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Pose vector
Pose component - Location in axis X
Pose component - Location in axis
Pose component - Location in axis Z
Quaternion
Pose component - Quaternion component a
Pose component - Quaternion component b
Pose component - Quaternion component ¢
Pose component - Quaternion component d
Torque vector
Denavit-Hartenberg
Denavit-Hartenberg parameter — Rotation around axis z
Denavit-Hartenberg parameter — Translation along axis z
Denavit-Hartenberg parameter — Translation along axis X
Denavit-Hartenberg parameter — Rotation around axis X
Proportional-Integral-Derivative (Controller)
Computed Torque Controller
Joint angles vector
Current
Desired
Newton
Meter
Second
Kilogram
Radian

*: Duplicated denominations.

111






Table of contents

Chapter 1. Interest, objectives and temporal planning...........ceeeeiiiiiiinnneeeieiiiiniinnnnneeeeeennn. 1
1.1 HISOLICAL DASIS ..uceveiiieiieiicitei ettt 1
1.2 RODOICS tOAAY ..ot 2
1.3 The ABB IRB 140 ... 3
T INEEIEST et 5
1.5 ODJECHVES ettt sssaene 5
1.6 Stages of deVelOPMENT ..o 7
1.7 BIbHOZIAPRIC FEVIEW ....cuvirieieiiiiiecieiiicieteiticie sttt 8
1.8 TIMEINE ettt 9

Chapter 2. Material and methods ........couvimiiiiiiiiiiiiiiiiiieecreeccre e 11
2.1 MAterial s 11
2.2 MEtROAS e 12

Chapter 3. Implementation and reSUlLS .......ccceevviiiiiiiiiiiiiiiiiiiiieee 25
3.1 RODOt KINEMATICS ..ttt sseans 25
3.2 RODOE AYNAMICS ..ttt ettt 45
3.3 PID CONLOIELS ..ttt 60
3.4 Computed Torque CONtrOller. . ..o 64
3.5 Full system implementation and £eSULLS ........ccceuriieieirnieeirceeeeeeee e neneeseeens 04

Chapter 4. Conclusions and future WOrk ..., 111
4.1 CONCIUSIONS ...ttt bbb bbb 111
4.2 FULREr WOTK co.viiviiiicic st 118




Chapter 5. Biblio@raphy ......ccoiivvuuiiiiiiiiiiiiiiiiiiiieiiiiiiiiieecccnireee e sassssee e eesens 119

ApPPendix. Code  ..iiiiiiiiiiiiiiiiiiiiiiret bbb s aa s s s s abae e s eas 121
Code 1. Sarabandi-Thomas method for the computation of quaternions from rotation matrices
................................................................................................................................................................ 121
Code 2. Symbolic Sarabandi-Thomas method for the computation of quaternions from
LOLATION MMALIICES evuvevereereerrenereestreereseesesersesteeresessestssesteesesessenessestnsesentssentaseseneesensssestssesensesentssesessesenes 123
Code 3. Obtention of the ABB IRB 140 Homogeneous Transformation MatfiX..........cccu..... 124
Code 4. Direct KINEemMAatiCs fUNCHOMN ...evvvrveveriiiririreeieieerinieeeieieeneet ettt eaeseseseste et sesesesesseseseseneaes 125
Code 5. Jacobian Matrix fUNCHON . ....c.ouiiieiiiiieieiriiieieiietet e snaes 126
Code 6. Direct kinematics function fOr VEIOCIHES......covuruereuiiriririeieiiininieieiceenieeeiereeeeseeeeseseeenes 128
Code 7. Direct kinematics function for acCelerations ........c.ceececeeeeeeererererererereunieesiseesesesesesenen. 129
Code 8. Pose comparator fUNCHON ...t 130
Code 9. Inverse KINEmMatics fUNCHON ...cueueueuevririririririririrerere bbbttt 131
Code 10. Inverse kinematics function for VElOCIHES....covvvevevierirereeueriininieieieeerieeeeerereneseeeeseseeeees 132
Code 11. Inverse kinematics function for acCelerations ........c.coceceeeeuerereuerereieueueuniniseseesseseseneene 133
Code 12. Newton-Euler algorithm for the obtention of the ABB IRB 140 dynamic model...134
Code 13. Computed Torque Controller function for the ABB IRB 140 ........ccccoovieiviviicinnnnes 138
Code 14. Newton-Euler algorithm for the obtention of the 2-link robot dynamic model ......139

Code 15. Initialization of the testing CTC control loop containing the 2-link robot model....142

Code 16. Computed Torque Controller testing function for a 2-Link robot........cccccvviurinnes 143
Code 17. POSE COMPALALOL «...cvuviniiiiiiieieiriiieiensitieiessisie et sssssse s s sssassenenaes 144
Code 18. Trajectory generator fUNCHON ..ot 145
Code 19. Testing trajectory RAPID COAE ....viimiiiiiiiriiciiiiicicirceieeeeieeieie e eeesenenes 147

Code 20. Interpolated data caller funCtON........ccuciiiiiiiiiiiiic e 149



Abstract

With the imminent widespread implementation of Industry 4.0, the field of industrial
robotics is on the rise. A much wider presence of new robots in factories, warehouses and
workshops connected in a continuous and intelligent way with the rest of the productive
elements will undoubtedly be necessary to increase the effectiveness of the industry.

This Master's Thesis presents a real engineering problem that deals with one of the most
well-known robots in the industrial robotics landscape: the ABB IRB 140. Programmed both on
MATLAB and on its simulation environment Simulink, equivalent kinematic and dynamic
models of this robot arm are developed from its real geometric and mechanical features to later
implement them in closed loop control schematics.

The main goal of the construction of said control schematics is the positioning and
orientation of the end effector of the robot arm in a series of poses along a predefined trajectory
very similar to those a real robot would encounter in a practical environment.

In general terms, a complete vision of all the basic steps of the modeling of an articulated
robot is implemented, with all necessary scripts for its execution specifically programmed without
making use of external robotics libraries.
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Resumen

Con la inminente implementacion generalizada de la Industria 4.0, el campo de la robética
industrial se encuentra en alza. Una presencia mucho mas amplia de nuevos robots conectados de
manera continua e inteligente con el resto de elementos productivos en fabricas, almacenes y
talleres sera indudablemente necesaria para mejorar la efectividad de la industria.

Este Trabajo Fin de Master presenta un problema real de ingenierfa que trata con uno de
los robots mas conocidos del panorama de la robética industrial: el ABB IRB 140. Se desarrollan
tanto en MATLAB como en su entorno de simulacion Simulink unos modelos cinematico y
dinamico equivalentes de este brazo robot a partir de sus caracteristicas geométricas y mecanicas

reales, para posteriormente implementarlos en una serie de esquemas de control en lazo cerrado.

El fin principal de la construccién de dichos esquemas de control es el posicionamiento y
orientacion del efector final del brazo robot en una serie de poses determinadas a lo largo de una
trayectoria predefinida muy similar a las que se verfa sometido un robot real en un entorno de
trabajo practico.

En términos generales se proporciona una vision completa de todos aquellos pasos
basicos para el modelado de un robot articulado, habiendo sido programados especificamente
todos aquellos scripts necesarios para su ejecucion sin hacer uso de librerfas de robética externas.
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Chapter 1. Interest, objectives
and temporal planning

This chapter presents the motivation for this master’s thesis to be written, the main

reasons why the topic was selected and in which objectives the whole work was divided.

11 Historical basis

Throughout history, mankind has been fascinated by any mechanism that could mimic
the behavior of living beings. The Greeks had a word for these: authomatos, from which the
English word automaton derives. Then the Arabs inherited all this knowledge from the ancient
world and transmitted it to Europe. It was not until the beginning of the first industrial
revolution in the 18" century, when these automatons were design in order to ease the labor to

workers and boost production, instead of just amusement.

The word robot was introduced for the first time in 1921, when the Czech writer Karel
Capek released in the Prague National Theater his play Rossun’s Universal Robot. The ethymology
of the word is the Czech verb rvbota, which means forced labor, compulsory service or drudgery.

The first modern industrial robot would not appear until 1954, when George C. Devol
developed a mechanical arm with a gripper at its end effector, mounted on a rotating platform.
Devol, along with Joseph Engelberger, founded the first robotics company in 1961: Unimation,
and sold this robot to manufacturing companies such as General Motors. It was the beginning of
a new industry and since then, robot presence has undergone a continuous and exponential
growth spreading to countless production processes, being a key part in enhanced assembly lines.
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Figure 1-1. The first robot, developed by Unimation.

1.2  Robotics today

Quality control, painting, assembly, packaging, palletizing (Figure 1-2) or welding are
some of the many tasks that an industrial robot can perform, all of them with a degree of
precision, repeatability and productivity never achieved before. In addition, this has freed human
workers from tedious, repetitive and sometimes hazardous handwork, shifting part of them in the

process to more qualified jobs.

Figure 1-2. Palletizer robot by Bastian Solutions.

The use of industrial robots has skyrocketed specially in the last decade, reaching 387,000
sales in 2017 and a sales boom is expected in 2019 that will reach 1,400,000 units according to the
International Federation of Robotics (IFR). The total estimated number of operational robots by
year can be observed in the following Figure 1-3.
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Figure 1-3. Estimated worldwide operational stock of industrial robots. Source: IFR

Robotics is nowadays one of the leading areas of study in the emerging so-called Industry
4.0, which is a revolution itself in the way we as societies manufacture. Although it was already
holding a key role in the previous Industry 3.0, with the advent of new fields such as Machine
Learning, the Internet of Things, the cloud or 3D printing, robotics has gained plenty of space

for expansion and enhancement.

Among these new possibilities, the reduction of robot prices, the apparition of highly
advanced AGVs (Auto-Guided Vehicles) and better features and performance in general.

1.3 'The ABB IRB 140

The studied robot in this master’s thesis is the ABB IRB 140, designed by the swiss
company ABB. It is an industrial robot, which by definition of the International Federation of
Robotics is a “automatically controlled, reprogrammable multipurpose manipulator
programmable in three or more axes”. Designed specifically for manufacturing industries, it has
an open structure specially adapted for flexible use and can communicate with external systems.

According to the data sheet of the robot, it can handle payloads up to 6 kg with a reach of
810 mm. It can be floor mounted, inverted or wall mounted at any angle and counts with an anti-
collision feature to ensure the safety and reliability of performance [1].

This specific model was selected, due to its presence in the laboratories of the University
of Almerfa. This master’s thesis is aimed as well to be a bedrock for new degree and master’s

theses that make use of the robot.
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Figure 1-4. Photograph of the ABB IRB 140 at the CITE IV building of the University of Almeria.
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1.4 Interest

As it was seen in the brief summary of the history of robotics, it is getting increasingly
common to see robots performing many different types of operations, with special interest in the
industrial ones. These operations are diverse, from large assembly lines to small work cells.

The demands for highly qualified technicians and engineers with a good base knowledge
in robotics are in consequence on the rise all around the globe. This master’s thesis is desired to
be as well, an appealing cover letter for a possible new job in the field of robotics.

1.5 Objectives

The main objective of this master’s thesis is to delve into this broad field of robotics with
the elaboration of a kinematic and dynamic model of the ABB IRB 140 robot based on a
complete multidisciplinary analysis. Implemented in a feedback control schematic, these models
will be then subjected to setpoints in form of predefined trajectories in order to obtain an
optimum control of the mechatronic system as a whole.

During this process, a physical model will be obtained on MATLAB and on Simulink, a
graphical programming environment integrated on MATLAB itself. The Simulink’s SimScape
Multibody library, which provides a multibody simulation environment for 3D mechanical
systems, will be used to build the dynamic model of the robot.

Finally, the behavior of this model under a controller’s action will be compared with that
of the ABB Software RobotStudio to wvalidate the whole schematic. The controller must be
robust and with customizable aggressiveness.

To achieve all this, a list of secondary objectives was proposed:

1. Kinematic model. Generation of a simplified geometric model equivalent to that of the
robot ABB IRB 140, which will be subject to several tests in order to validate this
equivalence, consisting of:

a. The introduction of joint angles as input to obtain the coordinates and orientation of

the end effector, also called direct kinematics.

b. The introduction of end coordinates and orientation as input to obtain the joint

angles of the robot as output, or inverse kinematics.

2. Dynamic model. Introduction of other physical properties of the robot, such as a simplified
3D geometry, centers of mass, joint inertia matrices and material density. Calculation of the
dynamic behavior, which relates the movement of the robot with the forces involved in it.
The obtention of the dynamic model is one of the most complex aspects of robotics, with
still room for improvement and optimization. This model allows to relate mathematically:

a. The introduction of forces and torques applied at the joints or at the end of the robot
as inputs to obtain the joint coordinates and their temporal evolution (angles, angular
velocities and angular accelerations), or direct dynamics.
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b.

The introduction of joint coordinates and their derivatives as inputs to obtain the
forces and torques that should be exerted, or inverse dynamics. This is the dynamic
model that will be implemented on the control system.

3. Construction of a feedback control system. This schematic will consist of:

a.

A RobotStudio data/trajectory generator block that generates in continuous time a
trajectory of end effector poses. Every pose consists of 3 Cartesian coordinates plus a
rotation quaternion, all relative to the coordinate origin of the robot. The block will
calculate the first and second derivative of the poses too (velocity and acceleration).

An inverse kinematics block. Built to transform the current pose plus its derivatives
into joint coordinates and its derivatives.

A controller block. The controller will obtain the appropriate torques for every joint
needed to achieve the previously calculated required angular coordinates. In the case
of CTC controllers, the symbolic dynamic model will be placed here.

An ABB IRB 140 model block. Every output of the controller will be introduced in
its correspondent robot joint, giving rise to certain joint coordinates of the robot plus
derivatives.

A direct kinematics block. These current joint coordinates pass through the direct
kinematics block, which transforms them back into poses and their derivatives, this
time of the real robot.

A comparator block. The current end effector pose is feedbacked to the controller
and at the same time compared with the initial desired pose at the beginning of the
schematic. This difference determines the effectiveness of the complete control
system in reaching the input setpoints.

4. Model validation. The comparator block errors of all developed control schematics will be

compared with each other and the setpoints to evaluate their performance.

Trajectory
Generator

=y
=1

+
oy
=
=
)

Inverse Direct

> Controller

Kinematics Kinematics

]T

Pa = [Xa, ¥a Zq, @g, ba, ca, dg

= T
Be = [xr, ¥r 2, @y, by 1y dy]

* Comparator

Figure 1-5. Desired general schematic of the robot control model.
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1.6  Stages of development
The master’s thesis goes through the following stages:

1. Knowledge acquisition for the adequate understanding of the kinematics and
dynamics of a robot arm, its methodology, formulas, and state of the art of robotics. Study
of control algorithms and characteristics of the ABB IRB 140 model.

2. Software download. A list with the necessary software will be established, containing the
programs for coding and simulating robot arm features.

3. Main schematic drafting of the robot system. A schematic that gathers the whole control
loop will be drafted.

4. Kinematic modeling. Two different functions will be programmed in MATLAB for each of
the kinematic models, direct and inverse, which only depends on the joint types and distances
between them.

5. Dynamic modeling. Using CAD models of the robot arm downloaded from the ABB
website, SimScape blocks will be able to calculate the centers of mass and moments and
products of inertia of the robot, based on spatial properties. These blocks will constitute the
robot system on which tests will be performed. Furthermore, based upon the data obtained
by the SimScape blocks, a dynamic model of the robot will be generated through the
Newton-Euler algorithm.

6. Development of an accurate and robust controller that can handle any robot
configuration requirement. Either by means of a PID controller or a Computed Torque
Controller, the robot must be able to follow certain trajectories in the times set for it with the

least possible error.

7. Equivalence tests between the models’ behavior and RobotStudio’s output. The results
of the model will be compared with RobotStudio’s output to evaluate the validity of the
models and apply corrective actions if necessary.

8. Analysis of results and conclusions to evaluate how close the control system got to
RobotStudio’s results and what can be done to improve it.
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1.7  Bibliographic review

Although there is some bibliography available focused on the ABB IRB 140, it is not as
thorough and detailed as it would be desirable. Specially regarding the dynamics of the robot.
Few works develop the details of the obtention of the dynamic model and none of them apply
Computed Torque Controllers as control solution for trajectory tracking. For this reason, the
implementation of a Computed Torque Controller on an ABB IRB 140 model would be
completely novel.

The most basic features about the ABB IRB 140 can be found in the Product
Specification [1]. Many characteristics are not included due to confidentiality reasons,
characteristics that would be very useful in this master’s thesis, but they will have to be
extrapolated or simplified. Therefore, the product specification will provide mainly with the
spatial measures and limitations of the robot.

The desired method to obtain the kinematic model of the robot is the Denavit-
Hartenberg algorithm. This was developed back in 1955 by Jacques Denavit and Richard
Hartenberg and it can be found in [2]. An application of the algorithm on the ABB IRB 140 is
presented in [3], [5] and [6]. [3] proposes a geometrical inverse kinematic solution for the first
three links. On the other hand, Suarez Baquero, M. & Ramirez Heredia [4] use the Screw
Successive Displacements method for the direct kinematics and geometric strategies for the
inverse kinematics.

Other works are more focused on practical application of robot, such as Cérdoba Lopez
[5], who develops the Denavit-Hartenberg method as a theoretical introduction for further
programming on RobotStudio, or Mato San José [6] who simulates the kinematics and dynamics
of the robot implementing these using the MATLAB’s Robotic Toolbox.

Ronnestad [7] begins with the parameter identification for the dynamic model of the 6th
robot joint by using the Least Squares (LS) estimation method, followed by the development of a
controller for this dynamic model. It includes the possibility to handle different tools at the end
effector.

The most used bibliographic resource was [8], a robotics book by Barrientos, which
covers those issues related to the operation of a robot: mathematical, mechanical and control
aspects. Robot kinematics and dynamics are broadly detailed here and have entailed the main
source of knowledge for this master’s thesis. Followed by Corke’s [9] book, deeply thorough as
well, which contains the theoretical basis for the Computed Torque Controller, as well as more
mathematical approaches of robot kinematics and dynamics. Kelly, R, and Santibafiez, V. with
their book [10] introduce abundant control solutions for robot systems and help to broaden the
theoretical basis of the Computed Torque Controllers.

Sarabandi, S., & Thomas, F. [11] develop in their paper a mathematical algorithm to
compute numerically a quaternion from a rotation matrix without falling in ill-conditioned
situations that may compromise the stability of a solution due to rounding issues.

Finally, [12] and [13] serve as examples of works with parameter identification for future
improvements and expansions of the master’s thesis.
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1.8 Timeline

For the achievement of all the proposed objectives, a timeline was developed. Each task
corresponds to a stage of the development. This planning was distributed in fortnights as shown

in Table 1-1.

