Mostrar el registro sencillo del ítem

dc.contributor.authorAykac, Ahmet 
dc.contributor.authorNoiray, Magali
dc.contributor.authorMalanga, Milo
dc.contributor.authorAgostoni, Valentina
dc.contributor.authorCasas Solvas, Juan Manuel 
dc.contributor.authorFenyvesi, Éva
dc.contributor.authorGref, Ruxandra
dc.contributor.authorVargas Berenguel, Antonio 
dc.date.accessioned2024-04-17T10:04:23Z
dc.date.available2024-04-17T10:04:23Z
dc.date.issued2017-01-16
dc.identifier.citationBiochim. Biophys. Acta Gen. Subj., 2017, 1861, 1606-1616es_ES
dc.identifier.issn0304-4165
dc.identifier.urihttp://hdl.handle.net/10835/16386
dc.description.abstractBackground Metal-organic framework nanoparticles (nanoMOFs) are biodegradable highly porous materials with a remarkable ability to load therapeutic agents with a wide range of physico-chemical properties. Engineering the nanoMOFs surface may provide nanoparticles with higher stability, controlled release, and targeting abilities. Designing postsynthetic, non-covalent self-assembling shells for nanoMOFs is especially appealing due to their simplicity, versatility, absence of toxic byproducts and minimum impact on the original host-guest ability. Methods In this study, several β-cyclodextrin-based monomers and polymers appended with mannose or rhodamine were randomly phosphorylated, and tested as self-assembling coating building blocks for iron trimesate MIL-100(Fe) nanoMOFs. The shell formation and stability were studied by isothermal titration calorimetry (ITC), spectrofluorometry and confocal imaging. The effect of the coating on tritium-labeled AZT-PT drug release was estimated by scintillation counting. Results Shell formation was conveniently achieved by soaking the nanoparticles in self-assembling agent aqueous solutions. The grafted phosphate moieties enabled a firm anchorage of the coating to the nanoMOFs. Coating stability was directly related to the density of grafted phosphate groups, and did not alter nanoMOFs morphology or drug release kinetics. Conclusion An easy, fast and reproducible non-covalent functionalization of MIL-100(Fe) nanoMOFs surface based on the interaction between phosphate groups appended to β-cyclodextrin derivatives and iron(III) atoms is presented. General significance This study proved that discrete and polymeric phosphate β-cyclodextrin derivatives can conform non-covalent shells on iron(III)-based nanoMOFs. The flexibility of the β-cyclodextrin to be decorated with different motifs open the way towards nanoMOFs modifications for drug delivery, catalysis, separation, imaging and sensing. This article is part of a Special Issue entitled “Recent Advances in Bionanomaterials” Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.es_ES
dc.language.isoenes_ES
dc.publisherElsevier B.V.es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMIL-100(Fe) nanoMOFses_ES
dc.subjectβ-Cyclodextrines_ES
dc.subjectPhosphorylationes_ES
dc.subjectNon-covalent coatinges_ES
dc.subjectAZT-TPes_ES
dc.titleA non‐covalent “click chemistry” strategy to efficiently coat highly porous MOF nanoparticles with a stable polymeric shelles_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0304416517300168es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1016/j.bbagen.2017.01.016
dc.relation.projectIDANR-14-CE08-0017, CTQ2013-48380-R, info:eu-repo/grantAgreement/EC/FP7/608407es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional