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Abstract
A new set up of the integral mechanistic BIO_ALGAE model that describes the complex interactions in mixed algal-bacterial
systems was developed to overcome some restrictions of the model. BIO_ALGAE 2 includes new sub-models that take into
account the variation of microalgae and bacteria performance as a function of culture conditions prevailing in microalgae cultures
(pH, temperature, dissolved oxygen) over daily and seasonal cycles and the implementation of on-demand dioxide carbon
injection for pH control. Moreover, another aim of this work was to study a correlation between the mass transfer coefficient
and the hydrodynamics of reactor. The model was calibrated using real data from a laboratory reactor fed with real wastewater.
Moreover, the model was used to simulate daily variations of different components in the pond (dissolved oxygen, pH, and CO2

injection) and to predict microalgae (XALG) and bacteria (XH) proportions and to estimate daily biomass production (Cb). The
effect of CO2 injection and the influence of wastewater composition on treatment performance were investigated through
practical study cases. XALG decreased by 38%, and XH increased by 35% with respect to the system under pH control while
microalgae and bacteria proportions are completely different as a function of influent wastewater composition.Model simulations
have indicated that Cb production (~ 100 gTSS m−3 day−1 for manure and centrate) resulted lower than Cb production obtained
using primary influent wastewater (155 gTSS m−3 day−1).
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Introduction

Microalgae-based technologies for wastewater treatment were
proposed in the 1960s by Oswald, but till now, they are not
fully exploited at industrial scale. Only recently, these tech-
nologies are being improved to accomplish requirements of
industry, thus reducing the hydraulic retention time, and
accomplishing regulation in quality of water release among
others. Industry is interested on microalgae-based technolo-
gies due to the potential total cost savings, including in

electrical power, with respect to conventional systems and to
recover nutrients contained into wastewater (Lundquist et al.
2010; Craggs et al. 2013; Suganya et al. 2016). Thus, industry
is moving from highly resources demanding “standard waste-
water treatment plants” to sustainable “resource recovery
plants,” which are able to purify water and produce
microalgae biomass suitable to obtain by-products or includ-
ing energy (Chisti 2007; Brennan and Owende 2010). In this
regard, microalgae-based wastewater treatment systems rep-
resent an opportunity to replace conventional sanitation sys-
tems with “productive industry.” Although microalgae pro-
duced with wastewaters cannot be used for direct human ap-
plications, it can be useful to produce animal feed,
biofertilizers, bioplastics, and including bioenergy (Spolaore
et al. 2006; Acien et al. 2013).

In microalgae-based wastewater treatment processes, con-
sortia of different microalgae species and bacteria always pre-
vail (Acien et al. 2016). Phenomena taking place in these
consortia are highly variable as a function of reactor hydrody-
namic, wastewater characteristics, and operation conditions.
Most of these phenomena take place with different time scale
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and interdependent (García et al. 2006).Moreover, microalgae
and bacteria reactions change with time due to the daily var-
iation of environmental variables such as solar radiation and
temperature, in addition to operation variables such as hydrau-
lic retention time (HRT), nutrients concentrations, and organic
load present in the influent wastewater. To design properly
microalgae-based wastewater treatment processes, it is neces-
sary to develop complete models integrating the physical-
chemical and the biological phenomena taking place in these
systems, analogous to the design of activated sludge based
conventional wastewater treatment processes.

On this sense, whereas different IWA (International
Water Association) models have been developed for con-
ventional wastewater treatment systems, a lack of models
integrating the role of microalgae on wastewater treatment
processes exists. Dissolved oxygen concentration and pH
variations in microalgae photobioreactors are largely dif-
ferent from conventional activated sludge systems; thus,
the performance of bacteria at these conditions must be
also reanalyzed. Robust mechanist ic models for
microalgae based wastewater treatment systems are re-
quired to better understand microalgae-bacteria interac-
tions, optimize the design, and control the performance of
the system. The use of mathematical model represents a
powerful tool to overcome the bottlenecks of this eco-tech-
nology. In the last decade, several microalgae-bacteria
models were developed to predict microalgae biomass pro-
duction (Buhr and Miller 1983; Reichert et al. 2001; Sah
et al. 2011). One general limitation of these models is not
to combine the overall biochemical processes involved in
these systems and the simultaneous effects of light inten-
sity, temperature, pH, or the effect of high dissolved oxy-
gen (DO) concentration on biomass growth (Solimeno
et al. 2017a).

