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Abstract: Students in the electrical branch of the short-cycle tertiary education program acquire
developmental and design skills for low voltage transmission power lines. Aerial power line design
requires mathematical tools not covered well enough in the curricula. Designing suspension cables
requires the use of a Taylor series and integral calculation to obtain the parabola’s arc length. Moreover,
it requires iterative procedures, such as the Newton–Raphson method, to solve the third-order equation
of the steady-static response. The aim of this work is to solve the steady-static response equation for
suspended cables using simple calculation tools. For this purpose, the influence of the horizontal
component of the cable tension on its curvature was decoupled from the cable’s self-weight, which
was responsible for the tension’s vertical component. To this end, we analyzed the laying and
operation of the suspended cables by defining three phases (i.e., stressing, lifting, and operation).
The phenomena that occurred in each phase were analyzed, as was their manifestation in the cable
model. Herein, we developed and validated the solution of the steady-static response equation in
suspended cables using simple equations supported with intuitive graphics. The best results of the
proposed calculation procedure were obtained in conditions of large temperature variations.

Keywords: power transmission lines; suspended cables; reduced-order models; problem-based
learning; mathematical modeling; high-temperature and low-sag conductors (HTLS conductors)

1. Introduction

Programs like vocational education and training studies for electrical and automatic systems
(Spanish Royal Decree (RD) 1127/2010 [1]) and short-cycle tertiary education (classified at an
international standard classification of education (ISCED) level 5 [2]) are designed to provide participants
with professional knowledge, skills, and competencies. Academic tertiary education programs below
the level of a bachelor’s program or equivalent are also classified as ISCED level 5.

The mathematical competencies with which students enter these studies do not include differential
or integral calculus. According to RD 1127/2010 [1], electrical and mechanical calculations are required
for low voltage power transmission lines. The mathematical model that describes the behavior of the
cable is based on the catenary curve and, in most cases, the parabola is used as an approximation, as it
is easier to apply [3]. The use of a Taylor series is required to approximate both the profile and length
of the cable [4,5]. The arc length of the parabola is essential for solving the steady-static response
equation of the cable [6,7]. It is a polynomial equation that can be solved with a simple code [7]. Both a
Taylor series and iterative resolution algorithms take the student away from real physical phenomena.
According to Huilier [8], difficulties in mathematics are the main obstacle for young students to get
interested in science and technology disciplines. When studying the subject of suspended cables in the
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final years of secondary education, students ask themselves questions such as: What length of cable is
necessary to join two points? Since students do not have integral calculation tools, they often cannot
answer this question and resort to formulas that need to be memorized.

According to Moreno-Clemente [9], computers are a valuable tool for calculating power
transmission lines. It is also important for students to analyze the physical implications of each
approximation made in the mathematical model. It is important that students learn how to do
science [10]. When considering problem-solving activities applied to the cables, there is an initial
part that students can do on their own (i.e., puzzle activities [11]) and a final part in which they use
computer applications as the only tool to obtain a quick solution to the static response equation.

In this paper, we propose a procedure that in only two steps provides an approximate solution
to the real solution. In this way, the student is encouraged to use mathematical models of reduced
order to solve the whole problem. The problem has become a puzzle situation [11] by having a fixed
(approximate) solution. Proposing appropriate strategies for problem-solving is important to correctly
achieve conceptual and procedural competencies [12].

The student uses reduced-order models to compare the results obtained by the proposed procedure
and those provided by computer applications when using higher-order models. The student is allowed
to build his own knowledge and draw his own conclusions through the use of different mathematical
models for the same physical system. It is important to highlight student motivations for using accurate
and simplified mathematical models [13,14], as well as graphic and intuitive tools [15].

Regarding the detailed models of suspended cables, Irvine [16] carried out a complete study of static
equations for state of the suspended cables. Changes in the static state of suspended cables are due to
temperature variations [17,18], ice loads [19,20], moving mass [21–23], vibrations [24–27], or intentional
power overloads that raise cable temperatures [28]. Although most of the works start from an initial
static curved state [16–28], Yang [29] considered the initial state without mechanical tension (stress) and
with the cable in a horizontal position. Luongo and Zulli [30] described the first step in solving the static
response equation in cables under vertical loads.

In this work, we start from an initial state of the cable without curvature and support the cable
on a horizontal surface. The aim is to decouple the influence that the horizontal component of the
cable tension had on the cable curvature and the cable’s own weight, which is responsible for vertical
component tension. To achieve this, the laying and operation of the suspended cables were analyzed
in detail by defining three phases. Phase I is stressing, during which the external horizontal force
was applied to the cable. Phase II is lifting, during which the vertical external force was applied and
the cable acquired curvature, defining its profile. This phase was studied in detail and the energy
relationships were analyzed. Finally, phase III is operation, in which we proposed a procedure to solve
the steady-static response equation using simple equations. This last phase was traditionally studied.

The aim of this work was to provide a calculation procedure to solve the static response equation
for suspended cables using simple arithmetic operations and intuitive graphics that allow locating the
main physical magnitudes.