Month

March April May June July

Fortnight
Task

Knowledge
acquisition

Software
downloads

Software design
and pseudocode

1# 2° 1° 2° 1° 2°

1* 2° 1# 2°

Kinematic model

Dynamic model

Controller
development

Equivalence tests

Comparisons and

conclussion

Table 1-1. Timeline of the stages of development.
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Chapter 2. Material and methods

The following chapter presents the material needed to build the model, both software and

hardware and the mathematical models.

2.1 Material

Computer with Windows 7

Microsoft Windows 7 is the oldest version of the Windows OS that still has an update
service. It has been chosen as the operating system on which to run the software for its ease of
use and presence in most laboratories at the University of Almeria.

In addition, any Simulink model and MATLAB code can be executed in any operative

system.
MATLAB 2019a

MATLAB is numerical computing environment that allows to program code making use
of its multiple integrated functions and libraries, which facilitate the characterization of complex

mathematical models.

Integrated as well in MATLAB, there is Simulink, a graphical programming environment
for modeling, simulating and analyzing multidomain dynamical systems. The control loop model
will be fully developed in this tool with the aid of libraries such as the SimScape Multibody
library.

11



Chapter 2. Material and methods

SolidWorks

SolidWorks is a CAD (Computer Aided Design) and CAE (Computer Aided
Engineering) software for Windows. It allows to represent in 3D all links of the robot in order to
load them on Simulink and extract their physical properties.

ABB RobotStudio

RobotStudio is a software for simulation and offline programming designed by ABB that
allows to replicate real workspaces with numerous available ABB robots and tools. In these
virtual workspaces it is possible to simulate desired robot behaviors without shutting down
production in plant (Figure 3-1).

This makes RobotStudio a perfect application for training and learning. In a certain sense
this master’s thesis seeks to create a simulation environment too, that represents the robot

physics accurately.

Movel + * 1009 500 10010 + \WOO=wobp - | CONSHREREA

Figure 2-1. Start screen for a solution workspace consistent of an ABB IRB 140.

2.2 Methods

2.2.1 Robot kinematics

Kinematics is the branch of mechanics that studies the motion of a solid or system of
bodies with respect to a reference system without considering any forces or torques that may
intervene. In this manner, robot kinematics only cares about the analytical description of
movement as a function of time and particularly about the relation between the pose (location
and orientation) of the end effector and joint angles.

A robot arm, also known as a serial-link manipulator, consists of solid rigid links and
joints. Joints can be rotational or translational, and their motion modifies the relative pose of the

12
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subsequent links. The beginning of the link chain is usually fixed, and the end is free to move in

space.

There are two fundamental problems in robot kinematics, one is direct kinematics,
whose purpose is to determine and map the pose of the robot end effector as function of its joint
angles. The other is inverse kinematics, which is the opposite. Starting off with a desired pose
of the end effector, finds a suitable joint configuration in order to reach that pose.

Direct Kinematics

Joint Coordinates Robot Pose

(ql, q», ---, qn) Inverse Kinematics (x, Y, Z,Q, b, C, d)

Figure 2-2. Diagram of the relationship between direct and inverse kinematics.

Kinematics is also capable of finding the relation between a differential change in the
velocities and accelerations of the joints and a differential change of the velocity and acceleration
of the end effector and the rate of change of the rotation quaternion and its derivative.

This differential model is defined by the Jacobian matrix. It relates the vector of joint
velocities with the vector of linear and rotational velocities, as another section of the direct

kinematic problem focused on velocity.

Direct Jacobian
Joint Velocities Robot Pose Velocity
(ql, qz, very qn) Inverse Jacobian (x, j}, Z', C'L, b, (i‘, d)

-
hl

v

Figure 2-3. Diagram of the relationship between direct and inverse Jacobian matrices.

2.2.1.1 The direct kinematic problem

Jacques Denavit and Richard Hartenberg proposed a systematic method in 1955 to
describe and represent the spatial geometry of the elements of a kinematic chain, and in particular
of a robot, with respect to a fixed reference system [2]. This method uses a homogenous
transformation matrix to describe the spatial relationship between two adjacent rigid elements,
reducing the direct kinematic problem to find a homogenous transformation matrix 4 X 4 that
relates the spatial location of the robot end effector with respect to the coordinate system of its
base.

Choosing the coordinate systems associated with each link according to the
representation proposed by Denavit-Hartenberg (from now on, D-H), it is possible to jump from

13
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one to the next by means of 4 basic transformations that depend exclusively on the geometric
characteristics of the link.

It should be noted that although in general a homogeneous transformation matrix is
defined by 6 degrees of freedom (three linear translations and three angular rotations), the D-H
method allows, in rigid links, to reduce this number to 4 with a correct choice of coordinate
systems. These 4 basic transformations consist of a succession of rotations and translations that
allow to relate the reference system of the element i — 1 with the system of the element i. The
transformations in question are as follows:

1. Rotation around the z;_1 axis of an angle 8;.

2. Translation along z;_4 a distance d;; vector d; (0,0, d;).
3. Translation along x; a distance a;; vector a; (a;, 0,0).
4. Rotation around the x-axis an angle ;.

Since the product of matrices is not commutative, the transformations must be carried
out in the indicated order. Making use of homogeneous transformation matrices, every
transformation can be represented as:

=14, = Rot(6;) - Tra(0,0,d;) - Tra(a;, 0,0) - Rot(a;) (2.1)
c) —s@) 0 0] [L 0 0 0] (L 0 0 a
i~1g _ s(6;) C(H) O 0 0 1.0 O0f]0o 1 0 O
' 0 0 01 dffoo 1 o0
0 0 00 1]llo oo 1
1 0
0 C(ai) —S(ai) 0
: 2.2
0 sta) c@) O (22)
0 0 0 1

s(x) y c¢(x) are the functions sine and cosine respectively. Multiplying, the generic form
of 2 D-H transformation matrix is:

c(@;) —cla)s(0) s(a)s(;) a;c(6;)

-1y = s(0;) cla)c(;) —s(a)c(6;) a;s(6;) (2.3)
0 s(a;) c(a;) d;
0 0 0 1

With a total of n joints, the transformation matrix from the origin of the system {Sg} to
its end {S,,} is:

T="4, -4, -..-"4, (2.4)

14
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Joint i 4 ¢

Jomt i

i+1

Figure 2-4. D-H parameters for a rotational joint.

In order to achieve this simplified configuration, certain rules must be established. These,

in addition to the definition of the 4 D-H parameters, make up the following Denavit-Hartenberg

algorithm for the resolution of the direct kinematic problem:

D-H 1.

D-H 2.

D-H 3.

D-H 4.

D-H 5.

D-H 7.

D-H 8.

D-Ho9.

D-H 10.

Label the robot links starting from 1 (first free moving robot link) and ending at n
(last free moving robot link). The fixed base of the robot will be labeled as 0.

Label each joint starting from 1 (first degree of freedom) and ending at n.

Pinpoint the axis of every joint. If it is rotational, the axis will be its own rotating axis.
If it is prismatic it will be the axis along its displacement occurs.

For i, from 0 to n — 1, place the axis z; where the joint axis { + 1 stands.

Place the origin of the coordinate system {Sy} at any point of the axis zy. The axis X

and y, will be positioned so that they form a dextrorotatory system with z.

For i, from 1 to n — 1, place the origin of the coordinate system {S;} (attached to
link 7) at the intersection of the axis z; with the shared perpendicular line of z;_; and
z;. If both axes intersected, {S;} would be placed at that intersecting point. If they
were parallel {S;} would be place at the joint i + 1.

Place x; at the shared perpendicular line of z;_; and z;.
Place y; so that it draws a dextrorotatory system with x; and z;.

Place the coordinate system {S;} at the end effector of the robot, so that z, matches

with the direction of z,_; and X, is perpendicular to z,,_; and z,.

Obtain 6; as the angle to be rotated around z;_1, so that x;_; and x; are parallel.
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D-H 11.  Obtain d; as the distance measured along z;_1, that {S;_1} would have to be shifted,
so that x; and x;_ are aligned.

D-H 12.  Obtain a; as the distance measured along x; (which would now coincide with x;_;)
that {S;_1} would have to be shifted so that its origin coincides with {S;}.

D-H 13.  Obtain @; as the angle to be rotated around X;, so that the new {S;_1} would
coincides with {S;}

D-H 14.  Obtain all transformation matrices "4 i

D-H 15.  Obtain the transformation matrix that relates the base coordinate system {Sy} with
the end effector coordinate system {Sg}: T = OAI . 1A2 R n_lAn.

D-H 16. This transformation matrix T generates a rotation matrix and a translation vector as

function of every joint coordinate.

A homogeneous transformation matrix T is a 4 X 4 matrix that represents the
transformation of a vector of homogeneous coordinates from one coordinate system to another.

A homogenous transformation matrix has the generic form:

T = [R3><3 t3><1] _ [PRotation Translation (2.5)

fixz Wixi erspective Scale

In robotics, perspective and scaling components are assumed to be zero and one
respectively, being only relevant the rotation and translation sub-matrices.

The translation matrix is the most straightforward, since it allows the extraction of the
translation vector instantaneously. This vector is a column vector whose 3 values represent the

translation of the coordinate system on the X, y and z axes of the original system.

X

[tsx1] = [J’l (2.6)
Z

On the other hand, the rotation matrix requires some processing of its values to extract

useful information about the rotation to which the coordinate system has been subjected. It does

not therefore have a trivial solution. In this master’s thesis, the representation of the rotation

between two coordinate systems by means of quaternions has been opted.

A quaternion is a system of representation of rotations consisting of a vector of four
components, one real and three complex. It is a tool of great versatility. Although they are not as
intuitive as Eulet's angles, quaternions are easy to calculate, they are efficient, they do not have
singularities and they do not suffer from ambiguity.

q=la,b,cd]" (2.7)

The selected algorithm to calculate them has been the Sarabandi-Thomas method. It can
be found in [9]. Code 1 and Code 2 implement it numerically and symbolically respectively. Its
mathematical formulas are the following:
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1
r E'\/1+R11+R22+R33 ifR11+R22+R33>77
a =+ 2.8
1 |(Rsz — Ry3)? + (Ry3 — R31)? + (Ra1 — Ry2)? , (2.8)
- otherwise
L 3 —Ri1 — Ry —Rs3
( 1 ]
E'\/1+R11—R22—R33 if Ri1 =Ry —Rzz > 1
PTNL (Re =R + Rt R+ Ry + R (29)
1 ,
{ E'\/l—R11+R22—R33 if =Ri1 + Ry —Rs3 >1
=] 2.10
1_ (R13 — R31)? + (R1z + R21)? + (Ra3 + R33)? otherwise ( )
1 .
E'\/l—R11—R22+R33 if —Ri1 — Ry, +R33 >
(2.11)
otherwise

d =
1_ (R21 — R12)? + (R31 + Ry3)? + (R3 + Ry3)?
2 3+R11+R22_R33

Where R is the rotation matrix and 7] the selected threshold (= 0 for best performance).
The direct kinematic problem for position and rotation would be now solved, and the output

pose vector, combining the translation vector and the quaternion would be:

_x_

(2.12)

QO T Q N

Jacobian Matrix

The version of this problem applied for velocities must make use of the Jacobian matrix,

as said in the introduction of section 2.2.1 In the case of a robot with n joints:

_x'._

y .

3 N

a|l=y-|% (2.13)
b ;

C" qn
4

Where J is the Jacobian matrix:
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af_;C cee afx

aq, aq,
J=|: -~ (2.14)
9fa . Ofa
0q, aan
7Xn

And fy, fy, ..., fq are all the direct kinematic formulas that relate every pose parameter as

a function of all joint angles.

x = f(q1, -, Gn) y = £,(q1 -, qn) z = f,(q1, -, Gn)

0= Fi@ue @) D= fo@u ) €= felq @) 4= ful@orgn)

As can be observed, every joint configuration generates a different Jacobian matrix. In the
case that the rank of the matrix reaches a number lower than the total of degrees of freedom, it
means that one or more columns are equal to a linear combination of other columns. The robot
is in a singularity, where one or more degrees of freedom are lost. The physical meaning of this
phenomenon is that any effort to vary some pose parameter of the end effector by the movement
of a certain joint would not be possible.

The pose accelerations can be obtained mathematically processing the Jacobian matrix
formula, which is a differential equation.

—jé_
@ 2

; | Y |a

al=J-1 |l ——=—-|". (2.16)
b oAt

C an an

»i

2.2.1.2 The inverse kinematic problem

One way of obtaining the inverse kinematic problem is through finding geometrical
relationships between links and joints of the robots, but it is inadequate due to the complexity of
the ABB IRB 140. With 6 degrees of freedom it would take too much time to find an analytical
solution. Therefore, another method is preferred.

This other method would be the resolution by means of the homogeneous
transformation matrix T. It would be starting from 12 nonlinear equations present in the matrix,
6 of them linearly dependent. Through a numerical method, all joint angles necessary to reach a
certain pose would be calculated, making it a feasible task due to the nature of the simulation.
However, it is important to note that there might be multiple solutions for a single objective
pose, or even no solution at all.

A good graphic example of this feature are the 2 robot configurations below (Figure 2-5)
simulated on RobotStudio, where they reach the same pose out of different joint angles.
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Figure 2-5. Excample of 2 different configurations that end up at the same end effector pose.

On the other hand, a non-existence of a solution appears when the requested pose is
located outside the work area, spatial-wise or orientation-wise.

Returning to the Jacobian matrix, if it relates the pose velocity with respect to the joint
angles and joint velocities, its inverse should obtain the joint velocities out of joint angles and the
pose velocity.

_x'_
- y
e 3
©f=j-1.]4 (2.17)
N b
Gn ;
4]

Unfortunately, two problems emerge. The first one is, if the rotation representation

chosen are quaternions, the number of pose parameters would be 7 (3 spatial and 4 rotational), |
would not be square and therefore, its inverse could not be worked out. The second is that such

large symbolic matrices as J if it was square, are not computable in reasonable intervals of time.

The most computationally efficient method would be to solve the linear system for the

current joint configuration, where if Ax = b represents the standard matrix form of the linear

system:

_x-

- y

“al 13

Ax=b-]-|T[=|a (2.18)

a . b

7 I

e ¢

_d\_v;

b

And finally, the obtention of the joint accelerations as function of the pose, pose velocity
and pose acceleration, differentiating formula 2.18 with respect to time and reordering it to fit the
standard matrix form:
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_x-
i1 | i
G| |5l Y |
] =1dl+—=-|7? (2.19)
vl N A
an & dn
X .e
%
b

2.2.2 Robot dynamics

Robot dynamics addresses the relation between the forces acting on a solid or group of
solids and the movement that originates from them. This relation is calculated through the so-
called dynamic model, which establishes the mathematical association between:

e The location of the robot defined by its joint variables or by the pose of its end effector, and
its derivatives: velocity and acceleration.

® The forces and torques applied in the joints (or at the end effector).

e The dimensional parameters of the robot, such as length, mass and inertia of its links.

The process of obtaining this model for mechanisms of one or two degrees of freedom is
not excessively complex, but as the number of degrees of freedom increases, the computation of
the dynamic model becomes exponentially more complicated. For this very reason, most of the
time the best option is to implement iterative numerical methods.

The process of obtaining the dynamic model has been proven one of the most complex
aspects of robotics, which has led to be obviated on numerous occasions. However, the dynamic

model is essential to achieve the following purposes:

e Simulation of the movement of the robot.
e Design and evaluation of the mechanical structure of the robot.
e Dimensioning of the actuators.

® Design and evaluation of the dynamic control of the robot.

This last purpose is of great importance, since the precision of positioning and velocity
depends vastly on the quality of the dynamic model developed.

A perfect dynamic model would consider many other elements of the robots aside from
links and gravity itself. Actuators, internal and external temperature or wear among others, add
up to some inequalities between the model and reality that may impact the quality of control.
These will be ignored in this master’s thesis for the sake of simplicity.

2.2.2.1 The rigid-body equations of motion

For a set of links, their rigid-body equations of motion can be represented elegantly as a

matrix set of differential equations:

Q=M(q)G+C(q,q)g + G(q) + Others (2.20)
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Where Q ys the vector of generalized actuator forces associated with the generalized
coordinates q, M is the joint-space inertia matrix, C is the Coriolis and centripetal coupling
matrix, and G is the gravity loading. Others represent the ignored effects that have a smaller
impact on the robot control performance.

2.2.2.2 The Lagrange method

Obtaining the dynamic model of a robot from the Lagrangian formulation leads to an
algorithm with a computational cost of order O(n*). That means, the number of operations to
be carried out increases with the fourth power of the number of degrees of freedom of the robot.
In the particular case of this thesis, with a robot with 6 degrees of freedom, this number of
operations makes the algorithm presented rather unsuitable to be used in real time.

2.2.2.3 The Newton-Euler method

This new algorithm is based on vector operations (with scalar and vector products
between vector magnitudes, and products of matrices and vectors). This makes it far more
efficient than the Lagrangian formulation. In fact, the order of computational complexity of the
Newton-Euler recursive formulation is O(n) which indicates that it depends proportionally on
the number of degrees of freedom.

For a robot with only rotational joints, the method starts from the torque equilibrium
formula:

Ytr=1-w+wXx({-w) (2.21)

Through an adequate processing of this equation, the Newton-Euler method recursively
formulates the equilibrium equations of forces and torques (only torques are needed for this
particular robot), so that the position, velocity and acceleration of the link i referred to the base
of the robot are obtained from those corresponding to the link i — 1 and the relative movement

of the joint i. Initiating the method from link 1, it stops at link n.

Counting with these position, speed and acceleration data, the forces and torques that act

on the links are calculated, from link n to the link 1.

The step-by-step procedure for an only rotational joint robot is as follows:
N-E 1. Assign to the n links a coordinate system in accordance with the D-H algorithm.
N-E 2. Establish initial conditions:

For the coordinate system of the robot base {Sy} supposing it is not moving:

e Zero angular velocity, Owo =[o o 0]

e Zero angular acceleration, Od)o =[o o o]

e Zero linear velocity, Ovo =[o o o]

o Linear acceleration in terms of gravity, vy = [0 0 —g]”

e Auxiliary vector zg = [0 0 1]7

e Coordinates of the origin of the system {S;} with regard to {S;_1} 'p;
l[a; dis(a;) dic(a;)]
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e Coordinate of the center of mass of the link i with regard to {S;}: s,

e Inertia matrix of the link { with regard to its center of mass expressed on {S;}: 'I;

; ; ; -1
N-E 3. Obtain the rotation matrices '"'R; and their inverses ‘Rj_; = (l_lRi) =
(i_lR-)T
l
N-E 4.  (Fori, from 1 ton, perform steps N-E 4 1o N-E 7) Obtain the angular velocity of the
system {S;}.
‘w; = Ry (o + 2ody) (2.22)
N-E 5. Obtain the angular acceleration of the system {S;}.
‘o; = Ry (T + Zol;) + 0 X 204, (2.23)
N-E 6. Obtain the linear acceleration of the system {S;}.
ivi = id)i X ipi + i(l)i X ( i(l)i X ipi) + iRi_li_ll'Ji_l (224)
N-E 7.  Obtain the linear acceleration of the center of mass of the link .
iai = i(l:)i X iSi + i(l)i X ( i(t)i X iSi) + i'l.7i
N-E 8. (Fori, frommn to 1, perform steps N-E 8 to N-E 10) Obtain the force exerted on the link i.
fi= R +my e
N-E 9.  Obtain the torque exerted on the link i.
= Ripa [T + (R ') X ] +
( lpi + lSi) X m; lai + lli l(l)i + l(A)i X( lli l(A)i) (225)
N-E 10.  Obtain the torque exerted on the joint i.