Recently, the new dynamic model BIO_ALGAE
(Solimeno et al. 2017a) was developed with the objective
to become the most fundamental basis for modelling ap-
proach that integrates biokinetic, chemical, and physical
processes that occur in microalgae systems. With respect
to previous microalgae-bacteria models (Buhr and Miller
1983; Reichert et al. 2001; Sah et al. 2011), BIO_ALGAE
model includes inorganic carbon as a limiting substrate
for the growth of microalgae and processes depending
on temperature, pH dynamics, oxygen concentrations,
light attenuation, and the transfer of gases to the atmo-
sphere. The model was calibrated and validated in a pilot-
scale raceway reactor, and it was suitable to predict daily
variations of the main components in this system
(Solimeno et al. 2017a). After that, the model was vali-
dated in a long-term scale in order to predict seasonal
variations of microalgae and bacteria biomass and the ef-
fect of different HRT operating strategies on system per-
formance (Solimeno and García 2019).

In this paper, we want to overcome some restrictions of
the BIO_ALGAE model (Solimeno et al. 2015, 2017a,
2017b), including new sub-models that consider the vari-
ation of microalgae and bacteria performance as a func-
tion of culture conditions prevailing in microalgae cul-
tures (pH, temperature, dissolved oxygen) over daily and
seasonal cycles and to find a correlation between the mass
transfer coefficient and the hydrodynamic of reactor.
Moreover, other relevant feature of the new model is the
implementation of on-demand carbon dioxide (CO2) in-
jection for pH control. For this, the new model
BIO_ALGAE 2 was implemented and calibrated using
real data from a laboratory reactor fed with real wastewa-
ter. Furthermore, the model was used (1) to analyze the
effect of CO2 injection on the performance of the systems
(biomass production, chemical oxygen demand removal,
and nutrient uptake) and (2) to study the influence of
wastewater composition on treatment performance.

Materials and methods

Photobioreactor and culture conditions

Experimental data were obtained in four stirred tank reactors
(cylindrical-type 10.4-cm diameter and 16.5-cm height with
1400-ml capacity) provided by magnetic stirrers with a rota-
tion speed of 400 rpm that ensures perfect mixing conditions.
The reactors were inoculated with 700 ml culture of
Scenedesmus sp. previously adapted for 2 weeks to wastewa-
ter, under controlled pH (8.0) and temperature (25.0 °C) in a 2-
l bubble column reactor, and completed with 700 ml of pri-
mary wastewater (WWTP) obtained daily by decanter from a
municipal wastewater treatment plant located in El Ejido,
Almeria (Spain). After 4 days, the reactors are operated in
continuous mode at 0.2 day−1, under controlled pH at 8.0 by
on-demand injection of pure CO2 at 0.01 l min−1 and temper-
ature at 25 °C by controlling the temperature of the room
where the reactors are located. Light was artificially provided
using eight fluorescent tubes of 28 W (Philips Daylight T5),
simulating daily light/dark circadian cycle. The maximal irra-
diance calculated inside the reactors in the absence of cells
was 1850 μE m−2 s−1.

To monitor the reactors DO, pH and temperature probes
(Crison Instruments, Spain) connected to a control-transmitter
unit MM44 (Crison Instruments, Spain) were installed and
connected to a PC for data acquisition and control purposed.
Software for control and data acquisition was developed in
DaqFactory 5.0 (Azotech Inc.). Additionally irradiance
values inside the reactors were determined using a spherical
quantum sensor SQS-100 Walz GmbH (Effeltrich, Germany).
Data used for model calibration were obtained in continuous
mode for eight consecutive days during steady state.
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Analytical methods

Samples of influent wastewater and the outlet of the respective
reactor were periodically monitored to determine the concen-
tration of ammonium (gN m−3), nitrate (gN m−3), phospho-
rous (gP m−3), total inorganic carbon (TIC, gCm−3), chemical
oxygen demand (COD, gO2 m

−3), and total suspended solids
or biomass (Cb, gTSS m−3). Ammonium was determined by
the Nessler reactive method. Nitrate was quantified using a
spectrophotometer at 220 and 275 nm (Standard methods for
the examination of water and wastewater, 2017). Phosphorus
was determined by phosphovanado-molybdate method in
conjugation with UV-visible spectrophotometer. Total inor-
ganic carbon (TIC) was quantified by a titrimetric analysis
adding sulfuric acid 0.01 N in pH 8.3 carbonates with 1%
phenolphthalein and pH 4 bicarbonates with 1% methyl or-
ange (Bisutti et al. 2004). The dry weight biomass concentra-
tion (Cb) was measured by filtering 50 ml of cell past through
0.45-μm filters and drying it in an oven set at 80 °C for 24 h.
Hach-Lange kits spectrophotometer (LCK-555, LCI-400) was
used to determine the amount of COD concentrations of the
inlet WWTP and at the outlet of the photobioreactors.