This paper is organized as follows. Section 2 describes the mathematical models of static
equilibrium of suspended cables. Section 3 describes the three phases for the laying and operation
of the suspended cables and the procedure to obtain an approximation of the equation of static state
change for the cable. At the end of Section 3, we show several examples solved by vocational education
and training students of the electricality branch (secondary school Alhamilla (Almería), Spain).

2. Materials and Methods

This section describes the mathematical models of the static equilibrium for suspended cables [16].
The loads of the displaced state [16] were modified by introducing a load per unit length in the
displaced state, m2, which was different from the load per unit length of the initial state, m1. Moreover,
given the importance of suspended cables applied to low voltage overhead lines, the temperature
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variation in both states, t2 and t1, respectively, was considered. Finally, we obtained the static state
change equation for cables suspended between two fixed supports A and B (see Figure 1).
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d
ds1

(
T1

dx
ds1

)
= 0,

d
ds1

(
T1

dz
ds1

)
= m1g (1)

Herein, ds1 is the initial length of a differential element of the cable, T1 is the tension inside the
cable and m1g is the self-weight of the cable per unit length in the initial static state and x-z are the
Cartesian coordinates. We use the following restrictions:

(
dx
ds1

)2

+

(
dz
ds1

)2

= 1→
ds1

dx
=

√
1 +

(
dz
dx

)2

. (2)

Further, we solve (
T1

dx
ds1

)
= H1,

(
H1

d2z
dx2

)
= m1g

√
1 +

(
dz
dx

)2

(3)

where H1 is the horizontal component of the applied external force.
The cable profile is a catenary (hyperbolic cosine function) and can be approximated by a flat
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The solution for the cable profile is then
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. (6)

The sag is

d =
m1gl2

8H1
. (7)

Figure 1 shows the cable suspended between two fixed points: A and B and Cartesian coordinates
((−l/2, d) and (+l/2, d), respectively). The vertical external force on the support is V and H is the



Mathematics 2020, 8, 1468 4 of 19

horizontal external force, which coincides with the constant horizontal component of cable tension.
One must have H > V (for d/l to be less than 1/8). The cable length, L, can be approximated by a
first-order Taylor:

L =

l∫
0

√
1 +

(
dz
dx

)2

dx, L = l

1 +
m2

1g2l2

24H2
1

. (8)

This is mechanical, i.e., the length of the profile [16,17].

2.2. Stressed Static State: Subscript 2

Figure 2 shows the geometry of when the cable is displaced from its original equilibrium profile [16],
where ds1 is the original length of the element, ds2 is its new length, and u and w are the longitudinal
and vertical components of the displacement, respectively.

ds2
1 = dx2 + dz2

ds2
2 = (dx + du)2 + (dz + dw)2 (9)
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The state of equilibrium then follows Equation (10) [17], although in the present work the weight
of the cable in the displaced state is m2g.
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Moreover, we solve
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dx + du
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= H2, H2

d2(z + w)

dx2 = m2g

√
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Herein, T2 is the tension inside the cable in the displaced state. For small sag, the static equilibrium
equation simplifies into [17]

d
l
<

1
8
⇒

(
dz + dw

dx

)2

<< 1→ H2
d2(z + w)

dx2 = m2g. (13)

Using (13), (12) becomes

T2

(
dx + du

ds2

)
= H2, H2

d2(z + w)

dx2 = m2g. (14)

Equation (14) then becomes

T2(dx + du) = H2ds2 = H2(ds1 + ∆ds) (15)

where ∆ds is the module of the length variation between the length of the displaced state s2, and the
length of the initial state s1 (see Figure 2). Substituting (3) into (15),

T1dx = H1ds1 → (T2 − T1)dx + T2du = (H2 −H1)ds1 + H2∆ds. (16)

When the cable is curved and suspended between two fixed points [16] it is assumed that:
∆ds << dx y du << dx. Then, the following value results for T′:

(T2 − T1) ≈ (H2 −H1)
ds
dx
→ T′ ≈ h

ds
dx

(17)

where T′ = (T2 − T1) and h = (H2 − H1), according to a prior notation [16].
With respect to Equation (14), the second becomes

H2
d2z
dx2 + H2

d2w
dx2 = m2g. (18)

By substituting (4) into (18):
d2w
dx2 =

m2g
H2
−

m1g
H1

. (19)

Further, integrating in (19) results in

w(x) =
(

m2g
H2
−

m1g
H1

)
x2

2
. (20)

On the other hand, the variation of cable length exclusively attends to geometric considerations
(see Figure 2) and corrects the second order of small quantities [16,25].

ds2 − ds1 = dx
ds1

du + dz
ds1

dw +
(

1
2

dw
ds1

)
dw

ds2−ds1
ds1

= dx
ds1

du
ds1

+ dz
ds1

dw
ds1

+ 1
2

(
dw
ds1

)2 (21)

When the cable is fixed between two supports, the change in cable length is due to changes in its
internal tension, according to Hooke’s law [31] and variations in cable temperature [32].

