recursive formulation is 𝑂(𝑛) which indicates that it depends proportionally on 

the number of degrees of freedom. 

For a robot with only rotational joints, the method starts from the torque equilibrium 

formula: 

∑𝜏 = 𝐼 · 𝜔 + 𝜔 × (𝐼 · 𝜔) (2.21) 

Through an adequate processing of this equation, the Newton-Euler method recursively 

formulates the equilibrium equations of forces and torques (only torques are needed for this 

particular robot), so that the position, velocity and acceleration of the link 𝑖 referred to the base 

of the robot are obtained from those corresponding to the link 𝑖 − 1 and the relative movement 

of the joint 𝑖. Initiating the method from link 1, it stops at link 𝑛. 

Counting with these position, speed and acceleration data, the forces and torques that act 

on the links are calculated, from link 𝑛 to the link 1. 

The step-by-step procedure for an only rotational joint robot is as follows: 

N-E 1. Assign to the 𝑛 links a coordinate system in accordance with the D-H algorithm. 

N-E 2. Establish initial conditions: 

For the coordinate system of the robot base {𝑆0} supposing it is not moving: 

• Zero angular velocity, 𝜔0 0 = [0 0 0]𝑇 

• Zero angular acceleration, �̇�0 0 = [0 0 0]𝑇 

• Zero linear velocity, 𝑣0 0 = [0 0 0]𝑇 

• Linear acceleration in terms of gravity, 𝑣0 0 = [0 0 −𝑔]𝑇 

• Auxiliary vector 𝑧0 = [0 0 1]𝑇 

• Coordinates of the origin of the system {𝑆𝑖}  with regard to {𝑆𝑖−1}  𝑝𝑖 𝑖 =

[𝑎𝑖 𝑑𝑖𝑠(𝛼𝑖) 𝑑𝑖𝑐(𝛼𝑖)] 
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• Coordinate of the center of mass of the link 𝑖 with regard to {𝑆𝑖}: 𝑠
𝑖
𝑖 

• Inertia matrix of the link 𝑖 with regard to its center of mass expressed on {𝑆𝑖}: 𝐼
𝑖
𝑖 

 

N-E 3. Obtain the rotation matrices 𝑅𝑖
𝑖−1  and their inverses 𝑅𝑖−1

𝑖 = ( 𝑅𝑖
𝑖−1 )

−1
=

( 𝑅𝑖
𝑖−1 )

𝑇
 

N-E 4. (For 𝑖 , from 1 to 𝑛, perform steps N-E 4 to N-E 7) Obtain the angular velocity of the 

system {𝑆𝑖}. 

𝜔𝑖
𝑖 = 𝑅𝑖−1

𝑖 ( 𝜔𝑖−1
𝑖−1 + 𝑧0𝑞�̇�) (2.22) 

N-E 5. Obtain the angular acceleration of the system {𝑆𝑖}. 

�̇�𝑖
𝑖 = 𝑅𝑖−1

𝑖 ( �̇�𝑖−1
𝑖−1 + 𝑧0�̈�𝑖) + 𝜔𝑖−1

𝑖−1 × 𝑧0𝑞�̇� (2.23) 

N-E 6. Obtain the linear acceleration of the system {𝑆𝑖}. 

�̇�𝑖
𝑖 = �̇�𝑖

𝑖 × 𝑝𝑖 𝑖 + 𝜔𝑖
𝑖 × ( 𝜔𝑖

𝑖 × 𝑝𝑖 𝑖) + 𝑅𝑖−1
𝑖 �̇�𝑖−1

𝑖−1 (2.24) 

N-E 7. Obtain the linear acceleration of the center of mass of the link 𝑖. 

𝑎𝑖
𝑖 = �̇�𝑖

𝑖 × 𝑠𝑖 𝑖 + 𝜔𝑖
𝑖 × ( 𝜔𝑖

𝑖 × 𝑠𝑖 𝑖) + �̇�𝑖
𝑖  

N-E 8. (For 𝑖, from 𝑛 to 1, perform steps N-E 8 to N-E 10) Obtain the force exerted on the link 𝑖. 

𝑓𝑖
𝑖 = 𝑅𝑖+1

𝑖 𝑓𝑖+1
𝑖+1 +𝑚𝑖 𝑎𝑖

𝑖  

N-E 9. Obtain the torque exerted on the link 𝑖. 

𝑛𝑖
𝑖 = 𝑅𝑖+1

𝑖 [ 𝑛𝑖+1
𝑖+1 + ( 𝑅𝑖

𝑖+1 𝑝𝑖 𝑖) × 𝑓𝑖+1
𝑖+1 ] + 

( 𝑝𝑖 𝑖 + 𝑠𝑖 𝑖) × 𝑚𝑖 𝑎𝑖
𝑖 + 𝐼𝑖 𝑖 𝜔𝑖

𝑖 + 𝜔𝑖
𝑖 × ( 𝐼𝑖 𝑖 𝜔𝑖

𝑖 ) (2.25) 

N-E 10. Obtain the torque exerted on the joint 𝑖. 

𝜏𝑖
𝑖 = 𝑛𝑖

𝑖 𝑇
𝑅𝑖−1
𝑖 𝑧0 (2.26) 

After these steps, the model would be finished. There would be a total of 𝑛 equations of 

torque, one for each joint, as function of joint variables: angles, velocities and accelerations. 

2.2.3 The PID Controller 

A PID Controller (Proportional-Integral-Derivative), or just PID, is a system used for 

building feedback control loops in multitude of applications that require continuously modulated 

control. 

PIDs bases itself on the calculation of an error value 𝑒(𝑡), the difference between a 

desired setpoint and a current measured process value. This value is then processed separately 

three times. One of them is integrated, another one derived and all three multiplied by three 

different constants respectively. The mathematical structure of a parallel PID is: 
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𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝑡)
𝑡

0

𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
(2.27) 

There are a couple more different structures, but in this master’s thesis only the parallel 

one will be used. 

2.2.4 The Computed Torque Controller 

The dynamic model that characterizes the behavior of manipulative robots is generally 

nonlinear in terms of state variables (joint angles and joint velocities). This peculiarity of the 

dynamic model could suggest that given any controller, the differential equation that governs the 

closed-loop control system should also be non-linear in the corresponding state variables. 

However, there is a non-linear controller in the state variables with which the closed-loop 

control system can now be described by means of a linear differential equation. Said controller 

can satisfy motion control objectives globally with a trivial selection of its design parameters. This 

is the Computed Torque Controller. Its principle is that the robot system dynamics and its 

inverse (the controller) are concatenated so that the overall system has a constant unity gain. Due 

to inconsistencies between the robot real behavior and the model a feedback loop is required to 

deal with errors. 

The torque signal provided by the controller is: 

𝑄 = 𝑀(𝑞#)[�̈�∗ + 𝐾𝑣(�̇�
∗ − �̇�#) + 𝐾𝑝(𝑞

∗ − 𝑞#)] + 𝐶(𝑞#, �̇�#)�̇�# + 𝐺(𝑞#) (2.28) 

Where ∗  denotes a desired value and #  a current value. 𝐾𝑝  and 𝐾𝑣  are the positive-

definite design matrices of position and velocity respectively. 

Despite the presence of the term 𝐾𝑣(�̇�
∗ − �̇�#) + 𝐾𝑝(𝑞

∗ − 𝑞#) in the control law, these 

are actually multiplied by the matrix of inertia 𝑀. This effect results in the fact that the control 

law has a term of the PD kind, but this is not a linear controller, since the position and velocity 

gains are not constant but depend explicitly on the position error 𝑞∗ − 𝑞#. 

For practical purposes, the design matrices 𝐾𝑝  and 𝐾𝑣  can be diagonal, therefore the 

closed-loop equation represents a decoupled multivariable linear system, that is, the dynamic 

behavior of joint angles is governed by second-order linear differential equations, where each of 

them is independent of the rest. In this context the choice of 𝐾𝑝 and 𝐾𝑣 matrices can be written 

specifically as: 

𝐾𝑝 = 𝑑𝑖𝑎𝑔{𝜔1
2, … , 𝜔𝑛

2}

𝐾𝑣 = 𝑑𝑖𝑎𝑔{2𝜔1, … ,2𝜔𝑛}
(2.29) 

With this choice, each joint responds the same as a critically damped linear second order 

system with bandwidth 𝜔𝑖 . The bandwidth 𝜔𝑖  determines the response speed of the junction 

and, consequently, the exponential decay rate of the errors �̇�∗ − �̇�# and 𝑞∗ − 𝑞#. 
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Chapter 3.  Implementation and 
results 

In this chapter, the implementation of the theory and methods present in Chapter 2 will 

be detailed, exposed and explained, highlighting results. 

3.1 Robot kinematics 

3.1.1 Denavit-Hartenberg algorithm for the obtention of the direct kinematic model 

The step-by-step implementation of the Denavit-Hartenberg algorithm for the ABB IRB 

140 is presented here. 

To contribute to a better understanding of the process, a drawing of the robot has been 

generated and each step appropriately depicted.  
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D-H 1. Label the robot links starting from 1 (first free moving robot link) and ending at 𝑛 

(last free moving robot link). The fixed base of the robot will be labeled as 0. 

The robot has been dismantled link by link to make visualization easier. Starting from the 

base, labelled as link 0, there are other 6 robot links. 

 

Figure 3-1. Links of the ABB IRB 140 robot with their individual numeration. 

 

Figure 3-2. Armed robot ABB IRB 140 with its links numbered. 
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D-H 2. Label each joint starting from 1 (first degree of freedom) and ending at 𝑛. 

For each joint, there is an associated degree of freedom that is denoted by 𝜃𝑖 , generating 

the set {𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6}. They are represented in orange. 

 

Figure 3-3. Links of the robot ABB IRB 140 with kinematic pairs represented. 

D-H 3. Pinpoint the axis of every joint. If it is rotational, the axis will be its own rotating axis. 

If it is prismatic it will be the axis along its displacement occurs. 

All the joints contain rotating kinematic pairs, whose axis of rotation are drawn. 

 

Figure 3-4. ABB IRB 140 robot with represented rotation axes. 
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D-H 4. For 𝑖, from 0 to 𝑛 − 1, place the axis 𝑧𝑖 where the joint axis 𝑖 + 1 stands. 

The z axes, represented in indigo, are positioned. 

 

Figure 3-5. ABB IRB 140 with 𝑧 axes represented. 
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D-H 5. Place the origin of the coordinate system {𝑆0} at any point of the axis 𝑧0. The axis 𝑥0 

and 𝑦0 will be positioned so that they form a dextrorotatory system with 𝑧0. 

The 𝑥 and 𝑦 axes are represented in red and green respectively. The denominations and 

origin of each reference system appear in purple. 

 

Figure 3-6. ABB IRB 140 with the coordinate system {𝑆0} represented. 
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D-H 6. For 𝑖, from 1 to 𝑛 − 1, place the origin of the coordinate system {𝑆𝑖} (attached to 

link 𝑖) at the intersection of the axis 𝑧𝑖 with the shared perpendicular line of 𝑧𝑖−1 and 

𝑧𝑖. If both axes intersected, {𝑆𝑖} would be placed at that intersecting point. If they 

were parallel {𝑆𝑖} would be place at the joint 𝑖 + 1. 

In purple points the origins of each system {𝑆𝑖} are represented. 

 

Figure 3-7. ABB IRB 140 with coordinate systems {𝑆𝑖} represented. 
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D-H 7. Place 𝑥𝑖 at the shared perpendicular line of 𝑧𝑖−1 and 𝑧𝑖. 

In red, the axes 𝑥𝑖 . 

 

Figure 3-8. ABB IRB 140 with 𝑥𝑖 axes represented. 
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D-H 8. Place 𝑦𝑖 so that it draws a dextrorotatory system with 𝑥𝑖 and 𝑧𝑖. 

After placing all the 𝑦𝑖 axes, represented in green, one gets: 

 

Figure 3-9. ABB IRB 140 with the 𝑦𝑖 axes represented. 
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D-H 9. Place the coordinate system {𝑆𝑖} at the end effector of the robot, so that 𝑧𝑛 matches 

with the direction of 𝑧𝑛−1 and 𝑥𝑛 is perpendicular to 𝑧𝑛−1 and 𝑧𝑛. 

The coordinate system {𝑆6}  is established, located at the end of the robot arm, 

considering a possible tool that would extend longitudinally along the axis 𝑧5. 

 

Figure 3-10. ABB IRB 140 with the coordinate system {𝑆6} represented. 

D-H 10. Obtain 𝜃𝑖 as the angle to be rotated around 𝑧𝑖−1, so that 𝑥𝑖−1 and 𝑥𝑖 are parallel. 

D-H 11. Obtain 𝑑𝑖 as the distance measured along 𝑧𝑖−1, that {𝑆𝑖−1} would have to be shifted, 

so that 𝑥𝑖 and 𝑥𝑖−1 are aligned. 

D-H 12. Obtain 𝑎𝑖 as the distance measured along 𝑥𝑖 (which would now coincide with 𝑥𝑖−1) 

that {𝑆𝑖−1} would have to be shifted so that its origin coincides with {𝑆𝑖}. 