Model implementation

BIO_ALGAE 2 model, based on BIO_ALGAE model
(Solimeno et al. 2017a), was used to perform simulations.
The model describes biokinetic reactions by relating the
growth rate to the availability of nutrients in the medium using
Monod formulation. Instead of Droop formulation, which ac-
counts the luxury uptake and storage of nutrients for later

growth, Monod formulation is more properly in this study
because in wastewater systems, which are generally rich in
nutrients, using external nutrient-limiting concentrations
makes it easier for them to be measured and known, and it
guarantees enough modelling accuracy (Solimeno and García
2019).

A detailed description of the processes, parameters, and
coefficients used to perform simulations was introduced in
Supplementary data (SD) for better understanding the mech-
anistic model BIO_ALGAE (Tables S1, S2, S3, S4, and S5).
Each processes and mathematical expressions were imple-
mented in COMSOL Multiphysics™ v5.3 simulation soft-
ware. Photobioreactor geometry has been streamline in a 0D
domain to better suit the entire volume of the used reactors and
to allow a significant reduction of computational complexity.
This simplification stems from the fact that the reactors were
designed to guarantee perfect mixing; thus, each point of cul-
ture medium fits the same physical, chemical, and biokinetic
characteristics.

A cardinal pH sub-model was included to represent the
inhibitory effects on the growth response of microalgae and
bacteria at elevated pH (Sutherland et al. 2014). The cardinal
pH sub-model is based on the cardinal temperature model
(CTMI) presented by Bernard and Rémond (2012). Instead
of temperature values, the model contains three values of pH
(pHi,max, pHi,min and pHi,opt), where i is the ith species of
microorganism and was used to describe the effects of pH
on microalgae, heterotrophic, and nitrifier bacteria growth.
The function φ(pH) (-), representing the influence of pH, is
given by following general Eq. (1):

φ pHð Þ ¼ pH−pHi;max

� �
pH−pHi;min

� �2
pHi;opt−pHi;min

� �
pHi;opt−pHi;min

� �
pH−pHi;opt
� �

− pHi;opt−pHi;max

� �
pHi;opt þ pHi;min−2pH

� �h i ð1Þ

where pHi,min and pHi,max represent the lower and higher
limits that each microorganism can support. Below and above
this range, the growth of microorganisms is assumed to be 0.
The function φ(pH) is maximum at pHi,opt. The value of the
characteristic parameters (pHi,max, pHi,min, and pHi,opt) was
evaluated by a non-linear regression of the experimental
values obtained for each type of microorganism
(Scenedesmus sp., heterotrophic and nitrifier bacteria)
(Table S6a, in SD). Likewise, a cardinal temperature sub-

model was also implemented replacing the normal distribution
of the thermic photosynthetic factor (fT,FS) which describes
microalgae growth temperature dependency (Solimeno et al.
2015) and the Arrhenius equation of the thermal factor (fT,MB)
which describes the temperature dependence of nitrifier bac-
teria (Langergraber et al. 2009; Reichert et al. 2001; Sah et al.
2011; Solimeno et al. 2017a) (Eq. 2).

φ Tð Þ ¼ T−Ti;max

� �
T−Ti;min

� �2
Ti;opt−Ti;min

� �
Ti;opt−Ti;min

� �
T−Ti;opt
� �

− T i;opt−Ti;max

� �
Ti;opt þ Ti;min−2T
� �� � ð2Þ
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where Ti,min and Ti,max represent the lower and higher limits.
Below and above this range, the growth of microorganisms is
assumed to be 0. The function φ(T) is maximum at Ti,opt. In
the same way of the pH values, the value of characteristic
parameters (Ti,max, Ti,min, Ti,opt) was evaluated by a non-
linear regression of the experimental values obtained for
Scenedesmus sp. and nitrifier bacteria. These values are shown
in Table S6b. Figure S1 in SD shows the experimental values
and the non-linear regression from which the values for Ti,max,
Ti,min, and Ti,opt were retrieved. The cardinal temperature sub-
model was not adaptable for heterotrophic bacteria, which is
described by the thermal factor (fT,MB). This factor follows
Arrhenius equation increasing exponentially with temperature
(T, °C) (Reichert et al. 2001; Solimeno et al. 2017a):

f T;MB Tð Þ ¼ θT−TH;opt ð3Þ

where TH,opt is the optimal temperature for heterotrophic bac-
teria and θ is the temperature coefficient (Table S6b). Another
new important feature added to the BIO_ALGAE model was
the implementation of CO2 injection for both pH control and
carbon supply. In our experiments, the culture medium was
not limited by carbon; thus, CO2 injection is used to keep pH
below 8.0 (Eq. 4).

CO2 inj ¼ CO*
2; pH≥8

0; pH < 8

�
ð4Þ

where CO2* is the flow rate of pure CO2 (l min−1).