T′

EA
+ α∆t =

ds2 − ds1

ds1
=

∆ds
ds1

(22)

Here, E, A, and T′ denote the Young modulus, the cross-section area, and the additional tension
exerted on the element, respectively. α is the thermal expansion coefficient and ∆t is the temperature
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change of the cable. By putting Equation (21) into (22), the cable equation for an element ds1 is
as follows:

T′

EA
+ α∆t =

dx
ds1

du
ds1

+
dz
ds1

dw
ds1

+
1
2

(
dw
ds1

)2

. (23)

Substituting (17) into (23) allows for the following:(
h

EA
ds1

dx
+ α∆t

)(
ds1

dx

)2

=
du
dx

+
dz
dx

dw
dx

+
1
2

(
dw
dx

)2

. (24)

If the A and B supports are fixed, there is no horizontal movement between them. Therefore the
integral of the first summand in the right hand side of (24) is zero.

+ 1
2∫

−
1
2

du = 0 (25)

The integral of the second summand on the right side in (24) is as follows:

+ 1
2∫

−
1
2

dz
dx

dw
dx

dx =

+ 1
2∫

−
1
2

m1gx
H1

(
m2g
H2
−

m1g
H1

)
xdx = 2

m1gx
H1

(
m2g
H2
−

m1g
H1

)
l3

24
. (26)

The integral of the third summand of the right side in (24) is as follows:

+ 1
2∫

−
1
2

1
2

(
dw
dx

)2

dx =

+ 1
2∫

−
1
2

(
m2g
H2
−

m1g
H1

)2 x
2

dx =

(
m2g
H2
−

m1g
H1

)2 l3

24
. (27)

Assuming ds1 ≈ dx, integrating (24) and substituting (25)–(27) obtains the following:

(H2 −H1)

EA
l + α(t2 − t1)l =

m2
2g2l3

24H2
2

−
m2

1g2l3

24H2
1

. (28)

This is a third-order equation with H2 as the unknown. It is the equation of steady-static response
that students need to solve. It can be solved using Cardano’s formulae, Ruffini’s rule or some other
procedure for solving cubic equations.

3. Results

As a starting point, we sought to separate the influence that the horizontal external force H and the
vertical external force V (due to the cable’s own weight, m) had on (28). To achieve this, we analyzed
the laying and operation of suspended cables by defining three phases.

Phase I is stressing, in which the external horizontal force, H, was applied to the cable. This phase
was exclusively influenced by H and the cable acquired its internal tension. Phase II is lifting, in which
the external vertical force, V, was applied, keeping the force H constant. In this phase, the cable
acquired its full curvature and its internal tension hardly changed. This phase was analyzed in detail
since it was in this phase when the cable defined its initial profile. The final state of this phase, where the
cable was fully raised, corresponded to the initial conditions described in Section 2. Finally, Phase III
was operation, which sought to solve (28) using simple arithmetic equations supported by equations
and graphical representations obtained during the analysis of the two previous phases.



Mathematics 2020, 8, 1468 7 of 19

3.1. Phase I: Stressing—Horizontal Static State

In Phase I, a horizontal load, H1, was applied, while the cable was supported along its entire length
(Figure 3). The cable was subjected to internal tension, H1, and was applied on a cable of length l/2.

Mathematics 2020, 8, x FOR PEER REVIEW 7 of 19 

 

 
Figure 3. Phase I: Stressing. Horizontal static state. Application of the horizontal external force H. 

The initial profile of the cable was a horizontal line. 𝑧 = 0 (29)

By applying Hooke’s law when the final tension, H1, was reached. The horizontal displacement 
of point B at the end of Phase I can be obtained by 

𝑇ଵ = 𝐻ଵ,   𝑢஻ூ = න 𝜀𝑑𝑥 = න 𝐻ଵ𝐸𝐴 𝑙2ଶଵଶ
଴

ଵଶ
଴  (30)

where ε is the strain and the horizontal displacement of point B in Phase I, uBI, coincides with the cable 
length variation. The initial cable length at a temperature t0 displaced point B. Thus, the final cable 
length in this phase remains 𝑠଴ = 𝑙2 , 𝑢஻ூ = 𝐻ଵ𝐸𝐴 𝑙2 , 𝑠ூ = 𝑠଴ + 𝑢஻ூ . (31) 

3.2. Phase II: Lifting—Curved Static State 

According to Figure 4, only the cable segment of length s ≈ x complied and V = mgx was lifted. 
When lifting a differential element of the cable, ds ≈ dx, it rotated an angle dθ, and point B moved a 
differential element dδ, taking the cable from b′ (discontinuous line) to b″ (continuous line). This 
displacement differential element had a vertical component, dw, and a horizontal component, du. 
During this phase, two segments coexisted in the cable: a straight horizontal segment, A-a, and a 
curved raised segment, a-b, which described a parabola, according to (34). 

 
Figure 4. Differential elements in Phase II (lifting). Right segment AB of the final parabola. 

Figure 3. Phase I: Stressing. Horizontal static state. Application of the horizontal external force H.