LT
T, = lni lRi_IZ() (226)

i

After these steps, the model would be finished. There would be a total of n equations of
torque, one for each joint, as function of joint variables: angles, velocities and accelerations.

2.2.3 'The PID Controller

A PID Controller (Proportional-Integral-Derivative), or just PID, is a system used for
building feedback control loops in multitude of applications that require continuously modulated

control.

PIDs bases itself on the calculation of an error value e(t), the difference between a
desired setpoint and a current measured process value. This value is then processed separately
three times. One of them is integrated, another one derived and all three multiplied by three
different constants respectively. The mathematical structure of a parallel PID is:
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u() = Kye(t) + K, f e(t) dt + K, dig)
0

(2.27)

There are a couple more different structures, but in this master’s thesis only the parallel
one will be used.

2.2.4 The Computed Torque Controller

The dynamic model that characterizes the behavior of manipulative robots is generally
nonlinear in terms of state variables (joint angles and joint velocities). This peculiarity of the
dynamic model could suggest that given any controller, the differential equation that governs the
closed-loop control system should also be non-linear in the corresponding state variables.

However, there is a non-linear controller in the state variables with which the closed-loop
control system can now be described by means of a linear differential equation. Said controller
can satisfy motion control objectives globally with a trivial selection of its design parameters. This
is the Computed Torque Controller. Its principle is that the robot system dynamics and its
inverse (the controller) are concatenated so that the overall system has a constant unity gain. Due
to inconsistencies between the robot real behavior and the model a feedback loop is required to
deal with errors.

The torque signal provided by the controller is:

Q =M(gM|[§" +K,(¢" — 4" + K,(g" — qM)] + C(q*, ¢ ¢* + G(q") (2.28)

Where * denotes a desired value and # a current value. K, and K,, are the positive-

definite design matrices of position and velocity respectively.

Despite the presence of the term K, (¢* — ¢*) + K,(q" — g*) in the control law, these
are actually multiplied by the matrix of inertia M. This effect results in the fact that the control
law has a term of the PD kind, but this is not a linear controller, since the position and velocity

gains are not constant but depend explicitly on the position error g* — q*.

For practical purposes, the design matrices Kp, and K, can be diagonal, therefore the
closed-loop equation represents a decoupled multivariable linear system, that is, the dynamic
behavior of joint angles is governed by second-order linear differential equations, where each of
them is independent of the rest. In this context the choice of K}, and K, matrices can be written

specifically as:

K, = diag{w?, ..., w3}

2.29
K, = diag{2w4, ..., 2wy} @29)

With this choice, each joint responds the same as a critically damped linear second order
system with bandwidth w;. The bandwidth w; determines the response speed of the junction

and, consequently, the exponential decay rate of the errors ¢* — g% and ¢* — ¢*.
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Chapter 3. Implementation and
results

In this chapter, the implementation of the theory and methods present in Chapter 2 will
be detailed, exposed and explained, highlighting results.

3.1 Robot kinematics

3.1.1 Denavit-Hartenberg algorithm for the obtention of the direct kinematic model

The step-by-step implementation of the Denavit-Hartenberg algorithm for the ABB IRB
140 is presented here.

To contribute to a better understanding of the process, a drawing of the robot has been

generated and each step appropriately depicted.
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D-H1. Label the robot links starting from 1 (first free moving robot link) and ending atn

(last free moving robot link). The fixed base of the robot will be labeled as 0.

The robot has been dismantled link by link to make visualization easier. Starting from the
base, labelled as link 0, there are other 6 robot links.

S

SO
XY
T&?‘

=
L
75

]
A

3

7,
2es
grd
K
R
S

ks
§

s

3 [0]

Figure 3-2. Armed robot ABB IRB 140 with its links numbered.
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Label each joint starting from 1 (first degree of freedom) and ending at n.

D-H 2.

For each joint, there is an associated degree of freedom that is denoted by 8;, generating

the set {61, 8, 03, 84, 05, 66}. They are represented in orange.

Figure 3-3. Links of the robot ABB IRB 140 with kinematic pairs represented.

Pinpoint the axis of every joint. If it is rotational, the axis will be its own rotating axis.

D-H 3.

If it is prismatic it will be the axis along its displacement occurs.

All the joints contain rotating kinematic pairs, whose axis of rotation are drawn.

.

V L7

S

!W\.ﬁ\\_ _

S

>
L7

Figure 34. ABB IRB 140 robot with represented rotation axes.
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D-H4. Forli, from 0 to n — 1, place the axis z; where the joint axis { + 1 stands.

The z axes, represented in indigo, are positioned.

-~
- - = ~
* ~
[6] < %
N~ oS
. ~
6’.(; 6-

Figure 3-5. ABB IRB 140 with Z axes represented.
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D-H 5.  Place the origin of the coordinate system {Sy} at any point of the axis Zy. The axis X,

and Yy, will be positioned so that they form a dextrorotatory system with Z.

The x and y axes are represented in red and green respectively. The denominations and
origin of each reference system appear in purple.

0 (og?
%5 Zy
I’ @ ~
-~
@ ":'\
~ .-
O 05 !

X0 Yo

@, < {SO} @

Figure 3-6. ABB IRB 140 with the coordinate system {Sy} represented.
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D-H6. Fori, from 1ton — 1, place the origin of the coordinate system {S;} (attached to
link 7) at the intersection of the axis z; with the shared perpendicular line of z;_4 and
z;. If both axes intersected, {S;} would be placed at that intersecting point. If they
were parallel {S;} would be place at the joint i + 1.

In purple points the origins of each system {S;} are represented.

23:/ 2

{54}

Zy I ~
Q} N SN
[6] NN NS :
-

[5] /{55} ) ; s

Xo Yo

(o) 0]

Figure 3-7. ABB IRB 140 with coordinate systems {S;} represented.
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D-H 7.  Place x; at the shared perpendicular line of z;_; and z;.

In red, the axes x;.

’{52} j .

0,

. /{55} LE
ASa}

|
x4,x5 N -~ 0,
(J [6] A {sl} g :

O¢

X2, X3 ~e

|
|
| o
|
I
I

Xq Yo

) [0]

Figure 3-8. ABB IRB 140 with X; axes represented.
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D-H 8.  Place y; so that it draws a dextrorotatory system with x; and z;.

After placing all the y; axes, represented in green, one gets:

Va2
{S3}-
~15,} 7
Zggfz} yB_?
0, 3
27 2
= X5, X3
W{Ss}% 2
ASa}
Z

5

Os 0 Z1
iy
1
0, A 0,
Xo Yo

{So} [0]

Figure 3-9. ABB IRB 140 with the y; axes represented.
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D-H9. Place the coordinate system {S;} at the end effector of the robot, so that z, matches

with the direction of z,_1 and X, is perpendicular to z,,_; and z,,.

The coordinate system {Sg} is established, located at the end of the robot arm,
considering a possible tool that would extend longitudinally along the axis Zs.

Yz
{53}’
{52}, -~
g Z3 =2 Y3
4

Z3
2% ~e

Zy 2
Xo N Yo

L{So} [0]

Figure 3-10. ABB IRB 140 with the coordinate system {S¢} represented.
D-H 10.  Obtain 6; as the angle to be rotated around z;_1, so that x;_; and X; are parallel.

D-H 11.  Obtain d; as the distance measured along z;_4, that {S;_1} would have to be shifted,

so that x; and x;_q are aligned.

D-H 12.  Obtain a; as the distance measured along x; (which would now coincide with x;_)

that {S;_1} would have to be shifted so that its origin coincides with {S;}.

D-H 13.  Obtain @; as the angle to be rotated around x;, so that the new {S;_;} would
coincides with {S;}

These four steps (D-H 10 to D-H 13) are performed for i, from 1 to 6, and the Denavit-
Hartenberg parameters are included in a table. The spatial dimensions have been obtained from
the product specifications document of the ABB IRB 140 robot [1].

33



Chapter 3. Implementation and results.

Link 0 9] d [mm] a [mm] a 9]
1 6, 352 70 -90
2 90 + 6, 0 —360 0
3 05 0 0 90
4 0, 380 0 -90
5 05 0 0 90
6 O 65+ Ly 0 0

Table 3-1. ABB IRB 140 Denavit-Hartenberg parameters. Equivalent to those of [3] [4] [5] [6].

D-H 14.  Obtain all transformation matrices "~ *4;.

These transformation matrices include each of the particular transformations to which
the reference systems are subjected, these atre: a rotation around the axis z;_; of an angle 6;, a
translation along z;_4 of a distance d;, a translation along X; of a distance a; and a rotation about

the axis x; of an angle «;.

c(0) —cla)s(;) s(a)s(0;) a;c(6;)

i_lAi — s@) cla)c(0;) —s(a)c(6) a;s(6y) (3.1)
0 s(ay) c(a;) d;
0 0 0 1
D-H 15.  Obtain the transformation matrix that relates the base coordinate system {Sy} with
the end effector coordinate system {Sg}: T = 0A1 A, n_lAn.

With a total of 6 joints, the homogeneous transformation matrix from the origin of the

reference system {Sy} to the origin of the reference system of the end effector {Sg} is:
T =04, -4, %45 34, *As - °A, (3.2)

D-H 16. This transformation matrix T generates a rotation matrix and a translation vector as

function of every joint coordinate.

This relation between the orientation and position of the end effector and joint
coordinates, is what forms the foundations of kinematic modeling.

Implementation of the Denavit-Hartenberg was programed in Code 3.
Jacobian matrix

With a 7 X 6 dimension, it is declared and calculated in Code 5. It has the form:

O . Ox

0q, 09
J=|: -~ (3.3)
Ofa . Ofa
0q, 09
7X6
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3.1.1.1 Simulink direct kinematic model subsystem

The inputs of this subsystem are the current joint angles, velocities and accelerations.
These are processed separately in three different function blocks, one to obtain the equivalent
current pose, another to obtain the current pose velocity and finally a block to obtain the current

pose acceleration. These three are the outputs of the subsystem.

(1 } P q_cur 4‘ p_cur

g_cur (6x1) fdirkin p_cur (7x1)

Direct Kinematics
(Pose)

P q_cur pd_cur

pd_cur (7x1)

y

qd_cur fdirkinvel J

D

qd_cur (6x1)

Direct Kinematics
(Velocity)

Au
| . | .
> dJdt

4 pdd_cur

qd_cur fdirkinacc pdd_cur (7x1)

(3} »|qdd_cur

qdd_cur (6x1)

y

Direct Kinematics
(Acceleration)

Figure 3-11. Direct kinematic model subsysten.

To observe the internal code of each function block, they can be found at the code
appendix: Code 4, Code 6 and Code 7.
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3.1.2 Validation of the direct kinematic model

The validation method proposed for this direct kinematic model code is the comparison
with the results of RobotStudio by inserting arbitrary joint angles. By means of the FlexPendant
tool, it is possible to simulate a direct control of the robot with the help of a virtual control panel,

emulating the panel of the real robot.

A new solution is created with a station and a controller, and the ABB IRB 140 is selected
in the Robot model tab.

Solution with Station and Robot Controller

Stations
Solution Name
@ Solution with Empty Station Solution1
Location:
- Solution with Station and Robot Controller | C:\Users\JAR"\Documents'Robot Studio\ Solutions C]
§ Creates a solution containing a station and a robot controller. Available robot
models are listed to the right. | Cortraller
Name
Empty Station
EB. Creates an empty station. IRE_140_8kg_0 &1m
Location:

CiUsers*JARYDocuments'\Robot Studio® Solutions Solution 1\ Systems

Files @ Create new
— . RobotWare: Locations...
o RAPID Module File
& Creates a RAPID module file and opens itin the editor [G.DB.D'I.DD v]
Robot model
L_ Controller Configuration File [IHBWMGKQD'BW ']
J Creates a standalone configuration file and opens it in the editor [7] Customize options
() Create from backup

Figure 3-12. New solution menu on RobotStudzo.

At the main window, clicking on Controller, the button that starts the manual controller in
FlexPendant can be found.

VDH9-6-F-5

M Home Modeling Simulation Controller RAPID Add-Ins

m a8 0GRy, %68 = F

Add R Authenticate | Restart Backup Inputs/ Ewents File  |[FlexPendant| Online Signal Analyzer Jobs
Controller = | Write - - Outputs Transfer - Maonitor Online

Access Contraller Tools

Figure 3-13. RobotStudio menn with FlexPendant highlighted.

Three independent tests have been generated with different random joint angle values
and introduced in both RobotStudio and the MATLAB function (Code 4).
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3.1.2.1 Testno.1

— Manual Motors On
= v @é JAR-PC Stopped (Speed 100%)
&£ Jogging
— Tap a property to change it Position
Mechanical unit: ROB_1... 1: 28.79 ©
Absolute accuracy:  Off 2; -34.07 ©
3: 19.54 °©
Motion mode: Axis 4 - 6... 4: 7.62 °
. . 5: 38.93 °©
Coordinate system: Base... 6 56.38 ©
Tool: toolo0...
Work object: wobj0... Position Format...
Payload: loado... Soystick diractions
Joystick lock: None...
o 2o
Increment: None...
5 4 6
Align... Go To... Activate...

% Production
=1 Window

Figure 3-14. Test no. 1. Joint angles.

g0

deg2rad([28.79 -34.07 19.54 7.62 38.93 56.381");

-0 H
'{_1 ‘._ﬁ‘.

Hold Te'Run

— Manual Motors On
= v @é JAR-PC Stopped (Speed 100%)
£, Jogging
— Tap a property to change it Position " o
Mechanical unit: ROB_1... ;2:5"]0”5 i eoar ivs\igtIOBwerc:]m
Absolute accuracy:  Off Y: 146.93 mm
z: 719.02 mm
Motion mode: Linear... ql: 0.35529
. . q2: 0.22026
Coordinate system: Base... 3 0.80953
Tool: toolo... q4: 0.41221
Work object: wobj0... Position Format...
Payload: loado... "~ Soystick directions
Joystick lock: None...
Y
Increment: None...
XY 2
Align... Go To... Activate...

é Production
=1 Window

Figure 3-15. Test no. 1. Pose.

The results of the function are:

p _cur =

OO OO O oo

.256169020979862
.146951811198975
.719041733432580
.355266700974361
.220219321995462
.809549214980808
.412212433003434

37




Chapter 3. Implementation and results.

3.12.2 Testno.2

— Manual Motors On
=V @& JAR-PC Stopped (Speed 100%)
£ Jogging
— Tap a property to change it Position
Mechanical unit: ROB_1... 1 -79.56 ©
Absolute accuracy:  Off 2 -39.46 °©
3 -144.26 °©
Motion mode: Axis 4 - 6... 4 71.05 °©
N 5 84.59 ©
Coordinate system: Base... 6 62.73 ©
Tool: tool0...
Work object: wobj0... Position Format...
Payload: loado... ~Soystick diractions
Joystick lock: None...
Y
Increment: None...
5 4 6
Activate...

Figure 3-16. Test no. 2. Joint angles.

g0 = deg2rad([-79.56 -39.46 -144.26 71.05 84.59 -62.731");

— E]O Manual Motors On =] X
=V 7=y | 1aR-PC Stopped (Speed 100%)

&£, Jogging
— Tap a property to change it it " oh
. . Pasitions in coord: WorkObject
Mechanical unit: ROB_1... X: 238.68 mm

Absolute accuracy:  Off ¥: 547.55 mm
Z: 625.82 mm
Motion mode: Linear... ql: 0.27027
" . q2: -0.58419
Coordinate system: Base... q3: 0.02088
Tool: tool0... q4: -0.76501
Work object: wobj0... Position Format...

Payload: load0...
Y — Joystick directions

Joystick lock: None...

Increment: None... XY 2z

Go To... Activate...

Figure 3-17. Test no. 2. Pose.

The results of the function are:

-0.038652641991809
0.547532574301628
0.625862378140839
0.270294220765169

-0.584219321953463
0.020946045331934

-0.764977176955064
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3123 Testno.3

— Manual Motors On 3]
= v @é JAR-PC Stopped (Speed 100%)
£ Jogging
— Tap a property to change it Position
4 Mechanical unit: ROB_1... 1: -16.15 ©
Absolute accuracy:  Off 2 34.64 ©
3: -9.11 ©
Motion mode: Axis 4 - 6... 4: 113.11 ©
. 5: 46.53 ©
Coordinate system: Base... 6: 7267 ©
Tool: tool0...
Work object: wobj0... Position Format...
Payload: loado... Soystick directions
Joystick lock: None... . . .
Increment: None... 5 4 6
Go To... Activate...
RDB_‘l'_‘
% @

Figure 3-18. Test no. 3. Joint angles.

g0 = deg2rad([-16.15 34.64 -9.11 113.11 46.53 -72.671");

— @3 Manual Motors On = x
—
— v ] JAR-PC Stopped (Speed 100%)

£ Jogging
— Tap a property to change it Position " b
4 Mechanical unit: ROB_1... Pxo:sltlons in coer ‘6\'5\{{605]9::]“1
Absolute accuracy:  Off Y: -143.58 mm
Z: 481.86 mm
Motion mode: Linear... ql: 0.54264
" . q2: 0.15854
Coordinate system: Base... q3: 0.70326
Tool: tool0... q4: 0.43108
Work object: wobj0... Position Format...
Payload: loado... ~Soystick directions
Joystick lock: None...
Increment: None... XY Z
Align... Go To... Activate...

roduction “ﬂﬂ_‘l’_\
indow s (7,

Figure 3-19. Test no. 3. Pose.

And finally, the results of the function in this test are:

p_cur =

.651650430407853
.143535605813641
.481847014812847
.542604000206256
.158528784053503
.703280404944469
.431098823482308

O OO OO oo

Hence, the function is validated and prepared for later use.
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3.1.3 Obtention of the inverse kinematic model

The homogeneous transformation matrix T serves for basis as well for the inverse
kinematic model. This time, joint coordinates are the unknown variables and the goal is to reach
a certain pose state. A system of 12 non-linear equation is generated (9 from the rotation matrix
and 3 from the translation vector) with 6 variables (g1, 42, 43, 4, qs, ¢), so that 6 of those 12
equations are linearly dependent.

x = f(q1, . q6) y= fy(fh» s G6) z = f,(q1, -, q6)

(3.4)
Ry = fRn(Ch' v qg) Riz= lez(CIL wyQe) o Rz3 = fR33(q1, vy qe)

This situation implies that the non-linear equation system must be solved through
numerical methods, instead of preconstructed algorithms. The selected method is the MATLAB
function f£solve. It reaches one of the multiple solutions this problem has.