Calibration procedure

Influent WWTP concentrations observed at beginning of the
experiment were used as constant input values to run simula-
tions (Tables 1 and 2). Measurements of particulate organic
components of inlet COD are very complicated. Accordingly
with recommended values by Henze et al. (2000), fraction of
COD influent was defined as follows: 22% SS (readily biode-
gradable soluble organic matter), 50% XS (slowly biodegrad-
able particulate organic matter), 10% SI (inert soluble organic

matter), 8% XI (inert particulate organic matter), and 10% XH
(heterotrophic bacteria). Particulate and organic matter con-
centrations are expressed in grams of COD per cubic meter
in all IWA models. In the present work microalgae, bacteria
and organic matter biomass are transformed fromCOD to TSS
(total suspended solids) assuming a ratio COD/TSS = 0.80
(Khorsandi et al. 2014) in order to compare experimental
and simulation results. Water temperature varied between
25.3 and 29.5 °C and the PAR ranged from 0 and
1850 μmol m−2 s−1.

The culture medium concentration when the reactor was
operated in continuous mode is described in Table 3.
Unfortunately, the concentration of each particulate compo-
nent (XALG, XS, XI, XH, XAOB, and XNOB) in the culture medi-
um was not known. Therefore, the initial ratio of particulate
components needed to estimate concentrations was
established from the TSS (assumed to be as the sum of
XALG, XS, XI, XH, XAOB, and XNOB) value based on previous
works (Solimeno et al. 2017a). Fifteen additional parameters
from both temperature and pH cardinal sub-models were
added to the 93 parameters describing microalgae, bacteria,
and physical and chemical processes (Solimeno et al. 2017a;
Solimeno and García 2019) for a total 108 parameters
(Tables S3–S4, SM).

Based on previously uncertainty analysis (Solimeno et al.
2016, 2017a), the model was calibrated by adjusting only the
parameters related to the transfer of gases to the atmosphere
(Kla,O2, Kla,CO2, and Kla,NH3). Calibration was performed by
comparing hourly measured data of DO and pH with simula-
tion patterns using graphs over the 8 days of experiment in
which the reactor was operated in continuous mode. Model
data were compared to experimental data by the root mean
square error (RMSE). Other tested components during cali-
bration were the following: total inorganic carbon (TIC, sum
of SHCO3, SCO2, and SCO3), ammonium (SNH4), nitrate (SNO3),
nitrite (SNO2), phosphate (SPO4), and COD removal efficiency
and microorganism biomass (Cb, sum of XALG, XH, XAOB, and
XNOB) production.

Practical case study was conducted to evaluate the influ-
ence of pure CO2 injection on the performance of the system.
Biomass production and removal efficiency obtained switch-

Table 1 Influent WWTP
parameters during the
8 days considered for
calibration

Parameters Influent WWTP

CODTOT (gO2 m
−3) 535

NH4-N (gN m−3) 35.5

NO3-N (gN m−3) 4.44

PO4-P (gP m−3) 10.32

TIC (gC m−3) 119

SS, XS, XH, XI, XAOB, and XNOB influent
concentrations were estimated from
CODTOT concentration (see text)

Table 2 Influent water concentrations of centrate and manure

Parameters Influent centrate Influent manure

CODTOT (gO2 m
−3) 371 840

NH4-N (gN m−3) 156 467

NO3-N (gN m−3) – 11

PO4-P (gP m−3) 24 5

TIC (gC m−3) 173 490

SS, XS, XH, XI, XAOB, and XNOB influent concentrations were estimated
from CODTOT concentration (see text)
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off CO2 injection were compared with simulation results from
model calibration. Moreover, the model was applied using
two different influent wastewater compositions from centrate
and manure (Table 2). In these studies, starting from the same
operation mode and environmental conditions (i.e., tempera-
ture and irradiance) used during the model calibration, the
concentration of each components of the model was simulat-
ed. Again, biomass production, the relative proportion of
microalgae and bacteria COD removal efficiency, and nutrient
uptake were evaluated.

Results

To perform the calibration of BIO_ALGAE 2 model, hourly
experimental data of pH and DO from the stirred tank reactors
were used. Although BIO_ALGAE model was calibrated and
validated in different systems (Solimeno et al. 2015, 2017a,
2017c; Solimeno and García 2019), these previous works have
proved that the parameters related to the transfer of gases to the
atmosphere (Klal,O2,Klal,CO2, andKlal,NH3) were very sensitive
and likely to be calibrated in each application of the model. The
mass transfer coefficient Klal,j (day

−1) of jth gas species de-
pends on the physical properties of the system (i.e., nature of
the gas, culture medium, extension of the surface interface and
temperature) and on the hydrodynamic conditions in the biore-
actors. It is very challenging to find a correlation between mass
transfer coefficients and the characteristics of reactors. Note that

Klal,O2, Klal,CO2, and Klal,NH3 were calibrated in order to fit the
model with experimental data. The results shown in Fig. 1a, b
were obtained running the model with the values of the three
calibrated parameters presented in Table 4.