The initial profile of the cable was a horizontal line.

z = 0 (29)

By applying Hooke’s law when the final tension, H1, was reached. The horizontal displacement
of point B at the end of Phase I can be obtained by

T1 = H1, uI
B =

1
2∫

0

εdx =

1
2∫

0

H1

EA
l
2

2
(30)

where ε is the strain and the horizontal displacement of point B in Phase I, uB
I, coincides with the cable

length variation. The initial cable length at a temperature t0 displaced point B. Thus, the final cable
length in this phase remains

s0 =
l
2

, uI
B =

H1

EA
l
2

, sI = s0 + uI
B. (31)

3.2. Phase II: Lifting—Curved Static State

According to Figure 4, only the cable segment of length s ≈ x complied and V = mgx was
lifted. When lifting a differential element of the cable, ds ≈ dx, it rotated an angle dθ, and point B
moved a differential element dδ, taking the cable from b′ (discontinuous line) to b” (continuous line).
This displacement differential element had a vertical component, dw, and a horizontal component,
du. During this phase, two segments coexisted in the cable: a straight horizontal segment, A-a, and a
curved raised segment, a-b, which described a parabola, according to (34).
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3.2.1. Segment 1: Horizontal Segment—Segment A-a

As shown in Figure 4, only part of the cable was lifted. The rest remained in the same condition
as in Phase I, as well as maintaining the same tension, T, since the external force H1 remained constant
(T = H1).

3.2.2. Segment 2: Curved Segment—Segment a-B

Equations (32)–(34) were obtained by applying the static equilibrium equations, which are easy to
apply for high-school students. In this work, the mathematical models developed in Section 2 were
applied to the cable shown in Figure 4. The initial profile was a horizontal line, z = 0, and, in this phase,
there was displacement in the z axis, dw > 0.

ds ≈ dx, z = 0, dw , 0 (32)

Replacing (32) in the vertical component of (14) results in

H1
d2w
dx2 = m1g, ρ1 =

H1

m1g
→

d2w
dx2 =

1
ρ1

(33)

where ρ1 is a good approximation for the radius of curvature of the curve w. Integrating (33) results in

w(x) =
m1gx2

2H1
=

x2

2ρ1
. (34)

The vertical displacement w, according to (34), is easily obtained by secondary school students
applying the static equations. Calculation difficulties came with horizontal displacement u. Next,
the horizontal displacement was analyzed in detail to find a simple analytical expression.

The mathematical model for horizontal displacement applied polar coordinates to point b.
Cartesian coordinates of point b in Phase II are as follows:(

x, w =
x2

2ρ1

)
. (35)
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Polar coordinates of point b, according to Figure 5, assume small values for the angleθ, and therefore
also for ϕ (Equation (13)).

(ϕ, r)→

 tanϕ = w
x , ϕ ≈ tanϕ = x

2ρ ≈
θ
2 → w = ϕx

r =
√

x2 + z2 = x
√

1 + tan2ϕ = x
cosϕ

→
(
θ
2

,
x

cosϕ

)
(36)

Mathematics 2020, 8, x FOR PEER REVIEW 9 of 19 

 

 
Figure 5. Polar coordinates for the right segment of the parabola, a-b (Phase II). Radius aBI. 

𝑠 + 𝑑𝑠 = 𝑥 + 𝑑𝑥 − 𝑢 − 𝑑𝑢, 𝑥 = 𝑟 cos 𝜑 → 𝑑𝑠 = 𝑑𝑟 cos 𝜑 − 𝑟 sin 𝜑𝑑𝜑 − 𝑑𝑢 (37)

When drawing a circle in the center of a, the total length of the cable raised s + ds (segment aBI). 
Figure 6 shows that between the polar coordinate r + dr (segment ab″) and radius s + ds, there was a 
difference sc + sc, representation the length applied in defining the cable curvature. Equation (38) was 
thus satisfied. 

 
Figure 6. Polar coordinates for the right segment of the parabola a-b (Phase II). Radius ab″. 

𝑠 + 𝑑𝑠 = 𝑟 + 𝑑𝑟 + 𝑠௖ + 𝑑𝑠௖ → 𝑑𝑠 = 𝑑𝑟 + 𝑑𝑠௖ (38)

Replacing (38) with (37) and approximating for small values of φ results in 𝑑𝑟 − 𝑥𝜑𝑑𝜑 − 𝑑𝑢 = 𝑑𝑟 + 𝑑𝑠௖ → 𝑑𝑢 + 𝑑𝑠௖ = −𝑥𝜑𝑑𝜑. (39)

If it is established as a hypothesis that half of the horizontal displacement of point b is used to 
follow the profile curvature according to (40), then 𝑑𝑠௖ = − 𝑑𝑢2 . (40)

Therefore, we have obtained an expression for u(x) and sc(x). If w is substituted according to (36), 
then (39) can be solved as 

Figure 5. Polar coordinates for the right segment of the parabola, a-b (Phase II). Radius aBI.