D-H 13. Obtain 𝛼𝑖  as the angle to be rotated around 𝑥𝑖 , so that the new {𝑆𝑖−1}  would 

coincides with {𝑆𝑖} 

These four steps (D-H 10 to D-H 13) are performed for 𝑖, from 1 to 6, and the Denavit-

Hartenberg parameters are included in a table. The spatial dimensions have been obtained from 

the product specifications document of the ABB IRB 140 robot [1]. 
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Link 𝜽 [º] 𝒅 [𝒎𝒎] 𝒂 [𝒎𝒎] 𝜶 [º] 

𝟏 𝜃1 352 70 −90 

𝟐 90 + 𝜃2 0 −360 0 

𝟑 𝜃3 0 0 90 

𝟒 𝜃4 380 0 −90 

𝟓 𝜃5 0 0 90 

𝟔 𝜃6 65 + 𝐿ℎ  0 0 

Table 3-1. ABB IRB 140 Denavit-Hartenberg parameters. Equivalent to those of [3] [4] [5] [6]. 

D-H 14. Obtain all transformation matrices 𝐴𝑖−1
𝑖. 

These transformation matrices include each of the particular transformations to which 

the reference systems are subjected, these are: a rotation around the axis 𝑧𝑖−1 of an angle 𝜃𝑖 , a 

translation along 𝑧𝑖−1 of a distance 𝑑𝑖, a translation along 𝑥𝑖 of a distance 𝑎𝑖 and a rotation about 

the axis 𝑥𝑖 of an angle 𝛼𝑖. 

𝐴𝑖−1
𝑖 = [

𝑐(𝜃𝑖) −𝑐(𝛼𝑖)𝑠(𝜃𝑖) 𝑠(𝛼𝑖)𝑠(𝜃𝑖) 𝑎𝑖𝑐(𝜃𝑖)

𝑠(𝜃𝑖) 𝑐(𝛼𝑖)𝑐(𝜃𝑖) −𝑠(𝛼𝑖)𝑐(𝜃𝑖) 𝑎𝑖𝑠(𝜃𝑖)

0 𝑠(𝛼𝑖) 𝑐(𝛼𝑖) 𝑑𝑖
0 0 0 1

] (3.1) 

D-H 15. Obtain the transformation matrix that relates the base coordinate system {𝑆0} with 

the end effector coordinate system {𝑆6}: 𝑇 = 𝐴0 1 · 𝐴1 2 · … · 𝐴𝑛−1
𝑛. 

With a total of 6 joints, the homogeneous transformation matrix from the origin of the 

reference system {𝑆0} to the origin of the reference system of the end effector {𝑆6} is: 

𝑇 = 𝐴0 1 · 𝐴1 2 · 𝐴2 3 · 𝐴3 4 · 𝐴4 5 · 𝐴5 6 (3.2) 

D-H 16. This transformation matrix 𝑇 generates a rotation matrix and a translation vector as 

function of every joint coordinate. 

This relation between the orientation and position of the end effector and joint 

coordinates, is what forms the foundations of kinematic modeling. 

Implementation of the Denavit-Hartenberg was programed in Code 3. 

Jacobian matrix 

With a 7 × 6 dimension, it is declared and calculated in Code 5. It has the form: 

𝐽 =

[
 
 
 
 
𝜕𝑓𝑥
𝜕𝑞1

⋯
𝜕𝑓𝑥
𝜕𝑞6

⋮ ⋱ ⋮
𝜕𝑓𝑑
𝜕𝑞1

⋯
𝜕𝑓𝑑
𝜕𝑞6]

 
 
 
 

⏟          
7×6

(3.3)
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3.1.1.1 Simulink direct kinematic model subsystem 

The inputs of this subsystem are the current joint angles, velocities and accelerations. 

These are processed separately in three different function blocks, one to obtain the equivalent 

current pose, another to obtain the current pose velocity and finally a block to obtain the current 

pose acceleration. These three are the outputs of the subsystem. 

 

Figure 3-11. Direct kinematic model subsystem. 

To observe the internal code of each function block, they can be found at the code 

appendix: Code 4, Code 6 and Code 7. 
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3.1.2 Validation of the direct kinematic model 

The validation method proposed for this direct kinematic model code is the comparison 

with the results of RobotStudio by inserting arbitrary joint angles. By means of the FlexPendant 

tool, it is possible to simulate a direct control of the robot with the help of a virtual control panel, 

emulating the panel of the real robot. 

A new solution is created with a station and a controller, and the ABB IRB 140 is selected 

in the Robot model tab. 

 

Figure 3-12. New solution menu on RobotStudio. 

At the main window, clicking on Controller, the button that starts the manual controller in 

FlexPendant can be found. 

 

Figure 3-13. RobotStudio menu with FlexPendant highlighted. 

Three independent tests have been generated with different random joint angle values 

and introduced in both RobotStudio and the MATLAB function (Code 4). 
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3.1.2.1 Test no. 1 

 

Figure 3-14. Test no. 1. Joint angles. 

q0 = deg2rad([28.79 -34.07 19.54 7.62 38.93 56.38]'); 

 

 

Figure 3-15. Test no. 1. Pose. 

The results of the function are: 

p_cur = 

  
   0.256169020979862 
   0.146951811198975 
   0.719041733432580 
   0.355266700974361 
   0.220219321995462 
   0.809549214980808 
   0.412212433003434 
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3.1.2.2 Test no. 2 

 

Figure 3-16. Test no. 2. Joint angles. 

q0 = deg2rad([-79.56 -39.46 -144.26 71.05 84.59 -62.73]'); 

 

 

Figure 3-17. Test no. 2. Pose. 

The results of the function are: 

p_cur = 

  
  -0.038652641991809 
   0.547532574301628 
   0.625862378140839 
   0.270294220765169 
  -0.584219321953463 
   0.020946045331934 
  -0.764977176955064 
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3.1.2.3 Test no. 3 

 

Figure 3-18. Test no. 3. Joint angles. 

q0 = deg2rad([-16.15 34.64 -9.11 113.11 46.53 -72.67]'); 

 

 

Figure 3-19. Test no. 3. Pose. 

And finally, the results of the function in this test are: 

p_cur = 

  
   0.651650430407853 
  -0.143535605813641 
   0.481847014812847 
   0.542604000206256 
   0.158528784053503 
   0.703280404944469 
   0.431098823482308 

 

Hence, the function is validated and prepared for later use. 
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3.1.3 Obtention of the inverse kinematic model 

The homogeneous transformation matrix 𝑇  serves for basis as well for the inverse 

kinematic model. This time, joint coordinates are the unknown variables and the goal is to reach 

a certain pose state. A system of 12 non-linear equation is generated (9 from the rotation matrix 

and 3 from the translation vector) with 6 variables (𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6), so that 6 of those 12 

equations are linearly dependent. 

𝑥 = 𝑓𝑥(𝑞1, … , 𝑞6) 𝑦 = 𝑓𝑦(𝑞1, … , 𝑞6) 𝑧 = 𝑓𝑧(𝑞1, … , 𝑞6)

𝑅11 = 𝑓𝑅11(𝑞1, … , 𝑞6) 𝑅12 = 𝑓𝑅12(𝑞1, … , 𝑞6) … 𝑅33 = 𝑓𝑅33(𝑞1, … , 𝑞6)
(3.4) 

This situation implies that the non-linear equation system must be solved through 

numerical methods, instead of preconstructed algorithms. The selected method is the MATLAB 

function fsolve. It reaches one of the multiple solutions this problem has. 

Another issue the robot would face is the limited range of movements all joints suffer. 

(Table 3-2) This limitation ought to be included in the model, but the function fsolve does not 

admit solution boundaries. However, there will not be any problem derived from this, since the 

final movement tests at the end of this master’s thesis will not reach these limit angles, although 

any hypothetical work extension should take these into account. 

 

Table 3-2. Joint angle limits for the ABB IRB 140. [1] 

A similar scenario happens with the joint velocity limits, although the kinematics of the 

robot make it simpler: It exceeds joint velocity limits or not. These neither have been 

implemented for the sake of simplicity (Table 3-3). 

 

Table 3-3. Joint velocity limits for a 3-phase power supplied ABB IRB 140. [1] 



 
 

Kinematic and dynamic modelling of the Robot ABB IRB 140 for the implementation of control algorithms 

 

 

41 

 

The Simulink schematic of the inverse kinematics model subsystem is: 

 

Figure 3-20. Inverse kinematics model subsystem. 

A mechanism is designed for the inverse kinematics subsystem for pose calculation, 

which allows not to recalculate new joint coordinates if the pose remains unchanged, saving this 

way computation time. The mechanism is as follows: 

 

Figure 3-21. Anti-recalculation mechanism. 

The current pose and that of the previous time step are compared (Code 8) if they are not 

the same a new joint coordinates vector 𝑞 is calculated. On the other hand, if they are equal, it 

carries the last calculated 𝑞 to the output without processing it again. 
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Figure 3-22. If both pose vectors are equal subsystem. 

 

 

Figure 3-23. Else (both pose vectors are not equal) subsystem. 

The scripts for the inverse kinematic model are Code 9, Code 10 and Code 11. 
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3.1.4 Validation of the inverse kinematic model 

The same 3 tests used at section 3.1.2 have been performed again on this task and its 

results are shown below. 

3.1.4.1 Test no. 1  

Entering the input vector, featuring pose coordinates and starting joint angles: 

input = [0.256169020979862; 
         0.146951811198975; 
         0.719041733432580; 
         0.355266700974361; 
         0.220219321995462; 
         0.809549214980808; 
         0.412212433003434; 
         0; 
         0; 
         0; 
         0; 
         0; 
         0]; 

 

The resulting joint angles (converted to degrees) necessary to reach them are the 

following: 

q_des = 

  
  28.789999998961303 
 -34.070000000785029 
  19.540000000894274 
   7.620000001600972 
  38.930000000019035 
  56.379999998312144 

3.1.4.2 Test no. 2 

Pose coordinates: 

input = [-0.038652641991809 
         0.547532574301628 
         0.625862378140839 
         0.270294220765169 
         -0.584219321953463 
         0.020946045331934 
         -0.764977176955064 
         0; 
         0; 
         0; 
         0; 
         0; 
         0]; 
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Joint angles (converted to degrees): 

q_des = 

  
  -79.5600000000176 
  -95.3067957443123 
  -35.7399999982214 
   82.6735661715858 
   71.6844008779341 
  -115.1240977575642 

 

This time the solver reaches a different solution although perfectly valid, since after 

introducing these values back into the direct kinematics function, it shows the initial pose 

coordinates again. 

3.1.4.3 Test no. 3 

Pose coordinates: 

input = [0.651650430407853 
         -0.143535605813641 
         0.481847014812847 
         0.542604000206256 
         0.158528784053503 
         0.703280404944469 
         0.431098823482308 
         0; 
         0; 
         0; 
         0; 
         0; 
         0]; 

Joint coordinates. 

q_des = 

  
  -16.1499999999874 
   34.6399999999286 
  -9.1099999998241 
  -66.8899999998916 
  -46.5300000000301 
   107.3299999998540 

 

Once again, the joint coordinates do not match with their original values, showing 

another geometrical possibility to reach the pose. 

All tests pass, validating the inverse kinematics function. 
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3.2 Robot dynamics 

3.2.1 Calculation of masses and inertia of the links 

Each of the links of the robot has a particular geometry, which with the combination of 

internal elements (actuators, brakes, wiring) generates a highly complex three-dimensional model. 

CAD models of this complex depiction are not published by ABB due to reasons of 

confidentiality, nor are the masses of each link. That is why the decision to obtain the masses and 

inertia of the links from the simplified solid CAD model was made. 

Starting from a known fact, which the total mass of the robot, 98 kg, and assuming a 

constant and homogeneous density, it is possible to make a proportional estimate of the mass of 

each of the links. SolidWorks allows the user to know the volume of the links. The proportion of 

an element's volume with respect to the robot's total volume is multiplied by the total mass to 

offer an estimated link mass value. 

𝑚𝑙𝑖𝑛𝑘 = 𝑚𝑡𝑜𝑡𝑎𝑙 ·
𝑣𝑙𝑖𝑛𝑘
𝑣𝑡𝑜𝑡𝑎𝑙

(3.5) 

Link Volume [𝒎𝒎𝟑] Proportional mass [𝒌𝒈] 

Base 12405874,57 26,3635884 

𝟏 16262913,55 34,56013977 

𝟐 7528223,81 15,99814611 

𝟑 7989940,24 16,97933464 

𝟒 1759858,35 3,739855737 

𝟓 143038,24 0,303969 

𝟔 25865,43 0,054966342  

Sum 46115714,19 98 
Table 3-4. Estimated link masses. 
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3.2.2 Modeling of the ABB IRB 140 robot in SimScape Multibody 

3.2.2.1 Preparation of the CAD models of the links prior to insertion 

A physical model of the robot arm is assembled, based on the CAD models of each of 

the links, which are downloadable on the ABB website. 

The origins of the coordinate systems of every CAD model have had to be repositioned, 

making then coincide with those of the Denavit-Hartenberg algorithm. SolidWorks has been 

used in this task. 