Another issue the robot would face is the limited range of movements all joints suffer.
(Table 3-2) This limitation ought to be included in the model, but the function fsolve does not
admit solution boundaries. However, there will not be any problem derived from this, since the
final movement tests at the end of this master’s thesis will not reach these limit angles, although
any hypothetical work extension should take these into account.

Type of motion Range of movement

Axis 1: Rotation motion +180° to - 180"

Axis 2: Arm motion +110° to - 90°
Axis 3: Arm motion +50° to - 230"
Axis 4: Wrist motion +200° to - 200° Default
+ 165 revolutions to - 165 revolutions Max. !
Axis 5: Bend motion +115°to - 115°
Axis 6: Turn motion +400° to - 400° Default

+ 163 revolutions to -163 revolutions Max. i

Table 3-2. Joint angle limits for the ABB IRB 140. [1]

A similar scenario happens with the joint velocity limits, although the kinematics of the
robot make it simpler: It exceeds joint velocity limits or not. These neither have been
implemented for the sake of simplicity (Table 3-3).

Axis No. IRB 140-6/0.8 IRB 140T-6/0.8
1 200°/s 250°/s
2 200°/s 250°/s
3 260°/s 260°/s
4 360°/s 360°/s
5 360°/s 360°/s
6 450°/s 450°/s

Table 3-3. Joint velocity limits for a 3-phase power supplied ABB IRB 140. [1]
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The Simulink schematic of the inverse kinematics model subsystem is:

D

g_cur [6x1]

q_cur [6x1]

p_des [7x1]

q_des [6x1]

D

q_des [6x1]

p_des [7x1]
Inverse Kinematics

»D

qd_des [6x1]

q_des

qd_des

pd_des finvkinvel J

pd_des [7x1]

Inverse Kinematics
(Velocity)

P qd_des
»J
‘ qdd_des »{ 3 )
> % —P dJdt finvkinacc qdd_des [6x1]
( 4 ) P pdd_des
pdd_des [7x1]

Inverse Kinematics
(Acceleration)

Figure 3-20. Inverse kinematics model subsystem.

A mechanism is designed for the inverse kinematics subsystem for pose calculation,
which allows not to recalculate new joint coordinates if the pose remains unchanged, saving this

way computation time. The mechanism is as follows:

(D qld if(u1 == 1)
=Dy if(ut ==1
p_des [7x1] 4 equall—pfur n i )qu
f else f---- e
b M fcome | merge
— ; If desired pose i q_des [6x1]
Last iteration Vector Comparator ' is still the same
pose
else {}
P p_des q_des
q_cur [6x1] I
1) Plg_cur  qg_des (as well)

If desired pose has changed

Figure 3-21. Anti-recalenlation mechanism.

The current pose and that of the previous time step are compared (Code 8) if they are not
the same a new joint coordinates vector q is calculated. On the other hand, if they are equal, it

carries the last calculated g to the output without processing it again.
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if(ul == 1)

Action Port

D

in out

Figure 3-22. 1f both pose vectors are equal subsysten.

else {}
Action Port
— (1)
q_des
Interpreted .
MATLAB Fcn

o our Inverse kinematics

q_des (as well)

Figure 3-23. Else (both pose vectors are not equal) subsystenm.

The scripts for the inverse kinematic model are Code 9, Code 10 and Code 11.
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3.1.4 Validation of the inverse kinematic model

The same 3 tests used at section 3.1.2 have been performed again on this task and its

results are shown below.

3.1.4.1 Testno.1

Entering the input vector, featuring pose coordinates and starting joint angles:

.256169020979862;
.146951811198975;
.719041733432580;
.355266700974361;
.220219321995462;
.809549214980808;
.412212433003434;

input = [

Ne Ne Ne N

cleoNeoNoNoNoNoNoNolololNolNo)

N,
~e

The resulting joint angles (converted to degrees) necessary to reach them are the
following:

g _des =

28.789999998961303
-34.070000000785029
19.540000000894274
7.620000001600972
38.930000000019035
56.379999998312144

3.1.4.2 Testno.2

Pose coordinates:

input = [-0.038652641991809
0.547532574301628
0.625862378140839
0.270294220765169
-0.584219321953463
0.020946045331934

0.764977176955064

’

o N

~e

OO O OO o |
~
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Joint angles (converted to degrees):

g _des =

-79.5600000000176
-95.3067957443123
-35.7399999982214
82.6735661715858
71.6844008779341
-115.1240977575642

This time the solver reaches a different solution although perfectly valid, since after
introducing these values back into the direct kinematics function, it shows the initial pose
coordinates again.

3.1.4.3 Testno.3

Pose coordinates:

input = [0.651650430407853

-0.143535605813641
.481847014812847
.542604000206256
.158528784053503
.703280404944469
.431098823482308

O OO OO OO o oo
Ne Ne Ne Ne N

(@}
~

Joint coordinates.

g _des =

-16.1499999999874
34.6399999999286
-9.1099999998241
-66.8899999998916
-46.5300000000301
107.3299999998540

Once again, the joint coordinates do not match with their original values, showing
another geometrical possibility to reach the pose.

All tests pass, validating the inverse kinematics function.
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3.2 Robot dynamics

3.2.1 Calculation of masses and inertia of the links

Each of the links of the robot has a particular geometry, which with the combination of
internal elements (actuators, brakes, wiring) generates a highly complex three-dimensional model.

CAD models of this complex depiction are not published by ABB due to reasons of
confidentiality, nor are the masses of each link. That is why the decision to obtain the masses and
inertia of the links from the simplified solid CAD model was made.

Starting from a known fact, which the total mass of the robot, 98 kg, and assuming a
constant and homogeneous density, it is possible to make a proportional estimate of the mass of
each of the links. SolidWorks allows the user to know the volume of the links. The proportion of
an element's volume with respect to the robot's total volume is multiplied by the total mass to
offer an estimated link mass value.

Miink = Motal ;l:::l (3.5)

Link Volume [mm?3] Proportional mass [kg]
Base 12405874,57 26,3635884

1 16262913,55 34,56013977

2 7528223,81 15,99814611

3 7989940,24 16,97933464

4 1759858,35 3,739855737

5 143038,24 0,303969

6 25865,43 0,054966342
Sum 46115714,19 98

Table 3-4. Estimated link masses.
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3.2.2 Modeling of the ABB IRB 140 robot in SimScape Multibody
3.2.2.1 Preparation of the CAD models of the links prior to insertion

A physical model of the robot arm is assembled, based on the CAD models of each of
the links, which are downloadable on the ABB website.

The origins of the coordinate systems of every CAD model have had to be repositioned,
making then coincide with those of the Denavit-Hartenberg algorithm. SolidWorks has been

used in this task.

Figure 3-24. Excample of a modified origin of coordinate system. Link 2 with {S,}

3.2.2.2 Inicialization of the SimScape Multibody model

The model is underlied by three initialization blocks. The first declares the solver to be
executed in the numerical resolution of the mechanism and the modifiable parameters associated
with it. The second block denotes the origin of global coordinates. Finally, the third defines the

configuration of the mechanism: the gravity vector and the linearization delta.

Mechanism | o® #

Config Origin f(x)=0

T 7T

Figure 3-25. SimScape model initialization blocks: Solver configuration, Origin declaration and Mechanism
configuration.
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3.2.2.3 Loading and inserting the CAD models of the links

The block used to load the link CAD models is the File Solid block. It allows to modify
its mass, in order to automatically establish its inertia around the local coordinate system that was
modified in 3.2.2.1.

The estimated mass is entered numerically on the corresponding tab without calling it
from the Workspace, because doing so slows down the execution significantly.

("3 FteSolie- Link1 oo s
Description 2w+ QlEd @dIIng @,

Represents a solid whose geometry, material and visual properties are read from a file
which could be of CATIA, MNX, SolidEdge and other formats. See reference page for the full
list of formats supported. The File Solid block obtains the inertia from the geometry and
density, from the geometry and mass, or from an inertia tensor that you specify.

In the expandable nodes under Properties, select the types of inertia, graphic features, and
frames that you want and their parameterizations.

Port R is a frame port that represents a reference frame associated with the geometry. Each
additional created frame generates another frame port.

Properties
File Name KX:\Google Drive\Master . 3° Cuatrimestre\Trabajo Fin de Ma...
Unit Type From File -
Type Calculate from Geometry -
Based on Custom Mass -
Mass 34.56013977 [kg -
= Derived Values [ Update ]
Density 2125.09 kg/m”~3
Center of Mass [-0.0419443, 0.0886819, 0.0438186] m
Moments of Inertia |[0.508524, 0.456961, 0.461318] kg'm”2
Products of Inertia [0.068918, -0.00146701, 0.0523087] kg*m”2
Type From Geometry -
(=] Visual Properties Simple -
Color 108040.0] —
Opacity 1.0
Show Port R
Mew Frame ‘ |

|

Figure 3-26. File Solid block for Link 1.
3.2.2.4 Transformation of coordinate systems

Each set of translation/rotation Rigid Transform blocks transforms the cutrent local
coordinate system into the next coordinate system of the Denavit-Hartenberg algorithm.

Each individual block represents a rotation or translation, never both at the same time, in
order to avoid executions in an undesired order and facilitate a better understanding of the block
algebra.
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3

I):_'t‘ Rigid Transform : Translation Z: d3 Translation X: a3 EI@

Description

Defines a fixed 3-D rigid transformation between two frames. Two components independently specify
the translational and rotational parts of the transformation. Different translations and rotations can be
freely combined.

In the expandable nodes under Properties, choose the type and parameters of the two transformation
components,

Ports B and F are frame ports that represent the base and follower frames, respectively. The
transformation represents the follower frame crigin and axis orientation in the base frame.

Properties

B Rotation

B Translation
Method Cartesian -

Offset [DHO(3,3) 0 DHO(3,2)] [m -

Apply

Figure 3-27. Rigid transform block for translation along Z3.
3.2.2.5 Joint declaration

Ultimately, the Revolute Joint block generates an articulation around the z axis of a local
coordinate system. All robot joints can be modelled with this block, for all joints are rotational.

@ Revolute Joint: g1 - O X

Description

Represents a revolute joint acting between two frames. This joint has
one rotational degree of freedom represented by one revelute
primitive. The joint constrains the origins of the two frames to be
coincident and the z-axes of the base and follower frames to be
coincident, while the follower x-axis and y-axis can rotate around the
z-axis.

In the expandable nodes under Properties, specify the state, actuation
method, sensing capabilities, and internal mechanics of the primitives
of this joint. After you apply these settings, the block displays the
corresponding physical signal ports,

Ports B and F are frame ports that represent the base and follower
frames, respectively. The joint direction is defined by motion of the
follower frame relative to the base frame.

Properties
State Targets
Internal Mechanics
Limits
Actuation

omposite Force/Torque Sensing

oK teip| [BERR

Figure 3-28. Revolute Joint block.

Between the many options available in this block, the most important and used in this
paper are the physical inputs to be put in and those that should be obtained at the end.
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3.2.2.6 Torque limitations

Like every real system, inputs are limited to a specific range. Joint electric motors can only
provide up to a certain amount of torque in one direction or another. The rate at which these
torques change is also limited. However, the only information available at the product
specification document is the maximum torques at joints 4, 5 and 6.

Robot type Max wrist torque |Max wrist torque | Max torque valid at
axis4and 5 axis 6 load
IRB 140(T)-6/0.8 8.58 Nm 4.91 Nm 5 kg

Table 3-5. Maximum torques at joints 4, 5 and 6. [1]

These have been included in the model as Saturation and Rate Limiter blocks, whose
numerical values are called from Workspace.

tau [6x1]

\\T\\\
NN

Figure 3-29. Saturation and Rate Limiter blocks for every joint motor.

Given that the actuator features are confidential, modelling these from scratch would
represent an arduous task. Thus, approximate values for their constraints have been assumed:

Joint actuator Saturation limits [N - m] Slew rate limits [N - m/s]
1 [—150,150] [—105, 10°]
2 [—150,150] [—105,10°]
3 [-150,150] [-10°,10°]
4 [-8.58,8.58] [-10°,10°]
5 [~8.58,8.58] [—105,10°]
6 [—4.91,4.91] [—105,10°]

Table 3-6. Assumed saturation and slew rate limits for all joint actnators.
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Then these non-linear limited torques are introduced in the revolute joint blocks, which
in the proper D-H configuration that defines the robot spatially, throw the current vectors of

joint angles (q), joint velocities (¢) and joint accelerations (§).
3.2.2.7 ABB IRB 140 full system diagram

The whole system is presented in Figure 3-30. Its inputs are torques and its outputs are
joint angles, joint velocities and joint accelerations.

Base

o
i

Link 1

F R’J"
Ll / / /
Retation Z: thetal Translation Z: d1 Rotation X: alpha
f q Translation X: a1
B
I
—————bh > i
L E— R e a—
‘ 1
e
@ [ o ox1]
R
‘ Link 2
' B'-/'{F. 1
L / ‘ / s
| Rotation Z: theta2 Translation Z: 02 |Rotation X: alpha2
1 'l Translation X: a2
B
‘ ol
Q@2
- e
e |
‘ | el T n""
Ll 7 p p
Rotation Z: theta3 Translation Z: d3 | Rotation X: alpha3 = - - e
q l Translation X: a3 I I
B
—0— 0 — £ w
' |
—A : — | e &R
—EA : '
o
Link 4
u 1 7
Sl REARR R il e By
4@_@_. e o Rotation Z: thetad Translation Z: ¢4 | Rotation X: alphad
—>— Transiation X: 34
| ;! =
=4 >
< \
! [ | 1 | ‘
) s L —
’ i I .
o / P, / { | )
o) Rolation Z: theta5 Translation Z:d5 Rolation X: alpha§ add_our (Bx1)
f Transiation X: a5 |
s o
| ‘
]
— |
: |
‘i ’ HV?'(:FV
by / . /
o Rotation Z: theta6 Translation Z- 06 Rolation X: alpha6 Link 6
i a6
¥
I
!
6

Figure 3-30. ABB IRB 140 full system diagram.
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Figure 3-31. 3-D representation of the ABB IRB 140 on MATI.AB.
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3.2.2.8 Model validation

The robot model was tested in order to verify that the end effector positions itself where
it must. The same joint angles of the 3 tests of 3.1.2 have been used. After the introduction of a
column vector of joint angles in degrees, they are converted into radians by the function
deg2rad and fed into the ABB IRB 140 SimScape model block.

_ - - ! Interpreted
[-16.15 34.64 -9.11 113.11 46.53 -72.67] MATLAB Fen q0
Joint Angles [°] Degree to Radians

ABB IRB 140

Figure 3-32. Main schematic for ABB IRB 140 model testing.

This robot block has been modified to accept joint angles as input. A new SimScape-
specific block, the Transform Sensor block, was placed setting the base reference as the origin and
the frame reference as the end effector. The resulting pose of the end effector is loaded this way

onto the Workspace.
N’;, Origin '2\
¥ 3 Base
A
. . - R.
Link 1
B 8 '/’:r 1a ‘/':r B ‘/‘:r - Rr_"

*r Rotation Z: theta1 Translation Z: d1 Rotation X: alphat
Translation X: al

Link 2

/7 ! 4 A
B B F A vl . R
:f; Rotation Z: theta? Translation Z 42 Rotation X: alpha2

I Translation X: a2

Link 3

ol e - A
a8 8" F 8" F B\ Fl . i
[ > g i’ RotationZ: tete3 TransiaionZ @3 Rotaton X.alphad
] Translation X: a:
> PR f
O—pp—
)
b &gy o
—vl P
Link 4 y—bb—i,—»
a0 > r -
7 7 I
—e ——8"7AF A vali [ [ e ’—'
s if Rotation Z: thetad Translation Z: 4 Rotation X: alphad
I Translation X: 4
a
R
i
Link 5
- ; . 4
B SRV 57, Ff B\ F - Hig
"ft Rotation Z: theta5 Translation Z d5 Rolation X: alpha5
Transiation X: a5
Bq
o5
7 [ [ ()' )
s — 8" A\ F— '/{F 1B Fi Ring
:J‘; Rotation Z: theta Translation 7 d6 Rolation X: alphaé Link

Translation X: a6

Figure 3-33. ABB IRB 140 schematic for model testing.
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e Testno.1
— Manual Motors On
@% JAR-PC Stopped (Speed 100%)

£, Jogging
Qf / — Tap a properly to change it Position

Mechanical unit: ROB_1... 1: 28.79 ©
Absolute accuracy:  Off 2 -34.07 °
3: 19.54 °©

Motion mode: Axis 4 - 6... 4: 7.62 °

- 5: 38.93 ©
Coordinate system: Base... 6: 56.38 ©
Tool: tool0...
Work object: wobj0... Position Format... v " %)
Payload: loado... T B &

— Joystick directions ——— B

Joystick lock: None... b el
Increment: None... 5 4 6 -

Go To... Activate...

=\ E]O Manual Motors On x
—_— =y | IAR-PC Stopped (Speed 100%)

£ Jogging
. / — Tap a property to change it Position
f - Paositions in coord: WorkObject

Mechanical unit: ROB_1... X: 256.18 mm

Absolute accuracy:  Off Y: 146.93 mm
Z: 719.02 mm

Motion mode: Linear... qi: 0.35529

- . q2: 0.22026
Coordinate system: Base... a3: 0.80053
Tool: toolo... q4: 0.41221
Work object: wobj0... Position Format...

Payload: load0...
Y — Joystick directions ———

Joystick lock: None...

Increment: None... XY Z

Align... Go To... Activate...
S
ndow

Figure 3-34. Test no. 1.

The resulting pose is:

p:

0.256169020979863 0.146951811198975 0.719041733432580
-0.355266700974361 -0.220219321995462 -0.809549214980808
-0.412212433003434
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e Testno.2

— E]Q Manual Motors On 5
=V T | Jar-pC Stopped (Speed 100%)

< Jogging
— Tap a property to change it Position
Mechanical unit: ROB_1... 1: _79.56 ©
Absolute accuracy:  Off 2: -39.46 °©
3: -144.26 °©
Motion mode: Axis 4 - 6... 4: 71.05 °
- i 5: 8459 ©
Coordinate system: Base... 6 6273 ©
Tool: tool0...
Work object: wobj0... Position Format...
Payload: loado... ~Soystick diractions
Joystick lock: None...
Increment: None... 5 4 6

Align... Go To... Activate...

_ Production

= window

— @O Manual Motors On = x
— v 7y | JAR-PC Stopped (Speed 100%)

&£ Jogging
— Tap a property to change it

Positi d: WorkoObiject
Mechanical unit: ROB_1... )25' ons in coor —Slastﬁslemm

Absolute accuracy:  Off Y: 547.55 mm
Z: 625.82 mm
Motion mode: Linear... ql: 0.27027
) . q2: -0.58419
Coordinate system: Base... q3: 0.02088
Tool: tool0... q4: -0.76501
Work object: wobjo... Position Format...

Payload: loado... ——

— Joystick directions ————
Joystick lock: None...
Increment: None... XY 2Z

Go To... Activate...

Figure 3-35. Test no. 2.

The resulting pose is:

p:

-0.038652641991810 0.547532574301628 0.625862378140840
-0.270294220765169 0.584219321953463 -0.020946045331934
0.764977176955064
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e Testno.3

— v @O Manual Motors On x
— ) JAR-PC Stopped (Speed 100%)

&L Jogging
— Tap a property to change it Position
Mechanical unit: ROB_1... 1: -16.15 °
Absolute accuracy:  Off 2: 34.64 ©
3: -9.11 °
Motion mode: Axis 4 - 6... 4: 113.11 ©
. 5: 46.53 °©
Coordinate system: Base... 6: 7267 ©
Tool: tool0...
Work object: wobj0... Position Format...

Payload: load0...
Y — Joystick directions ——

Joystick lock: None...

Increment: None... 5 4 6
Align... Go To... Activate...
di ROB_1
— Manual Motors On |
= v @% JAR-PC Stopped (Speed 100%) x
& Jogging
— Tap a property to change it PPo_ziﬁon I
4 Mechanical unit: ROB_1... )ESI ons in coer Esitﬁslemm
Absolute accuracy:  Off Y: -143.58 mm
Z: 481.86 mm
Motion mode: Linear... ql: 0.54264
) ] q2: 0.15854
Coordinate system: Base... q3: 0.70326
Tool: tool0... q4: 0.43108
Work object: wobj0... Position Format...
Payload: loado... ~Soystick directions
Joystick lock: None...
Increment: None...
XYy z

Go To... Activate...

Figure 3-36. Test no. 3.

The resulting pose is:

p =

0.651650430407853 -0.143535605813641 0.481847014812847
-0.542604000206256 -0.158528784053503 -0.703280404944469
-0.431098823482308

All poses obtained come very close to the values calculated by RobotStudio up to the
fifth decimal place in most cases. The model can be considered therefore valid. Note: The sign of
some quaternions is switched, which make them still equivalent.
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3.2.3 Newton-Euler algorithm

The dynamic model of the ABB IRB 140 has been wholly obtained through Code 12.
Although the Newton-Euler algorithm achieves a higher performance than other methods, it has
the inconvenience of not generating cleatly defined matrices such as M(q), C(q,q) and G(q),
these must be extracted separately. This is accomplished with the MATLAB function to convert

linear equation systems into their matrix form equationsToMatrix.

The size of the matrices is large enough not to fit on the display screen and the use of the
function diary is necessary. It exports the matrices to a text file to subsequently copy and paste
them to the Computed Torque Controller function (Code 13)

3.2.4 Verification of the Newton-Euler algorithm

In order to test the validity of the code, a simpler 2-link mechanism was developed,
following the example 11.2 of [10]. (Figure 3-37)

Figure 3-37. 2 d.o.f. robot for the verification of the N-E algorithm. [10]

Following the same steps as in 3.2.2, a simple 2-link robot was modelled on SimScape
(Figure 3-38). All its properties can be found in Code 15.
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Figure 3-38. 2-link robot SimScape schematic.

Figure 3-39. 3-D representation of the 2-link robot for testing.
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This SimScape model is placed inside a control loop (Figure 3-40) that includes a
Computed Torque Controller (Code 16) to which the matrices of the dynamic model of the 2-

link robot have been added.

A joint coordinates generator provides a generic joint trajectory to just serve as test.

q_des »

@—D u * qd_des > pl des

des

qdd_des >

Joint Coordinates fCTC_2Link

Generator

q_err

qd_err

tau1

—»
tau2
Computed Torque Controller

qd

Robot

qdd

Figure 3-40. Implementation of the 2-Link Robot CTC control loop.

The resulting joint angle errors are:

Plot 3-1. 2-link robot control loop. Joint angle errors in radians (vellow: qy, blue: q;).

Results that match with those in [10]. Errors tend to zero due to the equivalence between
the dynamic behavior of the SimScape model and the dynamic equations generated by Code 14.
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0.06 -
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Plot 3-2. Joint angle errors present in Example 11.2 of [10).
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3.3 PID Controllers

Given that the input variables in the ABB IRB 140 are the joint torques, there can be only
6 PID mechanisms, one for each torque. This means only the 6 desired joint positions, the 6
desired joint velocities or the 6 desired joint accelerations can be used in the controller.

The high non-linearity of robots and complexity of the actuators could make the process
of designing PIDs and the identification of the robot system parameters as complex as one would
like to delve into it.

This section develops a series of PID controllers, tuned by the MATLAB tool PID Tuner
under certain time constraints. The main objective is to obtain fairly good performances that
could serve as comparison to the CTC Controller.

3.3.1 Initialization of PIDs and obtention of these initial torque values

Due to the initial robot configuration, the integral part of the controllers was initialized at
the required torques to keep the robot in that initial configuration. The calculation of these
necessary values is performed by modifying the joint blocks, so they receive an “angle signal” and
throw the corresponding torque in response.
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‘—n F Sl Sl B2 F gl
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Figure 3-41. Robot schematic for the calculation of the initial torgues.
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q0 P q0 tau0 tau0

ABB IRB 140

Figure 3-42. Schematic for the caleulation of initial torgues.

These torques are then extracted and copied on the initialization code for the PID loop.

3.3.2 PID tuning

Making now use of the PID Tuner app integrated on MATLAB, the software linearizes
the robot model at home position (zero joint angles) and identifies its parameters to recommend
Ky, K; and K values for the PID controllers.

N

—P@—b Error q tau P tau q » tau0

PID Controllers

ABB IRB 140

Figure 3-43. Simplified closed-loop with PID controllers and Robot System.

The g vector is demuxed for the block to be able to feed each joint angle signal to its
correspondent PID. The output vector of torques is then muxed again, acting this vector as

output.
> PID(s) >
PID g1
> PID(s) >
PID q2
»{ PID(s) >
CO— PID &8 (D
q_err tau
P PID(s) >
PID g4
> PID(s) >
PID g5
> PID(s) P
PID g6

Figure 3-44. PID battery block content

After placing the robot system block inside a closed loop with the controllers, simply by
clicking Tune in the PID block properties (Figure 3-45), it automatically calculates and offers a set
of parameters for the controller (Figure 3-40).
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Block Parameters: PID gl
PID 1dof (mask) (link) I

This block implements continuous- and discrete-time PID control algorithms and includes advanced features such as anti-
windup, external reset, and signal tracking. You can tune the PID gains automatically using the Tune..." button (requires
Simulink Control Design).

Controller: |PID '] Form: [Parallel

Time domain: Discrete-time settings
© Continuous-time

- Sample time (-1 for inherited): |-1
©) Discrete-time

¥ Compensator formula

P+I£+D N 5

S 14N
5

Main | Initialization | Output Saturation | Data Types | State Attributes

n

Controller parameters

Source: [intemal - ]
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Integral (I): 0.124899535893294

= @ =

Derivative (D): 3.50001369051622
Use filtered derivative

Filter coefficient (N): 999999999 @

Automated tuning

Select tuning method: [Trans‘fer Function Based (PID Tuner App) '] I Tune... I

Enable zero-crossing detection

[ OK ][ Cancel ][ Help ] Apply

Figure 3-45. PID block parameters.
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Figure 3-46. Example window of the PID Tuner.
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3.3.3 Final PID values

An aggressive PID design was attempted, setting the response time for each closed-loop

system to 0.01 seconds. The resulting PID parameters are shown in the following Table 3-7.

PID K, K; K, N
1 | 13875.5679812054 | 136120.974518283 | 347.129456680199 | 1090.79405084324
2 | 35554.9091580814 | 399521.426748228 | 745.761367338793 |729.364813354201
3| 4941.70226164605 | 51928.4446602287 | 113.296542117102 | 729.364813354201
4 | 55.9972754306752 | 527.478956238882 | 1.45998670887717 |1090.79405084324
5 | 3.04185650253597 | 29.2717188604941 | 0.0776376501943788 |1090.79405084324
6 | 0.0949261549260263 | 0.895070977633301 | 0.00247254567688776 | 1090.79405084324

Table 3-7. PID parameters.

63




Chapter 3. Implementation and results.

3.4 Computed Torque Controller

A MATLAB function block was programmed, containing this control method. For the
sake of simplicity, the block receives a common value of bandwidth w for all joint actuators from
Workspace, plus the desired joint coordinates, their derivatives and the current joint coordinates
and their derivatives.

The current and desired values of joint angles, velocities and accelerations are then
substituted in the vast symbolic expressions of matrices M, C and G to obtain the numeric
versions of these matrices. Then the control law is stated in order to extract the desired torques
to exert in each joint.

Q=M@"|§* + K, (¢ — ¢ + K,(qg" — M| + C(q*, ¢"q" + G(¢") (3.6)

The implemented function can be found in Code 12.

3.5 Full system implementation and results

Following the schematic proposed in Figure 1-5, all blocks have been positioned, forming
the schematic depicted in Figure 3-47.

The selected testing trajectory is the following: Starting from a home position where all
joint angles are zero, the robot should move to a point in front of it (same Y-axis value), draw a
circle inside the xy plane starting and finishing at the same point. Then return to home position
and wait 1 second. Repeat this process twice with different circle radii.

Movement Description

=

From Home to Initial Point of Circle 1 (small)

Tracing of Circle 1

From Initial Point of Circle 1 to Home

Wait 1 second

From Home to Initial Point of Circle 2 (medium)

Tracing of Circle 2

From Initial Point of Circle 2 to Home

Wait 1 second

O (R (| |Ul | (W

From Home to Initial Point of Circle 3 (large)

[y
o

Tracing of Circle 3

p
e

From Initial Point of Circle 3 to Home

Table 3-8. Testing trajectory broken down in movements.

A new block was added that finds the pose errors produced, in other words, the
difference between the setpoints and the actual pose reached by the robot in the simulation. This
MATLAB function block corresponds to Code 17.

After simulation, many key variables will be sent to Workspace and saved as .mat files.
Operating with some of them through a script, the goal is to obtain some parameters of interest
such as pose errors and input torques.
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Figure 3-47. Full system schematic for a Computed Torgue Controller under RobotStudio data.
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3.5.1 Full system model with RobotStudio data as input and a Computed Torque
Controller

After first contact with the software, building a time-dependent setpoint signal that could
be replicated later on MATLAB did not seem a trivial task. For this reason, it was decided to
build the testing trajectory on RobotStudio without being bounded to time requirements. The
results would be extracted and used as setpoints for the MATLAB model, to see how the results
of the latter can approach to the firsts.

All positions and orientations forming pose vectors were represented on RobotStudio
and rearranged to shape the desired testing trajectory. The result was converted into RAPID code
in Code 19 and is shown graphically in Figure 3-48. Speed of the end effector was set at v300
(300 [mm/s]) and precision at fine (the best the robot can achieve).

Figure 348. Spatial representation of the testing trajectory on RobotS tudio.

Before running the code, simulation options were optimized to get more accurate results
with a lower timestep which would result in more samples. (Figure 3-49). Unluckily, the lowest
sampling time available is not guaranteed and higher than desired, which leads to imprecise
depiction of the real motion of the robot. In addition, RobotStudio limits the information that
can be extracted from simulations. For example, exerted torques of any kind or individual joint
powers are not an option in the list of extractable signals. For this reason, the final set of relevant
signals extracted from simulation was:
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e Pose vectors (position and orientation)
e Joint angles

e Total power

Simulation Clock

General Simulation speed

Appearance Simulation speed relative to real time.

Licensing

[] Asfast as possible

Units
Advanced 100%
Autosave

Filzs & Folders Simulation timestep

Specify approximate simulation timestep. Exact step depends on controller
Screenshot configuration.

ScreenRecorder
12ms Q
Robotics

TextEditer Specify physics simulation timestep. A higher value will result in faster but less
RAPID Prafiler accurate physics simulation.

Graphical programming Ims m
Synchranization
Mechanism
Virtual Controller

Online

Figure 3-49. RobotStudio simulation configuration menn.
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Figure 3-50. RobotStudio signal setup menu.

The signals were then stored in an Excel file and later converted into a .mat file, the
native extension developed by MATLAB to store variables. The file was named
RobotStudio_rawdata.mat and saved in the same folder as the main scripts.
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Since the collected data are discretized and only count with the pose vectors (Table 3-9),
the first issue comes with the calculation of accelerations. A double derivative of discretized
positions along short time steps results in extremely abrupt acceleration values that are not

accurate.
Time y 1 Total Power ql q2 q3 qd X Energy
0,000 0,000 712,000 2,395 0,707 0,000 0,707 0,000 515,000 0,000
0,048 0,000 712,000 2,395 0,707 0,000 0,707 0,000 515,000 0,000
0,072 0,000 712,000 2,395 0,707 0,000 0,707 0,000 515,000 0,000
0,096 0,000 709,598 15,463 0,704 0,000 0,711 0,000 516,707 1,434
0,120 0,000 704,019 35,196 0,695 0,000 0,719 0,000 520,595 2,329
0,144 0,000 698,010 32,255 0,686 0,000 0,727 0,000 524,665 3,103
0,168 0,000 691,944 31,261 0,677 0,000 0,736 0,000 528,650 3,854
0,192 0,000 685,824 28,149 0,668 0,000 0,744 0,000 532,551 4,529
0,216 0,000 679,650 27,578 0,659 0,000 0,752 0,000 536,367 5,191
0,240 0,000 673,424 27,050 0,649 0,000 0,760 0,000 540,097 5,840
0,264 0,000 667,147 26,492 0,640 0,000 0,768 0,000 543,740 6,476
0,288 0,000 660,819 25,943 0,630 0,000 0,776 0,000 547,296 7,099
0,312 0,000 654,443 25,408 0,621 0,000 0,784 0,000 550,763 7,708
0,336 0,000 648,019 24,855 0,611 0,000 0,792 0,000 554,141 8,305
0,360 0,000 641,549 24,309 0,601 0,000 0,800 0,000 557,429 8,888
0,384 0,000 635,034 23,760 0,591 0,000 0,807 0,000 560,627 9,459
0,408 0,000 628,475 23,240 0,580 0,000 0,814 0,000 563,734 10,016
0,432 0,000 621,873 22,716 0,570 0,000 0,822 0,000 566,749 10,562
0,456 0,000 615,229 22,189 0,560 0,000 0,829 0,000 569,672 11,0594
0,430 0,000 608,545 21,659 0,549 0,000 0,836 0,000 572,502 11,614
0,504 0,000 601,823 21,131 0,538 0,000 0,843 0,000 575,238 12,121

Table 3-9. RobotStudio raw data extract.

The proposed solution to overcome this inconvenient was to interpolate all 7 pose
components using the Curve Fitting Tool, another app present in MATLAB. It allows to
interpolate different vectors through numerous interpolating algorithms. The algorithm selected
for this specific problem was the Shape-preserving (PCHIP) interpolant, resulting in nice fitting
approximations all along the simulation results.

In order to implement these interpolations on Simulink, an Interpreted MATLAB
Function was declared, calling the function present in Code 20. This function calls the
interpolated data in the form of cfit and substitutes values in them.

T ComeringToal =Te s
Fie Ft View Toos Destlop Window Help xax
v ol WA DR A E o Bma0
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Iterpetant - 7l a2
Fitname: 1
Method: Shape-sresenvng (PCHP)
Wdste: RS deat A L A
9] Cente and scale
Vit Rdetax

Zdstar | fnane)
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RS_data_x
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RS_data_t

Figure 3-51. Interpolation of x-axis results of the RobotStudio simulation using the PCHIP algorithm.
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The resulting desired poses and its derivatives are the following:
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Plot 3-3. Desired interpolated poses extracted from RobotStudio data.
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Plot 34. Pose velocities extracted from RobotStudio data.
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Desired pose accelerations
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Plot 3-5. Pose accelerations extracted from RobotStudio data.

Velocities and accelerations were obtained by placing Simulink derivative blocks at the
end of this Interpreted MATLAB Function block. The result while running inside the full
schematic of Figure 3-47 is far from what was expected. Derivative blocks result highly
problematic with very short time steps. Due to the mandatory condition by the SimScape
Multibody robot system of using a variable-step solver, several bursts in the velocity and
acceleration signals are being generated at the beginning of the simulation, generating
subsequently in the controller large torque signals.

Calculating in advance the pose derivatives and storing them in vectors was not
successful, nor interpolating these preconstructed vectors and introducing them in a function.
Although the Jacobian function for velocities works as expected (Plot 3-6), the derivative of this
function does not. Sudden extreme bursts appear and make the problem unapproachable (Plot
3-7). The most plausible reason is the slight inaccuracies of the interpolated discrete data, that

creates unwanted effects inside the Jacobian that leads the function to lose control.
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Plot 3-6. Joint velocities obtained by the Jacobian function with RobotStudio data.
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Plot 3-7. Joint accelerations obtained by the Jacobian function with RobotStudio data.
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Due to these results, a new way to find the derivative of the joint angles signal was
attempted. This way consists of deriving the pose signal directly by the means of Simulink
derivative blocks, as shown in Figure 3-52.

Uk

zeros(6,1) q_our [6x1] )
q_des [6x1] —e-
p_des [7x1] p_des [7x1] - qdd_des
qd_des [6x1] J At
pd_des [7x1] pd_des [7x1]
pdd_des [7x1] pdd_des [7x1] Rt GRS [l ] E E
RobotStudio Setpoints Inverse Kinematics

Figure 3-52. Precalculation of joint angles q and their derivatives.

Joint velocities and accelerations take now the following form:

15 Joint velocities obtained by direct derivation
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Plot 3-8. Joint velocities obtained by direct derivation with RobotStudio data.
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Joint accelerations obtained by direct derivation
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Plot 3-9. Joint accelerations obtained by direct derivation with RobotStudio data.