In Figure 5, when the external force, V, was applied at point B (not represented in the figure for
simplicity) a differential dV = mgds increased and a cable element of length ds was raised, which met
Equation (37) and was no longer horizontal. Point a was the vertex of the parabola a-b of Equation (34)
and moved dx > 0 to the left. Point b was displaced to the left of du, having negative values, according
to the coordinate axes of Figure 5.

s + ds = x + dx− u− du, x = r cosϕ→ ds = dr cosϕ− r sinϕdϕ− du (37)

When drawing a circle in the center of a, the total length of the cable raised s + ds (segment aBI).
Figure 6 shows that between the polar coordinate r + dr (segment ab”) and radius s + ds, there was a
difference sc + sc, representation the length applied in defining the cable curvature. Equation (38) was
thus satisfied.

s + ds = r + dr + sc + dsc → ds = dr + dsc (38)
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Replacing (38) with (37) and approximating for small values of ϕ results in

dr− xϕdϕ− du = dr + dsc → du + dsc = −xϕdϕ. (39)

If it is established as a hypothesis that half of the horizontal displacement of point b is used to
follow the profile curvature according to (40), then

dsc = −
du
2

. (40)

Therefore, we have obtained an expression for u(x) and sc(x). If w is substituted according to (36),
then (39) can be solved as

u(x) = −
x∫

0
wdθ

sc(x) =
x∫

0
wdϕ.

(41)

The integral of (41) for u(x) was proportional to the first moment of area for the triangle defined
by angle θ, according to Figure 4. It is referred to as M and was the first-order static moment with
respect to the z-axis (coordinate origin in the point a).

u(x) = −
x∫

0
wdθ =

 w = x
2θ

dθ = dx
ρ

, u(x) = − 1
2ρ

x∫
0

xθdx = − x3

6ρ2

u(x) = − 1
2ρM, M = 2

3 x 1
2 x x

ρ → u(x) = − x3

6ρ2

(42)

Equation (42) gives an expression for the horizontal displacement of point B, u. Therefore, according
to the hypothesis of Equation (40), the cable length defines the curvature, sc. Both expressions can be
obtained by making first-order static moments, which are mathematical tools that students in the final
years of secondary education use.

Accepted mathematical models were used to validate the above hypothesis [16].
The mathematical model for horizontal displacement, u, was used [16].
We transitioned from an initial horizontal profile, z = 0, to a curved profile, w. The vertical

displacements w(x) corresponded to (34). The horizontal component in the straight (A-a) and curved
(a-b) segments remained constant and equal to H1. Therefore h = 0, according to (17). If the temperature
remains constant at t0, it results in the following:

0 =

xB∫
0

du +
1
2

xB∫
0

(mgx
H

)2
dx. (43)
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Integrating the horizontal displacement for point B in Phase II results in the following:

uII
B =

m2
1g2x3

6H2
1

→ uII
B = −

x3

6ρ2
1

. (44)

The displacement of point b is w(x) in the z-axis, according to (34), and uB_II(x) in the x-axis,
according to (44). The value of uB_II, according to (44) for a half-span of l/2, corresponds to the length
increase of the profile of a parabola with span l, according to (8).

Since (44) corresponds to (42), the hypothesis of Equation (40) is correct.
Once the right-hand segment of the cable with a length of s0 = l/2 has been raised, the total

accumulated horizontal displacement of Phase II and the temperature variation from t0 to t1 remains
as follows:

uT
B =

H1l
2EA

+ α(t1 − t0)
l
2
−

m2
1g2l3

48H2
1

, wT
B =

m1gl2

8H1
. (45)

3.2.3. Segment 2: Curved Segment—Energy Relations

Energy analysis helps students to understand the meaning of this phenomenon [33]. This section
describes the energy relationships that appear in Phases I and II in order to clarify the concepts involved.

The work done by the load is stored in two forms: gravitational potential energy and elastic strain
energy of extensions [16]. The external force, V, is gradually applied at point b, which moves vertically,
according to (34), as V increases. The work done for a span, l, is

WV = 2

d∫
0

VBdwB = 2

l
2∫

0

m2
1g2x2

H
dx =

4
3

Vd →

 V = m1g l
2

d =
m1 gl2

8H1

(46)

While applying V, the external force H1 is fully applied. Therefore, it exerts work since point b
moves horizontally, according to (44), for a constant temperature, t0:

WH1 = 2

d∫
0

H1duII
B = −2H1uII

B , uII
B = −

m2
1g2l3

48H2
1

→ WH1 = −
2
3

Vd. (47)

Thus, the total work of the external forces is

WT = WV + WH = −
2
3

Vd. (48)

The gravitational potential energy is given by

Vg = 2

l
2∫

0

m1gwds. (49)

Including the constraints given in (32) and substituting (34) into (49), we find that

Vg = 2

l
2∫

0

m2
1g2x2

2H1
dx =

2
3

Vd. (50)

The potential strain energy is depicted as Ve = 0 and conservation of energy requires that

WT = Vg. (51)
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3.3. Phase III: Operation—Equation of Static Response

The cable was tightened, lifted, and fixed at point B for operation (Figure 7).
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Figure 7. Final static state. Fixed point B.