 

Figure 3-24. Example of a modified origin of coordinate system. Link 2 with {𝑆2} 

3.2.2.2 Inicialization of the SimScape Multibody model 

The model is underlied by three initialization blocks. The first declares the solver to be 

executed in the numerical resolution of the mechanism and the modifiable parameters associated 

with it. The second block denotes the origin of global coordinates. Finally, the third defines the 

configuration of the mechanism: the gravity vector and the linearization delta. 

 

Figure 3-25. SimScape model initialization blocks: Solver configuration, Origin declaration and Mechanism 

configuration. 
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3.2.2.3 Loading and inserting the CAD models of the links 

The block used to load the link CAD models is the File Solid block. It allows to modify 

its mass, in order to automatically establish its inertia around the local coordinate system that was 

modified in 3.2.2.1. 

The estimated mass is entered numerically on the corresponding tab without calling it 

from the Workspace, because doing so slows down the execution significantly. 

 

Figure 3-26. File Solid block for Link 1. 

3.2.2.4 Transformation of coordinate systems 

Each set of translation/rotation Rigid Transform blocks transforms the current local 

coordinate system into the next coordinate system of the Denavit-Hartenberg algorithm. 

Each individual block represents a rotation or translation, never both at the same time, in 

order to avoid executions in an undesired order and facilitate a better understanding of the block 

algebra. 
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Figure 3-27. Rigid transform block for translation along 𝑧3. 

3.2.2.5 Joint declaration 

Ultimately, the Revolute Joint block generates an articulation around the z axis of a local 

coordinate system. All robot joints can be modelled with this block, for all joints are rotational. 

 

Figure 3-28. Revolute Joint block. 

Between the many options available in this block, the most important and used in this 

paper are the physical inputs to be put in and those that should be obtained at the end. 
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3.2.2.6 Torque limitations 

Like every real system, inputs are limited to a specific range. Joint electric motors can only 

provide up to a certain amount of torque in one direction or another. The rate at which these 

torques change is also limited. However, the only information available at the product 

specification document is the maximum torques at joints 4, 5 and 6. 

 

Table 3-5. Maximum torques at joints 4, 5 and 6. [1] 

These have been included in the model as Saturation and Rate Limiter blocks, whose 

numerical values are called from Workspace. 

 

Figure 3-29. Saturation and Rate Limiter blocks for every joint motor. 

Given that the actuator features are confidential, modelling these from scratch would 

represent an arduous task. Thus, approximate values for their constraints have been assumed: 

Joint actuator Saturation limits [𝑵 · 𝒎] Slew rate limits [𝑵 · 𝒎/𝒔] 

𝟏 [−150,150] [−105, 105] 

𝟐 [−150,150] [−105, 105] 

𝟑 [−150,150] [−105, 105] 

𝟒 [−8.58,8.58] [−105, 105] 

𝟓 [−8.58,8.58] [−105, 105] 

𝟔 [−4.91,4.91] [−105, 105] 
 Table 3-6. Assumed saturation and slew rate limits for all joint actuators. 
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Then these non-linear limited torques are introduced in the revolute joint blocks, which 

in the proper D-H configuration that defines the robot spatially, throw the current vectors of 

joint angles (𝑞), joint velocities (�̇�) and joint accelerations (�̈�). 

3.2.2.7 ABB IRB 140 full system diagram 

The whole system is presented in Figure 3-30. Its inputs are torques and its outputs are 

joint angles, joint velocities and joint accelerations. 

 

Figure 3-30. ABB IRB 140 full system diagram. 
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Figure 3-31. 3-D representation of the ABB IRB 140 on MATLAB. 
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3.2.2.8 Model validation 

The robot model was tested in order to verify that the end effector positions itself where 

it must. The same joint angles of the 3 tests of 3.1.2 have been used. After the introduction of a 

column vector of joint angles in degrees, they are converted into radians by the function 

deg2rad and fed into the ABB IRB 140 SimScape model block. 

 

Figure 3-32. Main schematic for ABB IRB 140 model testing.  

This robot block has been modified to accept joint angles as input. A new SimScape-

specific block, the Transform Sensor block, was placed setting the base reference as the origin and 

the frame reference as the end effector. The resulting pose of the end effector is loaded this way 

onto the Workspace. 

 

Figure 3-33. ABB IRB 140 schematic for model testing. 
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• Test no. 1 

 

 

Figure 3-34. Test no. 1. 

The resulting pose is: 

p = 

  
0.256169020979863   0.146951811198975   0.719041733432580   

-0.355266700974361  -0.220219321995462  -0.809549214980808   

-0.412212433003434 

  



 
 
Chapter 3. Implementation and results. 

 

 

54 

 

• Test no. 2 

 

 

Figure 3-35. Test no. 2. 

The resulting pose is: 

p = 

  
-0.038652641991810   0.547532574301628   0.625862378140840   

-0.270294220765169   0.584219321953463  -0.020946045331934   

0.764977176955064 
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• Test no. 3 

 

 

Figure 3-36. Test no. 3. 

The resulting pose is: 

p = 

  
0.651650430407853  -0.143535605813641   0.481847014812847   

-0.542604000206256  -0.158528784053503  -0.703280404944469   

-0.431098823482308 

 

All poses obtained come very close to the values calculated by RobotStudio up to the 

fifth decimal place in most cases. The model can be considered therefore valid. Note: The sign of 

some quaternions is switched, which make them still equivalent. 
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3.2.3 Newton-Euler algorithm 

The dynamic model of the ABB IRB 140 has been wholly obtained through Code 12. 

Although the Newton-Euler algorithm achieves a higher performance than other methods, it has 

the inconvenience of not generating clearly defined matrices such as 𝑀(𝑞), 𝐶(𝑞, �̇�) and 𝐺(𝑞), 

these must be extracted separately. This is accomplished with the MATLAB function to convert 

linear equation systems into their matrix form equationsToMatrix. 

The size of the matrices is large enough not to fit on the display screen and the use of the 

function diary is necessary. It exports the matrices to a text file to subsequently copy and paste 

them to the Computed Torque Controller function (Code 13) 

3.2.4 Verification of the Newton-Euler algorithm 

In order to test the validity of the code, a simpler 2-link mechanism was developed, 

following the example 11.2 of [10]. (Figure 3-37) 

 

Figure 3-37. 2 d.o.f. robot for the verification of the N-E algorithm. [10] 

Following the same steps as in 3.2.2, a simple 2-link robot was modelled on SimScape 

(Figure 3-38). All its properties can be found in Code 15. 
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Figure 3-38. 2-link robot SimScape schematic. 

 

Figure 3-39. 3-D representation of the 2-link robot for testing. 
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This SimScape model is placed inside a control loop (Figure 3-40) that includes a 

Computed Torque Controller (Code 16) to which the matrices of the dynamic model of the 2-

link robot have been added. 

A joint coordinates generator provides a generic joint trajectory to just serve as test. 

 

 

Figure 3-40. Implementation of the 2-Link Robot CTC control loop. 

The resulting joint angle errors are: 

 

Plot 3-1. 2-link robot control loop. Joint angle errors in radians (yellow: 𝑞1, blue: 𝑞2). 

Results that match with those in [10]. Errors tend to zero due to the equivalence between 

the dynamic behavior of the SimScape model and the dynamic equations generated by Code 14. 
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Plot 3-2. Joint angle errors present in Example 11.2 of [10]. 
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3.3 PID Controllers 

Given that the input variables in the ABB IRB 140 are the joint torques, there can be only 

6 PID mechanisms, one for each torque. This means only the 6 desired joint positions, the 6 

desired joint velocities or the 6 desired joint accelerations can be used in the controller. 

The high non-linearity of robots and complexity of the actuators could make the process 

of designing PIDs and the identification of the robot system parameters as complex as one would 

like to delve into it. 

This section develops a series of PID controllers, tuned by the MATLAB tool PID Tuner 

under certain time constraints. The main objective is to obtain fairly good performances that 

could serve as comparison to the CTC Controller. 

3.3.1 Initialization of PIDs and obtention of these initial torque values 

Due to the initial robot configuration, the integral part of the controllers was initialized at 

the required torques to keep the robot in that initial configuration. The calculation of these 

necessary values is performed by modifying the joint blocks, so they receive an “angle signal” and 

throw the corresponding torque in response. 

 

Figure 3-41. Robot schematic for the calculation of the initial torques. 
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Figure 3-42. Schematic for the calculation of initial torques. 

These torques are then extracted and copied on the initialization code for the PID loop. 

3.3.2 PID tuning 

Making now use of the PID Tuner app integrated on MATLAB, the software linearizes 

the robot model at home position (zero joint angles) and identifies its parameters to recommend 

𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 values for the PID controllers. 

 

Figure 3-43. Simplified closed-loop with PID controllers and Robot System. 

The 𝑞 vector is demuxed for the block to be able to feed each joint angle signal to its 

correspondent PID. The output vector of torques is then muxed again, acting this vector as 

output. 

 

Figure 3-44. PID battery block content 

After placing the robot system block inside a closed loop with the controllers, simply by 

clicking Tune in the PID block properties (Figure 3-45), it automatically calculates and offers a set 

of parameters for the controller (Figure 3-46). 
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Figure 3-45. PID block parameters.

 

Figure 3-46. Example window of the PID Tuner. 
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3.3.3 Final PID values 

An aggressive PID design was attempted, setting the response time for each closed-loop 

system to 0.01 seconds. The resulting PID parameters are shown in the following Table 3-7. 

PID 𝑲𝒑 𝑲𝒊 𝑲𝒅 𝑵 

𝟏 13875.5679812054 136120.974518283 347.129456680199 1090.79405084324 

𝟐 35554.9091580814 399521.426748228 745.761367338793 729.364813354201 

𝟑 4941.70226164605 51928.4446602287 113.296542117102 729.364813354201 

𝟒 55.9972754306752 527.478956238882 1.45998670887717 1090.79405084324 

𝟓 3.04185650253597 29.2717188604941 0.0776376501943788 1090.79405084324 

𝟔 0.0949261549260263 0.895070977633301 0.00247254567688776 1090.79405084324 

Table 3-7. PID parameters. 
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3.4 Computed Torque Controller 

A MATLAB function block was programmed, containing this control method. For the 

sake of simplicity, the block receives a common value of bandwidth 𝜔 for all joint actuators from 

Workspace, plus the desired joint coordinates, their derivatives and the current joint coordinates 

and their derivatives. 

The current and desired values of joint angles, velocities and accelerations are then 

substituted in the vast symbolic expressions of matrices 𝑀 , 𝐶  and 𝐺  to obtain the numeric 

versions of these matrices. Then the control law is stated in order to extract the desired torques 

to exert in each joint. 

𝑄 = 𝑀(𝑞#)[�̈�∗ + 𝐾𝑣(�̇�
∗ − �̇�#) + 𝐾𝑝(𝑞

∗ − 𝑞#)] + 𝐶(𝑞#, �̇�#)�̇�# + 𝐺(𝑞#) (3.6) 

The implemented function can be found in Code 12. 

3.5 Full system implementation and results 

Following the schematic proposed in Figure 1-5, all blocks have been positioned, forming 

the schematic depicted in Figure 3-47. 

The selected testing trajectory is the following: Starting from a home position where all 

joint angles are zero, the robot should move to a point in front of it (same 𝑦-axis value), draw a 

circle inside the 𝑥𝑦 plane starting and finishing at the same point. Then return to home position 

and wait 1 second. Repeat this process twice with different circle radii. 

Movement Description 

𝟏 From Home to Initial Point of Circle 1 (small) 

𝟐 Tracing of Circle 1 

𝟑 From Initial Point of Circle 1 to Home 

𝟒 Wait 1 second 

𝟓 From Home to Initial Point of Circle 2 (medium) 

𝟔 Tracing of Circle 2 

𝟕 From Initial Point of Circle 2 to Home 

𝟖 Wait 1 second 

𝟗 From Home to Initial Point of Circle 3 (large) 

𝟏𝟎 Tracing of Circle 3 

𝟏𝟏 From Initial Point of Circle 3 to Home 

Table 3-8. Testing trajectory broken down in movements. 

A new block was added that finds the pose errors produced, in other words, the 

difference between the setpoints and the actual pose reached by the robot in the simulation. This 

MATLAB function block corresponds to Code 17. 

After simulation, many key variables will be sent to Workspace and saved as .mat files. 

Operating with some of them through a script, the goal is to obtain some parameters of interest 

such as pose errors and input torques.  
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Figure 3-47. Full system schematic for a Computed Torque Controller under RobotStudio data.
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3.5.1 Full system model with RobotStudio data as input and a Computed Torque 

Controller 

After first contact with the software, building a time-dependent setpoint signal that could 

be replicated later on MATLAB did not seem a trivial task. For this reason, it was decided to 

build the testing trajectory on RobotStudio without being bounded to time requirements. The 

results would be extracted and used as setpoints for the MATLAB model, to see how the results 

of the latter can approach to the firsts.  

 All positions and orientations forming pose vectors were represented on RobotStudio 

and rearranged to shape the desired testing trajectory. The result was converted into RAPID code 

in Code 19 and is shown graphically in Figure 3-48. Speed of the end effector was set at v300 

(300 [𝑚𝑚 𝑠⁄ ]) and precision at fine (the best the robot can achieve). 

 

Figure 3-48. Spatial representation of the testing trajectory on RobotStudio. 

Before running the code, simulation options were optimized to get more accurate results 

with a lower timestep which would result in more samples. (Figure 3-49). Unluckily, the lowest 

sampling time available is not guaranteed and higher than desired, which leads to imprecise 

depiction of the real motion of the robot. In addition, RobotStudio limits the information that 

can be extracted from simulations. For example, exerted torques of any kind or individual joint 

powers are not an option in the list of extractable signals. For this reason, the final set of relevant 

signals extracted from simulation was: 
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• Pose vectors (position and orientation) 

• Joint angles 

• Total power 

 

Figure 3-49. RobotStudio simulation configuration menu. 

 

Figure 3-50. RobotStudio signal setup menu. 

The signals were then stored in an Excel file and later converted into a .mat file, the 

native extension developed by MATLAB to store variables. The file was named 

RobotStudio_rawdata.mat and saved in the same folder as the main scripts. 
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Since the collected data are discretized and only count with the pose vectors (Table 3-9), 

the first issue comes with the calculation of accelerations. A double derivative of discretized 

positions along short time steps results in extremely abrupt acceleration values that are not 

accurate.  

 

Table 3-9. RobotStudio raw data extract. 

The proposed solution to overcome this inconvenient was to interpolate all 7 pose 

components using the Curve Fitting Tool, another app present in MATLAB. It allows to 

interpolate different vectors through numerous interpolating algorithms. The algorithm selected 

for this specific problem was the Shape-preserving (PCHIP) interpolant, resulting in nice fitting 

approximations all along the simulation results. 

In order to implement these interpolations on Simulink, an Interpreted MATLAB 

Function was declared, calling the function present in Code 20. This function calls the 

interpolated data in the form of cfit and substitutes values in them. 

 

Figure 3-51. Interpolation of x-axis results of the RobotStudio simulation using the PCHIP algorithm. 
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The resulting desired poses and its derivatives are the following: 

 
Plot 3-3. Desired interpolated poses extracted from RobotStudio data. 

 

 
Plot 3-4. Pose velocities extracted from RobotStudio data. 
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Plot 3-5. Pose accelerations extracted from RobotStudio data. 

 

Velocities and accelerations were obtained by placing Simulink derivative blocks at the 

end of this Interpreted MATLAB Function block. The result while running inside the full 

schematic of Figure 3-47 is far from what was expected. Derivative blocks result highly 

problematic with very short time steps. Due to the mandatory condition by the SimScape 

Multibody robot system of using a variable-step solver, several bursts in the velocity and 

acceleration signals are being generated at the beginning of the simulation, generating 

subsequently in the controller large torque signals. 

Calculating in advance the pose derivatives and storing them in vectors was not 

successful, nor interpolating these preconstructed vectors and introducing them in a function. 

Although the Jacobian function for velocities works as expected (Plot 3-6), the derivative of this 

function does not. Sudden extreme bursts appear and make the problem unapproachable (Plot 

3-7). The most plausible reason is the slight inaccuracies of the interpolated discrete data, that 

creates unwanted effects inside the Jacobian that leads the function to lose control.  
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Plot 3-6. Joint velocities obtained by the Jacobian function with RobotStudio data. 

 

 
Plot 3-7. Joint accelerations obtained by the Jacobian function with RobotStudio data. 

 

  



 
 
Chapter 3. Implementation and results. 

 

 

72 

 

Due to these results, a new way to find the derivative of the joint angles signal was 

attempted. This way consists of deriving the pose signal directly by the means of Simulink 

derivative blocks, as shown in Figure 3-52. 

 

Figure 3-52. Precalculation of joint angles 𝑞 and their derivatives. 

 

Joint velocities and accelerations take now the following form: 

 
Plot 3-8. Joint velocities obtained by direct derivation with RobotStudio data. 
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Plot 3-9. Joint accelerations obtained by direct derivation with RobotStudio data. 

 

Although the sudden bursts in the acceleration signals have been fixed, they still appear to 

oscillate. Regardless of this, joint velocities and accelerations, along with the joint angles are 

placed at the beginning of the control system (Figure 3-53) to be further tested. Resulting torques 

for each joint and pose errors of the end effector are presented in the next sections. 
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Figure 3-53. Reduced system schematic for a CTC with precalculated joint coordinates. 
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3.5.1.1 Input torques 

𝜔  represents the common design bandwidth of the Computed Torque Controller, as 

stated in section 3.4. Every plot depicts the torques generated in a certain joint by the CTCs with 

different values of 𝜔. 

 
Plot 3-10. CTC Controller with RobotStudio trajectory. Input torque in joint 1. 

 

Due to the proximity of all signals, a close-up of some areas of the plots will be provided. 

 
Plot 3-11. CTC Controller with RobotStudio trajectory. Close-up on input torque in joint 1. 
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Plot 3-12. CTC Controller with RobotStudio trajectory. Input torque in joint 2. 

 

 

 
Plot 3-13. CTC Controller with RobotStudio trajectory. Close-up on input torque in joint 2. 
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Plot 3-14. CTC Controller with RobotStudio trajectory. Input torque in joint 3. 

 

 

 
Plot 3-15. CTC Controller with RobotStudio trajectory. Close-up on input torque in joint 3. 
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Plot 3-16. CTC Controller with RobotStudio trajectory. Input torque in joint 4. 

 

 

 
Plot 3-17. CTC Controller with RobotStudio trajectory. Close-up on input torque in joint 4. 
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Plot 3-18. CTC Controller with RobotStudio trajectory. Input torque in joint 5. 

 

 

 
Plot 3-19. CTC Controller with RobotStudio trajectory. Close-up on input torque in joint 5. 
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Plot 3-20. CTC Controller with RobotStudio trajectory. Input torque in joint 6. 

 

 

 
Plot 3-21. CTC Controller with RobotStudio trajectory. Close-up on input torque in joint 6. 

 

As expected, the higher the bandwidth, the more aggressive the control signal becomes. 

Nevertheless, there is a shared oscillatory behavior in all bandwidths, most likely caused by the 

originally oscillatory behavior of the input pose acceleration signal. 
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3.5.1.2 Pose errors 

Each of the pose component errors has been represented in an individual plot. 

 
Plot 3-22. CTC Controller with RobotStudio trajectory. Committed error in 𝑥-axis. 

 

 

 
Plot 3-23. CTC Controller with RobotStudio trajectory. Committed error in 𝑦-axis. 
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Plot 3-24. CTC Controller with RobotStudio trajectory. Committed error in 𝑧-axis. 

 

 

 
Plot 3-25. CTC Controller with RobotStudio trajectory. Committed error in quaternion component 𝑎. 

 

 

  



 
 

Kinematic and dynamic modelling of the Robot ABB IRB 140 for the implementation of control algorithms 

 

 

83 

 

 
Plot 3-26. CTC Controller with RobotStudio trajectory. Committed error in quaternion component 𝑏. 

 

 

 
Plot 3-27. CTC Controller with RobotStudio trajectory. Committed error in quaternion component 𝑐. 

Bursts in signals are caused by the equivalence -1=1 in quaternion components. 
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Plot 3-28. CTC Controller with RobotStudio trajectory. Committed error in quaternion component 𝑑. 

 

The spatial errors committed range from zero to 1 mm for all tested bandwidths. Most of 

the time much lower. Quaternion components also count with very low errors along the 

simulation with maximum errors happening at quaternion component 𝑎. 

3.5.1.3 Power consumption 

RobotStudio also offers the total power consumption of the robot. Although the 

individual consumption of each torque is unknown, it still helps to get an impression of the 

likeness of the obtained dynamic model and the RobotStudio dynamic model. The power 

function has the following form: 

𝑃(𝑡) = 𝜏(𝑡) · 𝜔(𝑡) (3.7) 

Setting 𝜔 to 100: 
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Plot 3-29. Comparison between the power consumptions of the dynamic model and the RobotStudio model. 

 

There is some resemblance between both plots, however there are two main differences: 

some acute offset appears during the whole test and the second half of the circular movement 

seems to produce positive power instead of negative (dextrorotatory instead of levorotatory 

direction of rotation).  

The power needed by the RobotStudio model results higher, which makes sense given 

that many phenomena like friction, backlash, mechanical noise among others were not included 

in the dynamic model calculated in this master’s thesis. After the addition of these to the dynamic 

model, the differences between both power consumption should eventually reach zero. 

It has been proven that a Computed Torque Controller can offer a precise control 

solution considering inputs coming from a very accurate simulation of the robot arm ABB IRB 

140. 

However, the quality of the extracted data from RobotStudio leaves a lot to be desired. 

Its discontinuity and incapacity of offering velocities and accelerations of the end effector leads 

to wobbly input torque signals that do not seem doable for implementation in a real system.  

Therefore, a different approach to the control problem was proposed: drafting the pose 

vector signals directly. This vector would be time-continuous so it would not suffer from the 

same complications as the RobotStudio signals. Its derivatives could be computed 

straightforwardly and should suppose smoother torque control signals. The step-by-step 

implementation is presented in the next section. 
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3.5.2 Full system model with a Trajectory Generator block as input and a Computed 

Torque Controller 

The proposed structure for the Trajectory Generator block is as follows (Figure 3-54): 

 

Figure 3-54. Trajectory Generator schematic. 

Altogether, the block draws 3 different signals, the desired pose vector, the desired pose 

velocities and the desired pose accelerations. The trajectories themselves will be the same as in 

the previous section (Table 3-8), although with different execution time: 2 seconds per move. 

It starts generating periodic acceleration profiles through two Pulse Generator blocks. 

These profiles are integrated twice, obtaining in this manner the velocity and displacement 

profiles. The displacement integrator block must be reset to avoid signal overlapping after the 

first acceleration profile. The overall goal is to achieve a displacement profile that reaches the unit 

at the end of the execution time and then adapt it to fit the geometrical requirements of every 

move. 

Next, all three profiles are introduced into a MATLAB Function block, which contains all 

pose data and creates a continuous and proportional trajectory, forming a vector of poses. 

Deriving these, the final output results would be a vector of poses, a vector of pose velocities and 

a vector pose accelerations that will serve as input for the robot system. 
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Plot 3-30. Acceleration profiles of the Trajectory Generator. 

 

Plot 3-31. Velocity profiles of the Trajectory Generator. 
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Plot 3-32. Displacement profiles of the Trajectory Generator. 

The resulting poses and their derivatives are: 

 
Plot 3-33. Trajectory Generator poses. 

 

 

 

 



 
 

Kinematic and dynamic modelling of the Robot ABB IRB 140 for the implementation of control algorithms 

 

 

89 

 

 
Plot 3-34. Trajectory Generator pose velocities. 

 

 

 
Plot 3-35. Trajectory Generator pose accelerations. 

 

 

However, after implementing this block in the main schematic, a new issue emerges. 

Sudden unexpected changes in the Jacobian matrix generate the following joint velocities: 
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Plot 3-36. Joint velocities calculated by the Jacobian function. 

 

In some time intervals, the desired joint velocity for joint number 6 oscillates 

anomalously. Checking the internal values of the Jacobian function one can observe that after a 

smooth change of 0.001 seconds (column 2 of Table 3-10) in the values of the joint angles 

(columns 3 to 8 of Table 3-10), the 4th row of the Jacobian matrix (columns 9 to 14 of Table 

3-10) changes the sign of its values. 

 

Table 3-10. Example of undesired behavior of the inverse kinematics function for poses generated by the trajectory 

generator. 

To solve this situation the joint velocities and joint accelerations for this case have been 

calculated throughout derivative blocks, as it was done with RobotStudio data. 
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Plot 3-37. Joint velocities calculated by straight pre-derivation of the joint angles. 

 

The result is the removal of the problematic oscillation and generation of a clean vector 

of joint velocities. Deriving these one more time draws the vector of joint accelerations. 

 
Plot 3-38. Joint accelerations calculated by straight double pre-derivation of the joint angles. 
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These have been stored in .mat files and then called from the main schematic, which now 

seems as shown in Figure 3-55 (Same as Figure 3-53): 

 

 

Figure 3-55. Reduced system schematic with joint coordinates precalculated.
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Simulating this schematic, and as the previous section, with many different bandwidths 𝜔, 

the resulting torques, pose errors and power have been calculated and plotted. 

3.5.2.1 Input torques 

 
Plot 3-39. CTC Controller with Trajectory Generator. Input torque in joint 1. 

 

Again, due to the proximity of all signals, a close-up of a section of the plot will be 

provided. 

 
Plot 3-40. CTC Controller with Trajectory Generator. Close-up on input torque in joint 1. 
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Plot 3-41. CTC Controller with Trajectory Generator. Input torque in joint 2. 

 

 

 
Plot 3-42. CTC Controller with Trajectory Generator. Close-up on input torque in joint 2. 
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Plot 3-43. CTC Controller with Trajectory Generator. Input torque in joint 3. 

 

 

 
Plot 3-44. CTC Controller with Trajectory Generator. Close-up on input torque in joint 3. 
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Plot 3-45. CTC Controller with Trajectory Generator. Input torque in joint 4. 