Although the sudden bursts in the acceleration signals have been fixed, they still appear to
oscillate. Regardless of this, joint velocities and accelerations, along with the joint angles are
placed at the beginning of the control system (Figure 3-53) to be further tested. Resulting torques
for each joint and pose errors of the end effector are presented in the next sections.
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Figure 3-53. Reduced system schematic for a C1TC with precalculated joint coordinates.
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3.5.1.1 Input torques

w represents the common design bandwidth of the Computed Torque Controller, as
stated in section 3.4. Every plot depicts the torques generated in a certain joint by the CTCs with

different values of w.
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Plot 3-10. CTC Controller with RobotStudio trajectory. Input torgue in joint 1.
Due to the proximity of all signals, a close-up of some areas of the plots will be provided.
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Plot 3-11. CTC Controller with RobotS tudio trajectory. Close-up on input torque in joint 1.
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Plot 3-12. CTC Controller with RobotStudio trajectory. Input torque in joint 2.
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Plot 3-13. CTC Controller with RobotStudio trajectory. Close-up on input torque in joint 2.
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Joint 3 Input Torque
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Plot 3-14. CTC Controller with RobotStudio trajectory. Input torque in joint 3.
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Plot 3-15. CTC Controller with RobotStudio trajectory. Close-up on input torque in joint 3.
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Plot 3-16. CTC Controller with RobotStudio trajectory. Input torque in joint 4.
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Plot 3-17. CTC Controller with RobotStudio trajectory. Close-up on input torque in joint 4.
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Plot 3-18. CTC Controller with RobotStudio trajectory. Input torque in joint 5.
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Plot 3-19. CTC Controller with RobotStudio trajectory. Close-up on input torque in joint 5.
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Plot 3-20. CTC Controller with RobotStudio trajectory. Input torque in joint 6.
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Plot 3-21. CTC Controller with RobotStudio trajectory. Close-up on input torque in joint 6.
As expected, the higher the bandwidth, the more aggressive the control signal becomes.

Nevertheless, there is a shared oscillatory behavior in all bandwidths, most likely caused by the

originally oscillatory behavior of the input pose acceleration signal.
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3.5.1.2 Pose errors

Error [m]

Error [m]

Each of the pose component errors has been represented in an individual plot.
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Plot 3-22. CTC Controller with RobotStudio trajectory. Committed error in X-axis.
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Plot 3-23. CTC Controller with RobotStudio trajectory. Committed error in 'y -axis.
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Plot 3-24. CTC Controller with RobotStudio trajectory. Committed error in Z-axis.
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Plot 3-25. CTC Controller with RobotStudio trajectory. Committed error in quaternion component Q.
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<10 Pose Error in Quaternion Component b
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Piot 3-26. CTC Controller with RobotStudio trajectory. Committed ervor in quaternion component b.
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Plot 3-27. CTC Controller with RobotStudio trajectory. Committed error in quaternion component C.
Bursts in signals are cansed by the equivalence -1=1 in quaternion components.
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Plot 3-28. CTC Controller with RobotStudio trajectory. Committed ervor in guaternion component d.

The spatial errors committed range from zero to 1 mm for all tested bandwidths. Most of
the time much lower. Quaternion components also count with very low errors along the

simulation with maximum errors happening at quaternion component a.

3.5.1.3 Power consumption

RobotStudio also offers the total power consumption of the robot. Although the
individual consumption of each torque is unknown, it still helps to get an impression of the
likeness of the obtained dynamic model and the RobotStudio dynamic model. The power

function has the following form:
P(t) = 1(t) - w(t) (3.7)

Setting w to 100:
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Power consumption [W]
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Plot 3-29. Comparison between the power consumptions of the dynamic model and the RobotStudio model.

There is some resemblance between both plots, however there are two main differences:
some acute offset appears during the whole test and the second half of the circular movement
seems to produce positive power instead of negative (dextrorotatory instead of levorotatory
direction of rotation).

The power needed by the RobotStudio model results higher, which makes sense given
that many phenomena like friction, backlash, mechanical noise among others were not included
in the dynamic model calculated in this master’s thesis. After the addition of these to the dynamic

model, the differences between both power consumption should eventually reach zero.

It has been proven that a Computed Torque Controller can offer a precise control

solution considering inputs coming from a very accurate simulation of the robot arm ABB IRB
140.

However, the quality of the extracted data from RobotStudio leaves a lot to be desired.
Its discontinuity and incapacity of offering velocities and accelerations of the end effector leads
to wobbly input torque signals that do not seem doable for implementation in a real system.

Therefore, a different approach to the control problem was proposed: drafting the pose
vector signals directly. This vector would be time-continuous so it would not suffer from the
same complications as the RobotStudio signals. Its derivatives could be computed
straightforwardly and should suppose smoother torque control signals. The step-by-step
implementation is presented in the next section.
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3.5.2 Full system model with a Trajectory Generator block as input and a Computed
Torque Controller

The proposed structure for the Trajectory Generator block is as follows (Figure 3-54):

i} =
m— | g =

0

Pose Generator

Figure 3-54. Trajectory Generator schematic.

Altogether, the block draws 3 different signals, the desired pose vector, the desired pose
velocities and the desired pose accelerations. The trajectories themselves will be the same as in
the previous section (Table 3-8), although with different execution time: 2 seconds per move.

It starts generating periodic acceleration profiles through two Pulse Generator blocks.
These profiles are integrated twice, obtaining in this manner the velocity and displacement
profiles. The displacement integrator block must be reset to avoid signal overlapping after the
first acceleration profile. The overall goal is to achieve a displacement profile that reaches the unit
at the end of the execution time and then adapt it to fit the geometrical requirements of every

move.

Next, all three profiles are introduced into a MATLAB Function block, which contains all
pose data and creates a continuous and proportional trajectory, forming a vector of poses.
Deriving these, the final output results would be a vector of poses, a vector of pose velocities and
a vector pose accelerations that will serve as input for the robot system.
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Plot 3-31. VVelocity profiles of the Trajectory Generator.

87



Chapter 3. Implementation and results.

Plot 3-32. Displacement profiles of the Trajectory Generator.

The resulting poses and their derivatives are:
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Plot 3-33. Trajectory Generator poses.

88



Kinematic and dynamic modelling of the Robot ABB IRB 140 for the implementation of control algorithms

Desired pose velocities
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Plot 3-34. Trajectory Generator pose velocities.
3 Desired pose accelerations
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Plot 3-35. Trajectory Generator pose accelerations.

However, after implementing this block in the main schematic, a new issue emerges.
Sudden unexpected changes in the Jacobian matrix generate the following joint velocities:
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Plot 3-36. Joint velocities calenlated by the Jacobian function.

In some time intervals, the desired joint velocity for joint number 6 oscillates
anomalously. Checking the internal values of the Jacobian function one can observe that after a
smooth change of 0.001 seconds (column 2 of Table 3-10) in the values of the joint angles
(columns 3 to 8 of Table 3-10), the 4th row of the Jacobian matrix (columns 9 to 14 of Table
3-10) changes the sign of its values.

2167 2.1660 0.0096 0.7465 -0,0247  3.2668e-17 0.8486 00096 -6.4954e-18 -0.5000 -0.5000 -0.0036 -0.5000 -G.5448e-18
2168 2.1670 0.0037 0.7468 -0,0246)  34685e-17 0.8486 00097 6.5063e-18 0.5000 0.5000 0.0038 0.5000 6.5063e-18

Table 3-10. Example of undesired bebavior of the inverse kinematics function for poses generated by the trajectory
Lenerator.

To solve this situation the joint velocities and joint accelerations for this case have been
calculated throughout derivative blocks, as it was done with RobotStudio data.
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25 Joint velocities obtained by direct derivation
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Plot 3-37. Joint velocities calenlated by straight pre-derivation of the joint angles.

The result is the removal of the problematic oscillation and generation of a clean vector
of joint velocities. Deriving these one more time draws the vector of joint accelerations.

10 Joint accelerations obtained by direct derivation
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Plot 3-38. Joint accelerations calenlated by straight double pre-derivation of the joint angles.
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These have been stored in .mat files and then called from the main schematic, which now
seems as shown in Figure 3-55 (Same as Figure 3-53):
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Figure 3-55. Reduced system schematic with joint coordinates precalenlated.
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Simulating this schematic, and as the previous section, with many different bandwidths w,
the resulting torques, pose errors and power have been calculated and plotted.

3.5.2.1 Input torques
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Plot 3-39. CTC Controller with Trajectory Generator. Input torque in joint 1.

Again, due to the proximity of all signals, a close-up of a section of the plot will be

provided.
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Plot 3-40. CTC Controller with Trajectory Generator. Close-up on input torque in joint 1.
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Plot 3-41. CTC Controller with Trajectory Generator. Input torque in joint 2.
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Plot 3-42. CTC Controller with Trajectory Generator. Close-up on input torque in joint 2.
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Joint 3 Input Torque
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Plot 3-43. CTC Controller with Trajectory Generator. Input torque in joint 3.
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Plot 3-44. CTC Controller with Trajectory Generator. Close-up on input torque in joint 3.
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Plot 3-45. CTC Controller with Trajectory Generator. Input torque in joint 4.
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Plot 3-46. CTC Controller with Trajectory Generator. Close-up on input torque in joint 4.
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Plot 3-47. CTC Controller with Trajectory Generator. Input torque in joint 5.
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Plot 3-48. CTC Controller with Trajectory Generator. Close-up on input torque in joint 5.
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Plot 3-49. CTC Controller with Trajectory Generator. Input torque in joint 6.
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Plot 3-50. CTC Controller with Trajectory Generator. Close-up on input torque in joint 6.
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3.5.2.2 Pose errors

Pose errors in all pose components are:

8 %107 Pose error in x axis
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Plot 3-51. CTC Controller with Trajectory Generator. Commuitted error in X-axis.
5 %1074 Pose error in y axis
] ]

4

3 =

2 =
E
s 1
i

2k

— w=250

3 \ \ \ \ \ \ \ \
0 2 4 6 8 10 12 14 16 18

Time [s]

Plot 3-52. CTC Controller with Trajectory Generator. Committed error in Y -axis.
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Plot 3-54. CTC Controller with Trajectory Generator. Committed error in quaternion component Q.
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Plot 3-56. CTC Controller with Trajectory Generator. Committed error in quaternion component C.
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Plot 3-57. CTC Controller with Trajectory Generator. Committed ervor in quaternion component d.
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3.5.3 Full system model with a Trajectory Generator block as input and PID Controllers

In this scenario, the Computed Torque Controller was substituted by the PID controllers.
Their only input is the vector of joint angles, being the joint velocities and accelerations not
necessary.
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Figure 3-56. Reduced system schematic with PID Controllers and Trajectory Generator joint angles
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Running this schematic, the results are presented in the next sections.

5.3.1 Input torques
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Plot 3-58. PID Controllers with Trajectory Generator. Input torque in joint 1.
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Plot 3-59. PID Controllers with Trajectory Generator. Input torque in joint 2.
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Plot 3-60. PID Controllers with Trajectory Generator. Input torque in joint 3.
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Plot 3-61. PID Controllers with Trajectory Generator. Input torque in joint 4.
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Plot 3-62. PID Controllers with Trajectory Generator. Input torque in joint 5.
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Plot 3-63. PID Controllers with Trajectory Generator. Input torque in joint 6.
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3.5.3.2 Pose errors
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Plot 3-64. PID Controllers with Trajectory Generator. Committed error in X-axis.
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Plot 3-65. PID Controllers with Trajectory Generator. Committed error in 'y -axis.
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Plot 3-66. PID Controllers with Trajectory Generator. Committed error in Z-axis.
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Plot 3-67. PID Controllers with Trajectory Generator. Commutted error in quaternion component Q.
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Piot 3-68. PID Controllers with Trajectory Generator. Committed error in guaternion component b.
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Plot 3-69. PID Controllers with Trajectory Generator. Committed error in quaternion component C.
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Chapter 4. Conclusions and
future work

This chapter discusses the results of implementation and simulation of all sections of this

master’s thesis and what could be improved, added or changed in future works.

41 Conclusions

Although a broadly known pre-built robot software is available on MATLAB (Robotics
System Toolbox), it was decided to design all code from scratch to achieve a better understanding
of the physical sense of robotics. This way the programmed functions, in contrast with those
present in prebuilt libraries, provide the symbolic expressions that regulate the kinematic and
dynamic behavior of the ABB IRB 140. Expressions that are needed in order to design a
Computed Torque Controller or a PID battery, between many other control solutions.

And this is the major contribution of this master’s thesis, the broad analysis performed on
the basic fields of robotics such as robot kinematics, robot dynamics and robot control. The
material presented here is expected to become useful tools and a reference for future students

and researchers.

The individual results of each section (kinematics, dynamics and control) are debated

separately down below.

4.1.1 Robot kinematics

A well-functioning direct kinematic block was built and implemented. The tests results
display a minuscule error in comparison to the RobotStudio configurations extracted for testing,
in the order of 0.01~0.1 mm. This same error is later reproduced exactly in the SimScape model
testing, which leads to think that a very slightly different method was used to develop the ABB
IRB 140 RobotStudio model.
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The placement of a hypothetical tool at the end effector such as a pen, has been included
with the variable for tool length Lh, which displaces the final coordinate system said distance
along axis z. It is possible that the geometry of the tool gets more complicated, in which case the
last transform should be particularly studied.

On the other hand, the inverse kinematic block for poses resulted to require a much more
intricated design. In a relatively short time span (~0.1 s) the code designed for this work could
find a suitable solution for the problem, although it cannot have into consideration if that
reached solution is the optimal. It is most of the time, but the function cannot check it. There is
only room to vary the starting iteration vector. Tests were successful but some offered different
configuration solutions than the intricated configurations generated in the first place.

The starting vector was first taken from the current vector of joint angles. However, for
some reason while staying at singular poses such as the Home pose, where the effects of joints 4
and 6 overlap, the obtained vector of desired joint angles was continuously shifting into different
but equally valid joint angles.

Later this was solved when the calculation of joint angles from the pose trajectory was
detached from the rest of the model and calculated in advance. The insertion of a column vector
of zeros, given the absence of the robot to get the current joint angles from, seemed to solve this
problem.

The Jacobian function required some special processing of the symbolic expressions
present in the homogeneous transform matrix. The part of the matrix that contains the rotation
matrix had to be converted into a quaternion, however there are two different possible symbolic
expressions for each quaternion component, whose selection depends on the numeric value of a
threshold itself dependent of the rotation matrix values. Because of this, joint angles are needed
in order to calculate the proper form of every quaternion component.

Facing the fact that they are not known forehand, all expressions must be directly
declared on the function, and let an if/else structure decide which one to use after the joint

angles are known.

The present sign functions are hard to manipulate and derive. They have all been
extracted from the Sarabandi-Thomas method function and grafted after the derivation (the
results are equivalent). The resulting Jacobian matrix expressions are then pasted row by row on
its correspondent functions.

Once obtained the Jacobian matrix, the behavior of the inverse kinematics blocks for
velocities and accelerations was intermittently successful. In certain situations, they acted
unexpectedly and in others perfectly fine. This shows that handling large symbolic expressions is
prone to errors and inconsistencies. As a result, an interesting different approach to this problem
that avoids hard long implementation of these functions and calculation of Jacobian expressions
was attempted: numerically deriving joint angles in order to obtain joint velocities and joint
accelerations.

A controlled precalculation of these values outperforms that of the Jacobian functions. It
makes all unwanted behaviors disappear forming smooth vectors, with customizable time steps
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unlike the simulations that include the SimScape robot model. The outcome of this procedure
was the final joint coordinate vectors that were called in the definitive simulations.

4.1.2 Robot dynamics

The design of the ABB IRB 140 SimScape model ran smoothly and without major
surprises. All tests passed and matched with the results of the direct kinematic scripts. Even the
inertia matrices calculated by the File Solid blocks were equal to those calculated by SolidWorks.

After the 2-link robot test passed, its code was adapted to fit the geometrical features of
the ABB IRB 140, along with all inertias, masses and internal distances. The outcoming matrices
M, C and G were tried to be simplified through the MATLAB function simplify (), but in the
case of matrix C, it took much more time than expected and it was decided to leave it

unprocessed.

Due to the still large size of these matrices, the compilation of the function inside a
MATLAB function block required around 1 hour of compilation, which means that any small
change would demand the whole process to start over. This was the reason the function was
implemented in an Interpreted MATLAB function block, in exchange of losing some computing

pOWCI'.

4.1.3 Trajectory control

The generation of pose trajectories has proven to be an expandable field with plenty of
room for improvement. A simple testing trajectory was developed for the sake of developing a
real-life-like continuous trajectory in which all joints could take part.

The specific features of actuators ought to be studied in order to draw optimized
acceleration profiles that wring the best of the robot capabilities. Arbitrary limits of saturation
and slew rate were added but as an approximation. It is the actuator potential what ultimately
defines how fine the robot system can be controlled.

Considering that, the data that RobotStudio is able to extract from its simulation is not
accurate nor extensive enough, the resulting torques necessary to replicate it turned out
oscillatory and not implementable. That is why the comparison between both control laws (CTC
and PIDs) have been performed on the trajectory generator inputs. When the CTC bandwidth w
is 100, it offers a reasonably smooth torque signal with very low errors, therefore the CTC
controller with this specific value of bandwidth has been selected.

Merging same pose errors in one plot, a clear understanding of the controller’s
performance in each specific pose component is accomplished:
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And comparing torques:
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Plot 4-3. Comparison between PID Controllers and Computed Torgue Controllers.

A plan view of the circles present in the test trajectory is provided, to help this way with a
clear scope of the performance of each control solution plus the RobotStudio results, given that
the representation is not time dependent.
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0. Comparison of circular trajectories in the xy-plane
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According to the comparisons, the best performance is achieved by the Computed
Torque Controller, due to a very close equivalence accomplished between the dynamic model
and the SimScape model. This is a fantastic example that an accurate design of the dynamic
model of a robot can lead to outstanding control solutions with errors in most of the design
bandwidths moving in the range of micrometers.

The fact that all CTC errors do not tend to exactly zero over time means that there might
be after all slight inaccuracies in the dynamic model or in the simulation configuration itself. This
is not ideal, although it is important to highlight that its performance is still excellent. And that is
actually the reason the design matrices K;, and K, are present in the control law, to correct

discrepancies between the dynamic model and the dynamic behavior of the robot system.

These discrepancies could come from sources as: the rounding of the huge expressions
contained in the M, C and G matrices, some small imprecision in the Newton-Euler algorithm or
any other error originating from the very nature of the simulation and its constituent parts.

Any hypothetical implementation of a Computed Torque Controller in a real robot
should study thoroughly its real dynamic behavior and reflect it in a model. Phenomena like
friction, overheating or braking among other things play a decisive role in the robot dynamics
and this control law is so model-dependent that these aspects must indispensably be meticulously
designed, especially in case of seeking accurate tracking and positioning. In the case of the
existence of loads at the end effector, the code is also prepared to handle them. Only orientation
of application of this force should be added along with the value in newtons.

Regarding the PIDs, their aggressive design could cope with the testing trajectory
requirements even subjected to torque limitations. Although some overshoot stands out in the
torque plots, it is interesting how a quick PID design led to relatively close results compared to a
CTC even after many more hours of design and coding. This, together with a greater ease of
implementation in real systems and computational robustness, is a clear sign of how powerful the
PID controllers are as control solutions. And PID controllers are actually used in most of
modern industrial robots.