Simulations were able to follow the wave-like pattern
of DO concentrations and pH values over the 8 days of
experiment in which the reactor was operated in continu-
ous mode (Fig. 1a, b). As can be seen, pH and DO values
have a daily wavelike pattern due mostly to microalgae
photosynthetic activity. This trend is in agreement with
previous simulation results obtained in our previous
works (Solimeno et al. 2017a; Solimeno and García
2019) and also with previous experimental studies
(García et al. 2006). Low experimental data of pH were
due to cleaning operation of probes.

In Fig. 1b, injection of pure CO2 during daytime allowed
to control pH below 8.0. Figure 1c shows the flow rate of
CO2 injection in both simulated and experimental data.
During night, CO2 injection was 0 and reach up to 6.0E
−03 (mol CO2 h−1) at midday. Elevated pH (> 8.3) that
could occur in microalgae-bacteria systems can negatively
affect aerobic bacteria and shift the equilibrium of carbon
species towards to carbonate concentrations, inhibiting
microalgae growth (García et al. 2000). In fact, inorganic
biogenic carbon includes bicarbonate (HCO3

−) and carbon
dioxide, whereas carbonate (CO3

2−) is not biogenic and
therefore has not to be considered as substrate for
microalgae (Solimeno et al. 2017a).

Table 3 Initial concentrations of
components in the culture
medium of the pilot
photobioreactor used for
simulations. Data were recorded
at 9:00AMat the beginning of the
continuous mode

Components Description Concentrations Units

SNH4 Ammonium nitrogen 1.38 gN-NH4 m
−3

SNH3 Ammonia nitrogen 0.01 gN-NH3 m
−3

SNO3 Nitrate nitrogen 0.3 gN-NO3 m
−3

SNO2 Nitrite nitrogen 0.04 gN-NO2 m
−3

SCO2 Carbon dioxide 6.67 gC-CO2 m
−3

SHCO3 Bicarbonate 86 gC-HCO3 m
−3

SCO3 Carbonate 0.18 gC-CO3 m
−3

SPO4 Phosphate phosphorus 1.8 gP-PO4 m
−3

SO2 Dissolved oxygen 6.49 gO2 m
−3

SH Hydrogen ions 2.95E−8 gH m−3

SOH Hydroxide ions 3.99E−7 gH-OH m−3

SS Readily biodegradable soluble organic matter 7.5 gCOD m−3

SI Inert soluble organic matter 42.5 gCOD m−3

XALG Microalgae 423 gTSS m−3

XH Heterotrophic bacteria 92 gTSS m−3

XAOB Ammonium oxidizing bacteria 0.037 gTSS m−3

XNOB Nitrite oxidizing bacteria 0.032 gTSS m−3

XS Slowly biodegradable particulate organic matter 20 gTSS m−3

XI Inert particulate organic matter 145 gTSS m−3

XALG, XS, XH, XI, XAOB, and XNOB concentrations were estimated from TSS concentration (see text). SS and SI
were estimated from previous simulation tests
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Moreover, BIO_ALGAE 2 model was able to simulate
biomass concentration (Cb) and the relative proportion of
XALG and XH (Fig. 2a, b). Simulation results have demonstrat-
ed that much of the biomass corresponds to XALG (65% in
average of Cb) and XH (15%) (Fig. 2a). Nitrifier biomass
(XAOB + XNOB) is comparatively very low (0.55%) (Fig. 2b).
The remaining solids are attributable to XS (9%) and XI

(10.4%). These proportions have been also obtained in previ-
ous simulation studies (Solimeno et al. 2017a; Solimeno and
García 2019). Moreover, Park and Craggs (2010) showed that
the proportion of microalgae in the microalgae/bacteria bio-
mass of a high-rate algal pond (HRAP) operating at 4-day
HRT with CO2 addition was around 80.5% using secondary
inlet wastewater. Biomass production calculated from

simulation result (Cb = 155 gTSS m−3 day−1) matches pretty
well the value of biomass obtained experimentally (Cb =
151 gTSS m−3 day−1).

Discussion

In this work, the parameters related to the transfer of gases to
the atmosphere present in the BIO_ALGAE model were cal-
ibrated in a pilot photobioreactor. Simulation results shown in
Figs. 1 and 2 were performed calibrating only the three pa-
rameters related to the transfer of gases to the atmosphere
(Klal,O2, Klal,CO2, and Klal,NH3) with respect to the 108 pa-
rameters included in the BIO_ALGAE. Some of these
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parameters (i.e., maximum microalgae and heterotrophic
growth rate) were calibrated and validated in our previous
work (Solimeno et al. 2017a; Solimeno and García 2019). In
order to validate the values of Klal,O2, Klal,CO2, and Klal,NH3,
calibrated in this work, experimental studies were conducted
to evaluate the mass transfer coefficient to the atmosphere for
DO and CO2 as function of different rotating magnetic stirrer
(0, 350, 400, and 450 rpm). The correct measurement and/or
prediction of theKlal,i is a crucial step in the design, operation,
and scale-up of bioreactors. Starting from the same reactor
used for model calibration and saturating the medium of oxy-
gen and pure CO2 in turn, DO and CO2 concentrations were
calculated operating in batch mode. Consumption and/or pro-
duction of oxygen and CO2 bymicroorganism’s activity could
interfere with results; for this reason, freshwater was used as
medium. Figure 3 shows the effect of liquid agitation on the