 

 

 
Plot 3-46. CTC Controller with Trajectory Generator. Close-up on input torque in joint 4. 
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Plot 3-47. CTC Controller with Trajectory Generator. Input torque in joint 5. 

 

 

 
Plot 3-48. CTC Controller with Trajectory Generator. Close-up on input torque in joint 5. 
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Plot 3-49. CTC Controller with Trajectory Generator. Input torque in joint 6. 

 

 

 
Plot 3-50. CTC Controller with Trajectory Generator. Close-up on input torque in joint 6. 
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3.5.2.2 Pose errors 

Pose errors in all pose components are: 

 
Plot 3-51. CTC Controller with Trajectory Generator. Committed error in 𝑥-axis. 

 

 

 
Plot 3-52. CTC Controller with Trajectory Generator. Committed error in 𝑦-axis. 
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Plot 3-53. CTC Controller with Trajectory Generator. Committed error in 𝑧-axis. 

 

 

 
Plot 3-54. CTC Controller with Trajectory Generator. Committed error in quaternion component 𝑎. 

 

 

  



 
 

Kinematic and dynamic modelling of the Robot ABB IRB 140 for the implementation of control algorithms 

 

 

101 

 

 
Plot 3-55. CTC Controller with Trajectory Generator. Committed error in quaternion component 𝑏. 

 

 

 
Plot 3-56. CTC Controller with Trajectory Generator. Committed error in quaternion component 𝑐. 
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Plot 3-57. CTC Controller with Trajectory Generator. Committed error in quaternion component 𝑑. 
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3.5.3 Full system model with a Trajectory Generator block as input and PID Controllers 

In this scenario, the Computed Torque Controller was substituted by the PID controllers. 

Their only input is the vector of joint angles, being the joint velocities and accelerations not 

necessary. 

 

 

Figure 3-56. Reduced system schematic with PID Controllers and Trajectory Generator joint angles
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Running this schematic, the results are presented in the next sections. 

3.5.3.1 Input torques 

 
Plot 3-58. PID Controllers with Trajectory Generator. Input torque in joint 1. 

 

 

 
Plot 3-59. PID Controllers with Trajectory Generator. Input torque in joint 2. 
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Plot 3-60. PID Controllers with Trajectory Generator. Input torque in joint 3. 

 

 

 
Plot 3-61. PID Controllers with Trajectory Generator. Input torque in joint 4. 
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Plot 3-62. PID Controllers with Trajectory Generator. Input torque in joint 5. 

 

 

 
Plot 3-63. PID Controllers with Trajectory Generator. Input torque in joint 6. 
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3.5.3.2 Pose errors 

 
Plot 3-64. PID Controllers with Trajectory Generator. Committed error in 𝑥-axis. 

 

 

 
Plot 3-65. PID Controllers with Trajectory Generator. Committed error in 𝑦-axis. 
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Plot 3-66. PID Controllers with Trajectory Generator. Committed error in 𝑧-axis. 

 

 

 
Plot 3-67. PID Controllers with Trajectory Generator. Committed error in quaternion component 𝑎. 
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Plot 3-68. PID Controllers with Trajectory Generator. Committed error in quaternion component 𝑏. 

 

 

 
Plot 3-69. PID Controllers with Trajectory Generator. Committed error in quaternion component 𝑐. 
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Plot 3-70. PID Controllers with Trajectory Generator. Committed error in quaternion component 𝑑. 

 

 

 

 

 

  

               
        

  

    

  

    

 

   

 

   

 
  
  

  
 

 
                                         



 
 
 

 

111 

 

 

Chapter 4.  Conclusions and 
future work 

This chapter discusses the results of implementation and simulation of all sections of this 

master’s thesis and what could be improved, added or changed in future works. 

4.1 Conclusions 

Although a broadly known pre-built robot software is available on MATLAB (Robotics 

System Toolbox), it was decided to design all code from scratch to achieve a better understanding 

of the physical sense of robotics. This way the programmed functions, in contrast with those 

present in prebuilt libraries, provide the symbolic expressions that regulate the kinematic and 

dynamic behavior of the ABB IRB 140. Expressions that are needed in order to design a 

Computed Torque Controller or a PID battery, between many other control solutions. 

And this is the major contribution of this master’s thesis, the broad analysis performed on 

the basic fields of robotics such as robot kinematics, robot dynamics and robot control. The 

material presented here is expected to become useful tools and a reference for future students 

and researchers.  

The individual results of each section (kinematics, dynamics and control) are debated 

separately down below. 

4.1.1 Robot kinematics 

A well-functioning direct kinematic block was built and implemented. The tests results 

display a minuscule error in comparison to the RobotStudio configurations extracted for testing, 

in the order of 0.01~0.1 mm. This same error is later reproduced exactly in the SimScape model 

testing, which leads to think that a very slightly different method was used to develop the ABB 

IRB 140 RobotStudio model. 
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The placement of a hypothetical tool at the end effector such as a pen, has been included 

with the variable for tool length Lh, which displaces the final coordinate system said distance 

along axis 𝑧. It is possible that the geometry of the tool gets more complicated, in which case the 

last transform should be particularly studied.  

On the other hand, the inverse kinematic block for poses resulted to require a much more 

intricated design. In a relatively short time span (~0.1 s) the code designed for this work could 

find a suitable solution for the problem, although it cannot have into consideration if that 

reached solution is the optimal. It is most of the time, but the function cannot check it. There is 

only room to vary the starting iteration vector. Tests were successful but some offered different 

configuration solutions than the intricated configurations generated in the first place. 

The starting vector was first taken from the current vector of joint angles. However, for 

some reason while staying at singular poses such as the Home pose, where the effects of joints 4 

and 6 overlap, the obtained vector of desired joint angles was continuously shifting into different 

but equally valid joint angles. 

Later this was solved when the calculation of joint angles from the pose trajectory was 

detached from the rest of the model and calculated in advance. The insertion of a column vector 

of zeros, given the absence of the robot to get the current joint angles from, seemed to solve this 

problem.  

The Jacobian function required some special processing of the symbolic expressions 

present in the homogeneous transform matrix. The part of the matrix that contains the rotation 

matrix had to be converted into a quaternion, however there are two different possible symbolic 

expressions for each quaternion component, whose selection depends on the numeric value of a 

threshold itself dependent of the rotation matrix values. Because of this, joint angles are needed 

in order to calculate the proper form of every quaternion component. 

Facing the fact that they are not known forehand, all expressions must be directly 

declared on the function, and let an if/else structure decide which one to use after the joint 

angles are known. 

The present sign functions are hard to manipulate and derive. They have all been 

extracted from the Sarabandi-Thomas method function and grafted after the derivation (the 

results are equivalent). The resulting Jacobian matrix expressions are then pasted row by row on 

its correspondent functions. 

Once obtained the Jacobian matrix, the behavior of the inverse kinematics blocks for 

velocities and accelerations was intermittently successful. In certain situations, they acted 

unexpectedly and in others perfectly fine. This shows that handling large symbolic expressions is 

prone to errors and inconsistencies. As a result, an interesting different approach to this problem 

that avoids hard long implementation of these functions and calculation of Jacobian expressions 

was attempted: numerically deriving joint angles in order to obtain joint velocities and joint 

accelerations. 

A controlled precalculation of these values outperforms that of the Jacobian functions. It 

makes all unwanted behaviors disappear forming smooth vectors, with customizable time steps 
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unlike the simulations that include the SimScape robot model. The outcome of this procedure 

was the final joint coordinate vectors that were called in the definitive simulations. 

4.1.2 Robot dynamics 

The design of the ABB IRB 140 SimScape model ran smoothly and without major 

surprises. All tests passed and matched with the results of the direct kinematic scripts. Even the 

inertia matrices calculated by the File Solid blocks were equal to those calculated by SolidWorks. 

After the 2-link robot test passed, its code was adapted to fit the geometrical features of 

the ABB IRB 140, along with all inertias, masses and internal distances. The outcoming matrices 

M, C and G were tried to be simplified through the MATLAB function simplify(), but in the 

case of matrix C, it took much more time than expected and it was decided to leave it 

unprocessed.  

Due to the still large size of these matrices, the compilation of the function inside a 

MATLAB function block required around 1 hour of compilation, which means that any small 

change would demand the whole process to start over. This was the reason the function was 

implemented in an Interpreted MATLAB function block, in exchange of losing some computing 

power. 

4.1.3 Trajectory control 

The generation of pose trajectories has proven to be an expandable field with plenty of 

room for improvement. A simple testing trajectory was developed for the sake of developing a 

real-life-like continuous trajectory in which all joints could take part. 

The specific features of actuators ought to be studied in order to draw optimized 

acceleration profiles that wring the best of the robot capabilities. Arbitrary limits of saturation 

and slew rate were added but as an approximation. It is the actuator potential what ultimately 

defines how fine the robot system can be controlled. 

Considering that, the data that RobotStudio is able to extract from its simulation is not 

accurate nor extensive enough, the resulting torques necessary to replicate it turned out 

oscillatory and not implementable. That is why the comparison between both control laws (CTC 

and PIDs) have been performed on the trajectory generator inputs. When the CTC bandwidth 𝜔 

is 100, it offers a reasonably smooth torque signal with very low errors, therefore the CTC 

controller with this specific value of bandwidth has been selected. 

Merging same pose errors in one plot, a clear understanding of the controller’s 

performance in each specific pose component is accomplished: 
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Plot 4-1. Comparison between PID Controllers and Computed Torque Controllers. Pose error in all axis. 

 

 

 
Plot 4-2. Comparison between PID Controllers and Computed Torque Controllers. Pose error in all quaternion components. 
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And comparing torques: 

 
Plot 4-3. Comparison between PID Controllers and Computed Torque Controllers.  

 

A plan view of the circles present in the test trajectory is provided, to help this way with a 

clear scope of the performance of each control solution plus the RobotStudio results, given that 

the representation is not time dependent. 



 
 
Chapter 4. Conclusions and future work 

 

 

116 

 

 

 
Plot 4-4. Comparison between PID Controllers, CTC and RobotStudio. Circular trajectories as seen from above (plane xy). 

 

 
Plot 4-5. Comparison between PID Controllers, CTC and RobotStudio. Circular trajectories closeup. 
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According to the comparisons, the best performance is achieved by the Computed 

Torque Controller, due to a very close equivalence accomplished between the dynamic model 

and the SimScape model. This is a fantastic example that an accurate design of the dynamic 

model of a robot can lead to outstanding control solutions with errors in most of the design 

bandwidths moving in the range of micrometers.  

The fact that all CTC errors do not tend to exactly zero over time means that there might 

be after all slight inaccuracies in the dynamic model or in the simulation configuration itself. This 

is not ideal, although it is important to highlight that its performance is still excellent. And that is 

actually the reason the design matrices 𝐾𝑝  and 𝐾𝑣  are present in the control law, to correct 

discrepancies between the dynamic model and the dynamic behavior of the robot system. 

These discrepancies could come from sources as: the rounding of the huge expressions 

contained in the M, C and G matrices, some small imprecision in the Newton-Euler algorithm or 

any other error originating from the very nature of the simulation and its constituent parts. 

Any hypothetical implementation of a Computed Torque Controller in a real robot 

should study thoroughly its real dynamic behavior and reflect it in a model. Phenomena like 

friction, overheating or braking among other things play a decisive role in the robot dynamics 

and this control law is so model-dependent that these aspects must indispensably be meticulously 

designed, especially in case of seeking accurate tracking and positioning. In the case of the 

existence of loads at the end effector, the code is also prepared to handle them. Only orientation 

of application of this force should be added along with the value in newtons. 

Regarding the PIDs, their aggressive design could cope with the testing trajectory 

requirements even subjected to torque limitations. Although some overshoot stands out in the 

torque plots, it is interesting how a quick PID design led to relatively close results compared to a 

CTC even after many more hours of design and coding. This, together with a greater ease of 

implementation in real systems and computational robustness, is a clear sign of how powerful the 

PID controllers are as control solutions. And PID controllers are actually used in most of 

modern industrial robots. 

In the plot of the plan view of the circles, it was also notable that the CTC results were 

slightly improving the RobotStudio results. Those instants in which the CTC results got further 

away from the setpoints were product of the different time steps of the simulations. 

A useful application of power consumption calculation is that it allows the electrical 

dimensioning of the manufacturing cell the robot is going to be part of. Along with a safety 

coefficient, this modelling process could offer a decent approximation of the electrical 

requirements of any robot. 
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4.2 Further work 

As it was pointed out previously, this master’s thesis extends over many fields of robotics 

and these are rich enough to provide many alternative solutions and/or expansions to all 

problems addressed here. Some proposed are: 

4.2.1 Improvement of the inverse kinematics function 

A different function than fsolve would be desirable. It would have to be written fully 

from scratch to consider angle and angular velocity limitations, apart from taking into 

consideration all possible robot configurations that can reach a single pose. It is worth 

mentioning that the Robotics System Toolbox has already one specific inverse kinematics 

function. 