In the plot of the plan view of the circles, it was also notable that the CTC results were
slightly improving the RobotStudio results. Those instants in which the CTC results got further
away from the setpoints were product of the different time steps of the simulations.

A useful application of power consumption calculation is that it allows the electrical
dimensioning of the manufacturing cell the robot is going to be part of. Along with a safety
coefficient, this modelling process could offer a decent approximation of the electrical
requirements of any robot.
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4.2  Further work

As it was pointed out previously, this master’s thesis extends over many fields of robotics
and these are rich enough to provide many alternative solutions and/or expansions to all
problems addressed here. Some proposed are:

4.2.1 Improvement of the inverse kinematics function

A different function than fsolve would be desirable. It would have to be written fully
from scratch to consider angle and angular velocity limitations, apart from taking into
consideration all possible robot configurations that can reach a single pose. It is worth
mentioning that the Robotics System Toolbox has already one specific inverse kinematics

function.

4.2.2 Refinement of the dynamic model

As said in section 4.1.3, new tests could be built and ran, to check where the inaccuracies
come from and correct the Newton-Euler code. This improvement, in the case of a real robot,
could be extended to cover new aspects of robot dynamics as for example, friction. There is
plenty of ongoing research about dynamic modeling.

4.2.3 Use of a physical robot for parameter identification

The actual current passed onto the actuators can be measured through current clamps
and used as another resource to obtain an energy-efficient dynamic model of the robot, as
performed in [12].

Data could be extracted from the robot system, specifically joint angles, velocities and
accelerations, and end effector poses. Combinations of these would be the references in
modeling through Least Square techniques.

[13] is an example of the above. It presents a matrix form of simplified Lagrangian
equations for dynamic modelling and through Least Square techniques and verification
trajectories, finds the most suitable dynamic parameters that can accomplish these trajectories.

4.2.4 CTC and PID parameter optimization

CTC parameters K;, and K, can be optimized iteratively by testing thousands of
combinations and keeping the ones that cause the least errors. Similar way with PID controllers

and their parameters K, K; and K. Stalling simulations should be monitored and terminated.

4.2.5 CTC initialization

An interesting concept would be to initialize the controller with the torques necessary to
keep the robot at home position, as it was done with the PID controllers to avoid initial torque
overshoots.
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Appendix. Code

This appendix gathers the MATLAB and RAPID code used in the master’s thesis. Many
expressions have been removed and written as comment due to their exceptional size.

Code 1. Sarabandi-Thomas method for the computation of quaternions from

rotation matrices

function g = sarabandi thomas (R)
% Computation of a quaternion g from a rotation matrix R according to
% the Sarabandi-Thomas method

eta = 0; % Threshold
g = zeros(4,1); % Declares quaternion

if R(1,1)+R(2,2)+R(3,3) > eta
q(l) = 0.5*sgrt(1+R(1,1)+R(2,2)+R(3,3));
else
g(l) = 0.5*sgrt (((R(3,2)-R(2,3))"2+(R(1,3)-R(3,1))"2+(R(2,1)-
R(1,2))"2)/(3-R(1,1)-R(2,2)-R(3,3)));
end

if R(1,1)-R(2,2)-R(3,3) > eta

g(2) = 0.5*sgqrt (1+R(1,1)-R(2,2)-R(3,3));
else

q(2) = 0.5*sqgrt (((R(3,2)-
R(2,3))"2+(R(1,2)+R(2,1)) "2+ (R(3,1)+R(1,3))"2)/(3-R(1,1)+R(2,2)+R(3,3)));
end

if -R(1,1)+R(2,2)-R(3,3) > eta

g(3) = 0.5*sqrt (1-R(1,1)+R(2,2)-R(3,3));
else

g(3) = 0.5*sqgrt(((R(1,3)-
R(3,1))"2+(R(1,2)+R(2,1)) "2+ (R(2,3)+R(3,2))"2)/ (3+R(1,1)-R(2,2)+R(3,3)));
end
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if -R(1,1)-R(2,2)+R(3,3) > eta

g(4) = 0.5*sgrt (1-R(1,1)-R(2,2)+R(3,3)):;
else

g(4) = 0.5*sgrt(((R(2,1)-

R(1,2))"2+(R(3,1)+R(1,3)) "2+ (R(3,2)+R(2,3))"2)/(3+R(1,1)+R(2,2)-R(3,3)));
end

g(2) = g(2)*sign(R(3,2)-R(2,3))
(3) = g(3)*sign(R(1,3)-R(3,1))
(4) = g(4)*sign(R(2,1)-R(1,2))

’
’

’
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Code 2. Symbolic Sarabandi-Thomas method for the computation of

quaternions from rotation matrices

function g = sarabandi thomas_ sym(R)
g = sym('q',[8 1],'real'"); % Declares all possible values of quaternion
a(l) 0.5*sgrt (1+R(1,1)+R(2,2)+R(3,3));

a(2) 0.5*sqrt (((R(3,2)-R(2,3)) "2+ (R(1,3)-R(3,1))"2+(R(2,1)-R(1,2))"2)/(3-
R(1,1)-R(2,2)-R(3,3)));

g(3) = 0.5*sgrt (1+R(1,1)-R(2,2)-R(3,3));
g(4) = 0.5*sqrt (((R(3,2)-R(2,3))"2+(R(1,2)+R(2,1))"2+(R(3,1)+R(1,3))"2)/ (3~
R(1,1)+R(2,2)+R(3,3)));

g(5) = 0.5*sgrt (1-R(1,1)+R(2,2)-R(3,3));
q(6) = 0.5*sqgrt (((R(L,3)-
R(3,1)) "2+ (R(1,2) +R(2,1)) "2+ (R(2,3) +R(3,2)) ~2) / (3+R(1,1) -R(2,2) +R(3,3))) ;

q(7) = 0.5*sqrt (1-R(1,1)-R(2,2)+R(3,3));
a(s) 0.5*sgrt (((R(2,1)-
R(1,2)) "2+ (R(3,1)+R(1,3)) "2+ (R(3,2)+R(2,3))"2) / (3+R(1,1)+R(2,2)-R(3,3)));

o\

No multiplication by sign function yet, to avoid overcomplicated
derivatives

o°

end
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Code 3. Obtention of the ABB IRB 140 Homogeneous Transformation
Matrix

%% Master's Thesis | ABB IRB 140 | Direct Kinematics

qg = sym('q',[6 1]); % Symbolic column vector with 6 Jjoint angles
Lh = 0; % Tool length

% D-H parameters table

DH = [g(1) 0.352 0.070 -pi/2;
(pi/2)+g(2) O -0.360 O0;
q(3) 0 0 pi/2;
q(4) 0.38 0 -pi/2;
g (5) 0 0 pi/2;
q(6) 0.065+Lh O 01;
[m,n] = size (DH); % m = number of d.o.f.'s
T = eye(n);
for i = 1:m
A = [cos(DH(i,1)) -cos(DH(i,4))*sin(DH(i,1))

sin(DH(i,4))*sin(DH(i, 1)) DH(i,3)*cos(DH(i,1));
sin(DH(i,1)) cos(DH(i,4))*cos(DH(i,1)) -
sin(DH(i,4))*cos (DH(i,1)) DH(i,3)*sin(DH(i,1));

0 sin(DH(1i,4)) cos (DH (i, 4))
DH(i,2);
0 0 0
1];
T = T*A;
end
T = simplify(T); % Simplifies the transformation matrix
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Code 4. Direct kinematics function

function p cur = fdirkin(g cur)
Obtains the translation vector and quaternion asociated to an input
transformation matrix. They both form the (current) pose vector.

o°

o\°

t = ...

% Long T declaration obtained from Code 1 with g cur (6x1l) as input
p_cur = zeros(7,1);

p cur(l:3,1) = t(1:3,4); % Translation vector
p cur(4:7,1) = sarabandi thomas(t(1:3,1:3)); % Quaternion

end
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Code 5. Jacobian matrix function

oo
[Ce)

Master's Thesis |

sym('q',[6 11);
Lh = 0;

Q

% Tool

% D-H parameters table

ABB IRB 140 |

Jacobian matrix generator

% Symbolic column vector with 6 joint angles

length

DH = [g(1l) 0.352 0.070 -pi/2;
(pi/2)+gq(2) O -0.360 Oy
g (3) 0 0 ri/2;
q(4) 0.380 0 -pi/2;
g (5) 0 0 pi/2;
q(e) 0.065+Lh 0 0];
[m,n] = size (DH); % m = filas, n = columnas
T = eye(n);
for 1 = 1:m
A = [cos(DH(i,1)) -cos(DH(i,4))*sin(DH(i,1))

sin(DH(i,4))*sin(DH(i, 1))
sin(DH(i,1))
sin(DH(i,4))*cos(DH(i, 1))

cos(DH(i,4))*cos(DH(i,1))

DH(i,3)*cos(DH(i,1));

DH(i,3)*sin(DH(i,1));

0 sin(DH(i,4))

cos (DH(i,4))

DH(i,2);
0 0 0
17;
T = T*A;
end
T = simplify(T);
transvec = T(1:3,4); % Extracts translation vector
rotmat = T(1:3,1:3); % Extracts rotation matrix
symquat = sarabandi thomas sym(rotmat); % Creates a symbolic vector of
% 8 variables, 4 quaternion
% componentes times 2 possibilities
% each, to derive them separately
pose = [transvec; symquat]; % Stacks in a vector 3 translation values
% and 4x2=8 quaternion posible values. Total 11
J = sym('J"'",[11 6], 'real');
[rows,columns] = size (J);
for i = l:rows
for j = l:columns
J(1i,3) = diff(pose(i),q(])); % Derives each row by each joint
end
end

o)

% The sign function is then added

for 1 = 1l:columns
J(6,1) = J(6,1)*sign(rotmat(3,2)-rotmat(2,3));
J(7,1) = J(7,1)*sign(rotmat(3,2)-rotmat(2,3));
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J(8,1) J(8,1)*sign(rotmat (1,3)-rotmat(3,1));
J(9,1i) = J(9,1)*sign(rotmat(1l,3)-rotmat (3,1));
J(10,1i) = J(10,1i)*sign(rotmat(2,1)- rotmat( ,2));
J(11,i) = J(11,1i)*sign(rotmat(2,1)-rotmat(1,2));

end
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Code 6. Direct kinematics function for velocities

function [pd cur,J] = fdirkinvel (q cur,qgd cur)
% Calculates the Jacobian matrix from current joint angles and operates
% with joint velocities to find the pose velocity

J = zeros(7,6);

J(1:3,:) = [...
% First 3 rows of the Jacobian matrix

if % Condition above threshold (threshold = 0)
% First possible 4th row of J (lst quaternion component)
else

% Second possible 4th row of J
end

if % Condition above threshold
% First possible 5th row of J (2nd quaternion component)
else

% Second possible 5th row of J
end

if % Condition above threshold
% First possible 6th row of J (3rd quaternion component)
else
% Second possible 6th row of J

end

\o

if % Condition above threshold
% First possible 7th row of J (4th quaternion component)
else

% Second possible 7th row of J
end

pd cur = J*gd cur;

end
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Code 7. Direct kinematics function for accelerations

function pdd cur = fdirkinacc(J,dJdt,qd cur,qdd cur)

% Calls the current value of the Jacobian matrix and its derivative,
operates with them and the current joint accelerations and velocities
% to obtain the pose acceleration

o\°

pdd cur = J*qgdd cur + dJdt*qgd cur;
end
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Code 8. Pose comparator function

function equal = fcomp (pl,p2)

Compares 2 vectors from 2 consecutive iterations, and if they're equal
it returns 1, 1f not, 0. Boolean values aren't used as if blocks don't
% accept them.

o°

o\°

equal = 1;
c =1;

% Until the loop doesn't find 2 different values or exceeds vector length
% 1t keeps running

while equal == 1 && c <= length(pl)
if pl(c,1) ~= p2(c,1)
equal = 0;
end
c = c+l;
end
end

130




Kinematic and dynamic modelling of the Robot ABB IRB 140 for the implementation of control algorithms

Code 9. Inverse kinematics function

function [g des] = finvkin(p gcur)

Obtains joint coordinates g, necessary to reach a certain end effector
pose. Simulink MATLAB function blocks can't handle fsolve, so this
function is called by an Interpreted MATLAB function block.

Interpreted MATLAB function blocks can't handle more than 1 input, that
is the desired pose and current joint coordinates are muxed and inserted
as a single vector.

o° o°

o o oo

o°

rotmat = quatZrotm(p gcur(4:7)"'); % Converts the quaternion from the pose

Q

% into a rotation matrix

Tobj = [rotmat p gcur(l:3)1]1; % Creates a transformation matrix with
% only 3 rows to gather all objective
% values (rotation matrix & translation)
b = zeros(12,1); % A column vector of independent terms is declared

% These objective values are saved in the b vector one by one
for i = 1:3

for j = 1:4
b (4% (i-1)+3,1) = Tobj(i,7);
end
end
exitflag = -2; % States the solver exit flag as "failed" to initialize
% the while loop
c = 0; % Counter to know how many times there has been an attempt
% to solv the non-linear equation system

o\

exitflag > 0 -> solution found | <= 0 -> solution not found
While loop tries 20 times increasing the initial value by 1. After these
if there's no solution, quits the loop.

o°

o°

while exitflag <= 0 || ¢ == 20
[g des, fval,exitflag] = fsolve(Q@(g) fecnolin(qg,b),p gcur(8:13)"');
if exitflag ~= 1
c = c+l;
p_gcur (8:end) = p _gcur(8:end)+1;
end
end
g des = g des';
end
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Code 10. Inverse kinematics function for velocities

function [gd des,J] = finvkinvel (q des,pd des)
J = zeros(7,6);

J(1:3,:) = [...
% Long declaration of the 3 first J rows

if % Condition above threshold (threshold = 0)

o)

% First possible 4th row of J (lst quaternion component)

else
% Second possible 4th row of J
end
if % Condition above threshold
% First possible 5th row of J (2nd quaternion component)
else
% Second possible 5th row of J
end
if % Condition above threshold
% First possible 6th row of J (3rd quaternion component)
else
% Second possible 6th row of J
end
if % Condition above threshold
% First possible 7th row of J (4th quaternion component)
else
% Second possible 7th row of J
end

o

Note: sign functions have been substituted by a modified version of it
where if the input is 0, it returns 1. This avoid ill-conditioned
% situations where the algorithm would crash

o

gd des = J\pd des;

end
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Code 11. Inverse kinematics function for accelerations

function gdd des = finvkinacc(gd des,J,dJdt,pdd des)
gdd des = J\ (pdd des-dJdt*qgd des);

end
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Code 12. Newton-Euler algorithm for the obtention of the ABB IRB 140
dynamic model

%% Master's Thesis | ABB IRB 140 | Newton-Euler Algorithm

clear all
close all
clc

o\

6 joint angles

6 joint velocities

6 joint accelerations
Tool length

g = sym('qg',[6 1], 'real");

gd = sym('gd',[6 1], 'real');
gdd = sym('gdd', [6 1], 'real');
Lh = 0;

o° oP

o©

syms g real; % Gravity

%% N-E 1 D-H parameter table

DH = [g(1l) 0.352 0.070 -pi/2;
(pi/2)+q(2) 0 -0.360 0;
q(3) 0 0 pi/2;
q(4) 0.380 0 -pi/2;
q(d5) 0 0 pi/2;
q(6) 0.065+Lh 0 01,

[rows,columns] = size (DH);

%% N-E 2 Rotation matrices and their inverses
R = sym(zeros (3,3, rows+1l)); % 3D matrix with all rotation matrices

% including one representing the rotation until
the application point of an external force

o

Rinv = R; % Inverse rotation matrices
for 1 = 1l:rows
R(:,:,1) = [cos(DH(i,1)) —-cos(DH(i,4))*sin(DH(i,1))
sin(DH(i,4))*sin(DH(i, 1))
sin(DH(i,1)) cos (DH(i,4))*cos(DH(i,1)) -
sin(DH(i,4))*cos(DH(i,1));
0 sin(DH (i, 4)) cos(DH(i,4))];
Rinv(:,:,1i) = inv(R(:,:,1));
end
R(:,:,rows+l) = eye(3);
Rinv (:, :,rows+l) = eye(3);

R = simplify(R);
Rinv = simplify(Rinv);

%% N-E 3 Initial conditions

o)

% Base reference system {S 0}

omega = sym(zeros (3, rows+1)); % Angular velocities (0,1,2,3,4,5,6)
omegad = sym(zeros (3, rows+1)); % Angular accelerations (0,1,...,6)
v = sym(zeros (3, rows+1)); % Linear velocities (0,1,...,6)

vd = sym(zeros (3, rows+1)); % Linear accelerations (0,1,...,6)

oe

vd(3,1) g; Gravity along axis z
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e

Link masses [kg]
= [34.56013977 15.99814611 16.97933464 3.739855737...
0.303969 0.0549663421"';

3

% Auxiliary vector z
z = [0 0 1]";

% Coordinates of vector {S i-1} to {S i} expressed in {S i} [m]

o) zeros (3, rows) ;

l:rows
[DH(i,3);

i =
p(:li) =
end

for

DH(i,2)*sin(DH(i,4)); DH(i,2)*cos(DH(i,4))1"';

% Coordinates of center of mass i with respect to {S i} [m]
[-0.0419443, 0.0886819,
.161989, 0.00979472,
.00570679, 0.007527,
.00142883, 0.0682882,
.000164849, 0.000619119,
.000224358, -3.08768e-07,

0.0438186;
-0.0921779;
0.0195804;

-0.00122517;
-0.00140587;

-0.0129399]1"';

s =

O O O O o

o\

Inertia matrices of link i with respect to its center of mass expressed

% in {S_i} [kg 'm"2]
MI = zeros(3,6); % Moments of Inertia
PI = zeros(3,06); % Products of Inertia
MI(:,1) = [0.508524, 0.456961, 0.461318]1"';
PI(:,1) = [0.068918, -0.00146701, 0.05230871"';
MI(:,2) = [0.0952241, 0.327313, 0.2760491"';
PI(:,2) = [-0.00105662, -0.0382749, -0.00384372]"';
MI(:,3) = [0.182447, 0.199252, 0.0685502]1"';
PI(:,3) = [0.00640664, -0.00402342, -0.00076960411"';
MI(:,4) = [0.0172493, 0.00733781, 0.01539911"';
PI(:,4) = [-0.000436025, -6.90193e-06, -0.000124383]1"';
MI(:,5) = [0.000145763, 0.000238175, 0.000151397]1"';
PI(:,5) = [-2.6463%9e-07, -8.71253e-07, 2.05448e-08]"';
MI(:,6) = [1.33687e-05, 1.31196e-05, 1.27092e-05]1";
PI(:,6) = [1.31964e-10, -9.71246e-08, 3.18105e-10]1";
I = zeros(3,3,6);
for i = l:rows
I(:,:,1) = diag(MI(:,1)); % Diagonal is filled
I(1,2,1i) = PI(3,1);
I(1,3,1) = PI(2,1);
I1(2,3,1) = PI(1,1);
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I(2,1,1) = PI(3,1);
I(3,1,1) = PI(2,1);
I(3,2,1i) = PI(1,1i);

%% N-E 4 Calculation of angular velocities of reference systems (omega i)

for i = l:rows
omega (:,1i+1l) = Rinv(:,:,1)* (omega(:,i)+z*qgd(i,1));
end
%% N-E 5 Calculation of angular accelerations of reference syst. (omega 1i')
for i = l:rows

omegad (:,1i+1l) =
Rinv(:,:,1i)* (omegad(:,1)+z*gdd(i,1))+cross (omega(:,i),z*qgd(i,1));
end

%% N-E 6 Calculation of linear accelerations of reference systems (v_1i')

for 1 = 1l:rows
vd(:,i+1) =
cross (omegad(:,i+1),p(:,1))+cross(omega(:,1+1l),cross(omega(:,i+1l),p(:,1)))+
Rinv(:,:,1i)*vd(:,1);
end

%% N-E 7 Calculation of linear accelerations of the center of mass of
% link 1

a = sym(zeros(3,rows));

for 1 = 1l:rows
a(:li) =
cross (omegad (:,i+1l),s(:,1i))+cross(omega(:,i+1l),cross(omega(:,i+1l),s(:,1)))+
vd(:,i+1);
end

%% N-E 8 Calculation of force exerted on link i

f = sym(zeros (3, rows+1l)); % The force exerted externally is zero
for 1 = rows:-1:1

f(:,1) = R(:,:,i+1)*E£(:,i+1)+m(i)*a(:,1);
end

%% N-E 9 Calculation of torque exerted on link 1

n = sym(zeros (3,rows+1)); % The torque exerted externally is zero
for 1 = rows:-1:1
n(:,1) = R(:,:,i+l)*(n(:,1i+1)+cross(Rinv(:,:,i+1)*p(:,1),£(:,1+1)))+...

cross(p(:,1i)+s(:,1),m(i)*a(:,1))+...

I(:,:,1)*omegad(:,i+l)+cross(omega(:,1i+1),I(:,:,1)*omega(:,i+1));
end

%% N-E 10 Calculation of torques exerted on joint i
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tau = sym(zeros (rows,1l));
for 1 = rows:-1:1

tau(i,1l) = n(:,1) "*Rinv(:,:,1)*z;
end

%% Extraction of M,C,G matrices

vars = gdd';

[M,N] = equationsToMatrix(tau,vars);
N = -N;

vars = gy

[G,C] = equationsToMatrix (N,vars);

C = -C;
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Code 13. Computed Torque Controller function for the ABB IRB 140

function [err,errd,tau] = £CTC (Kp,Kv,des,cur)
% Computed Torque Controller
% Generates a set of torques from current and desired joint coordinates

n links = 6; % Number of links
g = 9.80665; % Gravity

g des = zeros(n links,1);
gd des = zeros(n_links,1);
gdd des = zeros(n_links,1);
g _cur = zeros(n links,1);
gd _cur = zeros(n_links,1);
gdd cur = zeros(n_ links,1);

o

% Places input information into individual ordered vectors

for 1 = 1:n links
g _des (i) = des(i);
gd des (i) = des(i+n_links);

gdd des (i) = des(i+n_links*2);

g_cur (i) = cur(i);
gd cur(i) = cur(i+n_links);
gdd cur (i) = cur(i+n_links*2);

end

o

% Calculation of errors

err = zeros(6,1);
errd = err;
for i = 1:n links
err(i,1l) = g des(i)-g cur(i);
errd(i,1l) = gd des(i)-gd cur(i);
end
% Substitution and calculation of M, C and G (Obtained through N-E)
M [... % Large M declaration
cC=1Il... % Large C declaration
G [... % Large G declaration

)

% Control law
tau = M* (gdd des+Kv*errd+Kp*err) + C + G*g;
end
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Code 14. Newton-Euler algorithm for the obtention of the 2-link robot
dynamic model

%% Master's Thesis | ABB IRB 140 | Newton-Euler Algorithm | 2-1ink robot

clear all
close all
clc

o\

g = sym('q',[2 1],'real’);

gd = sym('gd',[2 1], 'real');
gdd = sym('gdd', [2 1], 'real');
Lh = 0;

syms L Il I2 Lcl Lc2 g real;

2 joint angles

2 joint velocities

2 joint accelerations
Tool length

Other parameters

o0 o o©

o©

0 L 0;

D-H parameter table
)
) O L 01;

[rows,columns] = size (DH);

-E 2 Rotation matrices and their inverses
= sym(zeros (3,3, rows+1l)); % 3D matrix with all rotation matrices
% including one representing the rotation until

% the application point of an external force

5% N
R

Rinv = R; % Inverse rotation matrices
for 1 = 1l:rows
R(:,:,1) = [cos(DH(i,1)) -cos(DH(i,4))*sin(DH(i,1))
sin(DH(i,4))*sin(DH(i,1))
sin(DH(i,1)) cos(DH(i,4))*cos(DH(i,1)) -
sin(DH(i,4))*cos(DH(i,1));
0 sin(DH (i, 4)) cos(DH(i,4))];
Rinv(:,:,1i) = inv(R(:,:,1)):
end
R(:,:,rows+l) = eye(3);
Rinv (:, :,rows+l) = eye(3);

R = simplify(R);
Rinv = simplify(Rinv);

%% N-E 3 Initial conditions

)

% Base reference system {S 0}

omega = sym(zeros (3, rows+1)); % Angular velocities (0,1,2)
omegad = sym(zeros (3, rows+1l)); % Angular accelerations (0,1,2)
v = sym(zeros (3, rows+1)); % Linear velocities (0,1,2)

vd = sym(zeros (3, rows+1)); % Linear accelerations (0,1,2)
vd(l,1) = g; % Gravity along axis x

Q

% Link masses [kg]

m = sym('m', [rows 1], 'real');
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% Auxiliary vector z
z = [0 0 1]1"';

% Coordinates of vector {S i-1} to {S i} expressed in {S i} [m]

p = sym('p',[3 rows], 'real');
for 1 = 1l:rows

p(:,1i) = [DH(i,3); DH(i,2)*sin(DH(i,4)); DH(i,2)*cos(DH(i,4))]1"';
end

% Coordinates of center of mass 1 with respect to {S i} [m]

o

s = [-L+Lcl -L+Lc2;
0 0;
0 01;

o°

Inertia matrices of link i with respect to its center of mass expressed
in {S_i} [kg 'm"2]

o\

I(:,:,1) =[O 0 0

0 0 0

0 0 I1];
I(:,:,2) = [O 0 0

0 0 0

0 0 I21;

%% N-E 4 Calculation of angular velocities of reference systems (omega i)

for 1 = 1l:rows
omega (:,i+l) = Rinv(:,:,1)*(omega(:,i)+z*qgd (i, 1))
end
%% N-E 5 Calculation of angular accelerations of reference syst. (omega i'")
for 1 = 1l:rows

omegad (:,i+l) =
Rinv(:,:,1) * (omegad(:,1i)+z*qgqdd(i,1))+cross (omega(:,1),z*qd(i,1));
end

%% N-E 6 Calculation of linear accelerations of reference systems (v_i')

for 1 = l:rows
vd(:,i+1) =
cross (omegad(:,i+l),p(:,1i))+cross(omega(:,i+1l),cross(omega(:,i+1l),p(:,1)))+
Rinv(:,:,1i)*vd(:,1);
end

%% N-E 7 Calculation of linear accelerations of the center of mass of
% link 1

a = sym(zeros(3,rows));

for 1 = 1l:rows
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a(:,1) =
cross (omegad(:,i+1),s(:,1))+cross (omega(:,1i+1l),cross(omega(:,i+1l),s(:,1)))+
vd(:,i+1);

end

%% N-E 8 Calculation of force exerted on link 1

f = sym(zeros (3, rows+1)); % The force exerted externally is zero
for i = rows:-1:1

f(:,1) = R(:,:,i+1)*£(:,1+1)+m(1) *a(:,1);
end

%% N-E 9 Calculation of torque exerted on link i

n = sym(zeros (3, rows+l)); % The torque exerted externally is zero
for i = rows:-1:1
n(:,1) = R(:,:,i+1l)*(n(:,1i+1)+cross(Rinv(:,:,i+1)*p(:,1),£(:,1+1)))+...

cross(p(:,i)+s(:,i),m(i)*a(:,1))+...

I(:,:,1)*omegad(:,i+l)+cross(omega(:,i+1),I(:,:,1)*omega(:,1i+1));
end

%% N-E 10 Calculation of torques exerted on joint i

tau = sym(zeros(rows,1l));
for 1 = rows:-1:1

tau(i,1l) = n(:,1) "*Rinv(:,:,1)*z;
end

%% Extraction of M,C,G matrices

vars = qgdd';
[M,N] = equationsToMatrix(tau,vars);

vars = g;
[G,C] = equationsToMatrix (N,vars);
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Code 15. Initialization of the testing CTC control loop containing the 2-link
robot model

%% Master's Thesis | ABB IRB 140 |
% Newton-Euler Algorithm / 2 Link Robot Initialization

o

® Initial D-H parameters

DHO = [0 0 0.45 0;
0 0 0.45 01;
g = 9.80665; % Gravity
L = 0.45; % Length of links
I1 = 1.266; % Inertia
I2 = 0.093;

Lcl = 0.091;
Lc2 = 0.048;

Distance to the center of mass

o

ml = 23.902; % Mass
m2 = 3.88;
nl=2; % Number of links

sim CTC Test 2Links
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Code 16. Computed Torque Controller testing function for a 2-Link robot

function [g err,qd err,taul,tau2] = f£CTC 2Link (des, cur)
L = 0.45; % Length of links

I1 = 1.266; % Inertia

I2 = 0.093;

Lcl = 0.091;
Lc2 = 0.048;

o\

Distance to the center of mass

g = -9.80665; % Gravity

ml = 23.902; % Mass

m2 = 3.88;

nl=2; % Number of links
g des = zeros(n 1,1);

gqd des = zeros(n_1,1);

gdd des = zeros(n_1,1);

g cur = zeros(n_1,1);
gd cur = zeros(n_1,1);
gqdd cur = zeros(n_1,1);

for i = 1:n 1

g _des (i) = des(i);
gd des (i) = des(i+n_1);
gdd des (i) = des(i+n_1*2);
g_cur (i) = cur(i);
gd cur(i) = cur(i+n_1);
gdd cur (i) = cur(i+n_1%*2);
end
g err = [g des(l)-g cur(l);
g des(2)-gq cur(2)];
qd _err = [gd des(1l)-gd cur(l);
gd des(2)-gd _cur(2)];
M = [m2*L"2 + 2*m2*cos(q _cur(2))*L*Lc2 + ml*Lcl”2 + m2*Lc2”2 + Il + I2,
m2*Lc2”2 + L*m2*cos (g _cur(2))*Lc2 + I2;
I2 + Le2*m2* (Le2 + L*cos (g _cur(2))),

m2*Lc272 + I2];

C = [-L*Lc2*m2*sin(g_cur(2))*gd cur(2)"2 -
2*L*Lc2*m2*qgd_cur (1) *sin(g_cur(2)) *qgd _cur(2);
L*Lc2*m2*gd _cur (1) *2*sin(g_cur(2))];
G = [-Lc2*m2*sin(g _cur(l) + g cur(2)) - L*m2*sin(g cur(l)) -
Lel*ml*sin (g _cur(l));
-Lc2*m2*sin(g_cur(l) + g cur(2))];

Kp = diag(900); Kv=diag(60);

torques = M* (qdd _des+Kv*qgd err+Kp*q err)+C+G*g;

taul = torques(l);
tau2 = torques(2);
end
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Code 17. Pose comparator

function err = fposecomp (p_cur,p des)

% Compares the current pose with the desired one, creating an error value
err = p_cur-p_des;

end
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Code 18. Trajectory generator function

function p des = fposgen(x,t)

p_home = [0.515 0 0.712 sqgrt(2)/2 0 sqgrt(2)/2 01';

circle small = [0.6 0 0.3 00 1 0Oy
0.55 0.05 0.3 00 1 0;
0.5 0 0.3 00 1 0;
0.55 -0.05 0.3 00 101"
circle medium = [0.65 0 0.3 001 0;
0.55 0.1 0.3 001 0;
0.45 0 0.3 001 0;
0.55 -0.1 0.3 001 0]"';
circle large = [0.7 0 0.3 00 1 0Oy
0.55 0.15 0.3 001 0;
0.4 0 0.3 001 0;
0.55 -0.15 0.300 1 01";
if t <= 2
p _des = p home + (circle small(:,1)-p home).*x;
else
if (t > 2) && (t <= 4)
x cir = 0.55 + 0.05*cos(x*2*pi); % Parametric circle equations

y cir = 0 + 0.05*sin(x*2*pi);

p_des
else
if (t > 4) && (t <= 6)
p_des = circle small(:,1) + (p_home-circle small(:,1)).*x;
else
if (t > 6) && (t <= 8)
p_des = p home + (circle medium(:,1)-p home) .*x;

[x cir y cir 0.3 0 0 1 0]"';

else
if (t > 8) && (t <= 10)
x cir = 0.55 + 0.l*cos(x*2*pi);
y cir = 0 + 0.1*sin(x*2*pi);
p des = [x cir y cir 0.3 0 0 1 01"';
else
if (t > 10) && (t <= 12)
p_des = circle medium(:,1) + (p_home-
circle medium(:,1)) .*x;
else
if (t > 12) && (t <= 14)
p_des = p home + (circle large(:,1)-p home) .*x;
else

if (t > 14) && (t <= 16)
x cir = 0.55 + 0.15*cos (x*2*pi);
y cir = 0 + 0.15*sin(x*2*pi);

p des = [x cir y cir 0.3 0 0 1 0]"';
else
if (t > 16) && (t <= 18)
p_des = circle large(:,1) + (p_home-
circle large(:,1)) .*x;
else
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end

end

end

end

end

end

end

end

end

end

p_des

zeros (7,1);
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Code 19. Testing trajectory RAPID code

MODULE Modulel

CONST robtarget
Home:=[[515,0,712],10.707106781,0,0.707106781,0],[0,0,0,0], [9E+09,9E+09, 9E+
09,9E+09,9E+09,9E+09] 1] ;

CONST robtarget
CircleSmall4:=[[600,0,300],(0,0,1,01,[0,0,0,0],[9E+09,9E+09, 9E+09, 9E+09, 9E+
09,9E+0911;

CONST robtarget
CircleSmalll:=[[550,50,300],(0,0,1,0]1,[0,0,0,0], [9E+09,9E+09,9E+09, 9E+09, 9E
+09,9E+0911;

CONST robtarget
CircleSmall2:=[[500,0,300],(0,0,1,01,([0,0,0,0],[9E+09,9E+09, 9E+09, 9E+09, 9E+
09,9E+0911;

CONST robtarget CircleSmall3:=[[550,-

50,3001, 110,0,1,0],[0,0,0,01, [9E+09, 9E+09, 9E+09, 9E+09, 9E+09, 9E+09] 1

CONST robtarget
CircleMedium4:=[[650,0,300],(0,0,1,01,[0,0,0,0], [9E+09,9E+09, 9E+09, 9E+09, 9E
+09,9E+0911;

CONST robtarget
CircleMediuml:=[[550,100,300],(0,0,1,01,[0,0,0,0]1,[9E+09,9E+09, 9E+09, 9E+09,
9E+09,9E+09]1;

CONST robtarget
CircleMedium2:=[[450,0,300],(0,0,1,0]1,[0,0,0,0], [9E+09, 9E+09, 9E+09, 9E+09, 9E
+09,9E+0911;

CONST robtarget CircleMedium3:=[[550,-100,300],[0,0,1,0],[-1,0,-

1,01, [9E+09,9E+09,9E+09, 9E+09, 9E+09, 9E+09] ] ;

CONST robtarget
Circlelarge4:=[[700,0,300],(0,0,1,01,[0,0,0,0], [9E+09, 9E+09, 9E+09, 9E+09, 9E+
09,9E+0911;

CONST robtarget
Circlelargel:=[[550,150,300],(0,0,1,01,[0,0,0,0], [9E+09,9E+09, 9E+09, 9E+09, 9
E+09,9E+09]1;

CONST robtarget
Circlelarge2:=[[400,0,300],(0,0,1,01,[0,0,0,0], [9E+09, 9E+09, 9E+09, 9E+09, 9E+
09,9E+0911;

CONST robtarget Circlelarge3:=[[550,-150,300],(0,0,1,0],([-1,0,-

1,01, [9E+09,9E+09,9E+09, 9E+09, 9E+09, 9E+09] ] ;
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! Testing Trajectory
!***********************************************************
PROC main ()
SmallCircle;
WaitTime (1) ;
MediumCircle;
WaitTime (1) ;
LargeCircle;
ENDPROC
PROC SmallCircle()
MoveJd Home,v300,fine, tool0\WObj:=wobj0;
MoveJ CircleSmall4,v300, fine, tool0\WOb]j:=wobj0;
MoveC CircleSmalll,CircleSmall2,v300,fine, tool0\WObj:=wobj0;
MoveC CircleSmall3,CircleSmall4,v300,fine, tool0\WObj:=wobj0;
MoveJ Home,v300,fine, tool0\WObj:=wobj0;
ENDPROC
PROC MediumCircle ()
MoveJ Home,v300, fine, tool0\WObj:=wobj0;
MoveJ CircleMediumd4,v300,fine, tool0\WObj:=wobj0;
MoveC CircleMediuml,CircleMedium?2,v300,fine,tool0\WObj:=wobj0;
MoveC CircleMedium3,CircleMedium4,v300, fine, tool0\WObj:=wobj0;
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MoveJ Home,v300, fine, tool0\WObj:=wobj0;

ENDPROC

PROC LargeCircle ()
MovedJ Home,v300, fine, tool0\WObj:=wobj0;
MoveJ CirclelLarged4,v300,fine, tool0\WOb]j:=wobj0;
MoveC CirclelLargel,CirclelLarge2,v300,fine, tool0\WObj:=wobj0;
MoveC CirclelLarge3,CircleLarged,v300,fine, tool0\WObj:=wobj0;
MovedJ Home,v300, fine, tool0\WObj:=wobj0;

ENDPROC

ENDMODULE
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Code 20. Interpolated data caller function

function p des = fintpol(t)

p_des = zeros(7,1);

s = load('cfits.mat');

p des(l) = s.x _t(t)*le-3; % [mm] to [m]
p des(2) = s.y t(t)*le-3;

p des(3) = s.z t(t)*le-3;

p_des(4) = s.a _t(t);

p_des(5) = s.b _t(t);

p_des(6) = s.c_t(t);

p_des(7) = s.d t(t);

end

149