overall mass transfer coefficient (Klal,O2 and Klal,CO2). It is
found that an increase of rotation speed involves in an expo-
nential increase of Klal,O2 and Klal,CO2 value. The increase of
Klal,CO2 as function of rotation speed was not relevant as for
Klal,O2.

As is seen in Fig. 3, the values of Klal,O2 and Klal,CO2
obtained during the calibration of the model (16 and
5 day−1, respectively) fit quite well with experimental results
(13.4 and 5.06 day−1, respectively) corresponding at rotation
speed inside the reactor of 400 rpm. The root mean square
error of the simulation was low in relation to measured values
(RMSEO2 = 1.8 and RMSEpH = 0.25 g O2 m−3). Values of
RMSE for the two parameters considered for calibration were
obtained comparing model simulations with experimental da-
ta (n = 191) for dissolved oxygen and pH. Transfer coefficient
to the atmosphere for ammonia (NH3) was assumed equal to
the Klal,CO2 due to the same value of diffusion coefficient
(Frank et al. 1996).

The implementation of the cardinal pH and temperature
sub-models allowed to consider the negative effects on pho-
tosynthetic metabolism and bacteria growth when pH and
temperature values move away of the optimal value.
Figure 4a shows the influence of pH values on growth rate
of microalgae, heterotrophic, and nitrifier bacteria. As can be

Table 4 Values of calibrated parameters

Parameter Description Value

Kla,O2 Mass transfer coefficient for oxygen 16 day−1

Kla,CO2 Mass transfer coefficient for dioxide carbon 5 day−1

Kla,NH3 Mass transfer coefficient for ammonia 5 day−1
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lines); influent (blue line) and effluent simulated concentration (green

line) c TIC, d SNH4, e SNO3 and SNO2, f SPO4, and g COD over the
8 days of experiment in continuous mode
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seen, microalgae growth rate was slowly reduced by 5% dur-
ing photosynthetic hour activity due to the CO2 injection that
control pH (< 8.0). The implementation of CO2 injection al-
lows to reproduce the effect of a control system of carbon
dioxide injection as function of an establish pH value.
Moreover, by model simulation, it is possible to quantify the
amount of CO2 that is needed in the microalgae metabolism.

Figure 4b reproduces the values of cardinal temperature
factor for microalgae and nitrifier bacteria and the thermic
factor for heterotrophic bacteria, which follow the Arrhenius
type model. Temperature values recorded during the experi-
ment did not influence negatively the growth rate of each
microorganism species.

Temperature is one of the main factors that strongly influ-
ence the maximum growth rate for microalgae (Singh and
Singh 2015). Several studies have reported that the optimal

growth rate for microalgae varies between species to species
as function of temperature (Talbot et al. 1991; Saunders and
Giskle 1997; Bouterfas et al. 2002; Pereira et al. 2006).
Accordingly to Park et al. (2011), temperatures between 28
and 35 °C are favorable for microalgae growth. With respect
to the thermic photosynthetic factor (fT,FS) reported on the
previous version of BIO_ALGAE model (Solimeno et al.
2017a), the cardinal temperature sub-model allows to consider
the optimal temperature range for each species of microalgae.
In our case, through the cardinal model, it was possible to
consider the specific minimum, maximum, and optimal tem-
perature values for Scenedesmus almeriensis (Table S6b),
which can tolerate temperature up to 45 °C (Sánchez et al.
2008; Costache and Fernández 2013).

BIO_ALGAE model has allowed to simulate microalgae
and bacteria proportion and to estimate daily biomass
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production. Furthermore, the model was able to reproduce
TIC, SNH4, SNO3, SNO2, SPO4, and COD concentrations (Fig.
2c–g). Simulated curves present a clear wavelike pattern most-
ly related to photosynthesis, with lower values during day-
time. Microalgae grow during daytime using bicarbonate such
as carbon source, ammonia, and nitrate such as nitrogen
source and phosphate. Figure 2c–f show the comparison of
simulated outflow concentration of nutrients and organic mat-
ter (Fig. 2g) and their respective inflow concentrations. In
accordance with the removal efficiency values described in
Table 5, the results carried out by BIO_ALGAE 2 model fit
quite well with the experimental results. The model considers
the removal of both microalgae and bacteria separately, al-
though the result of global removal is that provided by the
model.