The cable was fixed at point B by changing the static conditions of the vertex of the parabola
(point A) and this it moved in a vertical direction. This was not the case with horizontal displacement,
where both points A and B were restricted in their horizontal displacement. Therefore, the horizontal
displacements for the same cable under different conditions, 1 and 2, were the same.

uT
B

∣∣∣
2 = H2l

2EA + α(t2 − t0)
l
2 −

m2
2 g2l3

48H2
2

uT
B

∣∣∣
1 = H1l

2EA + α(t1 − t0)
l
2 −

m2
1 g2l3

48H2
1

(52)

Equation (52) can be obtained by following Phases I, II, and III (for a span of length l/2). It is,
therefore, identical to (28) (for a span of length l), which demonstrates the classical cable theory [16,17].
Therefore, we determined that the application of the three phases were valid.

Application of Polar Coordinates at Point B

Once in Phase III, the x-coordinate of point B remains constant at x = +l/2. Now,
Equation (37) becomes

ds = −du. (53)

Equation (38), using (40), now reads as

dsc = dr =
ds
2

. (54)

Thus, (41) can be written as

dsc =
l
2
ϕdϕ. (55)

3.4. Didactic Procedure for Solving the Equation of Steady-Static Response

The procedure obtained ∆sc, beginning with a known length variation caused by temperature or
stress variations, ∆s, and using (55).

dsc =
l
2
ϕdϕ, ∆sc = zB∆ϕ (56)

The order in which the variables are grouped in the second member of (55) is significant.
When grouped as in (56), the product of the first two variables corresponds to the initial z-coordinate
of point B, zB1 (see Figure 8).
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The calculation procedure starts from initial conditions (subscript 1) and obtains a variation of the
angle of rotation, ∆θ, to approximate H2 in two steps:

Step 1 uses (56) to determine the length variation caused by temperature changes from t1 to t2, ∆s.
Then, the previous length is calculated for curvature length, ∆sc. Then, ∆ϕ and the value of H2

I can be
obtained as an approximation of H2, according to (57).

x = l
2 , ϕ1=

m1 gx
2H1

, zB1 = xϕ1

Step 1:
∆sc =

∆s
2 , ∆s = xα(t2 − t1)

∆ϕI =
∆sc
zB1

ϕI = ϕ1 + ∆ϕI → HI
2 =

m2 gx
2ϕI

(57)

Step 2 calculates the length variation when changing the cable tension from H1 to H2
I, ∆s. Then,

the previous length is calculated for curvature length, ∆sc. Then, ∆ϕ and the value of H2
II can be

obtained as an approximation of H2, according to (58).

x = l
2 , ϕ1=

m1 gx
2H1

, zB1 = xϕ1, ∆ϕI

Step 2:

∆sc =
∆s
2 , ∆s =

x(HI
2−H1)
SE

∆ϕII =
∆sc
zB1

ϕII = ϕ1 + ∆ϕI + ∆ϕII → HII
2 =

m2 gx
2ϕII
≈ H2

(58)

3.5. Application of the Procedure to Cables Used in Low-Voltage Aerial Lines

The above algorithm was applied to cables for low voltage aerial lines that were referred to
in Royal Decree 842/2002, which approved low voltage electrotechnical regulations in Spain [34].
To evaluate the results, the exact values were provided by MATLAB’s fsolve algorithm, which uses a
variant of an algorithm previously described [35]. It was applied to solve (28).

Table 1 provides the mechanical characteristics of the cable with designation RZ 3x50 Al/54.6 Alm.

Table 1. Characteristics of cable RZ 3x50 Al/54.6 Alm.

Designation Characteristics

RZ 3x50 Al/54.5 Alm
S = 54.6 mm2; m = 0.755 kg ·m−1;

E = 6000 kg ·mm−2; α = 23× 10−6 ◦C−1
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The change of static state conditions described in Table 2 was carried out for the cable with
designation RZ 3x50 Al/54.6 Alm, for a span of l = 50 m. The initial state of the conditions corresponded
to the maximum tension reached by the cable and the final state corresponded to the maximum sag on
the cable. The conditions were obtained according to Spanish standards [34].

Table 2. Conditions for the cable RZ 3x50 Al/54.6 Alm.

Initial State Conditions: Tmax Final State Conditions: dmax

H1 = 345 kp; m1 = 1.99 kg ·m−1; t1 = 15
◦

C H2; m2 = 0.755 kg ·m−1; t2 = 50
◦

C

Table 3 shows the solution of each step and the relative error as a percentage of the solution
provided by fsolve.

Table 3. Results for the cable RZ 3x50 Al/54.6 Alm.

Procedure Result

MATLAB: fsolve H2 = 128.33 kp
Step I: H2 = 128.45 kp

Error % 0.099%
Step II: H2 = 128.02 kp
Error % 0.063%

Table 4 provides the mechanical characteristics of the cable with designation RZ 3x95 Al/54.6 Alm.

Table 4. Characteristics of cable RZ 3x95 Al/54.6 Alm.

Designation Characteristics

RZ 3x95 Al/54.6 Alm
S = 54.6 mm2; m = 1.26 kg ·m−1;

E = 6000 kg ·mm−2; α = 23× 10−6 ◦C−1

The change of static state conditions described in Table 5 was carried out for the cable with
designation RZ 3x95 Al/54.6 Alm, for a span of l = 50 m. The initial state of the conditions corresponded
to the maximum tension reached by the cable and the final state corresponded to the maximum sag on
the cable. The conditions were obtained according to Spanish standards [34].