4.2.2 Refinement of the dynamic model 

As said in section 4.1.3, new tests could be built and ran, to check where the inaccuracies 

come from and correct the Newton-Euler code. This improvement, in the case of a real robot, 

could be extended to cover new aspects of robot dynamics as for example, friction. There is 

plenty of ongoing research about dynamic modeling. 

4.2.3 Use of a physical robot for parameter identification 

The actual current passed onto the actuators can be measured through current clamps 

and used as another resource to obtain an energy-efficient dynamic model of the robot, as 

performed in [12]. 

Data could be extracted from the robot system, specifically joint angles, velocities and 

accelerations, and end effector poses. Combinations of these would be the references in 

modeling through Least Square techniques. 

[13] is an example of the above. It presents a matrix form of simplified Lagrangian 

equations for dynamic modelling and through Least Square techniques and verification 

trajectories, finds the most suitable dynamic parameters that can accomplish these trajectories. 

4.2.4 CTC and PID parameter optimization 

CTC parameters 𝐾𝑝  and 𝐾𝑣  can be optimized iteratively by testing thousands of 

combinations and keeping the ones that cause the least errors. Similar way with PID controllers 

and their parameters 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑. Stalling simulations should be monitored and terminated.  

4.2.5 CTC initialization 

An interesting concept would be to initialize the controller with the torques necessary to 

keep the robot at home position, as it was done with the PID controllers to avoid initial torque 

overshoots.
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Appendix. Code 
This appendix gathers the MATLAB and RAPID code used in the master’s thesis. Many 

expressions have been removed and written as comment due to their exceptional size. 

Code 1. Sarabandi-Thomas method for the computation of quaternions from 

rotation matrices 

function q = sarabandi_thomas(R) 
% Computation of a quaternion q from a rotation matrix R according to 
% the Sarabandi-Thomas method 

  
eta = 0;        % Threshold 
q = zeros(4,1); % Declares quaternion 

  
if R(1,1)+R(2,2)+R(3,3) > eta 
    q(1) = 0.5*sqrt(1+R(1,1)+R(2,2)+R(3,3)); 
else 
    q(1) = 0.5*sqrt(((R(3,2)-R(2,3))^2+(R(1,3)-R(3,1))^2+(R(2,1)-

R(1,2))^2)/(3-R(1,1)-R(2,2)-R(3,3))); 
end 

  
if R(1,1)-R(2,2)-R(3,3) > eta 
    q(2) = 0.5*sqrt(1+R(1,1)-R(2,2)-R(3,3)); 
else 
    q(2) = 0.5*sqrt(((R(3,2)-

R(2,3))^2+(R(1,2)+R(2,1))^2+(R(3,1)+R(1,3))^2)/(3-R(1,1)+R(2,2)+R(3,3))); 
end 

  
if -R(1,1)+R(2,2)-R(3,3) > eta 
    q(3) = 0.5*sqrt(1-R(1,1)+R(2,2)-R(3,3)); 
else 
    q(3) = 0.5*sqrt(((R(1,3)-

R(3,1))^2+(R(1,2)+R(2,1))^2+(R(2,3)+R(3,2))^2)/(3+R(1,1)-R(2,2)+R(3,3))); 
end 
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if -R(1,1)-R(2,2)+R(3,3) > eta 
    q(4) = 0.5*sqrt(1-R(1,1)-R(2,2)+R(3,3)); 
else 
    q(4) = 0.5*sqrt(((R(2,1)-

R(1,2))^2+(R(3,1)+R(1,3))^2+(R(3,2)+R(2,3))^2)/(3+R(1,1)+R(2,2)-R(3,3))); 
end 

  
q(2) = q(2)*sign(R(3,2)-R(2,3)); 
q(3) = q(3)*sign(R(1,3)-R(3,1)); 
q(4) = q(4)*sign(R(2,1)-R(1,2)); 

  
end 
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Code 2. Symbolic Sarabandi-Thomas method for the computation of 

quaternions from rotation matrices 

function q = sarabandi_thomas_sym(R) 

  
q = sym('q',[8 1],'real'); % Declares all possible values of quaternion 

  
q(1) = 0.5*sqrt(1+R(1,1)+R(2,2)+R(3,3)); 
q(2) = 0.5*sqrt(((R(3,2)-R(2,3))^2+(R(1,3)-R(3,1))^2+(R(2,1)-R(1,2))^2)/(3-

R(1,1)-R(2,2)-R(3,3))); 

  
q(3) = 0.5*sqrt(1+R(1,1)-R(2,2)-R(3,3)); 
q(4) = 0.5*sqrt(((R(3,2)-R(2,3))^2+(R(1,2)+R(2,1))^2+(R(3,1)+R(1,3))^2)/(3-

R(1,1)+R(2,2)+R(3,3))); 

  
q(5) = 0.5*sqrt(1-R(1,1)+R(2,2)-R(3,3)); 
q(6) = 0.5*sqrt(((R(1,3)-

R(3,1))^2+(R(1,2)+R(2,1))^2+(R(2,3)+R(3,2))^2)/(3+R(1,1)-R(2,2)+R(3,3))); 

  
q(7) = 0.5*sqrt(1-R(1,1)-R(2,2)+R(3,3)); 
q(8) = 0.5*sqrt(((R(2,1)-

R(1,2))^2+(R(3,1)+R(1,3))^2+(R(3,2)+R(2,3))^2)/(3+R(1,1)+R(2,2)-R(3,3))); 

 

% No multiplication by sign function yet, to avoid overcomplicated 
% derivatives 

  
end 
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Code 3. Obtention of the ABB IRB 140 Homogeneous Transformation 

Matrix 

%% Master's Thesis | ABB IRB 140 | Direct Kinematics 

  
q = sym('q',[6 1]); % Symbolic column vector with 6 joint angles 
Lh = 0;             % Tool length 

 
% D-H parameters table 
DH = [q(1)         0.352    0.070   -pi/2; 
      (pi/2)+q(2)  0        -0.360  0; 
      q(3)         0        0       pi/2; 
      q(4)         0.38     0       -pi/2; 
      q(5)         0        0       pi/2; 
      q(6)         0.065+Lh 0       0]; 

  

[m,n] = size(DH);   % m = number of d.o.f.'s 
T = eye(n); 

  
for i = 1:m 
    A = [cos(DH(i,1))   -cos(DH(i,4))*sin(DH(i,1))  

sin(DH(i,4))*sin(DH(i,1))   DH(i,3)*cos(DH(i,1)); 
         sin(DH(i,1))   cos(DH(i,4))*cos(DH(i,1))   -

sin(DH(i,4))*cos(DH(i,1))  DH(i,3)*sin(DH(i,1)); 
         0              sin(DH(i,4))                cos(DH(i,4))                

DH(i,2); 
         0              0                           0                           

1]; 

      
    T = T*A;     
end 

  

T = simplify(T);            % Simplifies the transformation matrix 
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Code 4. Direct kinematics function 

function p_cur = fdirkin(q_cur) 
% Obtains the translation vector and quaternion asociated to an input 
% transformation matrix. They both form the (current) pose vector. 

  
t = ... 
% Long T declaration obtained from Code 1 with q_cur (6x1) as input 

  
p_cur = zeros(7,1); 
p_cur(1:3,1) = t(1:3,4);                     % Translation vector 
p_cur(4:7,1) = sarabandi_thomas(t(1:3,1:3));     % Quaternion 
end 
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Code 5. Jacobian matrix function 

%% Master's Thesis | ABB IRB 140 | Jacobian matrix generator 

  
q = sym('q',[6 1]); % Symbolic column vector with 6 joint angles 
Lh = 0;             % Tool length 

 
% D-H parameters table 
DH = [q(1)       0.352       0.070  -pi/2; 
    (pi/2)+q(2)  0          -0.360  0; 
    q(3)         0          0       pi/2; 
    q(4)         0.380      0       -pi/2; 
    q(5)         0          0       pi/2; 
    q(6)         0.065+Lh   0       0]; 

  
[m,n] = size(DH);   % m = filas, n = columnas 
T = eye(n); 

  
for i = 1:m 
    A = [cos(DH(i,1))   -cos(DH(i,4))*sin(DH(i,1))  

sin(DH(i,4))*sin(DH(i,1))   DH(i,3)*cos(DH(i,1)); 
        sin(DH(i,1))   cos(DH(i,4))*cos(DH(i,1))   -

sin(DH(i,4))*cos(DH(i,1))  DH(i,3)*sin(DH(i,1)); 
        0              sin(DH(i,4))                cos(DH(i,4))                

DH(i,2); 
        0              0                           0                           

1]; 

     
    T = T*A; 
end 

  
T = simplify(T); 

  
transvec = T(1:3,4);    % Extracts translation vector 
rotmat = T(1:3,1:3);    % Extracts rotation matrix 

  
symquat = sarabandi_thomas_sym(rotmat); % Creates a symbolic vector of 
                                        % 8 variables, 4 quaternion 
                                        % componentes times 2 possibilities 
                                        % each, to derive them separately 

  
pose = [transvec; symquat]; % Stacks in a vector 3 translation values 
                            % and 4x2=8 quaternion posible values. Total 11 

  
J = sym('J',[11 6],'real'); 
[rows,columns] = size(J); 

  
for i = 1:rows 
    for j = 1:columns 
        J(i,j) = diff(pose(i),q(j));    % Derives each row by each joint 

 
    end 
end 

  
% The sign function is then added 
for i = 1:columns 
    J(6,i) = J(6,i)*sign(rotmat(3,2)-rotmat(2,3)); 
    J(7,i) = J(7,i)*sign(rotmat(3,2)-rotmat(2,3)); 
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    J(8,i) = J(8,i)*sign(rotmat(1,3)-rotmat(3,1)); 
    J(9,i) = J(9,i)*sign(rotmat(1,3)-rotmat(3,1)); 
    J(10,i) = J(10,i)*sign(rotmat(2,1)-rotmat(1,2)); 
    J(11,i) = J(11,i)*sign(rotmat(2,1)-rotmat(1,2)); 
end 
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Code 6. Direct kinematics function for velocities 

function [pd_cur,J] = fdirkinvel(q_cur,qd_cur) 
% Calculates the Jacobian matrix from current joint angles and operates 
% with joint velocities to find the pose velocity 

  
J = zeros(7,6); 

  
J(1:3,:) = [... 
% First 3 rows of the Jacobian matrix 

 

if % Condition above threshold (threshold = 0) 

 % First possible 4th row of J (1st quaternion component) 

else 

 % Second possible 4th row of J 

end 

 
if % Condition above threshold 

 % First possible 5th row of J (2nd quaternion component) 

else 

 % Second possible 5th row of J 

end 

 
if % Condition above threshold 

 % First possible 6th row of J (3rd quaternion component) 

else 

 % Second possible 6th row of J 

end 

 
if % Condition above threshold 

 % First possible 7th row of J (4th quaternion component) 

else 

 % Second possible 7th row of J 

end  

 
pd_cur = J*qd_cur;  

 
end 
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Code 7. Direct kinematics function for accelerations 

function pdd_cur = fdirkinacc(J,dJdt,qd_cur,qdd_cur) 
% Calls the current value of the Jacobian matrix and its derivative, 
% operates with them and the current joint accelerations and velocities 
% to obtain the pose acceleration 

  
pdd_cur = J*qdd_cur + dJdt*qd_cur; 
end 
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Code 8. Pose comparator function 

function equal = fcomp(p1,p2) 
% Compares 2 vectors from 2 consecutive iterations, and if they're equal 
% it returns 1, if not, 0. Boolean values aren't used as if blocks don't 
% accept them. 

  
equal = 1;   
c = 1; 

  
% Until the loop doesn't find 2 different values or exceeds vector length 
% it keeps running 
while equal == 1 && c <= length(p1) 
    if p1(c,1) ~= p2(c,1) 
        equal = 0; 
    end 
    c = c+1; 
end 
end 
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Code 9. Inverse kinematics function 

function [q_des] = finvkin(p_qcur) 
% Obtains joint coordinates q, necessary to reach a certain end effector 
% pose. Simulink MATLAB function blocks can't handle fsolve, so this  
% function is called by an Interpreted MATLAB function block. 
% Interpreted MATLAB function blocks can't handle more than 1 input, that 
% is the desired pose and current joint coordinates are muxed and inserted 
% as a single vector. 

  
rotmat = quat2rotm(p_qcur(4:7)');   % Converts the quaternion from the pose 
                                    % into a rotation matrix 
Tobj = [rotmat p_qcur(1:3)];    % Creates a transformation matrix with 
                                % only 3 rows to gather all objective 
                                % values (rotation matrix & translation) 

  
b = zeros(12,1);    % A column vector of independent terms is declared 

  
% These objective values are saved in the b vector one by one 
for i = 1:3          
    for j = 1:4 
        b(4*(i-1)+j,1) = Tobj(i,j); 
    end 
end 

  
exitflag = -2;  % States the solver exit flag as "failed" to initialize 
                % the while loop 
c = 0;       % Counter to know how many times there has been an attempt 
                % to solv the non-linear equation system 

                 
% exitflag > 0 -> solution found | <= 0 -> solution not found 
% While loop tries 20 times increasing the initial value by 1. After these 
% if there's no solution, quits the loop. 