Case study: biomass production and wastewater
treatment performance without CO2 injection

In this case study, the reactor was operated in continuous
mode likewise of the model calibration but switch-off CO2

injection. The effects of not supply CO2 on biomass pro-
duction and relative proportion of microalgae and bacteria
were compared with previous results obtained supplying
pure CO2 to control pH below 8.0. As is observed in Fig.
5a, simulation indicated that Cb slightly decreases from

155 gTSS m−3 day−1 to 122 gTSS m−3 day−1 without
CO2 injection, but the relative proportions of particulate
components with respect to Cb changed. XALG decreased
by 38% and XH increased by 35% with respect to model
calibration. Low amount of nitrifier biomass (1%) compared
to heterotrophic bacteria comparatively is in agreement with
previous simulation studies (Sams and García 2013;
Krasnits et al. 2009; Silyn-Roberts and Lewis 2001). The
decrease of XALG has caused a less competition on nutrients
availability (nitrogen and phosphorous) determining the pro-
liferation of XH.

From simulation, microalgae result is not carbon limited
due to the increase of pH up to 11.0 at midday. Figure 5b
shows the influence of pH values on growth rate of XALG,
XH, XAOB, and XNOB. In comparison with pH cardinal values
showed in Fig. 4a, XALG growth rate was reduced from 5 to
10% during photosynthetic activity due to the absence of CO2

injection that control pH. Although the growth rate of XH was
strongly reduced by 30% during the day and 80% at night, the
effect of high pH value was negligible in terms of COD re-
moval efficiency (Fig. 5c). This result is in accordance with
previous study by Posadas et al. (2014). NH4

+-N stripping has
been proposed as the main process contributing to nitrogen
removal in HRAPs (Shelef et al. 1982; El Halouani et al.
1993). Nevertheless, model simulations have indicated that
microalgae uptake is the main mechanism for nitrogen

0

4

8

12

16

20

0 50 100 150 200 250 300 350 400 450 500

K
la

l
[d

-1
]

Rotation speed [rpm]

Fig. 3 Influence of rotating
magnetic stirrer on overall mass
transfer coefficient for DO and
CO2

a) b)

0

0.2

0.4

0.6

0.8

1

0 24 48 72 96 120 144 168 192

φ(
pH

) [
-]

Time [h]

φ(pH_ALG) φ(pH_H) φ(pH_N)

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0 24 48 72 96 120 144 168 192

f T
,M

B
 (T

)

φ(
T

) [
-]

Time [h]

φ(T_ALG) φ(T_N) fT,MB

Fig. 4 a Changes of the values of the cardinal function φ(pH) for
microalgae (green line), heterotrophic (blue line), and nitrifier bacteria
(yellow line) over the over the 8 days of experiment in continuous
mode. b Changes of the values of the cardinal function φ(T) for

microalgae (green line) and nitrifier bacteria (yellow line), and thermal
factor (fT_MB) for heterotrophic (blue line) over the over the 8 days of
experiment in continuous mode

Environ Sci Pollut Res



removal. Although NH4
+-N stripping is promoted at high pH,

model results have estimated that microalgae activity is re-
sponsible for 60% of nitrogen removal and only 30% is due
to stripping, in agreement with previous works (Avoz and
Goldmann 1982, García et al. 2000). Regarding phosphorous
removal, Fig. 5c shows that only 20% of phosphorous is

assimilated by microalgae in absence of CO2 injection. The
remaining phosphorous concentrations is precipitate from the
medium; in fact, pH values between 9 and 11 induced the
precipitation of phosphorus in the form of calcium phosphate
(Laliberte et al. 1997). Phosphorous precipitation at high pH
values was not included in the model.

Table 5 Comparison between
removal efficiency of the system
measured experimentally and
obtained by model simulation

% Removal efficiency experimental results % Removal efficiency model results

TIC 27.2 27.7

N_NH4 96.1 92.4

N_NO3 75.0 73.6

P_PO4 94.1 67.60

COD 90.8 91.1
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Case study: biomass production and wastewater
treatment performance with different influent
wastewater composition

In this case study, the photobioreactor was alimented using
two different influent wastewater from centrate and manure
(Table 2). In Fig. 6a, the relative proportion of each particulate
components is compared. As it can be seen, microalgae/
bacteria proportions is completely different as function of in-
fluent wastewater composition. Using manure wastewater, XH
production predominant with respect to XALG, while using
centrate wastewater the relative proportion is exactly the op-
posite. Moreover, model simulations have indicated that Cb

production (~ 100 gTSS m−3 day−1 for both cases) resulted
lower than Cb production obtained using primary influent
wastewater (155 gTSS m−3 day−1).

Low biomass production could be due to inorganic carbon
limitation for the growth of microalgae. In general, microalgae
growing in wastewater systems such as high rate algal ponds
or photobioreactors, in which no external CO2 is supplied, are
usually carbon limited (Park et al. 2011; García et al. 2006;
Oswald 1988). Looking more closely at model outputs was
possible to investigate which was the factor that more affects

microalgae concentrations. Both system results are not carbon
limited, and CO2 injection to control pH was not necessary.
Low photosynthetic activity by microalgae during daytime
has allowed to maintain pH value below 8.2. In particular, a
constant value of pH around 7.5 was recorded for the pilot
photobioreactor alimented with wastewater influent from ma-
nure, while using centrate as influent wastewater pH value
ranged between 7.7 at night and 8.2 during the day.

Figure 6b shows the trend of the light factor fL(I) (processes
1a, 1b in Table S1 in SD) (Solimeno et al. 2015) over the 24 h
for both manure and centrate influent wastewater. As can be
seen, microalgae were strongly influenced by the light factor
fL(I), which reduced growth from 65 to 50%, respectively for
manure and centrate wastewater during the photosynthesis’s
hours. Light factor includes photoinhibition, photolimitation,
and light attenuation and is considered to be the main limiting
factor in microalgae systems (Larsdotter 2006). Incident light
intensity (I0) and average light intensity (Iav) are compared in
Fig. 6c (Solimeno et al. 2017a). Iav have a direct effect on the
values of the light factor.

Light attenuation results the main limiting factor for both
cases. Elevated particulate components concentrations (XH,
XS, and XI) present in theses wastewaters reduced the light
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availability in the culture medium. Average light intensity (Iav
[μmol m−2 s−1]) was described using Lambert-Beer’s law and
is attenuated by the presence of particulate components (XC =
XALG + XH + XI + XS + XAOB + XNOB [g TSS m−3]) and the
depth (d [m]) of the reactors (Eq. 5).

I av ¼
I0 �

�
1−exp Ki � X C � dð Þ
Ki � X C � d ð5Þ

where I0 (μmol m−2 s−1) is the incident light intensity andKi is
the extinction coefficient for particulate biomass (0.07 m2 g−1)
(Molina Grima et al. 1994).

In a dense culture medium such as from manure wastewa-
ter, the growth rate of microalgae is reduced; conversely, bac-
teria growth rate is not limited because it does not depend on
light availability, but on quality of influent wastewater. For
this reason, the relative proportion on microalgae/bacteria is
shifted towards heterotrophic bacteria. Regarding a culture
medium from centrate wastewater, although microalgae are
limited by light availability, microalgae/bacteria proportion
(70%) is in accordance with experimental results (Park and
Craggs Park et al. 2011) and simulation results (Solimeno
et al. 2017a) from a pilot high-rate algal pond (HRAP) treating
municipal wastewater. As shown in Table 1b, influent
CODTOT of centrate wastewater is 371 gO2 m

−3 with respect
to 840 gO2 m−3 for manure wastewater. Therefore, centrate
wastewater could be comparable with influent characteristic
wastewater using during the experiment conducted by Park
and Craggs (Park et al. 2011) and Solimeno et al. (2017a),
CODTOT = 180 gO2 m

−3 and CODTOT = 232 gO2 m
−3, respec-

tively. Furthermore, wastewater treatment performance of sys-
tem was evaluated. Table 6 indicates that for both types of
influent wastewater, the removal efficiency was very low.

The next step in order to make microalgae-based wastewa-
ter treatment sustainable systems would be to find the optimal
condition in order to maximize biomass production and COD
and nutrient removal efficiency using different type of influent
wastewater.

Conclusion

In this work, the parameters related to the transfer of gases to
the atmosphere present in the BIO_ALGAE model were cal-
ibrated in a pilot photobioreactor. Results of the calibration

have indicated that the model quite accurately matched the
pH and DO trend. Moreover, the model has allowed to simu-
late the relative proportion of microalgae and bacteria and to
estimate daily biomass production. BIO_ALGAE model has
demonstrated by means of practical study cases to be a useful
tool to understand microalgae and bacteria interactions in
wastewater treatment and in particular to study the effect of
CO2 injection on wastewater treatment performance and bio-
mass production. The model was applied to investigate the
performance of microalgae-bacteria wastewater treatment
using different influent wastewaters from primary or second-
ary municipal effluent. The next step in order to make
microalgal-bacterial wastewater treatment sustainable systems
would be to find the optimal condition in order to maximize
biomass production and COD and nutrient removal efficiency
using different types of influent wastewater. Further improve-
ments should be focused on oxygen and NH3 desorption phe-
nomena not only through the surface of the reactor but also in
aerated zones (i.e., paddlewheel, sump) existing in large-scale
reactors.
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