Table 5. Conditions for the cable RZ 3x95 Al/54.6 Alm.

Initial state conditions: Tmax Final State Conditions: dmax

H1 = 345 kp; m1 = 2.58 kg ·m−1; t1 = 15
◦

C H2; m2 = 1.26 kg ·m−1; t2 = 50
◦

C

Table 6 shows the solution of each step and the relative error as a percentage of the solution
provided by fsolve.

Table 6. Results for the cable RZ 3x95 Al/54.6 Alm.

Procedure Result

MATLAB: fsolve H2 = 165.017 kp
Step I: H2 = 167.67 kp

Error % 1.00%
Step II: H2 = 166.06 kp
Error % 0.987%

Table 7 provides the mechanical characteristics of the cable with designation RZ 3x150 Al/80 Alm.
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Table 7. Characteristics of cable RZ 3x150 Al/80 Alm.

Designation Characteristics

RZ 3x150 Al/80 Alm
S = 80 mm2; m = 1.78 kg ·m−1;

E = 6000 kg ·mm−2; α = 23× 10−6 ◦C−1

The change of static state conditions described in Table 8 was carried out for the cable with
designation RZ 3x150 Al/80 Alm, for a span of l = 50 m. The initial state of the conditions corresponded
to the maximum tension reached by the cable and the final state corresponded to the maximum sag on
the cable. The conditions were obtained according to Spanish standards [34].

Table 8. Conditions for the cable RZ 3x150 Al/80 Alm.

Initial state conditions: Tmax Final state conditions: dmax

H1 = 444.4 kp; m1 = 3.23 kg ·m−1; t1 = 15
◦

C H2; m2 = 1.78 kg ·m−1; t2 = 50
◦

C

Table 9 shows the solution of each step and the relative error as a percentage of the solution
provided by fsolve.

Table 9. Results for the cable RZ 3x150 Al/80 Alm.

Procedure Result

MATLAB: fsolve H2 = 236.77 kp
Step I: H2 = 241.69 kp

Error % 2.079%
Step II: H2 = 240.32 kp
Error % 2.074%

4. Discussion

This work is an example of how intuitive models are useful for students when manually calculating
either approximate or exact models in computer simulations.

In this way, affordable mathematical tools provided to students advances learning. Metacognitive
knowledge and mathematical intelligence are independent [36]. Metacognitive knowledge can be
understood as the ability to recognize the strengths and weaknesses of one’s learning process and the
subsequent ability to correct them [37], as well as possessing the mathematical intelligence to solve
mathematical problems [38].

On the other hand, from secondary education onwards, students must be able to create computer
simulations to check the validity of models used in manual calculation. Students are motivated to
accept computer simulations [39].

From a didactic point of view, we clarified the process of lifting a suspended cable through
defining three phases starting from when the cable extends horizontally to when it is fully raised and
fixed at its supports. Equation (52) was obtained by following Phases I, II, and II and is identical to (28),
which has been widely obtained with verified models [16,17]. This fact validates the implementation
of these phases, yet the practical usefulness of these phases remains to be determined.

It is important to define each summand for (52). The first term corresponded to the increase in
length due to Hooke’s law; the second corresponded to the increase in length due to temperature; the
third corresponded to the increase in cable length to be added to the straight line rab that defined the
profile of the cable, sc (see Figures 5 and 6). The negative sign of this third summand corresponded
to the fact that point b, when bending the cable in Phase II, moved to the left (negative direction,
Equation (36)).

Equation (41) was obtained by analyzing Phase II in polar coordinates, which also corresponded
to the second summation in the second member of Equation (8), representing the parabola’s arc
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length. The latter is of great importance for the mathematical procedure in suspended cables and is
traditionally obtained via integral calculation. This is a difficulty for students in secondary education,
since they often have not yet studied integral calculus or it is not contemplated in their curricula.
Equation (44) was obtained as the first-order static moment of the triangular area defined by angle θ

(see Figure 5 and Equation (42)). This fact is of notable didactic importance at the secondary education
level, since students have knowledge of mathematics applied to the calculation of static moments
and centers of gravity. Thus, (42) provides a calculation tool for students that allows them to advance
their studies.

Energy helps students understand the meaning of this phenomenon [33]. For this reason, it has
been considered useful to obtain energy relations in Phases I and II, in order to clarify the concepts
involved in these phases. They are simple expressions that can be used to perform didactic problems
while teaching, although obtaining them requires integral calculus. Applying energetic relationships
allows one to clarify the physical processes that occurs during each phase. Thus, during Phase I
of stressing, only elastic potential energy is accumulated, while during Phase II of lifting, the cable
accumulates gravitational potential energy and elastic potential energy, the latter being negligible.