  
while exitflag <= 0 || c == 20 
    [q_des,fval,exitflag] = fsolve(@(q) fecnolin(q,b),p_qcur(8:13)'); 
    if exitflag ~= 1 
        c = c+1; 
        p_qcur(8:end) = p_qcur(8:end)+1; 
    end 
end 
q_des = q_des'; 
end 
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Code 10. Inverse kinematics function for velocities 

function [qd_des,J] = finvkinvel(q_des,pd_des) 

 

J = zeros(7,6); 

 

J(1:3,:) = [... 
% Long declaration of the 3 first J rows 

 
if % Condition above threshold (threshold = 0) 

 % First possible 4th row of J (1st quaternion component) 

else 

 % Second possible 4th row of J 

end 

 
if % Condition above threshold 

 % First possible 5th row of J (2nd quaternion component) 

else 

 % Second possible 5th row of J 

end 

 
if % Condition above threshold 

 % First possible 6th row of J (3rd quaternion component) 

else 

 % Second possible 6th row of J 

end 

 
if % Condition above threshold 

 % First possible 7th row of J (4th quaternion component) 

else 

 % Second possible 7th row of J 

end  

 

% Note: sign functions have been substituted by a modified version of it 

% where if the input is 0, it returns 1. This avoid ill-conditioned  

% situations where the algorithm would crash 

 
qd_des = J\pd_des; 
 

end 
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Code 11. Inverse kinematics function for accelerations 

function qdd_des = finvkinacc(qd_des,J,dJdt,pdd_des) 

  
qdd_des = J\(pdd_des-dJdt*qd_des); 

  
end 
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Code 12. Newton-Euler algorithm for the obtention of the ABB IRB 140 

dynamic model 

%% Master's Thesis | ABB IRB 140 | Newton-Euler Algorithm 

  
clear all 
close all 
clc 

  
q = sym('q',[6 1],'real');     % 6 joint angles 
qd = sym('qd',[6 1],'real');   % 6 joint velocities 
qdd = sym('qdd',[6 1],'real'); % 6 joint accelerations 
Lh = 0;                        % Tool length 
syms g real;                   % Gravity 

  
%% N-E 1 D-H parameter table 
DH = [q(1)         0.352        0.070   -pi/2; 
      (pi/2)+q(2)  0            -0.360  0; 
      q(3)         0            0       pi/2; 
      q(4)         0.380        0       -pi/2; 
      q(5)         0            0       pi/2; 
      q(6)         0.065+Lh     0       0]; 

   
[rows,columns] = size(DH); 

  
%% N-E 2 Rotation matrices and their inverses 
R = sym(zeros(3,3,rows+1)); % 3D matrix with all rotation matrices 
                            % including one representing the rotation until 
                            % the application point of an external force 

  
Rinv = R;   % Inverse rotation matrices 

  

for i = 1:rows 
    R(:,:,i) = [cos(DH(i,1))   -cos(DH(i,4))*sin(DH(i,1))  

sin(DH(i,4))*sin(DH(i,1)); 
                sin(DH(i,1))   cos(DH(i,4))*cos(DH(i,1))   -

sin(DH(i,4))*cos(DH(i,1)); 
                0              sin(DH(i,4))                cos(DH(i,4))]; 

             
    Rinv(:,:,i) = inv(R(:,:,i)); 
end 

  
R(:,:,rows+1) = eye(3); 
Rinv(:,:,rows+1) = eye(3); 

  
R = simplify(R); 
Rinv = simplify(Rinv); 

  
%% N-E 3 Initial conditions 

  
% Base reference system {S_0} 

  
omega = sym(zeros(3,rows+1));    % Angular velocities (0,1,2,3,4,5,6) 
omegad = sym(zeros(3,rows+1));   % Angular accelerations (0,1,...,6) 
v = sym(zeros(3,rows+1));        % Linear velocities (0,1,...,6) 
vd = sym(zeros(3,rows+1));       % Linear accelerations (0,1,...,6) 
vd(3,1) = g;                     % Gravity along axis z 
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% Link masses [kg] 
m = [34.56013977 15.99814611 16.97933464 3.739855737... 
     0.303969 0.054966342]'; 

  
% Auxiliary vector z 

  
z = [0 0 1]'; 

  
% Coordinates of vector {S_i-1} to {S_i} expressed in {S_i} [m] 

  
p = zeros(3,rows); 

  
for i = 1:rows 
    p(:,i) = [DH(i,3); DH(i,2)*sin(DH(i,4)); DH(i,2)*cos(DH(i,4))]'; 
end 

  
% Coordinates of center of mass i with respect to {S_i} [m] 

  
s = [-0.0419443, 0.0886819, 0.0438186; 
     0.161989, 0.00979472, -0.0921779; 
     0.00570679, 0.007527, 0.0195804; 
     0.00142883, 0.0682882, -0.00122517; 
     0.000164849, 0.000619119, -0.00140587; 
     0.000224358, -3.08768e-07, -0.0129399]'; 

  
% Inertia matrices of link i with respect to its center of mass expressed 
% in {S_i} [kg·m^2] 

  
MI = zeros(3,6);    % Moments of Inertia 
PI = zeros(3,6);    % Products of Inertia 

  
MI(:,1) = [0.508524, 0.456961, 0.461318]'; 
PI(:,1) = [0.068918, -0.00146701, 0.0523087]'; 

  
MI(:,2) = [0.0952241, 0.327313, 0.276049]'; 
PI(:,2) = [-0.00105662, -0.0382749, -0.00384372]'; 

  
MI(:,3) = [0.182447, 0.199252, 0.0685502]'; 
PI(:,3) = [0.00640664, -0.00402342, -0.000769641]'; 

  
MI(:,4) = [0.0172493, 0.00733781, 0.0153991]'; 
PI(:,4) = [-0.000436025, -6.90193e-06, -0.000124383]'; 

  
MI(:,5) = [0.000145763, 0.000238175, 0.000151397]'; 
PI(:,5) = [-2.64639e-07, -8.71253e-07, 2.05448e-08]'; 

  
MI(:,6) = [1.33687e-05, 1.31196e-05, 1.27092e-05]'; 
PI(:,6) = [1.31964e-10, -9.71246e-08, 3.18105e-10]'; 

  
I = zeros(3,3,6); 

  
for i = 1:rows 
    I(:,:,i) = diag(MI(:,i));   % Diagonal is filled 

     
    I(1,2,i) = PI(3,i); 
    I(1,3,i) = PI(2,i); 
    I(2,3,i) = PI(1,i); 
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    I(2,1,i) = PI(3,i); 
    I(3,1,i) = PI(2,i); 
    I(3,2,i) = PI(1,i); 
end 

  
%% N-E 4 Calculation of angular velocities of reference systems (omega_i) 

  
for i = 1:rows 
    omega(:,i+1) = Rinv(:,:,i)*(omega(:,i)+z*qd(i,1)); 
end 

  
%% N-E 5 Calculation of angular accelerations of reference syst. (omega_i') 

  
for i = 1:rows 
    omegad(:,i+1) = 

Rinv(:,:,i)*(omegad(:,i)+z*qdd(i,1))+cross(omega(:,i),z*qd(i,1)); 
end 

  
%% N-E 6 Calculation of linear accelerations of reference systems (v_i') 

  
for i = 1:rows 
    vd(:,i+1) = 

cross(omegad(:,i+1),p(:,i))+cross(omega(:,i+1),cross(omega(:,i+1),p(:,i)))+

Rinv(:,:,i)*vd(:,i); 
end 

  
%% N-E 7 Calculation of linear accelerations of the center of mass of 
%  link i 

  
a = sym(zeros(3,rows)); 

  
for i = 1:rows 
    a(:,i) = 

cross(omegad(:,i+1),s(:,i))+cross(omega(:,i+1),cross(omega(:,i+1),s(:,i)))+

vd(:,i+1); 
end 

  
%% N-E 8 Calculation of force exerted on link i 

  
f = sym(zeros(3,rows+1));   % The force exerted externally is zero 

  
for i = rows:-1:1 
    f(:,i) = R(:,:,i+1)*f(:,i+1)+m(i)*a(:,i); 
end 

  

  
%% N-E 9 Calculation of torque exerted on link i 

  
n = sym(zeros(3,rows+1));    % The torque exerted externally is zero 

  
for i = rows:-1:1 
    n(:,i) = R(:,:,i+1)*(n(:,i+1)+cross(Rinv(:,:,i+1)*p(:,i),f(:,i+1)))+... 
             cross(p(:,i)+s(:,i),m(i)*a(:,i))+... 
             

I(:,:,i)*omegad(:,i+1)+cross(omega(:,i+1),I(:,:,i)*omega(:,i+1)); 
end 

  
%% N-E 10 Calculation of torques exerted on joint i 
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tau = sym(zeros(rows,1)); 

  
for i = rows:-1:1 
    tau(i,1) = n(:,i)'*Rinv(:,:,i)*z; 
end 

  
%% Extraction of M,C,G matrices 

  
vars = qdd'; 
[M,N] = equationsToMatrix(tau,vars); 

  
N = -N; 

  
vars = g; 
[G,C] = equationsToMatrix(N,vars); 

  
C = -C; 
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Code 13. Computed Torque Controller function for the ABB IRB 140 

function [err,errd,tau] = fCTC(Kp,Kv,des,cur) 
% Computed Torque Controller 
% Generates a set of torques from current and desired joint coordinates 

  
n_links = 6;    % Number of links 
g = 9.80665;   % Gravity 

  
q_des = zeros(n_links,1); 
qd_des = zeros(n_links,1); 
qdd_des = zeros(n_links,1); 

  
q_cur = zeros(n_links,1); 
qd_cur = zeros(n_links,1); 
qdd_cur = zeros(n_links,1); 

  
% Places input information into individual ordered vectors 

  
for i = 1:n_links 
    q_des(i) = des(i); 
    qd_des(i) = des(i+n_links); 
    qdd_des(i) = des(i+n_links*2); 

     
    q_cur(i) = cur(i); 
    qd_cur(i) = cur(i+n_links); 
    qdd_cur(i) = cur(i+n_links*2); 
end 

  
% Calculation of errors 

  
err = zeros(6,1); 
errd = err; 

  
for i = 1:n_links 
    err(i,1) = q_des(i)-q_cur(i); 
    errd(i,1) = qd_des(i)-qd_cur(i); 
end 

  
% Substitution and calculation of M, C and G (Obtained through N-E) 

M = [... % Large M declaration 
C = [... % Large C declaration 
G = [... % Large G declaration 

 

% Control law 
tau = M*(qdd_des+Kv*errd+Kp*err) + C + G*g; 
end 
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Code 14. Newton-Euler algorithm for the obtention of the 2-link robot 

dynamic model 

%% Master's Thesis | ABB IRB 140 | Newton-Euler Algorithm | 2-link robot 

  
clear all 
close all 
clc 

  
q = sym('q',[2 1],'real');     % 2 joint angles 
qd = sym('qd',[2 1],'real');   % 2 joint velocities 
qdd = sym('qdd',[2 1],'real'); % 2 joint accelerations 
Lh = 0;                        % Tool length 
syms L I1 I2 Lc1 Lc2 g real;   % Other parameters 

  
%% N-E 1 D-H parameter table 
DH = [q(1)  0   L   0; 
      q(2)  0   L   0]; 

   
[rows,columns] = size(DH); 

  
%% N-E 2 Rotation matrices and their inverses 
R = sym(zeros(3,3,rows+1)); % 3D matrix with all rotation matrices 
                            % including one representing the rotation until 
                            % the application point of an external force 

  
Rinv = R;   % Inverse rotation matrices 

  
for i = 1:rows 
    R(:,:,i) = [cos(DH(i,1))   -cos(DH(i,4))*sin(DH(i,1))  

sin(DH(i,4))*sin(DH(i,1)); 
                sin(DH(i,1))   cos(DH(i,4))*cos(DH(i,1))   -

sin(DH(i,4))*cos(DH(i,1)); 
                0              sin(DH(i,4))                cos(DH(i,4))]; 

             
    Rinv(:,:,i) = inv(R(:,:,i)); 
end 

  
R(:,:,rows+1) = eye(3); 
Rinv(:,:,rows+1) = eye(3); 

  
R = simplify(R); 
Rinv = simplify(Rinv); 

  
%% N-E 3 Initial conditions 

  
% Base reference system {S_0} 

  
omega = sym(zeros(3,rows+1));    % Angular velocities (0,1,2) 
omegad = sym(zeros(3,rows+1));   % Angular accelerations (0,1,2) 
v = sym(zeros(3,rows+1));        % Linear velocities (0,1,2) 
vd = sym(zeros(3,rows+1));       % Linear accelerations (0,1,2) 
vd(1,1) = g;                     % Gravity along axis x 

  
% Link masses [kg] 

  
m = sym('m',[rows 1],'real'); 
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% Auxiliary vector z 

  
z = [0 0 1]'; 

  
% Coordinates of vector {S_i-1} to {S_i} expressed in {S_i} [m] 

  
p = sym('p',[3 rows],'real'); 

  
for i = 1:rows 
    p(:,i) = [DH(i,3); DH(i,2)*sin(DH(i,4)); DH(i,2)*cos(DH(i,4))]'; 
end 

  
% Coordinates of center of mass i with respect to {S_i} [m] 

  
s = [-L+Lc1     -L+Lc2; 
     0           0; 
     0           0]; 

  
% Inertia matrices of link i with respect to its center of mass expressed 
% in {S_i} [kg·m^2] 

  
I(:,:,1) = [0   0   0 
            0   0   0 
            0   0   I1]; 

         
I(:,:,2) = [0   0   0 
            0   0   0 
            0   0   I2]; 

  
%% N-E 4 Calculation of angular velocities of reference systems (omega_i) 

  
for i = 1:rows 
    omega(:,i+1) = Rinv(:,:,i)*(omega(:,i)+z*qd(i,1)); 
end 

  
%% N-E 5 Calculation of angular accelerations of reference syst. (omega_i') 

  
for i = 1:rows 
    omegad(:,i+1) = 

Rinv(:,:,i)*(omegad(:,i)+z*qdd(i,1))+cross(omega(:,i),z*qd(i,1)); 
end 

  
%% N-E 6 Calculation of linear accelerations of reference systems (v_i') 

  
for i = 1:rows 
    vd(:,i+1) = 

cross(omegad(:,i+1),p(:,i))+cross(omega(:,i+1),cross(omega(:,i+1),p(:,i)))+

Rinv(:,:,i)*vd(:,i); 
end 

  
%% N-E 7 Calculation of linear accelerations of the center of mass of 
%  link i 

  
a = sym(zeros(3,rows)); 

  
for i = 1:rows 
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    a(:,i) = 

cross(omegad(:,i+1),s(:,i))+cross(omega(:,i+1),cross(omega(:,i+1),s(:,i)))+

vd(:,i+1); 
end 

  
%% N-E 8 Calculation of force exerted on link i 

  
f = sym(zeros(3,rows+1));   % The force exerted externally is zero 

  
for i = rows:-1:1 
    f(:,i) = R(:,:,i+1)*f(:,i+1)+m(i)*a(:,i); 
end 

  

  
%% N-E 9 Calculation of torque exerted on link i 

  
n = sym(zeros(3,rows+1));    % The torque exerted externally is zero 

  
for i = rows:-1:1 
    n(:,i) = R(:,:,i+1)*(n(:,i+1)+cross(Rinv(:,:,i+1)*p(:,i),f(:,i+1)))+... 
             cross(p(:,i)+s(:,i),m(i)*a(:,i))+... 
             

I(:,:,i)*omegad(:,i+1)+cross(omega(:,i+1),I(:,:,i)*omega(:,i+1)); 
end 

  
%% N-E 10 Calculation of torques exerted on joint i 

  
tau = sym(zeros(rows,1)); 

  
for i = rows:-1:1 
    tau(i,1) = n(:,i)'*Rinv(:,:,i)*z; 
end 

  
%% Extraction of M,C,G matrices 

  
vars = qdd'; 
[M,N] = equationsToMatrix(tau,vars); 

  
N = -N; 

  
vars = g; 
[G,C] = equationsToMatrix(N,vars); 

  
C = -C; 
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Code 15. Initialization of the testing CTC control loop containing the 2-link 

robot model 

%% Master's Thesis | ABB IRB 140 |  
% Newton-Euler Algorithm / 2 Link Robot Initialization 

  
% Initial D-H parameters 

   
DH0 = [0    0   0.45    0; 
       0    0   0.45    0]; 

  
g = 9.80665;    % Gravity 
L = 0.45;       % Length of links 
I1 = 1.266;     % Inertia 
I2 = 0.093; 
Lc1 = 0.091;    % Distance to the center of mass 
Lc2 = 0.048; 
m1 = 23.902;    % Mass 
m2 = 3.88; 
n_l = 2;        % Number of links 

  
sim CTC_Test_2Links 
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Code 16. Computed Torque Controller testing function for a 2-Link robot 

function [q_err,qd_err,tau1,tau2] = fCTC_2Link(des,cur) 

  
L = 0.45;       % Length of links 
I1 = 1.266;     % Inertia 
I2 = 0.093; 
Lc1 = 0.091;    % Distance to the center of mass 
Lc2 = 0.048; 
g = -9.80665;      % Gravity 
m1 = 23.902;    % Mass 
m2 = 3.88; 
n_l = 2;        % Number of links 

  
q_des = zeros(n_l,1); 
qd_des = zeros(n_l,1); 
qdd_des = zeros(n_l,1); 

  
q_cur = zeros(n_l,1); 
qd_cur = zeros(n_l,1); 
qdd_cur = zeros(n_l,1); 

  
for i = 1:n_l 
    q_des(i) = des(i); 
    qd_des(i) = des(i+n_l); 
    qdd_des(i) = des(i+n_l*2); 

     
    q_cur(i) = cur(i); 
    qd_cur(i) = cur(i+n_l); 
    qdd_cur(i) = cur(i+n_l*2); 
end 

  
q_err = [q_des(1)-q_cur(1); 
         q_des(2)-q_cur(2)]; 
qd_err = [qd_des(1)-qd_cur(1); 
          qd_des(2)-qd_cur(2)]; 

  
M = [m2*L^2 + 2*m2*cos(q_cur(2))*L*Lc2 + m1*Lc1^2 + m2*Lc2^2 + I1 + I2, 

m2*Lc2^2 + L*m2*cos(q_cur(2))*Lc2 + I2; 
     I2 + Lc2*m2*(Lc2 + L*cos(q_cur(2))),                               

m2*Lc2^2 + I2]; 

  
C = [-L*Lc2*m2*sin(q_cur(2))*qd_cur(2)^2 - 

2*L*Lc2*m2*qd_cur(1)*sin(q_cur(2))*qd_cur(2); 
     L*Lc2*m2*qd_cur(1)^2*sin(q_cur(2))]; 

  
G = [-Lc2*m2*sin(q_cur(1) + q_cur(2)) - L*m2*sin(q_cur(1)) - 

Lc1*m1*sin(q_cur(1)); 
     -Lc2*m2*sin(q_cur(1) + q_cur(2))];   

  
Kp = diag(900); Kv=diag(60); 

  
torques = M*(qdd_des+Kv*qd_err+Kp*q_err)+C+G*g; 

  
tau1 = torques(1); 
tau2 = torques(2); 
end 
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Code 17. Pose comparator 

function err  = fposecomp(p_cur,p_des) 
% Compares the current pose with the desired one, creating an error value 
err = p_cur-p_des; 
end 
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Code 18. Trajectory generator function 

function p_des = fposgen(x,t) 

  
p_home = [0.515 0 0.712 sqrt(2)/2 0 sqrt(2)/2 0]'; 

  
circle_small = [0.6     0       0.3 0 0 1 0; 
                0.55    0.05    0.3 0 0 1 0; 
                0.5     0       0.3 0 0 1 0; 
                0.55    -0.05   0.3 0 0 1 0]'; 

             
circle_medium = [0.65 0     0.3 0 0 1 0; 
                 0.55 0.1   0.3 0 0 1 0; 
                 0.45 0     0.3 0 0 1 0; 
                 0.55 -0.1  0.3 0 0 1 0]'; 

              
circle_large = [0.7     0       0.3 0 0 1 0; 
                0.55    0.15    0.3 0 0 1 0; 
                0.4     0       0.3 0 0 1 0; 
                0.55    -0.15   0.3 0 0 1 0]'; 

  
if t <= 2 
    p_des = p_home + (circle_small(:,1)-p_home).*x; 
else 
    if (t > 2) && (t <= 4) 
        x_cir = 0.55 + 0.05*cos(x*2*pi); % Parametric circle equations 
        y_cir = 0 + 0.05*sin(x*2*pi); 

  
        p_des = [x_cir  y_cir 0.3 0 0 1 0]'; 
    else 
        if (t > 4) && (t <= 6) 
            p_des = circle_small(:,1) + (p_home-circle_small(:,1)).*x; 
        else 
            if (t > 6) && (t <= 8) 
                p_des = p_home + (circle_medium(:,1)-p_home).*x; 
            else 
                if (t > 8) && (t <= 10) 
                    x_cir = 0.55 + 0.1*cos(x*2*pi); 
                    y_cir = 0 + 0.1*sin(x*2*pi); 

  
                    p_des = [x_cir  y_cir 0.3 0 0 1 0]'; 
                else 
                    if (t > 10) && (t <= 12) 
                        p_des = circle_medium(:,1) + (p_home-

circle_medium(:,1)).*x; 
                    else 
                        if (t > 12) && (t <= 14) 
                            p_des = p_home + (circle_large(:,1)-p_home).*x; 
                        else 
                            if (t > 14) && (t <= 16) 
                                x_cir = 0.55 + 0.15*cos(x*2*pi); 
                                y_cir = 0 + 0.15*sin(x*2*pi); 

  
                                p_des = [x_cir  y_cir 0.3 0 0 1 0]'; 
                            else 
                                if (t > 16) && (t <= 18) 
                                    p_des = circle_large(:,1) + (p_home-

circle_large(:,1)).*x; 
                                else 
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                                    p_des = zeros(7,1); 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 

  
end 
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Code 19. Testing trajectory RAPID code 

MODULE Module1 
    CONST robtarget 

Home:=[[515,0,712],[0.707106781,0,0.707106781,0],[0,0,0,0],[9E+09,9E+09,9E+

09,9E+09,9E+09,9E+09]]; 
    CONST robtarget 

CircleSmall4:=[[600,0,300],[0,0,1,0],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+

09,9E+09]]; 
    CONST robtarget 

CircleSmall1:=[[550,50,300],[0,0,1,0],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E

+09,9E+09]]; 
    CONST robtarget 

CircleSmall2:=[[500,0,300],[0,0,1,0],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+

09,9E+09]]; 
    CONST robtarget CircleSmall3:=[[550,-

50,300],[0,0,1,0],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 
    CONST robtarget 

CircleMedium4:=[[650,0,300],[0,0,1,0],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E

+09,9E+09]]; 
    CONST robtarget 

CircleMedium1:=[[550,100,300],[0,0,1,0],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,

9E+09,9E+09]]; 
    CONST robtarget 

CircleMedium2:=[[450,0,300],[0,0,1,0],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E

+09,9E+09]]; 
    CONST robtarget CircleMedium3:=[[550,-100,300],[0,0,1,0],[-1,0,-

1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 
    CONST robtarget 

CircleLarge4:=[[700,0,300],[0,0,1,0],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+

09,9E+09]]; 
    CONST robtarget 

CircleLarge1:=[[550,150,300],[0,0,1,0],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9

E+09,9E+09]]; 
    CONST robtarget 

CircleLarge2:=[[400,0,300],[0,0,1,0],[0,0,0,0],[9E+09,9E+09,9E+09,9E+09,9E+

09,9E+09]]; 
    CONST robtarget CircleLarge3:=[[550,-150,300],[0,0,1,0],[-1,0,-

1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]; 
    !*********************************************************** 
    ! Testing Trajectory 
    !*********************************************************** 
    PROC main() 
        SmallCircle; 
        WaitTime(1); 
        MediumCircle; 
        WaitTime(1); 
        LargeCircle;     
    ENDPROC 
    PROC SmallCircle() 
        MoveJ Home,v300,fine,tool0\WObj:=wobj0; 
        MoveJ CircleSmall4,v300,fine,tool0\WObj:=wobj0; 
        MoveC CircleSmall1,CircleSmall2,v300,fine,tool0\WObj:=wobj0; 
        MoveC CircleSmall3,CircleSmall4,v300,fine,tool0\WObj:=wobj0; 
        MoveJ Home,v300,fine,tool0\WObj:=wobj0; 
    ENDPROC 
    PROC MediumCircle() 
        MoveJ Home,v300,fine,tool0\WObj:=wobj0; 
        MoveJ CircleMedium4,v300,fine,tool0\WObj:=wobj0; 
        MoveC CircleMedium1,CircleMedium2,v300,fine,tool0\WObj:=wobj0; 
        MoveC CircleMedium3,CircleMedium4,v300,fine,tool0\WObj:=wobj0; 
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        MoveJ Home,v300,fine,tool0\WObj:=wobj0; 
    ENDPROC 
    PROC LargeCircle() 
        MoveJ Home,v300,fine,tool0\WObj:=wobj0; 
        MoveJ CircleLarge4,v300,fine,tool0\WObj:=wobj0; 
        MoveC CircleLarge1,CircleLarge2,v300,fine,tool0\WObj:=wobj0; 
        MoveC CircleLarge3,CircleLarge4,v300,fine,tool0\WObj:=wobj0; 
        MoveJ Home,v300,fine,tool0\WObj:=wobj0; 
    ENDPROC 
ENDMODULE 
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Code 20. Interpolated data caller function 

function p_des = fintpol(t) 

  
p_des = zeros(7,1); 

  
s = load('cfits.mat'); 

  
p_des(1) = s.x_t(t)*1e-3; % [mm] to [m] 
p_des(2) = s.y_t(t)*1e-3; 
p_des(3) = s.z_t(t)*1e-3; 
p_des(4) = s.a_t(t); 
p_des(5) = s.b_t(t); 
p_des(6) = s.c_t(t); 
p_des(7) = s.d_t(t); 

  
end 