Equations (37)–(39) are of considerable importance when developing the calculation procedure
described in Section 3.4. The polar coordinate r is related to the cable length s and to the Cartesian
coordinate x, according to Figure 5 and Equation (38). In (39), (41) was replaced by (37) after
differentiation, wherein the approximation for small values of the angle θ was made. It is important to
point out that if, in (37), the approximation for small angles was made first, the information provided
by the differential process would be lost. In that case, Equation (39), fundamental to the calculation
procedure, would be reduced to a trivial equality (0=0). This fact has great didactic value since it
recognizes the implications of the approaches made in the model. These details stimulate the interest of
many students. Examples of systems with similar effects on students are the elastic pendulum [40] or
the three-body problem [41]. These are simple approaches that can present complex or simple dynamic
behaviors depending on their state.

In (39), the calculation process was stopped because two unknowns appeared, sc and u.
A hypothesis is still needed, which is stated in (40). This is a conceptual advance for the didactic
development of suspended cables. It states that only half of the horizontal displacement of point
b during Phase II is applied when varying the cable curvature and therefore the angle θ at point B
(see Figure 6). Solutions for (39) and (40) results in (41). It provides an expression for both sc and u
in Phase II. In the case of u, it is identical to the expression of Equation (44) from widely validated
mathematical models [16,17]. This validates the hypothesis of (40), which is half of the horizontal
displacement u (in modulus) in Phases II and III. This is responsible for the curvature of the cable profile.

Considering the importance of (41), it is convenient to indicate that the expression obtained
corresponds to first-order static moments of triangular figures (see (42)). This fact favors their study in
secondary education and specifically for students not required to have skills in differential calculus.

For the calculation procedure of cable conditions changes in Phase III, Figure 8 is relevant.
It graphically shows the result of (56), interpreted as the product of a radius by an angle. This graphic
tool has great didactic power since it allows the visualization of a calculation procedure, as well as
locates the main magnitudes involved in ∆s, ∆u, and ∆sc. Even the veracity of the hypothesis of
Equation (40) can be assessed. This affords students the possibility to understand mathematical models
through formulas (i.e., Equation (56)) and graphs (i.e., Figure 8).

In Section 3, the calculation procedure was applied to the three most used cables in low-voltage
aerial lines. The cables were laid in a span of l = 50 m, which is an average span for this type of line.
A change in static conditions was applied from conditions, implying maximum internal tension in the
cable (subscript 1) to conditions implying maximum sag in the cable (subscript 2). Step I corresponded
to the variation in curvature due to temperature (i.e., Equation (57)), achieving good results in all three
cases with results having errors below 2.1% with respect to the exact solution provided by MATLAB’s
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fsolve. The calculation procedure described in Section 3.4 can be reduced to step I, especially when
concerning temperature variation. The application of step II slightly improved the results.

Since these were standard problems in low-voltage aerial line design, they became puzzle
problems [10]. These were complete problems with statements, analytical resolution procedures
supported by graphics, and concrete/intuitive analytical solutions. However, this was an approximate
solution because the procedure did not lead to an exact solution, as it is not an algorithm. The procedure
allows students to advance their studies by having mathematical tools that analyze cables in any
condition. These are tools that students are familiar and friendly with. The problems were posed to
students in secondary education, specifically in vocational education and training in the electrical
branch. They accepted the calculation procedure positively because it allowed them to manually
make a complete problem. They can thus obtain a computer solution to compare results. In addition,
students can be encouraged to search independently for other methods of solving the equation of
steady-static response in suspended cables, such as the Cardano’s formulae or the Ruffini’s rule.

In future works, the described calculation procedure should be applied to more complex calculation
conditions, i.e., cables with several spans and different lengths [20], and spans with supports at different
levels. The main point of interest is to apply the procedure to cables with large thermal uprating,
which would increase their power transfer capacity [42–44]. The conductors (i.e., high-temperature
and low-sag conductors) can support temperatures up to 150 ◦C, against 80 ◦C of the conductors they
replace [45]. In this case, there were large temperature variations and this was where the calculation
procedure described in this paper obtained the best results.

5. Conclusions

In this study, an approximate method to calculate low voltage aerial lines was successfully
developed. The method facilitated the acquisition of professional and mathematic competences for
vocational education and training students in the electrical branch. Educational exercises were herein
proposed and students provided affordable calculations and analysis tools.

Three phases have been differentiated in the laying and operation of the suspended cables, owing
to which a graphic procedure has been obtained in which each of the magnitudes involved in the
process are identified. It is an approximate but useful tool for solving exercises manually, and for the
student to have a simple model of resolution and understanding of the physical phenomena involved.

The equation of steady-static response in suspended cables to solve is a cubic equation, which can
be solved by well-known methods such as the Cardano’s formulae or the Ruffini’s rule, among others.
This work provides a graphical solution of the equation of steady-static response and requires applying
the physical laws used in suspended cables. Step I of the procedure considers the variation in cable
length with the change in temperature, and step II evaluates the variation in length with the change
in tension. This procedure has great didactic value, since it allows the student to apply previously
acquired concepts, which are necessary for the study of suspended cables.

As disadvantages or limitations of the proposed procedure, it provides only approximate results to
the exact solution and requires more time to resolve the exercise. In addition, it is a specific procedure,
not applicable to other subjects of the course.
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